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Welcome to Continuous Delivery for Puppet Enterprise

Continuous Delivery for Puppet Enterprise (PE) is a tool for streamlining and simplifying the continuous integration
and continuous delivery of your Puppet code. Continuous Delivery for PE offers a prescriptive workflow to test and
deploy Puppet code across environments.

To harness the full power of Puppet Enterprise, you need a robust system for testing and deploying your Puppet code.
Continuous Delivery for PE offers prescriptive, customizable workflows and intuitive tools for Puppet code testing,
deployment, and impact analysis, helping you ship changes and additions with speed and confidence.

Note:  Continuous Delivery for PE version 4.x is now available! To upgrade to the Continuous Delivery for PE 4.x
series from a version in the 3.x series, see Migrating 3.x data to 4.x.

Continuous Delivery for PE docs links Other useful places

Before you install

Release notes

Known issues

System requirements

Install Continuous Delivery for PE

Install using the cd4pe module

Configure and manage access

Configuring - Integrate with source control and PE,
set up job hardware, and configure impact analysis.

User permissions and groups

Creating and managing workspaces

Learn the basics

Getting started

Key concepts

Continuously deliver Puppet code

See the potential impact of new code

Create a job to test code

Choose a deployment policy

Docs for related Puppet products

Puppet Enterprise

Open source Puppet

Puppet Development Kit

Why and how people are using Continuous Delivery
for PE

Read our ebook on Critical Considerations for
Continuous Delivery

Get support

Search the Support portal and knowledge base

Upgrade your support plan

Share and contribute

Engage with the Puppet community

Puppet Forge

Open source projects from Puppet on GitHub

To send us documentation feedback or let us know about a docs error, use the feedback form at the bottom of each
page. Thanks!

Release notes

New features, enhancements, known issues, and resolved issues for the Continuous Delivery for Puppet Enterprise 3.x
release series.

• Continuous Delivery for PE release notes on page 5
These are the new features, enhancements, resolved issues, and deprecations for the Continuous Delivery for Puppet
Enterprise (PE) 3.x release series.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pe/latest/
https://puppet.com/docs/puppet/6.0/index.html
https://puppet.com/docs/pdk/1.x/pdk.html
https://puppet.com/resources/ebook/critical-considerations-continuous-delivery
https://puppet.com/resources/ebook/critical-considerations-continuous-delivery
https://support.puppet.com/hc/en-us
https://puppet.com/support-services/customer-support/support-plans
https://puppet.com/community
https://forge.puppet.com
https://github.com/puppetlabs/
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• Continuous Delivery for PE known issues on page 17
These are the known issues for the Continuous Delivery for PE 3.x release series.

Continuous Delivery for PE release notes
These are the new features, enhancements, resolved issues, and deprecations for the Continuous Delivery for Puppet
Enterprise (PE) 3.x release series.

To upgrade to the Continuous Delivery for PE 4.x series from a version in the 3.x series, go to Migrating 3.x data to
4.x.

Version 3.13.8

Released 1 September 2021

Resolved in this release:

• We've improved the database migration process from versions in the 3.x series to versions in the 4.x series.

Version 3.13.7

Released 26 April 2021

Resolved in this release:

• Impact analysis tasks on modules now manage prefixed environments correctly.

Version 3.13.6

Released 18 March 2021

New in this release:

• Configure the Bolt PCP read timeout period. To prevent job run timeouts caused by file sync delays,
you can now adjust the Bolt Puppet Communication Protocol (PCP) timeout period by setting the
CD4PE_BOLT_PCP_READ_TIMEOUT_SEC environment variable. For more information, see Adjusting the
timeout period for jobs.

Resolved in this release:

• Impact analysis tasks are now case-insensitive when processing resource names.

Version 3.13.5

Released 17 February 2021

Resolved in this release:

• Jobs now run successfully on pull requests opened from forked copies of source control repositories.

Version 3.13.4

Released 5 November 2020

Resolved in this release:

• Logging for the 3.x to 4.x data migration task is now improved.

Version 3.13.3

Released 27 October 2020

Resolved in this release:

© 2024 Puppet, Inc., a Perforce company
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• Code Manager deployments triggered by Continuous Delivery for PE are now automatically retried if certain
transient failures occur.

Security notice:

• CVE-2020-25649. A jackson-databind vulnerability has been resolved.
• CVE-2020-15250. A JUnit4 vulnerability has been resolved.
• CVE-2020-13956. An Apache HTTPClient vulnerability has been resolved.
• Sonatype-2020-0926. A security scanner may have detected a vulnerability in Continuous Delivery for PE version

3.13.x. However, Continuous Delivery for PE does not exercise the vulnerable code path and is not vulnerable.

Version 3.13.2

Released 27 August 2020

Resolved in this release:

• The 3.x to 4.x migration task now consumes less memory, reducing the possibility of out of memory errors.

Version 3.13.1

Released 25 August 2020

Resolved in this release:

• When 3.x data is migrated to 4.x, the database no longer creates duplicate users in the 4.x installation.

Version 3.13.0

Released 25 August 2020

New in this release:

• Status notification prefixes. You now have the option to add a custom prefix to the pipeline stage result
notifications Continuous Delivery for PE sends to your source control provider. For more information, see Status
notification prefixes for source control.

• Custom deployment policy improvements. You can now use custom deployment policies when deploying code
from your control repo or module repo regex branch pipelines. Additionally, custom deployment policies now
support the use of sensitive parameters.

CAUTION:  Custom deployment policies are a beta feature. As such, they may not be fully documented
or work as expected; please explore them at your own risk.

• Data migration to 4.x. Continuous Delivery for PE 4.x is now available. To upgrade to the Continuous Delivery
for PE 4.x series from a version in the 3.x series, see Migrating 3.x data to 4.x.

• Usability improvements. Version 3.13.0 introduces several improvements to the design and usability of the web
UI, including:

• More specific error messaging when adding Puppet Enterprise credentials.
• Clearer controls when setting up a default pipeline.

Resolved in this release:

• Clicking Message Center directs you to the messages associated with your username, not the messages associated
with your active workspace.

• Deployments using the direct deployment policy now fail with an error if the max_node_failure value
assigned to the deployment is less than zero.

• Impact analysis tasks run successfully when trace-level logging is enabled.
• Pagination controls on the nodes view of impact analysis reports work as expected.
• Clicking the text of an Auto promote control in a pipeline only impacts the associated pipeline stage.
• The functionality of the User settings control for the root user is restored.

© 2024 Puppet, Inc., a Perforce company
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• When editing a deployment in the web UI after updating a custom deployment policy, the names of custom
deployment policies are no longer shown twice.

Version 3.12.4

Released 18 August 2020

New in this release:

• Export Nodes page information. You can now generate and export a CSV file of the information in your node
table.

• Support for Bitbucket Server source branch update webhook. Continuous Delivery for PE now supports the
new webhook for source branch updates in a pull request introduced in Bitbucket Server version 7.0.

Note:  You must manually configure your Bitbucket Server webhooks to recognize source branch updates in
order to use this feature with Continuous Delivery for PE. See the Bitbucket Server documentation for more
information.

Resolved in this release:

• The Nodes page now displays data for all responsive PE servers if one server is unresponsive.

Version 3.12.3

Released 5 August 2020

Resolved in this release:

• The Nodes page now works as expected if SSL is enabled on your Continuous Delivery for PE installation. You
must connect using HTTPS.

Note:  Firefox users who have enabled SSL and are using a self-signed certificate must add the certificate to the
Firefox trust store.

• The Nodes page now displays all other available data if any node returns null fact data.
• The column selector on the Nodes page no longer remains open when you move to a new page of results.
• An issue with cookies has been resolved, and the Nodes page now loads correctly when using Safari or Firefox.
• When using PE 2019.7 or 2019.8, clicking View Report on the Nodes page now correctly directs you to the

appropriate report in the PE console.

Version 3.12.2

Released 20 July 2020

Resolved in this release:

• The latest version of the puppetlabs-cd4pe_jobs module is no longer required, and jobs in installations
where the module has not been upgraded now work as expected.

Version 3.12.1

Released 20 July 2020

Resolved in this release:

• When a super user is deleted from Continuous Delivery for PE, the workspaces the user was a member of now
remain intact.

Security notice:

• CVE-2020-14039. A security scanner may have detected a Go vulnerability in Continuous Delivery for PE
version 3.11.x and 3.12.x. However, Continuous Delivery for PE does not exercise the vulnerable code path and
so is not vulnerable.

© 2024 Puppet, Inc., a Perforce company

https://confluence.atlassian.com/bitbucketserver/bitbucket-server-7-0-release-notes-990546638.html#BitbucketServer7.0releasenotes-Anewwebhookforsourcebranchupdatesinapullrequest
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Version 3.12.0

Released 15 July 2020

New in this release:

• Maximum concurrent catalog compiles setting. Each impact analysis-enabled PE instance integrated
with Continuous Delivery for PE now has a setting for the maximum number of node catalog compilations
each workspace is allowed to perform concurrently – 10 by default. This setting helps to balance the catalog
compilation load placed on a PE instance by Continuous Delivery for PE impact analysis report generation. Adjust
this setting by editing your PE credentials in the Settings area.

• Customizable job timeout intervals. You can now adjust the length of time allowed for a job to complete,
connect to an endpoint, or access a cached Git repository before timing out. For more information, see Adjusting
the timeout period for jobs.

• Repository caching improvements. By default, Continuous Delivery for PE now omits the .git directory when
passing a cached Git repository to job hardware. For more on enabling and customizing Git repository caching,
which remains disabled by default, see Improving job performance by caching Git repositories.

• Usability improvements. Version 3.12.0 introduces several improvements to the design and usability of the web
UI, including:

• If a node catalog compilation fails, the associated impact analysis task's status is shown as FAILED instead of
DONE.

• Many icons have been updated to offer a cleaner, more streamlined look and feel.

Resolved in this release:

• Custom deployment policies with redundant approval steps – such as those that include a custom approval step
and also utilize a built-in deployment policy with its own approval step – now only request approval once.

• Continuous Delivery for PE now only sends a new status update to your source control provider when the
pipeline's status has changed.

Security notice:

• CVE-2020-13692. A security scanner may have detected a PostgreSQL JBDC driver vulnerability with a 9.8
CVSS score in Continuous Delivery for PE version 3.11.1 and earlier. However, Continuous Delivery for PE does
not exercise the vulnerable code path and so is not vulnerable. Continuous Delivery for PE version 3.12.0 includes
PostgreSQL version 42.2.13, which resolves the vulnerability.

Version 3.11.1

Released 25 June 2020

Resolved in this release:

• Bitbucket Server users are now able to see all of their organizations, repositories, and branches when adding a
control repo or module repo.

Version 3.11.0

Released 24 June 2020

New in this release:

• Nodes page. The new Nodes page shows information about the nodes from all PE instances integrated with a
workspace. You can create a custom table with columns displaying the fact values you're most interested in. To
get started using the Nodes page, see Reviewing node inventory.

Important:  To use the Nodes page, you must upgrade the puppetlabs-cd4pe module to version 2.0.1.

• Control repository webhooks update automatically. If you update the backend service endpoint for your
Continuous Delivery for PE installation, the webhooks connecting the software to your source control provider are
automatically updated.

© 2024 Puppet, Inc., a Perforce company
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• Pipeline unique identifier for custom deployment policies. A new environment variable,
CD4PE_PIPELINE_ID, is available for inclusion in your custom deployment policies. For more information,
see the see the module documentation for puppetlabs-cd4pe_deployments.

CAUTION:  Custom deployment policies are a beta feature. As such, they may not be fully documented
or work as expected; please explore them at your own risk.

Resolved in this release:

• The temporary branches Continuous Delivery for PE creates during deployments now use only lowercase letters.
• Listing LDAP groups now succeeds when pagination is disabled on your LDAP server.
• Impact analysis task information is now shown correctly when you click Edit impact analysis in a pipeline.

Version 3.10.1

Released 16 June 2020

Resolved in this release:

• Git repository caching, which remains disabled by default, is now utilized for deployments.

Version 3.10.0

Released 10 June 2020

New in this release:

• Clone GitLab repositories using HTTP(S). GitLab users can now select whether to clone repositories using SSH
(default) or HTTP(S). The cloning protocol is set per workspace on the Source control page in Settings.

• Improved search for LDAP groups. This release eliminates a previous limit on the number of LDAP groups
recognized by Continuous Delivery for PE, and improves LDAP group search functionality.

• Usability improvements. Version 3.10.0 introduces several improvements to the design and usability of the web
UI, including:

• Improved error messaging when an impact analysis task fails to locate Code Manager parameters.

Resolved in this release:

• Duplicate deployment task events are no longer shown on a deployment's details page.
• For users who have enabled Git repository caching, when a symlink is present in a Git repository, Continuous

Delivery for PE now copies the symlink instead of its target.
• Jobs that produce a large amount of output no longer deadlock.

Version 3.9.3

Released 5 June 2020

Resolved in this release:

• In order to minimize the unintended effects on smaller repositories, Git repository caching is now disabled by
default.

Version 3.9.2

Released 4 June 2020

Resolved in this release:

• The puppetdb_connection_timeout_sec class parameter now correctly implements the timeout period
you set.

© 2024 Puppet, Inc., a Perforce company
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• In some cases, the cached Git repositories that power the job performance improvements introduced in version
3.9.1 can become corrupted. These special cases are now identified and correctly handled by Continuous Delivery
for PE when they occur.

Version 3.9.1

Released 2 June 2020

Resolved in this release:

• Users with large Git repositories who are running a Puppet agent on their job hardware no longer experience job
timeouts.

Version 3.9.0

Released 28 May 2020

New in this release:

• Configure PuppetDB timeout for impact analysis tasks. You can now use the new
puppetdb_connection_timeout_sec key in your .cd4pe.yaml files to set a PuppetDB timeout period
for impact analysis tasks.

• Usability improvements. Version 3.9.0 introduces several improvements to the design and usability of the web
UI, including:

• A more helpful error message if an invalid URL is entered as an Artifactory endpoint.
• Updated icons and improved readability on the Control Repos and Modules pages.

Resolved in this release:

• Impact analysis reports now correctly reflect Hiera data changes in modules.
• Installations that include job hardware running a Puppet agent are now able to promote to the next stage of a

module pipeline following a stage that ends with a job.
• Azure DevOps webhook URLs are now parsed correctly when using the deprecated visualstudio.com URL.

Version 3.8.0

Released 13 May 2020

New in this release:

• Deployment approval functions for custom deployment policies. Two new functions,
approve_deployment and decline_deployment are available for inclusion in your custom
deployment policies. For more information, see the see the module documentation for puppetlabs-
cd4pe_deployments.

CAUTION:  Custom deployment policies are a beta feature. As such, they may not be fully documented
or work as expected; please explore them at your own risk.

• Optional mail attribute setting for LDAP configurations. When configuring your LDAP integration, you now
have the option to select the LDAP user attribute that will identify each member's email address in Continuous
Delivery for PE. If unset, this field defaults to mail.

• Environment variables for jobs. When composing a non-Docker-based job, you can now use the $REPO_DIR
environment variable to reference the directory that houses the relevant control repo or module repo. Additionally,
Continuous Delivery for PE now automatically locates and sets the $HOME environment variable before running a
job.

• Usability improvements. Version 3.8.0 introduces several improvements to the design and usability of the web
UI, including:

• You can now search branch names when selecting the location of a .cd4pe.yaml file.

Resolved in this release:

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppetlabs-cd4pe_deployments/blob/master/REFERENCE.md
https://github.com/puppetlabs/puppetlabs-cd4pe_deployments/blob/master/REFERENCE.md
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• Entering the bind DN password is no longer required when disabling an LDAP configuration stored in Continuous
Delivery for PE.

• The status of impact analysis tasks is now displayed correctly on the impact analysis report's overview page.
• The latest job and deployment activity for each repo is now displayed properly on the Control Repos and

Modules pages.
• The name of the pipeline used in a deployment is now shown correctly in deployment approval request emails and

message center messages.
• You can now successfully complete a manual promotion from any stage in a pipeline which ends with a job.
• Users who built module pipelines using an earlier version of Continuous Delivery for PE and then upgraded to the

3.x series now receive the correct URL to the module deployment approval decision page in deployment approval
emails.

Version 3.7.1

Released 5 May 2020

Resolved in this release:

• An error and failure of one deployment no longer occurs whenever two deployments are running in the same
workspace at the same time.

• Deployments no longer unexpectedly restart when certain conditions are met.

Version 3.7.0

Released 28 April 2020

New in this release:

• Transfer workspace ownership between users. Super users and the root user can now reassign ownership
of a workspace to a different Continuous Delivery for PE user. For instructions, see Transfer ownership of a
workspace.

• Set user group permissions on a subset of modules. You can now create user groups that have permissions on
only a subset of the modules in your workspace.

• New direct deployment policy parameter: fail_if_no_nodes. Deployments using the direct deployment
policy can now tell Continuous Delivery for PE to stop the deployment and report a failure if the selected
environment node group doesn't contain any nodes.

• Usability improvements. Version 3.7.0 introduces several improvements to the design and usability of the web
UI, including:

• The email address field used for creating login credentials is now case insensitive.
• The commit at the HEAD of a feature branch is now automatically selected when creating a new on-demand

deployment for a regex branch pipeline.

Resolved in this release:

• Resources with a single parameter change are displayed correctly in impact analysis reports.
• Optional deployment plan parameters are no longer sent as empty strings to Bolt.
• Commit authors are shown when listing commits for Bitbucket Cloud repos during the creation of a new on-

demand deployment or impact analysis report.
• Bitbucket Server URLs are rendered correctly in deployment approval emails.
• When logged in as a super user, clicking the Workspaces settings tab in the root console no longer changes the

navigation panel options to those of a non-root workspace.

Version 3.6.1

Released 16 April 2020

Resolved in this release:

© 2024 Puppet, Inc., a Perforce company
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• Deployments using the temporary branch deployment policy now correctly perform a code deploy following a
successful orchestrated deployment.

Version 3.6.0

Released 14 April 2020

New in this release:

• Generate module impact analysis reports on demand. You can now generate an impact analysis report for any
module change by clicking Manual actions > New Impact Analysis on a module's details page.

• Usability improvements. Version 3.6.0 introduces several improvements to the design and usability of the web
UI, including:

• A redesigned Users page with new controls for adding users to your workspace or removing users from your
workspace.

• A redesigned Groups page with an updated workflow for adding and removing group members and user
permissions.

Resolved in this release:

• Impact analysis reports no longer fail to generate if an impacted resource contains null Unicode characters.

Version 3.5.0

Released 2 April 2020

New in this release:

• Usability improvements. Version 3.5.0 introduces several improvements to the design and usability of the web
UI, including:

• The SMTP Password field now has controls to show or hide the password.

Resolved in this release:

• Changes to module resources are now correctly reflected in module impact analysis reports.
• Module deployments using the feature branch deployment policy now correctly create and name branches for

GitHub and GitHub Enterprise users.
• The Continuous Delivery for PE server logs no longer include unnecessary Unsupported PEM format

errors.

Version 3.4.1

Released 23 March 2020

Resolved in this release:

• Webhook-triggered jobs no longer fail for GitLab users.

Version 3.4.0

Released 18 March 2020

New in this release:

• Use any node with a Puppet agent installed as job hardware. You can now run your Continuous Delivery
for PE jobs on any node with a Puppet agent installed. For instructions on configuring new job hardware, see

© 2024 Puppet, Inc., a Perforce company
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Configure job hardware running a Puppet agent. For instructions on migrating your existing job hardware servers,
see Migrate job hardware.

Note:  To successfully configure a Puppet agent node, you must install the puppetlabs-cd4pe_jobs
module and ensure the Continuous Delivery user role in PE can run the cd4pe_jobs::run_cd4pe_job task.
See the documentation linked above for instructions.

• Cancel an in-progress impact analysis task. You can now cancel any scheduled or in-progress impact analysis
task from the impact analysis details page.

• Usability improvements. Version 3.4.0 introduces several improvements to the design and usability of the web
UI, including:

• Clearer messaging in impact analysis reports and the removal of unhelpful "diff is too large" messages.
• Deployments are no longer labeled FAILED when a deployment approval request is declined.
• The Control Repos page now show 10 control repos per page, and the Modules page now shows 10 modules

per page.
• For deployments that require approval, the Approve and Decline buttons now vanish after an approval

decision is provided.
• Deployments that are awaiting approval now show a PENDING APPROVAL label instead of a RUNNING

label in the Events timeline.
• You can now enter either an IP address or hostname in the Puppet Enterprise Console Address field when

adding new PE credentials.
• Logging improvements. Version 3.4.0 introduces several improvements to the Continuous Delivery for PE logs,

including:

• LDAP queries and replies are now included in the logs.

Resolved in this release:

• The GitHub access_token query parameter, which has been deprecated by GitHub, is no longer used by
Continuous Delivery for PE in requests to the GitHub API.

• If the value of a port parameter in the puppet_enterprise class in the PE Infrastructure node group is set as
a string, automatic integration of PE no longer fails.

• All events in a stage of a pipeline run no longer show the same timestamp.
• Version 3.4.0 resolves CVE-2020-7944. When you add a new resource or class with sensitive parameters, impact

analysis reports redact the plain text values of the sensitive parameters.

Deprecated in this release:

• Support for the Continuous Delivery agent on job hardware. As part of our effort to simplify the Continuous
Delivery for PE setup process and prioritize the tools PE users already have in place, support for the Continuous
Delivery agent is deprecated in version 3.4.0, and will be removed in a future release. For more information, see
Migrate job hardware.

Removed in this release:

• Support for Puppet Enterprise version 2019.1. PE 2019.1 has reached the end of its support lifecycle.
• Hardware Agents. As part of the deprecation of the Continuous Delivery agent, we've removed the Hardware

Agents page from Settings.

Version 3.3.0

Released 19 February 2020

New in this release:

• Include Bolt tasks in custom deployment policies. You can now include Bolt tasks in the custom deployment
policies you run in your Continuous Delivery for PE pipelines. If necessary, you can disable tasks by setting

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/cd4pe_jobs
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enable_pe_plans: false in the config section of the .cd4pe.yaml file for the impacted control repo
or module. For more on tasks, see Tasks and plans in PE.

CAUTION:  Custom deployment policies are a beta feature. As such, they may not be fully documented
or work as expected; please explore them at your own risk.

• Logging improvements. Version 3.3.0 introduces several improvements to the Continuous Delivery for PE logs,
including:

• Information about control repo activities is now included in the logs.
• Impact analysis information about file changes, module changes, and changed Hierakeys is now included in

the logs.
• To reduce unnecessary noise in the logs, log messages regarding dependency checking during pipeline runs are

no longer included unless the logging level is increased to TRACE.

For more about the Continuous Delivery for PE logs, see Troubleshooting.

Resolved in this release:

• Impact analysis reports that include Hiera data changes no longer include information on nodes impacted by the
Hiera data change that are outside the selected environment.

• Module deployments using the feature branch policy no longer trigger the control repo pipeline associated with
the feature branch policy.

• If a custom Docker image in the format <IMAGE>:<VERSION> is included in a job, webhooks for that job now
fire correctly.

Version 3.2.1

Released 5 February 2020

Resolved in this release:

• CVE-2020-7238. This Netty vulnerability has been resolved.

Version 3.2.0

Released 4 February 2020

New in this release:

• Feature branch deployment policy support for modules managed as code. Deployments using the feature
branch deployment policy can now be included in a module regex branch pipeline that is managed with a
.cd4pe.yaml file.

• Store custom deployment policies in /site. Continuous Delivery for PE now looks for custom deployment
policies in the /site directory of your control repo as well as in the /module and /site-module
directories.

• Usability improvements. Version 3.2.0 introduces several improvements to the design and usability of the web
UI, including:

• When LDAP is enabled, the login screen asks for an LDAP username instead of an email address. This LDAP
username maps to the User attribute setting from your LDAP configuration.

• The YAML code validation tool shows an error message if your pipeline's YAML code includes an invalid
regular expression.

Resolved in this release:

• The deployment_policy_branch parameter is now correctly applied when it is included in a
.cd4pe.yaml file.

• Approval request emails are now delivered to members of the approval group.
• An appropriate message is shown in the web UI when a deployment approval request is declined.

© 2024 Puppet, Inc., a Perforce company
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Version 3.1.1

Released 28 January 2020

Resolved in this release:

• CVE-2019-16869. This Netty vulnerability has been resolved.

Version 3.1.0

Released 22 January 2020

New in this release:

• Delete users. Super users and the root user can now permanently delete user accounts from your Continuous
Delivery for PE installation. Perform this action with caution: deleting a user also deletes all artifacts created by
that user in Continuous Delivery for PE, including workspaces, jobs, integrations, pipelines, control repos, and
module repos. For more information, see Delete a user.

• Impact analysis includes Hiera data referenced in root-level hiera.yaml files. Impact analysis reports now
include changes to the Hiera data housed in locations referenced in the hiera.yaml file located at the root
level of your control repo or module repo. If your control repo or module repo does not include a hiera.yaml
file at the root level, Continuous Delivery for PE will fall back to analyzing Hiera changes in the /data and /
hieradata directories.

• Usability improvements. Version 3.1.0 introduces several improvements to the design and usability of the web
UI, including:

• Better handling of long pipeline names.
• Clearer messaging when creating a regex branch pipeline.
• Validation of the selected Docker image name when a new Docker-based job is created.
• An improved experience and clearer error message if a deployment fails because the target environment node

group contains no nodes.

Resolved in this release:

• Impact analysis tasks can now be included in a module pipeline that is managed with a .cd4pe.yaml file.
• If a code manager task fails during a deployment attempt, the deployment details page now shows a FAILED

status for that event instead of a DONE status.
• Newly created Docker-based jobs now use the correct default Docker image name.
• A duplicate description field is no longer present when you configure a manual deployment for a module.
• The associated control repo is automatically selected when you create an impact analysis stage in a module's

pipeline.
• A deployment to a protected environment no longer shows a PENDING status after the deployment is approved.
• A Bolt error no longer occurs if a deployment using the temporary branch deployment policy is cancelled prior to

the approval step.
• When Continuous Delivery for PE fails to correctly parse a .cd4pe.yaml file, it logs the parsing error in the

application logs and displays it in the web UI.
• The status of Puppet runs is now correctly displayed on each deployment's details page.

Security notice:

• CVE-2019-16869 is detectable in version 3.1.0. A security scanner may detect a Netty vulnerability with a
5.0 CVSS score in Continuous Delivery for PE. However, Continuous Delivery for PE does not exercise the
vulnerable code path and so is not vulnerable.

Deprecated in this release:

• Support for MySQL and DynamoDB external databases. As part of our effort to streamline the installation
process and ensure Continuous Delivery for PE meets performance standards, support for MySQL and Amazon
DynamoDB external databases is deprecated in version 3.1.0, and will be removed in a future release. Before
support ends, we'll provide information about how to migrate your external database to a supported option.
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Version 3.0.2

Released 19 December 2019

Resolved in this release:

• Deployments failed for any module regex branch deploying to a PE instance using prefixed environments where
the selected prefix was "No prefix."

Note:  If you created a deployment of this type while using Continuous Delivery for PE version 3.0.0 or 3.0.1, you
must delete and recreate the deployment for it to work properly.

• In control repo regex branch pipelines that were converted to management with code, deployments using the
feature branch deployment policy failed validation.

• Module deployments could not be canceled.
• Control repo and module regex branch pipelines that are managed with code did not trigger correctly.
• Environment prefixes were not added to target environment names in deployments using the feature branch

deployment policy from control repos. As a result, these deployments were not completed correctly.
• When a root or super user updated the Docker image used as global shared job hardware, the updated image was

not used for jobs running on the shared job hardware.

Version 3.0.1

Released 16 December 2019

Resolved in this release:

• If you attempted to manage a pipeline as code that included a deployment using the feature branch policy, a
Parameter specified as non-null is null error occurred and the pipeline did not successfully
transition to management with code.

• Continuous Delivery for PE did not correctly default to looking for custom deployment policy files on the
Production branch if a branch had not been set explicitly.

Version 3.0.0

Released 11 December 2019

New in this release:

• Construct and manage your pipelines as code. You now have the option to use a .cd4pe.yaml file housed
in your control repo or module repo to construct, update, and manage your pipelines. Managing pipelines with
code creates a version-controlled record of pipeline changes over time. For more information, see Constructing
pipelines from code.

• View Hiera changes in impact analysis reports. When you update a YAML file in your Hiera data directory,
impact analysis reports will now report what systems will be impacted and how their desired state will change.
For the first version of this feature, Continuous Delivery for PE analyzes changes in /data and /hieradata
directories in your control repo or module.

Important:  Hiera changes in impact analysis reports are only supported on PE 2019.2.0 and newer versions.

• Usability improvements. Version 3.0.0 introduces several improvements to the design and usability of the web
UI, including:

• A redesigned deployment details view featuring a new sequential list of the events that make up a deployment,
with details about each event.

• An updated pipelines design with clearer controls and a refreshed color palette.
• A new Manual actions selector used for initiating on-demand impact analysis reports, deployments, or

pipeline runs.
• Improved deployment approval messaging. The message sent to designated deployment approvers now

contains more information about the proposed deployment, including the URL of the module or control repo, the
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name of the user who initiated the deployment, the name of the pipeline, and a list of the commits included in the
deployment.

• Fewer stacktrace exceptions included in log files. We've reduced the number of stacktrace exceptions that
resulted from checking for dependencies and approvals. You'll no longer see long stacktrace errors for the
following:

com.puppet.pipelines.cdpe.cdpeTaskUtils.CDPETaskInterruptedException:
 Dependency check attempt maxtime exceeded.
com.puppet.pipelines.cdpe.cdpeTaskUtils.CDPETaskInterruptedException:
 Approval check attempts maxiumum exceeded. Thread should yeild and try
 again.

Special beta feature in this release:

• Custom deployment policies. We've learned from our users that the deployment policies built into Continuous
Delivery for PE don't always align with the deployment work you need to do. In response, we're introducing the
ability to compose your own set of steps for deploying Puppet code. For more information, see Creating custom
deployment policies.

CAUTION:  Custom deployment policies are a beta feature. As such, they may not be fully documented
or work as expected; please explore them at your own risk.

Resolved in this release:

• The name of the default Docker container is now consistently shown in the Docker Image Name field on the job
creation page if no other Docker image is defined.

Security notices:

• CVE-2019-16869 is detectable in version 3.0.0. A security scanner may detect a Netty vulnerability with a
7.5 CVSS score in Continuous Delivery for PE. However, Continuous Delivery for PE does not exercise the
vulnerable code path and so is not vulnerable.

• Sonatype-2019-0115 is detectable in version 3.0.0. This vulnerability is detected by the Sonatype Nexus
scanner. However, Continuous Delivery for PE does not use the library that triggers the vulnerability and so is not
vulnerable.

Removed in this release:

• Incremental branch and blue-green branch deployment policies. We've removed the incremental branch and
blue-green branch deployment policies. If your pipeline included a deployment using one of these policies, the
deployment has been removed from the pipeline. These policies were deprecated in Continuous Delivery for PE
version 2.7.0.

• Module deployment reports. We've removed this feature from version 3.x.

Continuous Delivery for PE known issues
These are the known issues for the Continuous Delivery for PE 3.x release series.

Impact analysis tasks fail when using Puppet Enterprise versions 2021.2 or 2019.8.7

Impact analysis fails with a R10K::Module::Forge cannot handle option
‘default_branch_override’ error. If you're using these versions of PE, you must update the pe-r10k
package by following the instructions in this Puppet Support article to continue to use impact analysis. After you
update the package, you can update to future versions of PE using the installer as normal.

© 2024 Puppet, Inc., a Perforce company

https://support.puppet.com/hc/en-us/articles/4403376618391


continuous-delivery | Release notes | 18

The puppet_agent module cannot be used to upgrade Puppet agents on job hardware

Due to the fact that Continuous Delivery for PE nodes are classified as PE infrastructure nodes, the puppet_agent
module cannot be used to successfully upgrade Puppet agents running on job hardware. To upgrade the Puppet agent
on a job hardware node, use the agent upgrade script.

A PE instance cannot be integrated if dns_alt_names is not set on the master certificate

If the Puppet master certificate for your PE instance does not have dns_alt_names configured, attempting to
integrate the instance with Continuous Delivery for PE fails with a We could not successfully validate
the provided credentials against the Code Manager Service error. The master certificate
must be regenerated before PE is integrated with Continuous Delivery for PE. For instructions, see Regenerate master
certificates in the PE documentation.

Impact analysis for Hiera data is unavailable when using PE 2019.7

If you are using PE version 2019.7 with Continuous Delivery for PE version 3.7.1 or earlier, impact analysis of Hiera
data changes is unavailable. To resolve this issue, upgrade your Continuous Delivery for PE installation to version
3.8.0 or later.

Impact analysis report inaccuracies when using PE 2019.2 and earlier versions

Due to an r10k issue, impact analysis reports generated using PE 2019.2 and earlier versions might include
nonexistent module changes and calculations of the impact of those nonexistent changes. The underlying issue was
resolved in r10k version 3.4.0 and included in PE 2019.3 and all newer versions.

Unable to add Amazon S3 credentials when disk storage is configured

If you install Continuous Delivery for PE from the PE console (which automatically sets up disk storage), you might
see an error if you attempt to add Amazon S3 credentials in the web UI. To work around this issue, sign into the root
console and add your Amazon S3 credentials on the Storage tab of the Settings page.

Jobs fail when using chained SSL certificates on Windows

If you are using Continuous Delivery for PE with SSL configured to use chained certificates, attempts to run jobs on
Puppet agent-based Windows job hardware will fail.

Rerun job control is unresponsive after two hours for Bitbucket Cloud users

This known issue applies only to Bitbucket Cloud users. When a pipeline run for a control repo or module was
completed more than two hours ago, clicking the Rerun Job button results in an Authentication failed
error.

Purging unmanaged firewall rules with the puppetlabs-firewall module deletes required firewall
settings

If your Continuous Delivery for PE node uses the puppetlabs-firewall module to manage its firewall
settings, and if a resources { 'firewall': purge => true } metaparameter is set on the node or at a
higher level, Puppet will remove the unmanaged Docker firewall rules Continuous Delivery for PE requires to run
successfully. To work around this issue, disable unmanaged firewall rule purging for your Continuous Delivery for
PE node by changing the metaparameter to resources { 'firewall': purge => false }.

Deployments for module regex branches are not supported when managing pipelines as code in
versions 3.0 and 3.1

In Continuous Delivery for PE versions prior to 3.2.0, deployments using the feature branch deployment policy
cannot be included in a module regex branch pipeline that is managed with a .cd4pe.yaml file. To work around
this issue, upgrade to version 3.2.0 or newer, or click Manage pipelines and select Manage in the web UI, then
delete and recreate all deployments in the pipeline.
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Module impact analysis tasks cannot be added to a pipeline after upgrading to version 3.0.0

If you added the credentials for the PE instance associated with a module pipeline's deployment tasks to Continuous
Delivery for PE before you upgraded to version 3.0.0, you are unable to add impact analysis tasks to the pipeline. To
work around this issue, delete and re-add the PE instance's credentials, giving the PE instance the same friendly name
it had previously.

Custom deployment policies aren't initially shown for new control repos

When your first action in a newly created control repo is to add a deployment to a pipeline, any custom deployment
policies stored in the control repo aren't shown as deployment policy options. To work around this issue, click Built-
in deployment policies, then Custom deployment policies to refresh the list of available policies.

Regex branch module deployments fail if the :control_branch pattern is used for multiple
modules

Deploying a module from a regex branch pipeline fails if more than one module in your Puppetfile uses the
:branch => :control_branch pattern. To work around this issue, make sure that the default_branch
parameter is set in the Puppetfile for every Git-sourced module that uses the :branch => :control_branch
pattern.

Docker configuration changes to jobs are not immediately available

When you update the Docker configuration for a job, several minutes elapse before your changes take effect. To work
around this issue, wait at least five minutes after making a Docker configuration change before attempting to run the
job.

Users removed from all workspaces cannot add new workspaces

If you delete or are removed from all workspaces of which you are a member, you are directed to the Add New
Workspace screen. If you log out or navigate away from this screen without creating a new workspace, you
are unable to access any workspaces or get back to the Add New Workspace screen until invited to an existing
workspace by another user. To work around this issue, create a new workspace when prompted, or request an
invitation to an existing workspace.

Getting started with Continuous Delivery for PE

Greetings! Welcome to Continuous Delivery for PE. If you're trying out the software for the first time, this getting
started guide is for you. As a new user, you'll need to perform some initial workspace setup tasks, and then we'll show
you how to begin using core features of Continuous Delivery for PE.

You're just a few steps away from a more streamlined, powerful, and flexible Puppet code delivery process. Ready to
get started?

Step 1: Install Continuous Delivery for PE
First, use the main documentation to install Continuous Delivery for PE.

Follow the instructions in Install Continuous Delivery for PE.

Step 2: Create your user account and set up a workspace
Think of a workspace like a neighborhood within the Continuous Delivery for PE city. Your workspace is where you
store and access resources such as control repos, pipelines, and jobs. When you're ready to collaborate, you can invite
the members of your team to join your workspace.
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1. If you haven't already done so, navigate to the Continuous Delivery for PE web UI address you received at the end
of the installation process in Step 1.

2. Create your user account.

a) On the login page, click Create an account.
b) Fill in the registration form and create a username and password.
c) Click Sign Up.

Note:  For almost all tasks you'll perform in Continuous Delivery for PE, you'll use your individual
user account, not the root account. The root account is only used for special administrative tasks such as
installation, designating super users, and deleting users.

3. Set up a workspace.

a) On the Choose a workspace screen, click + Add new workspace.
b) Enter a name for your workspace and click Create workspace.

Step 3: Set up integrations
Next, it's time to set up integrations with your PE instance and the source control system where you keep your Puppet
code.

We're sending you to our integration docs to complete these tasks.

1. Follow our Integrate with Puppet Enterprise instructions.
2. Follow the Configure impact analysis instructions.
3. Select your source control system from the list below and follow the integration instructions:

• Azure DevOps Services
• Bitbucket Cloud
• Bitbucket Server
• GitHub
• GitHub Enterprise
• GitLab

4. Optional. To make sure you're always running the latest available version of the software, install the
puppetlabs-cd4pe module to automate upgrades of Continuous Delivery for PE.

Step 4: Configure job hardware
You'll now configure a node running a Puppet agent as a job hardware server, where your code will be tested before
deployments.

1. Install a Puppet agent on the node you plan to use as job hardware. See Installing agents in the PE documentation
for details.

2. Make sure your Continuous Delivery user role in PE includes the permission to run the
cd4pe_jobs::run_cd4pe_job task.
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3. Install the puppetlabs-cd4pe_jobs module, which is required to run Continuous Delivery for PE jobs on
your node:

a) Add the puppetlabs-cd4pe_jobs module to the following:

• The Puppetfile for the production environment on the PE master that manages the agent node you've
selected as job hardware

• The Puppetfile on the master branch of the control repo you added to Continuous Delivery for PE in step
4

A sample Puppetfile entry:

mod 'puppetlabs-cd4pe_jobs', '1.5.0'

b) Deploy the updated code to the production environment:

puppet code deploy production --wait

4. We want this job hardware server to be able to use the pre-built jobs included in Continuous Delivery for PE.
Since these jobs are Docker-based, you must install and configure Docker on the node. See the Installing Docker
instructions for details.

5. Finally, tell Continuous Delivery for PE that this node is ready to be used as job hardware for Docker-based jobs
by assigning it to a hardware capability. Capabilities organize your job hardware servers and ensure that jobs run
on hardware with the right characteristics. Continuous Delivery for PE automatically creates a Docker hardware
capability for you.

a) In the Continuous Delivery for PE web UI, click Hardware.
b) Locate the Docker capability and click + Edit.
c) Select the PE instance that manages the node you've selected as job hardware. Then, select your job hardware

node.

The selected node is added to the Hardware with this capability list on the right.
d) Click Save.

Your job hardware node is now configured and ready for use. We'll see it in action during step 8, when we run our
pipeline for the first time.

Step 5: Add a control repo
A control repo in Continuous Delivery for PE tracks the changes made on the active development branch of your
source control system. When adding a control repo to Continuous Delivery for PE, it's important to connect the
master Git branch.

When you set up your new control repo, Continuous Delivery for PE adds a webhook to the associated repository in
your source control system. The webhook reports new commit activity on the repository to Continuous Delivery for
PE, enabling you to track code changes and take action.

1. In the Continuous Delivery for PE web UI, click Control repos, then click Add control repo.

2. Follow the prompts to select your source control, organization, and your chosen repository.

3. The master branch of your repository is automatically selected for you. If your control repo does not currently
contain a master branch, follow the prompts to let Continuous Delivery for PE create one for you, and select the
branch that's under active development to create the master branch from.

Important:  When working with Continuous Delivery for PE, commit only to the master branch and to any
feature branches (which are eventually merged back into the master branch). Do not push code changes to any of
your other Git branches, as doing so can create conflicts with Continuous Delivery for PE workflows.

4. Optional: Edit the name of your new control repo.

Tip:  The control repo name must contain only alphanumeric characters, dashes, and underscores.
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5. Click Add. The control repo is now shown in the master list on the Control repos page.

Step 6: Set up a pipeline

Pipelines in Continuous Delivery for PE are made up of stages and tasks. Tasks include jobs to test code,
deployments, and impact analysis; stages group tasks into a series of sequential phases.

1. In the Continuous Delivery for PE web UI, click Control repos. Click the name of the control repo you added in
Step 5.

2. On the right side of the web UI, you'll see the space where we'll create your pipeline. Click + Add default
pipeline.

3. Your default pipeline is automatically created for your master branch. This pipeline contains three stages:

• The Code validation stage includes two jobs (tests for Puppet code).
• The Impact analysis stage includes an impact analysis task with a pull request gate (more on this later).
• The Deployment stage, where we'll add deployment instructions in step 8.

Step 7: Set up an environment node group
To give us a place to demonstrate how Continuous Delivery for PE deploys new code to your Puppet Enterprise-
managed nodes, we'll next set up a small environment node group to use for deployment testing.

1. In your Git repository, create a new branch called cd4pe_testing. This will represent the environment node group.

2. On your master, run puppet code deploy cd4pe_testing.

3. In the PE console, click Classification.

4. Click Add group... and create a new node group with the following specifications:

• Parent name: All Environments
• Group name: CD4PE test group
• Environment: cd4pe_testing
• Environment group: yes
• Description: Node group used for Continuous Delivery for PE testing

Click Add.

5. In the list of node groups, click CD4PE test group. In the Rules tab, pin two or three test nodes to the node
group. Make sure these nodes are not assigned to any other node groups in your PE installation.

Step 8: Deploy changes to your nodes
Once you've added a deployment to your pipeline, you can automatically move code changes to your nodes following
the deployment conditions you've set.

1. In the Continuous Delivery for PE web UI, in your control repo's pipeline, click Add a deployment.

2. Select your PE instance, then select the CDPE test group node group we created in Step 7.

3. Select the Direct deployment policy. Don't worry about setting special conditions for this deployment.

4. Click Add deployment to stage. On the confirmation screen, click Done.

5. Now we need a change to pass through to production. In your Git repository, on the master branch, make a code
change such as updating a package version. Commit the change and then return to the Continuous Delivery for PE
web UI to watch your pipeline in action.

When triggered by your commit, the pipeline automatically runs tests on your code, skips over the impact analysis
stage that we haven't yet set up, and stops, as the pipeline is set up not to autopromote into the Deployment stage.
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Click Promote to continue the pipeline run and launch the deployment. The results of the pipeline run are logged in
the Events area on the left of the screen.

Step 9: Create an impact analysis report
An impact analysis report shows the potential impact that new Puppet code will have on the nodes and resources
you're managing with PE. You can add impact analysis tasks to your pipeline, and you can generate impact analysis
reports on demand, as we'll do in this step.

1. First, create a change for the report to analyze. We'll generate an impact analysis report to review how this change
impacts the nodes in your CDPE test group. In your Git repository, create a feature branch from your master
branch

2. On the feature branch, make a code change, such as updating a package version.

3. Commit the change on the feature branch and then return to the Continuous Delivery for PE web UI.

4. In the Continuous Delivery for PE web UI, click Manual actions and select New impact analysis.

5. In the New impact analysis window, select your feature branch, then select the commit you just made. Select
your PE instance and the CDPE test group node group.

6. Click Analyze to generate the report.

Continuous Delivery for PE will now generate a new catalog containing your commit, and will compare this new
catalog to the current catalog of the nodes in the CDPE test group.

7. Click View impact analysis. The report shows how the change on your feature branch would impact your nodes
and resources if it was merged to the master branch.

Congratulations! You've reached the end of this introductory guide. You're now familiar with some of the core
features of Continuous Delivery for PE, and have a basic understanding of how the software helps you deploy Puppet
code and preview the impact of changes.

Installing

In order for your organization to begin using Continuous Delivery for Puppet Enterprise, you must first complete the
initial installation and setup process.

To upgrade to the Continuous Delivery for PE 3.x series from a version in the 2.x series, see Upgrading to 3.x.

• Continuous Delivery for PE architecture on page 24
Continuous Delivery for Puppet Enterprise (PE) communicates with your PE installation, your source control system,
and the servers you've designated as job hardware, as well as with the various components of the software.
• System requirements on page 30
Refer to these system requirements for your Continuous Delivery for Puppet Enterprise (PE) installation.
• Install Continuous Delivery for PE on page 32
Use version 1.1.0 or later of the puppetlabs-cd4pe module to install and configure Continuous Delivery for
Puppet Enterprise (PE). This module installs Docker, configures the Continuous Delivery for PE Docker image and
service for you, and creates a Docker volume for disk storage.
• Analytics data collection on page 37
Continuous Delivery for Puppet Enterprise (PE) automatically collects data about how you use the software. If you
want to opt out of providing this data, you can do so when installing Continuous Delivery for PE.
• Puppet License Manager on page 38
Puppet License Manager is a centralized hub for self-service license management for Puppet products. Sign into
Puppet License Manager and use it to create and manage license files for Continuous Delivery for Puppet Enterprise.
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• Getting support on page 40
The Support team at Puppet provides support for all features and capabilities included in Continuous Delivery for PE.
However, the Puppet Support team only supports the approved installation methods listed on this page, and cannot
assist you with Docker configuration or container runtime issues unrelated to Continuous Delivery for PE.
• Alternative installation methods on page 40
This section includes alternative methods for installing Continuous Delivery for Puppet Enterprise (PE).

Continuous Delivery for PE architecture
Continuous Delivery for Puppet Enterprise (PE) communicates with your PE installation, your source control system,
and the servers you've designated as job hardware, as well as with the various components of the software.
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The following diagram shows the architecture and port requirements of a Continuous
Delivery for PE installation of version 3.4.0 or newer, using Puppet agent for job hardware.

The second diagram shows the architecture and port requirements of a typical Continuous Delivery for PE installation
of version 3.3.0 or older, using the Continuous Delivery agent for job hardware.

Important:  # The Continuous Delivery agent is deprecated as of Continuous Delivery for PE version 3.4.0, and will
be removed in a future release.
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Important:  Continuous Delivery for PE uses TCP (Transmission Control Protocol) connections.

Job hardware and web UI configuration Default port number

HTTP 8080

HTTPS 8443

External storage configuration Default port number

Artifactory using HTTP 80

Artifactory using HTTPS 443

Amazon S3 443

Continuous Delivery for PE uses a database to persist information. The puppetlabs-cd4pe module creates a new
installation of PE-PostgreSQL on the node where you install Continuous Delivery for PE.

# DEPRECATED: Support for external databases is deprecated, and will be removed in a future release.
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Database configuration Default port number

PE-PostgreSQL (local) 5432

# MySQL (external) 3306

# Amazon DynamoDB (external) 443

Continuous Delivery for PE Docker container configuration
Continuous Delivery for PE is run as a container in Docker. When you install the software, a PE-PostgreSQL
database is created for you.
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Use these environment variables to customize the Continuous Delivery for PE container:

Environment variable Explanation

ANALYTICS Optional. To opt out of analytics data collection, include
-e ANALYTICS=false. To learn about what data we
collect, see Analytics data collection.
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Environment variable Explanation

DUMP_URI Required. How to address port 7000 of this container,
which is the endpoint used by the Continuous Delivery
for PE web UI to connect to the correct instance of
the Continuous Delivery agent service. In a typical
installation, this value is dump://localhost:7000.

DB_ENDPOINT Required if using an external database. The
mysql:// or ddb:// endpoint used to connect
to your database. For example, mysql://
samplehost:3306/cdpe.

DB_USER and DB_PASS Required if using an external database. Credentials for
your database user.

For MySQL: Login credentials for your MySQL user.
For security purposes, the database user you select
should be able to connect to only this database.

For Amazon DynamoDB: Access and secret keys for
your DynamoDB user.

Important:  Make sure you generate credentials with
full create, read, update, and delete permissions for
DynamoDB resources.

For security purposes, select a database user you select
who can connect to only this database.

DB_PREFIX Optional. When starting up, Continuous Delivery for PE
creates tables in MySQL or DynamoDB. If you'd like the
tables to share a prefix, such as cdpe-, enter it here.

Tip:  If you wish to simulate a fresh installation of a
given version of Continuous Delivery for PE, entering a
new database table prefix causes all the database tables
to regenerate.
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Environment variable Explanation

PFI_SECRET_KEY Required. A 16-byte secret key used for AES encryption
of secrets (such as PE access tokens) supplied to
Continuous Delivery for PE.

If you're a *nix user, generate this key by running:

dd bs=1 if=/dev/urandom count=16 2>/
dev/null | base64

If you're a Windows user, generate this key by running:

$randomBytes = New-Object Byte[](16)
[Security.Cryptography.RNGCryptoServiceProvider]::Create().GetBytes($randomBytes) 
$encodedBytes =
 [System.Convert]::ToBase64String($randomBytes)

The Continuous Delivery for PE container exposes these ports, which can be mapped to any ports of your choosing:

Port number Port use

8080 Web UI (non-SSL access)

8443 Web UI (SSL access)

8000 Backend services

7000 Continuous Delivery agent service

System requirements
Refer to these system requirements for your Continuous Delivery for Puppet Enterprise (PE) installation.

Hardware requirements
Before installing Continuous Delivery for PE, ensure that your system meets these requirements.

Installation architecture Memory Storage CPUs

Installation using disk
object storage

8 GB 100 GB 4

Installation using external
(Artifactory or Amazon S3)
object storage

8 GB 50 GB 4

Supported operating systems
Continuous Delivery for PE can be installed on these operating systems. The Continuous Delivery for PE host
server must run the same operating system and version as your Puppet master.
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Operating system Supported versions

Enterprise Linux

• CentOS
• Oracle Linux
• Red Hat Enterprise Linux (RHEL)
• Scientific Linux

7

Ubuntu (General Availability kernels) 16.04 (on PE versions prior to 2019.8), 18.04

# External databases
# DEPRECATED: Support for MySQL and Amazon DynamoDB external databases is deprecated, and will be
removed in a future release. Information on how to migrate your external database to a supported option will be
provided before support ends.

External database Supported versions Notes

MySQL 5.7 Your MySQL database must use
the latin1 character set and
latin1_swedish_ci collation.

Amazon DynamoDB n/a Based on your usage, you might
need to tune your tables' read/write
capacity in order to reduce page load
times.

Job hardware requirements
System requirements for your job hardware vary considerably based on the size of your Continuous Delivery for PE
installation, the type of jobs you run, and how frequently you run them.

The size of the load placed on a job hardware server determines how robust that server's resources need to be.
Determining that load involves a huge number of variables, from the number of jobs that run concurrently to the
languages those jobs are written in. As a result, it's nearly impossible to provide one-size-fits-all system requirements
for job hardware.

Instead, we've developed a sizing chart based on the estimated number of concurrent jobs a job hardware server is
expected to regularly handle. While this chart represents our best estimates and understanding, it's provided only as a
starting point. Testing and experience will help you fine-tune your job hardware and determine the optimum resource
configuration for your installation's unique circumstances.

Estimated concurrent job
load

Memory Disk storage CPUs

2 - 4 concurrent spec tests 4 GB 100 GB 2

4 - 8 concurrent spec tests 8 GB 100 GB 4

6 - 12 concurrent spec tests 8 GB 100 GB 6

When setting up your job hardware, keep these facts in mind:

• Disk storage requirements are minimal, and don't increase with added load. After a job run is complete, the job's
log is passed to the object storage, and all data related to the job run is erased from the job hardware.

• You can run more jobs concurrently without increasing CPUs, but the jobs will run more slowly.
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Job hardware requirements for Docker-based jobs

To run Docker-based jobs, your job hardware must have a modern version of Docker CE or Docker EE installed. The 
puppetlabs/docker  module is our preferred way to install Docker and keep it up to date.

Job hardware used for Docker-based jobs also requires internet access. If you're working in an air-gapped
environment, set up an internal Docker registry by following the Docker documentation.

Supported Puppet Enterprise versions
The following versions of Puppet Enterprise (PE) are supported for use with Continuous Delivery for PE.

PE version

2021.4

2021.3

2021.2

2021.1

2019.8.x (LTS)

For more on PE versions, see Puppet Enterprise support lifecycle.

Supported browsers
The following browsers are supported for use with the Continuous Delivery for PE web UI.

Browser Supported versions

Google Chrome Current version as of release

Mozilla Firefox Current version as of release

Microsoft Edge Current version as of release

Apple Safari Current version as of release

Install Continuous Delivery for PE
Use version 1.1.0 or later of the puppetlabs-cd4pe module to install and configure Continuous Delivery for
Puppet Enterprise (PE). This module installs Docker, configures the Continuous Delivery for PE Docker image and
service for you, and creates a Docker volume for disk storage.

CAUTION:  Code Manager webhooks are not compatible with Continuous Delivery for PE. If your
organization currently uses Code Manager webhooks to deploy code, you must dismantle these webhooks
before installing Continuous Delivery for PE.

Install Continuous Delivery for PE with the cd4pe module
Use the puppetlabs-cd4pe module version 1.1.0 or later to install Continuous Delivery for PE.

The puppetlabs-cd4pe module must be used with seven dependent modules, plus a module to manage job
hardware. The modules and their required versions are as follows:

Module Required version

puppetlabs-cd4pe 1.1.0 or later in the 1.x or 2.x series

The Nodes page requires version 2.0.1 or later

puppetlabs-stdlib 4.19.0 or later
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Module Required version

puppetlabs-puppet_authorization 0.5.0 or later

puppetlabs-hocon 0.9.3 or later

puppetlabs-concat 2.1.0 or later

puppetlabs-docker 3.3.0 or later

puppetlabs-apt 4.4.1 or later

puppetlabs-translate 1.1.0 or later

puppetlabs-cd4pe_jobs

Note:  This module manages job hardware running
a Puppet agent. Install this module with Continuous
Delivery for PE version 3.4.0 or newer.

1.0.0 or later

puppetlabs-pipelines

Note:  This module manages job hardware running
the deprecated Continuous Delivery agent. Install this
module only if you are installing Continuous Delivery
for PE version 3.3.0 or older.

1.0.1

1. Add the 10 modules listed above to the Puppetfile for each environment against which your compilers compile
catalogs.

A sample Puppetfile entry:

mod 'puppetlabs-cd4pe', '2.0.2'
# Requirements for cd4pe
mod 'puppetlabs-stdlib', '8.1.0'
mod 'puppetlabs-puppet_authorization', '0.5.1'
mod 'puppetlabs-hocon', '1.1.0'
mod 'puppetlabs-concat', '7.1.1'
mod 'puppetlabs-docker', '4.1.2'
mod 'puppetlabs-apt', '8.3.0'
mod 'puppetlabs-translate', '2.2.0'
mod 'puppetlabs-cd4pe_jobs', '1.5.0'
# Required only if using Continuous Delivery agents for job hardware
mod 'puppetlabs-pipelines', '1.0.1'

2. Deploy the updated code to the relevant environments by running puppet code deploy
<ENVIRONMENT>.

3. In the PE console, click Classification. Click Add group and create a new node group with the following
specifications.

• Parent name: PE Infrastructure
• Group name: Continuous Delivery for PE
• Environment: production
• Environment group: Do not select this option
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4. Open the newly created Continuous Delivery for PE node group. Add the server you wish to use as your
Continuous Delivery for PE host server to the node group by either creating a rule or pinning the node.

Important:  The Continuous Delivery for PE host server must run the same operating system and version as your
Puppet master. Do not install Continuous Delivery for PE on the same server as your Puppet master.

5. Click Configuration. In the Add new class field, select the cd4pe class and click Add class.

Note:  If the cd4pe class isn't available, click Refresh to update the available class definitions.

6. Automate upgrades of Continuous Delivery for PE to the latest available version in the 3.x series by setting the
cd4pe_version parameter to 3.x. Add the parameter and commit your change.
After the classification change is applied on the next Puppet run, your Continuous Delivery for PE installation
automatically upgrades itself whenever a new version is available.

7. Optional: Customize your Continuous Delivery for PE installation by setting any of the parameters listed in
Advanced configuration options. If none of these parameters are set, your installation proceeds with the default
settings.

Important:  In order to use the default installation, your Puppet certificate name must be a resolvable DNS
hostname. If that is not the case, you must set the resolvable_hostname parameter to a resolvable
address (hostname or IP address) where the Continuous Delivery for PE server is reachable. You can use the
${trusted[certname]} fact to set this parameter.

8. Run Puppet on your Continuous Delivery for PE host server.

Note:  Once the Puppet agent run is complete, Docker downloads the Continuous Delivery for PE image, which
can take a few minutes.

Continuous Delivery for PE is now installed.

See Configure Continuous Delivery for PE with a task to complete the configuration of the software and sign in.

Configure Continuous Delivery for PE with a task
Once you've completed the installation of Continuous Delivery for PE using the cd4pe module, run a task to
configure the software.

Tip:  If you prefer to use classification, rather than a task, to configure your Continuous Delivery for PE installation,
see Configure a Continuous Delivery for PE module installation using classification.

1. In the PE console, click Classification. Expand the PE Infrastructure node group and click Continuous
Delivery for PE.

2. Click Run and select Task.

3. In the Task field, select cd4pe::root_configuration.

© 2024 Puppet, Inc., a Perforce company



continuous-delivery | Installing | 35

4. Enter parameters for the task, as follows:

Parameter Value Notes

root_email The email address to associate with
the root account.

Required.

root_password The password to associate with the
root account.

Required.

resolvable_hostname The resolvable hostname where
the Continuous Delivery for PE
container can be reached.

For example, if the container
resides on a Docker host named
mydockerengine.myinc.com
, set resolvable_hostname
to http://
mydockerengine.myinc.com.

Required only if the agent
certificate is not the machine's
resolvable internet address.

agent_service_endpoint The endpoint where the
agent service can be reached,
in the form http://
<resolvable_hostname>:<port>.

Required if you set the
agent_service_port parameter in the
cd4pe class during installation.

backend_service_endpoint The endpoint where the
back end service can be
reached, in the form http://
<resolvable_hostname>:<port>.

Required if you set the
backend_service_port parameter in
the cd4pe class during installation.

web_ui_endpoint The endpoint where the web UI can
be reached, in the form http://
<resolvable_hostname>:<port>.

Required if you set the web_ui_port
parameter in the cd4pe class during
installation.

storage_provider Which object store provider
to use. Must be one of: DISK,
ARTIFACTORY or S3.

Defaults to DISK.

storage_bucket The name of the bucket used for
object storage.

Required if using Amazon S3 or
Artifactory for object storage.

storage_endpoint The URL of the storage provider. Required if using Amazon S3 or
Artifactory for object storage.

storage_prefix For Amazon S3: the subdirectory of
the bucket to use.

For Artifactory: the top level of the
Artifactory instance.

Optional.

s3_access_key The AWS access key that has access
to the bucket.

Required if using Amazon S3.

s3_secret_key The AWS secret key that has access
to the bucket.

Required if using Amazon S3.

artifactory_access_token API token for your Artifactory
instance.

Required if using Artifactory.
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5. Click Run job.

6. When the job is complete, navigate to the URL printed on the task page. Click Trial Mode to start a free seven-
day trial. Once this period is complete, you'll be prompted to generate and upload a license. See Generate a license
for instructions on creating a free 30-day trial license.

Now that Continuous Delivery for PE is installed and configured, create your individual user account, then follow our
Getting started with Continuous Delivery for PE guide starting at Step 3.

Advanced configuration options
Customize your Continuous Delivery for PE installation from the PE console by setting any of the following
parameters on the cd4pe class. If none of these parameters are set, your installation proceeds with the default
settings.

Parameters to configure the Docker image and version

The following two parameters are concatenated by the puppetlabs-cd4pe module as follows: image =>
"${cd4pe_image}:${cd4pe_version}",

cd4pe_image Set this parameter if you use an internal Docker registry
for mirroring containers. Use this parameter to set the
image name; use cd4pe_version to set a tag.

cd4pe_version Use this parameter to specify a particular version of the
Continuous Delivery for PE Docker container. Specify
3.x to use the 3.x series.

Parameters to configure the database

# DEPRECATED: Support for MySQL and Amazon DynamoDB external databases is deprecated and will be
removed in a future release.

By default, the puppetlabs-cd4pe module (version 1.3.0 and newer) creates a new installation of PE-
PostgreSQL on the node where you installed Continuous Delivery for PE. If you prefer to use Amazon DynamoDB
or MySQL, set the parameters in this section.

CAUTION:  Changing any of these parameters post-install creates a new database and destroys all data
kept in the previous database.

manage_database Set this parameter to false to use an external
DynamoDB or MySQL server.

Set this parameter to true to use Continuous Delivery
for PE-managed PostgreSQL or MySQL.

db_provider Enter mysql if you're using MySQL. Do not set this
parameter if using DynamoDB.

db_host Enter the address of the database. (Required for external
MySQL and DynamoDB.)

db_name Enter the name of the database. (Required for external
MySQL and DynamoDB.)
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Parameters to configure the database

db_pass Enter the password for the database. (Required for
external MySQL and DynamoDB.)

CAUTION:  To set your password successfully,
you must set the root_password parameter to
Sensitive in Hiera. For instructions, see
Setting sensitive parameters in Hiera.

db_port Optional. Enter the port the database listens on.

db_prefix Optional. If you'd like your database tables to share a
prefix, such as cdpe-, enter it here.

Parameters to configure the port mappings

agent_service_port Defaults to 7000.

backend_service_port Defaults to 8000.

web_ui_port Defaults to 8080.

Other optional parameters

cd4pe_docker_extra_params To pass any additional arguments to the Docker process
running the Continuous Delivery for PE container,
specify them as an array. For example: ["--add-host
gitlab.puppetdebug.vlan:10.32.47.33","-
v /etc/puppetlabs/cd4pe/config:/
config","--env-file /etc/
puppetlabs/cd4pe/env-extra","-e
CD4PE_LDAP_GROUP_SEARCH_SIZE_LIMIT=250", ]

analytics To opt out of analytics data collection, set this parameter
to false. To learn about what data we collect, see
Analytics data collection.

Analytics data collection
Continuous Delivery for Puppet Enterprise (PE) automatically collects data about how you use the software. If you
want to opt out of providing this data, you can do so when installing Continuous Delivery for PE.

Continuous Delivery for PE collects analytics data in order to better understand how our customers are using the
software. For example, knowing how many control repos you manage helps us develop more realistic product testing.
And learning which source control systems are the most and the least used helps us decide where to prioritize new
functionality.

What data does Continuous Delivery for PE collect?
Continuous Delivery for PE collects analytics data when you use the software. No personally identifiable information
is collected, and the data we collect is never used or shared outside Puppet.

The following data is collected when the software starts for the first time or restarts after an upgrade, and once per
week thereafter:

• License UUID
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• For each active user account:

• Number of control repos
• Number of control repo pipelines
• Number of control repo pipelines with impact analysis enabled
• Number of modules
• The deployment policy selected for each pipeline deployment
• Configured integrations (PE and source control systems)

The following data is collected while Continuous Delivery for PE is in use:

• Pageviews
• Progress through the initial installation and setup process
• Progress through the integration configuration process (PE and source control systems)

Continuous Delivery for PE does not collect:

• Any personally identifiable information about a user, such as name, email address, password, or company name
• User inputs such as usernames, control repo names, module names, job names, or job hardware information

Opt out of analytics data collection
To opt out of analytics data collection, use the PE console to set the analytics parameter on the cd4pe class.

1. Follow steps 1 through 5 of the installation instructions in Install Continuous Delivery for PE with the cd4pe
module.

2. On the Configuration page of the Continuous Delivery for PE node group, add the analytics parameter to the
cd4pe class. Set the parameter's value to false.

3. Run Puppet on your Continuous Delivery for PE node group to apply the change.
You have opted out of data collection, and your new instance of Continuous Delivery for PE will not send
analytics data to Puppet.

Puppet License Manager
Puppet License Manager is a centralized hub for self-service license management for Puppet products. Sign into
Puppet License Manager and use it to create and manage license files for Continuous Delivery for Puppet Enterprise.

Create a personal Puppet account
To use Puppet License Manager, you must create a Puppet account.

1. Navigate to licenses.puppet.com.

2. Click Sign Up and fill out the registration form.

3. Click Sign Up.

Your account is created, and the main license management screen opens.

Important:  If you need to change your password, you can do so from the Puppet License Manager login screen.

Create a team Puppet account
If you wish to share access to product licenses with other members of your team or organization, create a team
account.

Before you begin

Each member of the team must create a personal Puppet account. 
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1. Navigate to licenses.puppet.com.

2. Click Sign Up and fill out the registration form.

3. Click Sign Up.

4.
Add members to the team account. In the Puppet License Manager web UI, click Settings , then click Add
Account Member.

5. Enter the email address of a team member and click Add User. Repeat this step for each member of your team.

6. When you're finished adding users, click Cancel to exit the Add User pane.

The Account Members screen now shows a list of the members of your team account. You can add or remove
account members from this screen at any time.

Access a team Puppet account
After you've been added as a member of a team account, you can switch between your personal and team accounts
without logging out of Puppet License Manager.

1. Navigate to licenses.puppet.com.

2. Sign into your personal Puppet account.

3.
In the Puppet License Manager web UI, click your username  to open the list of accounts you have access to.
You'll see your personal account and any team accounts you're a member of. 

4. Select a personal or team account username from the list to switch to that account.

The username for the account you're viewing is always displayed in the navigation bar.

Generate and download a trial license
Puppet offers a 30-day trial license for Continuous Delivery for Puppet Enterprise. Generate a trial license with
Puppet License Manager.

1. Sign into Puppet License Manager by entering your Puppet account credentials.

Tip:  To generate a license for a team account, sign in with your personal Puppet account. In the Puppet License

Manager web UI, switch to the appropriate team account by clicking your username  to open the list of
accounts you have access to.

2. Click Get License.

3. Select the product you want to try out and click 30-day Free Trial.

4. Complete the license registration form.

5. Click Start 30-day Trial.

Your license is created, and the main license management screen opens.

6. Click Download and save the license file in a secure place. You'll be asked to upload it when installing
Continuous Delivery for PE.

Viewing active and expired licenses
View a list of your licenses, along with their creation and expiration dates and current status, by visiting the Licenses
screen in Puppet License Manager.
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Getting support
The Support team at Puppet provides support for all features and capabilities included in Continuous Delivery for PE.
However, the Puppet Support team only supports the approved installation methods listed on this page, and cannot
assist you with Docker configuration or container runtime issues unrelated to Continuous Delivery for PE.

Supported installation methods

The Support team can assist with the Continuous Delivery for PE installation process using the following supported
methods:

• Installation from the PE console
• Installation with the cd4pe module
• Installation with Docker

Note:  The Support team can help you install Continuous Delivery for PE with Docker using Docker CE or
Docker EE, but cannot help with issues not directly related to the software, such as configuring systemd services,
persistent volumes, or Docker networking.

Although Continuous Delivery for PE is run as a Docker container, the Support team cannot help you deploy the
application to all types of container runtime, and cannot assist with container runtime-related issues.

Unsupported installation methods

Unsupported installation methods include, but are not limited to:

• Kubernetes
• Pivotal Cloud Foundry
• Mesosphere

Application support

The Puppet Support team supports all Continuous Delivery for PE features and capabilities, regardless of where the
application is running. However, if a feature is not working correctly due to your runtime environment, the Support
team reserves the right to reject the support request.

Alternative installation methods
This section includes alternative methods for installing Continuous Delivery for Puppet Enterprise (PE).

• Install Continuous Delivery for PE in an offline environment on page 40
Use these instructions to install Continuous Delivery for PE in an air-gapped or offline environment where the
Continuous Delivery for PE host node does not have direct access to the internet.
• Configure a Continuous Delivery for PE module installation using classification on page 43
Once you've completed the installation of Continuous Delivery for PE using the cd4pe module, you can use
classification to configure the software.

Install Continuous Delivery for PE in an offline environment
Use these instructions to install Continuous Delivery for PE in an air-gapped or offline environment where the
Continuous Delivery for PE host node does not have direct access to the internet.
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1. Using a proxy server or a computer with internet access, download Docker CE.

sudo yum-config-manager --add-repo https://download.docker.com/linux/
centos/docker-ce.repo
sudo yumdownloader --resolve docker-ce

2. Using a proxy server or a computer with internet access, download the Continuous Delivery for PE container
image.

sudo docker pull puppet/continuous-delivery-for-puppet-enterprise:3.x
sudo docker image save puppet/continuous-delivery-for-puppet-enterprise -o
 cd4pelatest.tar

3. Transfer the Continuous Delivery for PE container image to the server you've designated as the Continuous
Delivery for PE host.

scp cd4pelatest.tar <CD4PE_HOST_ADDRESS>
sudo docker image load -i /<directory>/cd4pelatest.tar

4. Using a proxy server or a computer with internet access, download the puppetlabs-cd4pe module, its
dependent modules, and a module to manage job hardware.

The modules and their required versions are as follows:

Module Required version

puppetlabs-cd4pe 1.1.0 or later in the 1.x or 2.x series

The Nodes page requires version 2.0.1 or later

puppetlabs-stdlib 4.19.0 or later

puppetlabs-puppet_authorization 0.5.0 or later

puppetlabs-hocon 0.9.3 or later

puppetlabs-concat 2.1.0 or later

puppetlabs-docker 3.3.0 or later

puppetlabs-apt 4.4.1 or later

puppetlabs-translate 1.1.0 or later

puppetlabs-cd4pe_jobs

Note:  This module manages job hardware running
a Puppet agent. Install this module with Continuous
Delivery for PE version 3.4.0 or newer.

1.0.0 or later

puppetlabs-pipelines

Note:  This module manages job hardware running
the deprecated Continuous Delivery agent. Install this
module only if you are installing Continuous Delivery
for PE version 3.3.0 or older.

1.0.1
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5. Add the nine modules listed above to the Puppetfile for each environment against which your compilers compile
catalogs.

A sample Puppetfile entry:

mod 'puppetlabs-cd4pe', '2.0.2'
# Requirements for cd4pe
mod 'puppetlabs-stdlib', '8.1.0'
mod 'puppetlabs-puppet_authorization', '0.5.1'
mod 'puppetlabs-hocon', '1.1.0'
mod 'puppetlabs-concat', '7.1.1'
mod 'puppetlabs-docker', '4.1.2'
mod 'puppetlabs-apt', '8.3.0'
mod 'puppetlabs-translate', '2.2.0'
mod 'puppetlabs-cd4pe_jobs', '1.5.0'
# Required only if using Continuous Delivery agents for job hardware
mod 'puppetlabs-pipelines', '1.0.1'

6. Deploy the updated code to the relevant environments by running puppet code deploy
<ENVIRONMENT>.

7. Configure the Continuous Delivery for PE host node:

a) Install the operating system and version used on your Puppet master.

Important:  The Continuous Delivery for PE host server must run the same operating system and version as
your Puppet master. Do not install Continuous Delivery for PE on the same server as your Puppet master.

b) Install a Puppet agent. See Installing agents in the PE documentation for details.
c) Install and start Docker CE . Use the scp command to move the Docker CE package you downloaded in step

1 to the Continuous Delivery for PE host node.

sudo rpm -ivh *.rpm
sudo systemctl start docker

8. In the PE console, click Classification. Click Add group and create a new node group with the following
specifications.

• Parent name: PE Infrastructure
• Group name: Continuous Delivery for PE
• Environment: production
• Environment group: Do not select this option

9. Open the newly created Continuous Delivery for PE node group. Add your Continuous Delivery for PE host
server to the node group by either creating a rule or pinning the node.

10. Click Configuration. In the Add new class field, select the cd4pe class and click Add class.

Note:  If the cd4pe class isn't available, click Refresh to update the available class definitions.

11. Automate upgrades of Continuous Delivery for PE to the latest available version in the 3.x series by setting the
cd4pe_version parameter to 3.x. Add the parameter and commit your change.
After the classification change is applied on the next Puppet run, your Continuous Delivery for PE installation
automatically upgrades itself whenever a new version is available.

12. Optional: Customize your Continuous Delivery for PE installation by setting any of the parameters listed in
Advanced configuration options. If none of these parameters are set, your installation proceeds with the default
settings.

Important:  In order to use the default installation, your Puppet certificate name must be a resolvable DNS
hostname. If that is not the case, you must set the resolvable_hostname parameter to a resolvable
address (hostname or IP address) where the Continuous Delivery for PE server is reachable. You can use the
${trusted[certname]} fact to set this parameter.
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13. Run Puppet on your Continuous Delivery for PE host server.

Note:  This Puppet run will return "unreachable repository" errors, which are expected at this point in this process.

14. Install the PE-PostgreSQL components needed to set up the local database.

yum --disablerepo=docker -d 0 -e 0 -y install pe-postgresql96-server
yum --disablerepo=docker -d 0 -e 0 -y install pe-postgresql96-contrib

15. Run Puppet on your Continuous Delivery for PE host server. This run should complete without any errors or
warnings about skipped steps.

16. Finally, follow the instructions in Configure Continuous Delivery for PE with a task. When configuration is
complete, you'll be directed to navigate to the Continuous Delivery for PE web UI.

The installation process is now complete, and you're ready to run Continuous Delivery for PE in an offline
environment.

Configure a Continuous Delivery for PE module installation using classification
Once you've completed the installation of Continuous Delivery for PE using the cd4pe module, you can use
classification to configure the software.

1. In the PE console, click Classification. Expand the PE Infrastructure node group and click Continuous
Delivery for PE.

2. Click Configuration. In the Add new class field, select cd4pe::root_config.
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3. Enter parameters for the class, as follows:

Parameter Value Notes

root_email The email address to associate with
the root account.

Required.

root_password The password to associate with the
root account.

CAUTION:  To set your
password successfully, you
must set the root_password
parameter to Sensitive
using Hiera. This parameter
cannot be set successfully
in the PE console. For
instructions, see Setting
sensitive parameters in
Hiera.

Required.

Note:  If you need to update the root
account password, first do so in the
Continuous Delivery for PE web
UI, and then update the password in
the PE console using this parameter.

storage_provider Which object store provider
to use. Must be one of: DISK,
ARTIFACTORY or S3.

Defaults to DISK.

storage_bucket The name of the bucket used for
object storage.

Required if using Amazon S3 or
Artifactory for object storage.

storage_endpoint The URL of the storage provider. Required if using Amazon S3 or
Artifactory for object storage.

storage_prefix For Amazon S3: the subdirectory of
the bucket to use.

For Artifactory: the top level of the
Artifactory instance.

Optional.

s3_access_key The AWS access key that has access
to the bucket.

Required if using Amazon S3.

s3_secret_key The AWS secret key that has access
to the bucket.

Required if using Amazon S3.

artifactory_access_token API token for your Artifactory
instance.

Required if using Artifactory.

4. Commit your changes and run Puppet on the node group.

5. When the Puppet run is complete, navigate to port 8080 of the Continuous Delivery for PE host server. Click
Trial mode to start a free seven-day trial. Once this period is complete, you'll be prompted to generate and upload
a license. See Generate a license for instructions on creating a free 30-day trial license.

Now that Continuous Delivery for PE is installed and configured, create your individual user account and then move
on to these next steps:

• Integrate your source control system.
• Integrate with Puppet Enterprise.
• Configure impact analysis.
• Configure job hardware, which is used when testing your Puppet code.

© 2024 Puppet, Inc., a Perforce company



continuous-delivery | Upgrading | 45

• Follow our Getting started with Continuous Delivery for PE guide to learn about core workflows and capabilities.

Setting sensitive parameters in Hiera
When passing sensitive information, such as the root password for Continuous Delivery for PE, as parameters, set the
value of these parameters as Sensitive in Hiera.

To set the value of parameters from String to Sensitive in Hiera, add the parameters to a lookup_options
section in the common.yaml file. For example:

---
lookup_options:
  '^cd4pe::db_pass$':
    convert_to: 'Sensitive'
  '^cd4pe::root_config::root_password$':
    convert_to: 'Sensitive'
  '^cd4pe::root_config::s3_secret_key$':
    convert_to: 'Sensitive'
  '^cd4pe::root_config::artifactory_access_token$':
    convert_to: 'Sensitive'  

Upgrading

New versions of Continuous Delivery for Puppet Enterprise (PE) are released regularly. Upgrading to the current
version ensures you're always taking advantage of the latest features, fixes, and improvements.

Continuous Delivery for PE runs inside a Docker container, and new versions are released to Docker Hub. Upgrading
to the latest version of Continuous Delivery for PE requires destroying the current Docker container and building
a new container in its place that includes the latest version of the software. The puppetlabs-cd4pe module
includes a docker-cd4pe service that manages this process for you; once the module is installed on your system,
when you stop and restart the docker-cd4pe service, the container rebuild process is completed automatically.

Upgrading to the latest version of Continuous Delivery for PE

If you used the puppetlabs-cd4pe module to install Continuous Delivery for PE, stop and restart the docker-
cd4pe service with either systemctl or Puppet.

With systemctl:

• Stop the service: systemctl stop docker-cd4pe
• Restart the service: systemctl start docker-cd4pe

With Puppet:

• Stop the service: puppet resource service docker-cd4pe ensure=stopped
• Restart the service: puppet resource service docker-cd4pe ensure=running

If you installed Continuous Delivery for PE from the PE console, install the puppetlabs-cd4pe module to
automate upgrades. Then, stop and restart the docker-cd4pe service with either systemctl or Puppet.

With systemctl:

• Stop the service: systemctl stop docker-cd4pe
• Restart the service: systemctl start docker-cd4pe

With Puppet:

• Stop the service: puppet resource service docker-cd4pe ensure=stopped
• Restart the service: puppet resource service docker-cd4pe ensure=running
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Note:  Make sure that the value of the cd4pe_version parameter in Class:cd4pe is set to 3.x and not pinned to a
specific version.

Automate upgrades of Continuous Delivery for PE
Install the puppetlabs-cd4pe module, then create and classify a node group to automate management of your
Continuous Delivery for PE installation's version.

1. Add the module and its dependencies to your Puppetfiles.

The puppetlabs-cd4pe module must be used with seven dependent modules, plus a module to manage job
hardware. The modules and their required versions are as follows:

Module Required version

puppetlabs-cd4pe 1.1.0 or later in the 1.x or 2.x series

The Nodes page requires version 2.0.1 or later

puppetlabs-stdlib 4.19.0 or later

puppetlabs-puppet_authorization 0.5.0 or later

puppetlabs-hocon 0.9.3 or later

puppetlabs-concat 2.1.0 or later

puppetlabs-docker 3.3.0 or later

puppetlabs-apt 4.4.1 or later

puppetlabs-translate 1.1.0 or later

puppetlabs-cd4pe_jobs

Note:  This module manages job hardware running
a Puppet agent. Install this module with Continuous
Delivery for PE version 3.4.0 or newer.

1.0.0 or later

puppetlabs-pipelines

Note:  This module manages job hardware running
the deprecated Continuous Delivery agent. Install this
module only if you are installing Continuous Delivery
for PE version 3.3.0 or older.

1.0.1
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2. Add the 10 modules listed above to the Puppetfile for each environment against which your compilers compile
catalogs.

A sample Puppetfile entry:

mod 'puppetlabs-cd4pe', '2.0.2'
# Requirements for cd4pe
mod 'puppetlabs-stdlib', '8.1.0'
mod 'puppetlabs-puppet_authorization', '0.5.1'
mod 'puppetlabs-hocon', '1.1.0'
mod 'puppetlabs-concat', '7.1.1'
mod 'puppetlabs-docker', '4.1.2'
mod 'puppetlabs-apt', '8.3.0'
mod 'puppetlabs-translate', '2.2.0'
mod 'puppetlabs-cd4pe_jobs', '1.5.0'
# Required only if using Continuous Delivery agents for job hardware
mod 'puppetlabs-pipelines', '1.0.1'

3. Deploy the modules to the production environment by running puppet code deploy production.

4. In the PE console, click Classification. Click Add group and create a new node group with the following
specifications.

• Parent name: PE Infrastructure
• Group name: Continuous Delivery for PE
• Environment: production
• Environment group: Do not select this option

5. Open the newly created Continuous Delivery for PE node group. Add your Continuous Delivery for PE host
server to the node group by either creating a rule or pinning the node.

6. Click Configuration. In the Add new class field, select the cd4pe class and click Add class.

Note:  If the cd4pe class isn't available, click Refresh to update the available class definitions.

7. To automate upgrades of Continuous Delivery for PE to the latest available version in the 3.x series, set the
cd4pe_version parameter to 3.x. Add the parameter and commit your change.

After the classification change is applied on the next Puppet run, your Continuous Delivery for PE installation
automatically upgrades itself whenever a new version is available and you restart the docker-cd4pe service
managed by the module.

Upgrade to the 3.x series
Upgrades from the Continuous Delivery for Puppet Enterprise (PE) 2.x series to the 3.x series are not automatic.
Instead, you must upgrade your version of the software by updating your puppetlabs-cd4pe module
classification.

If you installed Continuous Delivery for PE from the PE console or by using the puppetlabs-cd4pe module,
follow these instructions to upgrade to the 3.x series.

1. In the PE console, click Classification.

2. Expand the PE Infrastructure group, and select the Continuous Delivery for PE node group.

3. Click Configuration.

4. Under Class:cd4pe, in the Parameter field, select cd4pe_version. In the Value field, enter 3.x. Click Add
parameter and commit your changes.

5. To apply the new version, run Puppet on the node group. At the top of the page, click the Run selector and choose
Puppet. On the Run Puppet page that opens, make any necessary adjustments and click Run Job.
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When the Puppet run is complete, your Continuous Delivery for PE instance will be running the 3.x series. You'll
now automatically upgrade to new 3.x series versions as they are released whenever you stop and restart the
docker-cd4pe service managed by the module.

Configuring and adding integrations

Configure your Continuous Delivery for Puppet Enterprise (PE) instance so that it communicates with your source
control system, Puppet Enterprise, and the job hardware you use to run tests on your Puppet code.

• Integrate with Puppet Enterprise on page 48
To set up an integration between your Puppet Enterprise (PE) instance and Continuous Delivery for PE, you must
first set up a dedicated PE user with appropriate permissions, then add your PE instance's credentials to Continuous
Delivery for PE.
• Configure impact analysis on page 52
Impact analysis is a Continuous Delivery for Puppet Enterprise (PE) tool that lets you see the potential impact that
new Puppet code will have on your PE-managed infrastructure, even before the new code is merged. When you add
impact analysis to a control repo's pipeline, Continuous Delivery for PE automatically generates a report on every
proposed code change to that control repo.
• Integrate with source control on page 53
Integrate your source control system with Continuous Delivery for Puppet Enterprise (PE) by following the
appropriate set of instructions on this page.
• Configure job hardware on page 58
Job hardware, or the servers Continuous Delivery for Puppet Enterprise (PE) uses to run tests on your Puppet code,
must be configured before you can begin running tests or using pipelines.
• Configure LDAP on page 65
Continuous Delivery for Puppet Enterprise (PE) supports use of the Lightweight Directory Access Protocol (LDAP)
for managing user authentication. Once an LDAP configuration is in place, use group mapping to associate your
existing LDAP groups with role-based access control (RBAC) groups in Continuous Delivery for PE.
• Configure SMTP on page 68
Configure SMTP for your Continuous Delivery for Puppet Enterprise (PE) installation so that users can receive email
notifications from the software.
• Configure SSL on page 69
Continuous Delivery for Puppet Enterprise (PE) supports the use of Secure Sockets Layer (SSL) for enhanced
security when using the software.

Integrate with Puppet Enterprise
To set up an integration between your Puppet Enterprise (PE) instance and Continuous Delivery for PE, you must
first set up a dedicated PE user with appropriate permissions, then add your PE instance's credentials to Continuous
Delivery for PE.

Before you begin

• You must enable Code Manager on the PE instance before integrating with Continuous Delivery for PE. For
instructions, see Configuring Code Manager.

• The Puppet master certificate must have dns_alt_names configured. To confirm whether your certificate is
configured correctly, run:

openssl x509 -in $(puppet config print hostcert) -text |grep -A 1 "Subject
 Alternative Name"

If no output is returned, the master certificate must be regenerated before PE is integrated with Continuous
Delivery for PE. For instructions, see Regenerate master certificates in the PE documentation.
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Note:  For PE instances with a replica configured for disaster recovery. In the event of a partial failover,
Continuous Delivery for PE is not available. Learn more at What happens during failovers in the PE documentation.
To restore Continuous Delivery for PE functionality, you must promote the replica to primary server.

Create a Continuous Delivery user and user role in PE
Create a "Continuous Delivery" user and user role in PE. This allows you to view a centralized log of the activities
Continuous Delivery for PE performs on your behalf. You'll also use this user account when generating the PE
authentication token required by the setup process.

1. To begin, create a new user. In the PE console, click Access control > Users.

2. Enter a full name (such as Continuous Delivery User) and a login name (such as cdpe_user) and click
Add local user.

3. Next, create a user role containing the permissions the Continuous Delivery User needs when operating
Continuous Delivery for PE. In the PE console, click Access control > User roles.

4. Enter a name and (optional) description for new role, such as CDPE User Role, then click Add role.

5. Select the user role you've just created from the list on the User roles page.

6. Click Permissions. Assign the following permissions to the user role:

Type Permission Object

Job orchestrator Start, stop, and view jobs -

Node groups Create, edit, and delete child groups All

Node groups View All

Node groups Edit configuration data All

Node groups Set environment All

Nodes View node data from PuppetDB -

Puppet agent Run Puppet on agent nodes -

Puppet environment Deploy code All

Puppet Server Compile catalogs for remote nodes -

Tasks Run tasks At a minimum,
cd4pe_jobs::run_cd4pe_job,
which is required when running job
hardware using a Puppet agent.

7. Once all the permissions have been added, click Commit changes.

8. Add your Continuous Delivery user to the user role. Click Member users. Select the name of the user you created
earlier, and click Add user, then commit your change.

9. Your user is now set up and has been given the permissions needed to operate Continuous Delivery for PE. Before
proceeding, create a password for the Continuous Delivery user.

a) Return to the Users page.
b) Find and click the full name of your newly created user, then click Generate password reset.
c) Follow the link created and create a password for the user. You'll use this password when adding your PE

credentials to Continuous Delivery for PE.

Add your Puppet Enterprise credentials
Establishing an integration with your Puppet Enterprise (PE) instance allows Continuous Delivery for PE to work
with PE tools such as Code Manager and the orchestrator service to deploy Puppet code changes to your nodes.

If necessary, you can add multiple PE instances to your Continuous Delivery for PE installation.
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Important:  Do not perform these steps while signed in as the root user. Sign into Continuous Delivery for PE with
your individual user account before proceeding.

1. In the Continuous Delivery for PE web UI, click Settings.

2. Click Puppet Enterprise. Click + Add new credentials.

3. In the New Puppet Enterprise credentials pane, enter a unique friendly name for your Puppet Enterprise
installation.

If you need to work with multiple PE installations within Continuous Delivery for PE, these friendly names help
you to differentiate which installation's resources you're managing, so choose them carefully.

4. Enter the fully qualified domain name (FQDN) you use to access the PE console (such as
sample.pe.instance). The FQDN must match the certname of your PE master or an alias included in the
dns_alt_names entry in your puppet.conf file.

5. Select Basic authorization or API token and enter the required information:

• For Basic authorization, enter the username and password for your "Continuous Delivery" user. Continuous
Delivery for PE uses this information to generate an API token for you. The username and password are not
saved. Optionally, change the token's lifetime by clicking Change.

• For API token, generate a PE access token for your "Continuous Delivery" user using puppet-access or
the RBAC v1 API, and paste it into the API token field.

For instructions on generating an access token, see Token-based authentication.

Tip:  To avoid unintended service interruptions, create an access token with a multi-year lifespan.

6. Click Save changes.

Continuous Delivery for PE uses the information you provide to look up the endpoints for PuppetDB, Code
Manager, orchestrator, and node classifier, and to access the master SSL certificate generated during PE

installation. Once your credentials are successfully added, click Edit credentials  to view this information.

Your PE instance is now integrated with Continuous Delivery for PE.

To enable impact analysis for this instance, see Configure impact analysis.

Create environment node groups
In order for code deployments managed by Continuous Delivery for PE to work correctly, your environment node
groups should be set up in a specific hierarchy.

Continuous Delivery for PE deploys changes to environment node groups. By setting up environment node groups,
you define the groups of nodes that you can choose to deploy changes to.

1. In the PE console, click Classification.

2. If your node classification does not already include an All Environments node group, create one.

Note:  The All Environments node group is added automatically in new installations of PE version 2018.1.5 and
newer. If you're running an older version or have upgraded your PE instance, you must create this node group
yourself.

Click Add group... and create a new node group with the following specifications:

• Parent name: All Nodes
• Group name: All Environments
• Environment: production
• Environment group: yes
• Description: Environment group parent and default
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3. Open the All Environments node group and add a new rule:

• Fact: name
• Operator: ~
• Value: .*

4. Edit the Agent-specified environment node group so that All Environments is its parent. This group should have
no rules, and won't match any nodes.

5. Edit the Production environment node group so that All Environments is its parent. If necessary, modify its rules
so that it matches only the correct nodes.

6. For each of your environment groups (such as testing, staging, and production), create an environment node
group.

a) Create a Git branch to represent the environment.
b) Run puppet code deploy <ENVIRONMENT_NAME>.
c) Create a new environment node group with the following specifications:

• Parent name: All Environments
• Group name: <ENVIRONMENT_NAME>
• Environment: <ENVIRONMENT>
• Environment group: Yes

d) Associate the relevant nodes with the environment group by creating rules or pinning nodes.

Best practices for associating nodes with environment node groups:

• Use the pp_environment trusted fact, or a similar custom fact, to define which environment each node
belongs to. Write a rule in each environment group that uses pp_environment or your custom fact to
match nodes.

• See if other facts or trusted facts can be used to create rules that match nodes to one and only one
environment group

• If trusted facts, custom facts, or other facts cannot be used to determine node environments, use pinning.
Pin each node to only one environment group.

e) Specify the Git branch corresponding to the environment.

7. Optional: For each of your newly created environment groups, create a child environment group. Nodes from the
parent environment group are allowed to drop into this exception group to test code from Git feature branches.
Give each child environment group the following specifications:

• Parent name: All <ENVIRONMENT>
• Group name: <ENVIRONMENT> one-time run exception
• Environment: Agent-specified
• Environment group: Yes
• Description: Allow <ENVIRONMENT> nodes to request a different Puppet environment for a one-time run

Once the child environment node group is set up, give it the rule (agent_specified_environment ~ .
+). Do not pin any nodes to this node group.  

The resulting environment node groups has a format similar to this:
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Now that your environment nodes groups are configured, we can deploy new code to your nodes.

Configure impact analysis
Impact analysis is a Continuous Delivery for Puppet Enterprise (PE) tool that lets you see the potential impact that
new Puppet code will have on your PE-managed infrastructure, even before the new code is merged. When you add
impact analysis to a control repo's pipeline, Continuous Delivery for PE automatically generates a report on every
proposed code change to that control repo.

See Analyzing the impact of code changes for more on impact analysis.

• Configure impact analysis on page 52
If you have integrated your PE instance with Continuous Delivery for PE, impact analysis was automatically set up
for you during the integration. Make one classification change to start using impact analysis.

Configure impact analysis
If you have integrated your PE instance with Continuous Delivery for PE, impact analysis was automatically set up
for you during the integration. Make one classification change to start using impact analysis.

Before you begin
Make sure you're ready to get started by completing the following:

• Install Continuous Delivery for PE.
• Integrate with your source control system.
• Integrate with Puppet Enterprise.

1. In the PE console, click Classification and open the PE Infrastructure group.

2. Select the PE Master group and click Configuration.

3. In the Add new class field, select cd4pe::impact_analysis and click Add class, then commit your change.

If you don't find cd4pe::impact_analysis in the class list, click Refresh to update class definitions.

4. Run Puppet on the nodes in the PE Master group.

Important:  This Puppet run restarts the pe-puppetserver service.
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5. Optional: Set the maximum number of concurrent node catalog compiles allowed for each workspace. By default,
10 concurrent catalog compilations are allowed.

Adjust this setting to manage the catalog compilation load placed on a PE instance by Continuous Delivery for PE
impact analysis report generation.

a) In the Continuous Delivery for PE web UI, click Settings.
b) Click Puppet Enterprise and locate the PE instance you've configured to use impact analysis. Click Edit

credentials.
c) Locate the Impact analysis credentials section of the window. In the Max concurrent catalog compiles

field, set the number of catalog compilations that are allowed to run simultaneously on this PE instance.
d) Click Save changes.

Integrate with source control
Integrate your source control system with Continuous Delivery for Puppet Enterprise (PE) by following the
appropriate set of instructions on this page.

Status notification prefixes for source control

Once integration between your Continuous Delivery for PE installation and your source control provider is complete,
Continuous Delivery for PE sends information about the outcome of each stage of each pipeline run to your source
control provider.

By default, Continuous Delivery for PE labels each pipeline stage as follows when reporting to your source control
provider:

cd-pe/stage-<pipeline stage number>

This labeling system works just fine if you connect a control repo or module repo to one (and only one) workspace.
But if more than one workspace is connected to a certain control repo or module repo, your source control system
might receive identical notifications from multiple workspaces about multiple pipelines, and be unable to differentiate
between them when performing automated testing.

To prevent this issue, you have the option of adding a status notification prefix to all the communications Continuous
Delivery for PE sends from your workspace to your source control provider. By adding a status notification prefix,
you ensure that your source control system is able to differentiate between and accurately act on pipeline status
notifications coming from multiple workspaces to the same control repo or module repo.

To add a status notification prefix:

1. In the Continuous Delivery for PE web UI, click Settings > Source control.
2.

In the Status notification prefix area of the page, click Edit prefix .
3. Enter your chosen prefix. The name of your workspace is a good option. Click Save.

When you save your prefix, the example code updates to show prefixed pipeline status labels as they will be sent to
your source control provider from this workspace.

Integrate with Azure DevOps Services
Continuous Delivery for PE works with your existing source control system to track changes to your Puppet code and
manage code deployments to your nodes. Create an Azure DevOps Services OAuth application in order to integrate
your Azure DevOps Services instance with Continuous Delivery for PE and start using these tools.

Before you begin
An administrator on your team must create an Azure DevOps Services OAuth application for Continuous Delivery for
PE.
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Note:  These instructions apply only to the Azure DevOps cloud offering. The hosted version, Azure DevOps Server,
is not compatible with Continuous Delivery for PE.

1. Sign into Continuous Delivery for PE as the root user.
2. Click Settings, then click Integrations.

Tip:  The authorization callback URL required to create your OAuth app is shown in the root console.

3. Go to https://app.vsaex.visualstudio.com/app/register. Enter your company name.
4. In the Application Information section, enter a name for your OAuth application, such as CD for PE.
5. In the Application website field, enter the base URL for your Continuous Delivery for PE instance.
6. In the Authorization callback URL field, enter the authorization callback URL printed in the root console.
7. In the Authorized scopes section, select Code (read and write).
8. Click Create Application. Your new application is created, and a new page showing the application's settings is

displayed.

Important:  Leave this page open. You'll need the application settings information in the next step.

9. Return to the Continuous Delivery for PE root console. On the Integrations page, enter the application ID and
client secret for your Azure DevOps Services OAuth application and click Add.

Once an Azure DevOps Services OAuth application is established for your organization, each workspace must be
authenticated with the application in order to integrate the Continuous Delivery for PE instance with Azure DevOps
Services. This process involves granting code read and write permissions and adding a public SSH key, which enables
cloning of modules and control repos during automated tasks.

Important:  If your organization uses Azure DevOps Services branch permissions to limit user access to Git
branches, review the permissions granted to Continuous Delivery for PE users and ensure that these users can force
push to the relevant control repos and module repos.

Important:  Azure DevOps Services only supports cloning over SSH. HTTP(S) cloning is not supported. To use
Azure DevOps Services, SSL must be enabled on Continuous Delivery for PE.

1. In the Continuous Delivery for PE web UI, click Settings.

2. Click Source control, then click Azure DevOps.

3. Click Add credentials to give Continuous Delivery for PE code read and write permissions for your Azure
DevOps Services account. You are directed to a Microsoft page.

4. Click Accept. You are directed back to the Source control page.

5. Next, add the SSH key. Still in the Continuous Delivery for PE web UI, click SSH key.

6. Click Show to display your public SSH key. Click Copy.

7. In the Azure DevOps Services web UI, open the user menu and click Security, then click SSH public keys.

8. Click Add and paste your public SSH key into the Key Data field. Add a description and click Save.

Integrate with Bitbucket Cloud
Continuous Delivery for PE works with your existing source control system to track changes to your Puppet code
and manage code deployments to your nodes. Create a Bitbucket Cloud OAuth application in order to integrate your
Bitbucket Cloud instance with Continuous Delivery for PE and start using these tools.

Before you begin

An administrator on your team must create a Bitbucket Cloud OAuth consumer for Continuous Delivery for PE.

1. Sign into Continuous Delivery for PE as the root user.
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2. Click Settings, then click Integrations.

Tip:  The authorization callback URL required to create your OAuth consumer is shown in the root console.

3. In your organization's Bitbucket Cloud account, create an OAuth consumer. See Create a consumer in the
Bitbucket Cloud documentation for instructions.

Give the OAuth consumer the following permissions:

Category Permissions

Account Email, Read

Team membership Read

Repositories Read, Write

Pull requests Read, Write

Webhooks Read and write

4. When your OAuth application is created, note the key and secret shown on the OAuth settings page in the
Bitbucket Cloud web UI.

5. Return to the Continuous Delivery for PE root console. On the Integrations page, enter the client ID (key) and
client secret for your Bitbucket Cloud OAuth consumer and click Add.

Once a Bitbucket Cloud OAuth application is established for your organization, each workspace must be
authenticated with the application in order to integrate the Continuous Delivery for PE instance with Bitbucket Cloud.

Important:  If your organization uses Bitbucket Cloud branch permissions to limit user access to Git branches,
review the permissions granted to Continuous Delivery for PE users and ensure that these users have write access and
the ability to rewrite history on the relevant control repos and module repos.

Note:  Bitbucket Cloud only supports cloning over HTTP(S). SSH cloning is not supported.

1. In the Continuous Delivery for PE web UI, click Settings.

2. Click Source control, then click Bitbucket Cloud.

3. Click Add credentials to give Continuous Delivery for PE code read and write permissions for your Bitbucket
Cloud account.

4. Click Add credentials.

At this point you'll be redirected to Bitbucket Cloud to authorize the OAuth application set up by your workspace
administrator.

Give Continuous Delivery for PE the following permissions on your Bitbucket Cloud account:

• Access organizations, teams, and membership (read-only)
• Access user email addresses (read-only)
• Access public and private repositories

5. Click Authorize application.

Integrate with Bitbucket Server
Continuous Delivery for PEworks with your existing source control system to track changes to your Puppet code and
manage code deployments to your nodes. Integrate your Bitbucket Server instance with Continuous Delivery for PE
in order to start using these tools.

Important:  If your organization uses Bitbucket Server branch permissions to limit user access to Git branches,
review the permissions granted to Continuous Delivery for PE users and create an exemption rule that ensures these
users can force push to the relevant control repos and module repos.
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Note:  Bitbucket Server only supports cloning over SSH. HTTP(S) cloning is not supported.

Note:  Continuous Delivery for PE supports Bitbucket Server 5.0 and newer versions.

1. In the Continuous Delivery for PE web UI, click Settings.

2. Click Source control, then click Bitbucket Server.

3. In the Bitbucket Server host field, enter the public IP or DNS for your Bitbucket Server instance.

4. In the Username and Password fields, enter the credentials associated with the account you wish to connect to
Continuous Delivery for PE.

5. In the SSH port field, enter the port number on which your Bitbucket Server listens for SSH requests. To locate
this port number:

a. In the Bitbucket Server web UI, click Administration (the gear icon) and then click Server settings.
b. Locate the SSH port in the SSH access section of the Server settings page.

6. Optional: Enter the SSH base URL for your Bitbucket Server if it is different from the host URL. To view your
SSH base URL:

a. In the Bitbucket Server web UI, click Administration (the gear icon) and then click Server settings.
b. Locate the SSH base URL in the SSH access section of the Server settings page.

7. Optional: Enter the SSH user for clones if it is something other than "git."

8. Click Add credentials.

Integrate with GitHub
Continuous Delivery for PE works with your existing source control system to track changes to your Puppet code
and manage code deployments to your nodes. Create a GitHub OAuth application in order to integrate your GitHub
instance with Continuous Delivery for PE and start using these tools.  

Before you begin

An administrator on your team must create a GitHub OAuth application for Continuous Delivery for PE.

1. Sign into Continuous Delivery for PE as the root user.
2. Click Settings, then click Integrations.
3. In your organization's GitHub account, create an OAuth application. See Creating an OAuth App in the GitHub

documentation for instructions.

Tip:  In the Homepage URL field, enter the base URL for your Continuous Delivery for PE instance (http://
<CD4PE-HOST-SERVER>:8080). The Authorization callback URL is shown in the Continuous Delivery for
PE root console.

4. Once your OAuth application is created, note the Client ID and Client Secret shown on the application's page in
the GitHub UI.

5. Return to the Continuous Delivery for PE root console. On the Integrations page, enter the client ID and secret
for your GitHub OAuth application and click Add.

Once a GitHub OAuth application is established for your organization, each workspace must be authenticated with
the application in order to integrate the Continuous Delivery for PE instance with GitHub.

Important:  If your organization uses protected branches on GitHub, make sure that force pushing is allowed to
protected branches, or that the GitHub Administrator user is used when connecting a control repo or module repo to
Continuous Delivery for PE.

Note:  GitHub only supports cloning over HTTP(S). SSH cloning is not supported.

1. In the Continuous Delivery for PE web UI, click Settings.
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2. Click Source control, then click GitHub.

3. Click Add credentials.

At this point you'll be redirected to GitHub to authorize the OAuth application set up by your team's administrator.

Give Continuous Delivery for PE the following permissions on your GitHub account:

• Access organizations, teams, and membership (read-only)
• Access user email addresses (read-only)
• Access public and private repositories

4. Click Authorize application.

Integrate with GitHub Enterprise
Continuous Delivery for PE works with your existing source control system to track changes to your Puppet code and
manage code deployments to your nodes. Integrate your GitHub Enterprise instance with Continuous Delivery for PE
in order to start using these tools.  

Important:  If your organization uses protected branches on GitHub Enterprise, make sure that make sure that force
pushing is allowed to protected branches, or that the GitHub Enterprise Administrator user is used when connecting a
control repo or module repo to Continuous Delivery for PE.

Note:  GitHub Enterprise only supports cloning over HTTP(S), SSH cloning is not supported.

1. In the Continuous Delivery for PE web UI, click Settings.

2. Click Source control, then click GitHub Enterprise.

3. In the Host field, enter the public IP or DNS for your GitHub Enterprise instance.

4. Create a token allowing Continuous Delivery for PE to access your GitHub Enterprise instance.

a) In the GitHub Enterprise web UI, click your profile photo, then click Settings > Developer settings.
b) Click Personal access tokens. Click Generate new token.
c) Enter a token description, such as CD for PE.
d) Select the repo, read:org, and user:email scopes.
e) Click Generate token.
f) Copy the personal access token created by GitHub Enterprise.

5. In the Continuous Delivery for PE web UI, enter the GitHub Enterprise token in the Token field.

6. Based on your GitHub Enterprise configuration, select either This instance uses a standard CA certificate or
This instance uses a custom CA certificate. If you're using a custom certificate, paste the certificate in full in the
Custom CA certificate field.

7. Click Add credentials.

Integrate with GitLab
Continuous Delivery for PE works with your existing source control system to track changes to your Puppet code and
manage code deployments to your nodes. Integrate your GitLab instance with Continuous Delivery for PE in order to
start using these tools.

Important:  If your organization uses protected branches on GitLab, make sure that the GitLab user account
connected to Continuous Delivery for PE is assigned to a GitLab role with “allow” rules that enable the user to push
to the protected branch.

Note:  GitLab supports cloning over both SSH and HTTP(S). The cloning protocol is set per Continuous Delivery for
PE workspace.

1. In the Continuous Delivery for PE web UI, click Settings.

2. Click Source control, and then click GitLab.
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3. In the Host field, enter the public IP or DNS for your GitLab instance.

4. Create a token allowing Continuous Delivery for PE to access your GitLab instance.

a) In the GitLab web UI, navigate to your user settings and click Access tokens.
b) Enter a name for the application, such as CD for PE, and set an expiration date for the token.
c) Select the api and read_user scopes.
d) Click Create personal access token.
e) Copy the personal access token created by GitLab.

5. In the Continuous Delivery for PE web UI, enter the GitLab token in the Token field.

6. Select whether your workspace will clone GitLab repositories via SSH or HTTP(S).

a) For SSH:

• Optional: Add the SSH user's credentials in the SSH user field.
• Optional: In the SSH port field, specify the port on which your GitLab server listens for SSH requests.

The default port number is 22.
b) For HTTP(S):

• If you're using a custom certificate, paste the certificate in full into the Custom CA certificate field.

7. Click Add credentials.

Configure job hardware
Job hardware, or the servers Continuous Delivery for Puppet Enterprise (PE) uses to run tests on your Puppet code,
must be configured before you can begin running tests or using pipelines.

• Configure job hardware running a Puppet agent on page 58
Job hardware, or the servers Continuous Delivery for PE uses to test your Puppet code, must be configured before you
begin running jobs or using pipelines. Any node with a Puppet agent installed can be designated as job hardware.
• Add job hardware capabilities on page 59
Job hardware servers are organized by capabilities in Continuous Delivery for PE. A capability is a tag that indicates
what type of jobs can run on that job hardware server. If you're managing a large fleet of job hardware servers, use
capabilities to distribute the testing load.
• Configure global shared job hardware running a Puppet agent on page 60
Global shared job hardware can be used by all workspaces in your Continuous Delivery for PE installation. The root
user or a super user must set up these special job hardware servers in the root console.
• Migrate job hardware on page 61
The Continuous Delivery agent is deprecated as of Continuous Delivery for PE version 3.4.0, and will be removed
in a future release. The Continuous Delivery agent will continue to work until the removal date, but you can migrate
your job hardware to use a Puppet agent at any time.
• # Continuous Delivery agent on page 62
# DEPRECATED: The Continuous Delivery agent is deprecated as of Continuous Delivery for PE version 3.4.0, and
will be removed in a future release. While existing job hardware running the Continuous Delivery agent will continue
to function until the removal date, you cannot make changes or updates to these job hardware servers.

Configure job hardware running a Puppet agent
Job hardware, or the servers Continuous Delivery for PE uses to test your Puppet code, must be configured before you
begin running jobs or using pipelines. Any node with a Puppet agent installed can be designated as job hardware.

Before you begin
Review the sizing guide in Job hardware requirements.

Important:  Only the administrator of a workspace or a super user can configure job hardware for a workspace.
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1. Install a Puppet agent on each of the nodes you wish to use as job hardware. See Installing agents in the PE
documentation for details.

2. Make sure your Continuous Delivery user role in PE includes the permission to run the
cd4pe_jobs::run_cd4pe_job task.

3. Install the puppetlabs-cd4pe_jobs module, which is required to run Continuous Delivery for PE jobs on
your nodes:

a) Add the puppetlabs-cd4pe_jobs module to the following:

• The Puppetfile for the production environment on the PE master that manages the agent nodes you've
selected as job hardware

• The Puppetfile on the master branch of the control repo associated with the PE master that manages the
agent nodes you've selected as job hardware

A sample Puppetfile entry:

mod 'puppetlabs-cd4pe_jobs', '1.5.0'

b) Deploy the updated code to the production environment:

puppet code deploy production --wait

4. Install and configure Docker on each node. Docker is required for the Docker-based pre-built jobs included in
Continuous Delivery for PE. See the Installing Docker instructions for details.

5. Finally, tell Continuous Delivery for PE that the nodes are ready to be used as job hardware for Docker-based
jobs by assigning them to the Docker hardware capability. Capabilities organize your job hardware servers and
ensure that jobs run on hardware with the right characteristics. Continuous Delivery for PE automatically creates a
Docker hardware capability for you.

a) In the Continuous Delivery for PE web UI, click Hardware.
b) Locate the Docker capability and click + Edit.
c) Select the PE instance that manages the nodes you've selected as job hardware. Then, select your job hardware

nodes.

The selected nodes are added to the Hardware with this capability list on the right.
d) Click Save.

Your job hardware is now configured and ready for use.

Tip:  If you're managing a large set of job hardware nodes, you can create additional capabilities to distribute
the testing load and ensure that each job runs on a server with the correct characteristics. See Add job hardware
capabilities for instructions.

Note:  Due to the fact that Continuous Delivery for PE job hardware nodes are classified as PE infrastructure nodes,
the puppet_agent module cannot be used to successfully upgrade Puppet agents running on job hardware. To
upgrade the Puppet agent on a job hardware node, use the agent upgrade script.

Add job hardware capabilities
Job hardware servers are organized by capabilities in Continuous Delivery for PE. A capability is a tag that indicates
what type of jobs can run on that job hardware server. If you're managing a large fleet of job hardware servers, use
capabilities to distribute the testing load.

Capabilities organize your job hardware servers and ensure that jobs run on hardware with the right characteristics.
For example, for a new job that requires the use of Python 3, create a capability called python-3 in Continuous
Delivery for PE and assign job hardware servers that have Python 3 installed and configured to that capability. When
creating the new job that uses Python 3, indicate that the job requires job hardware with the python-3 capability.
When running that job, Continuous Delivery for PE will automatically locate a job hardware server with the python-3
capability, and will use that job hardware server to run the job.

In addition to software requirements, useful capabilities include:
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• Operating systems
• Organizational designations, such as dev-team-philly-testing
• Puppet testing resources, such as onceover or Puppet Development Kit

Important:  Only the administrator of a workspace, the root user, and super users can add hardware capabilities to a
workspace.

Note:  Continuous Delivery for PE automatically creates a Docker capability for you.

1. In the Continuous Delivery for PE web UI, click Hardware.

2. To create a new capability, click + Add capability. Give your new capability a name.

3. Next, assign job hardware servers to the capability. Select the PE instance that manages the node you've selected
as job hardware. Then, select the nodes you wish to assign to the capability.

The selected nodes are added to the Hardware with this capability list on the right.

4. When you've selected all the nodes you want to assign to the capability, click Save.

Your job hardware is now assigned to a capability. You can add this capability to the jobs in your workspace by
clicking Jobs > Edit job and selecting from the list of capabilities.

Configure global shared job hardware running a Puppet agent
Global shared job hardware can be used by all workspaces in your Continuous Delivery for PE installation. The root
user or a super user must set up these special job hardware servers in the root console.

Before you begin
Review the sizing guide in Job hardware requirements.

1. Install a Puppet agent on each of the nodes you wish to use as global shared job hardware. See Installing agents in
the PE documentation for details.

2. Make sure your Continuous Delivery user role in PE includes the permission to run the
cd4pe_jobs::run_cd4pe_job task.

3. Install the puppetlabs-cd4pe_jobs module, which is required to run Continuous Delivery for PE jobs on
your nodes:

a) Add the puppetlabs-cd4pe_jobs module to the following:

• The Puppetfile for the production environment on the PE master that manages the agent nodes you've
selected as job hardware

• The Puppetfile on the master branch of the control repo associated with the PE master that manages the
agent nodes you've selected as job hardware

A sample Puppetfile entry:

mod 'puppetlabs-cd4pe_jobs', '1.5.0'

b) Deploy the updated code to the production environment:

puppet code deploy production --wait

4. Install and configure Docker on your selected global shared job hardware nodes. See the Installing Docker
instructions for details.

5. In the root console, click Hardware.

6. All global shared job hardware servers must be assigned to the Docker capability, which is automatically created
for you. Locate the Docker capability and click + Edit.

7. Next, assign all your global shared job hardware servers to the Docker capability. Select the PE instance that
manages the node you've selected as job hardware. Then, select the global shared job hardware nodes.

The selected nodes are added to the Hardware with this capability list on the right.
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8. When you've selected all the nodes you want to assign to the capability, click Save.

9. As needed, create additional capabilities for your global job hardware servers. To create a new capability, click +
Add capability and give your new capability a name, then follow steps 6 and 7.

Tip:  To learn more about capabilities, see Add job hardware capabilities.

Your global shared job hardware is now configured. Users in all workspaces will now see a Use shared hardware
option when creating or editing a job. Jobs that are configured to run on your global shared job hardware have the
Docker capability automatically selected, and will run on the global shared job hardware assigned to the Docker
capability.

Note:  Due to the fact that Continuous Delivery for PE job hardware nodes are classified as PE infrastructure nodes,
the puppet_agent module cannot be used to successfully upgrade Puppet agents running on job hardware. To
upgrade the Puppet agent on a job hardware node, use the agent upgrade script.

Migrate job hardware
The Continuous Delivery agent is deprecated as of Continuous Delivery for PE version 3.4.0, and will be removed
in a future release. The Continuous Delivery agent will continue to work until the removal date, but you can migrate
your job hardware to use a Puppet agent at any time.

To migrate your job hardware from using the Continuous Delivery agent to using a Puppet agent, first uninstall the
Continuous Delivery agent, then install a Puppet agent and the puppetlabs-cd4pe_jobs module.

Note:  These migration instructions apply to both job hardware associated with a single Continuous Delivery for PE
workspace and global shared job hardware. The workspace administrator or a super user must complete the migration.

1. SSH into your job hardware agent node and run the following:

sudo /usr/local/bin/distelli agent stop
sudo /usr/local/bin/distelli agent uninstall

2. In the Continuous Delivery for PE web UI (or in the root console if you're migrating a global shared job hardware

server), click Hardware. Locate the job hardware agent node in the list of servers and click  Remove
hardware node.

3. Install a Puppet agent on each of the nodes you wish to use as job hardware. See Installing agents in the PE
documentation for details.

4. Make sure your Continuous Delivery user role in PE includes the permission to run the
cd4pe_jobs::run_cd4pe_job task.

5. Install the puppetlabs-cd4pe_jobs module, which is required to run Continuous Delivery for PE jobs on
your nodes:

a) Add the puppetlabs-cd4pe_jobs module to the following:

• The Puppetfile for the production environment on the PE master that manages the agent nodes you've
selected as job hardware

• The Puppetfile on the master branch of the control repo associated with the PE master that manages the
agent nodes you've selected as job hardware

A sample Puppetfile entry:

mod 'puppetlabs-cd4pe_jobs', '1.5.0'

b) Deploy the updated code to the production environment:

puppet code deploy production --wait
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6. Confirm that Docker is installed and configured on each node. Docker is required for the Docker-based pre-built
jobs included in Continuous Delivery for PE. See the Installing Docker instructions for details.

7. Finally, tell Continuous Delivery for PE that the nodes are ready to be used as job hardware for Docker-based
jobs by assigning them to the Docker hardware capability. Capabilities organize your job hardware servers and
ensure that jobs run on hardware with the right characteristics. Continuous Delivery for PE automatically creates a
Docker hardware capability for you.

a) In the Continuous Delivery for PE web UI, click Hardware.
b) Locate the Docker capability and click + Edit.
c) Select the PE instance that manages the nodes you've selected as job hardware. Then, select your job hardware

nodes.

The selected nodes are added to the Hardware with this capability list on the right.
d) Click Save.

Your job hardware is now migrated and ready for use.

Tip:  If you're managing a large set of job hardware nodes, you can create additional capabilities to distribute
the testing load and ensure that each job runs on a server with the correct characteristics. See Add job hardware
capabilities for instructions.

# Continuous Delivery agent
# DEPRECATED: The Continuous Delivery agent is deprecated as of Continuous Delivery for PE version 3.4.0, and
will be removed in a future release. While existing job hardware running the Continuous Delivery agent will continue
to function until the removal date, you cannot make changes or updates to these job hardware servers.

Important:  See Migrating your job hardware agents for instructions on updating your job hardware to use a Puppet
agent.

Selecting a job hardware installation method

There are two methods for authenticating your account when configuring job hardware to use the Continuous
Delivery agent. Which you choose to employ is mainly a question of how many servers you're designating as job
hardware.

When installing the Continuous Delivery agent, you must enter the email address and password associated with your
Continuous Delivery for PE account. Doing this manually is fine if you're setting up a server or two, but if you're
configuring a larger number of servers, adding these credentials can quickly become cumbersome. In this case, using
a distelli.yml file to automatically pass your credentials to the agent is the more efficient method.

Configure job hardware with the web UI
To designate a server as job hardware, install the Continuous Delivery agent on the server and mark it as active job
hardware in the web UI.

Tip:  This method is best to use if you're configuring a small number of servers.

1. In the Continuous Delivery for PE web UI, click Hardware.

2. Click Add job hardware.

3. Select Linux / MacOS or Windows. Install the Continuous Delivery agent by running the commands shown in
the web UI on the machine you've designated as job hardware.

Important:  On Linux hosts, the agent installation process adds a sudoers rule to /etc/sudoers.d/
distelli that enables the distelli user to run any command with sudo privileges and without requiring a
password.
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4. When prompted for your email and password, enter the credentials associated with your Continuous Delivery for
PE account.

Important:  Do not enter the root account credentials.

5. At the prompt To which hardware collection should this agent be added? select the
relevant workspace.

6. In the Continuous Delivery for PE web UI, close the Add job hardware pane. You might need to refresh the Job
hardware page to see your newly configured job hardware.

7. Click the Job hardware active toggle to mark your new job hardware as active.

8. Optional: Click + Add capability and enter up to three capabilities associated with this piece of job hardware,
such as PUPPET-AGENT or DOCKER, pressing Save after each addition.

The Continuous Delivery agent automatically detects and displays four reserved capabilities: WINDOWS,
LINUX, DARWIN, and RASPBIAN.

When creating a job, you can specify which job hardware capabilities are required. This allows you to ensure that
jobs requiring specific conditions, such as a particular operating system or piece of software, are run only on job
hardware meeting those conditions.

Important:  In order to run jobs in Docker containers (including pre-built jobs), make sure Docker is installed on
your job hardware and set DOCKER as a capability.

Note:  Running Docker-enabled job hardware on an Alpine Linux base image requires the libgcc, bash, wget, and
ca-certificates packages.

Configure job hardware with distelli.yml
By setting up a distelli.yml file containing your user-specific agent credentials, you can configure job hardware
without manually entering your account credentials.

Tip:  This method is best to use if you're configuring a large number of servers and don't want to enter your
credentials manually each time.

1. Create your agent credentials.

a) In the Continuous Delivery for PE web UI, click Settings.
b) Click Hardware agents, then click Create agent credentials.
c) Continuous Delivery for PE creates an access token and secret key for your account. Click Show to display

your secret key. Leave this page open while you set up your distelli.yml file.

2. Create a file named distelli.yml and store it in a convenient location.

3. Add the following to your distelli.yml file, pasting in the access token and secret key you generated in Step
1:

DistelliAccessToken: <MY_ACCESS_TOKEN>
DistelliSecretKey: <MY_SECRET_KEY>

Save the file and exit.

4. In the Continuous Delivery for PE web UI, click Hardware.

5. Click Add job hardware.
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6. Select Linux / MacOS or Windows. SSH into the machine you've chosen to designate as job hardware. In sudo
or Administrator mode, install the Continuous Delivery agent by running the commands shown in the web UI,
adding -conf <PATH_TO_DISTELLI.YML_FILE> to the end of the distelli agent install
command.
For example, /usr/local/bin/distelli agent install -conf
<PATH_TO_DISTELLI.YML_FILE>.

Important:  On Linux hosts, the agent installation process adds a sudoers rule to /etc/sudoers.d/
distelli that enables the distelli user to run any command with sudo privileges and without requiring a
password.

7. At the prompt To which hardware collection should this agent be added? select the
relevant workspace.

8. In the Continuous Delivery for PE web UI, click Hardware.

9. Click the Job hardware active toggle to mark your new job hardware as active.

10. Optional: Click + Add capability and enter up to three capabilities associated with this piece of job hardware,
such as PUPPET-AGENT or DOCKER, clicking Save after each addition.

The Continuous Delivery agent automatically detects and displays four reserved capabilities: WINDOWS,
LINUX, DARWIN, and RASPBIAN.

When creating a job, you can specify which job hardware capabilities are required. This allows you to ensure that
jobs requiring specific conditions, such as a particular operating system or piece of software, are run only on job
hardware meeting those conditions.

Important:  In order to run jobs in Docker containers (including pre-built jobs), make sure Docker is installed on
your job hardware and set DOCKER as a capability.

Note:  Running Docker-enabled job hardware on an Alpine Linux base image requires the libgcc, bash, wget, and
ca-certificates packages.

Upgrade the Continuous Delivery agent
To upgrade the Continuous Delivery agent to a more recent version, reinstall the agent on top of the existing agent.

Important:  The Continuous Delivery agent is deprecated as of Continuous Delivery for PE version 3.4.0, and will be
removed in a future release. Upgrading the Continuous Delivery agent is no longer supported. See Migrating your job
hardware agents for instructions on updating your job hardware to use a Puppet agent.

1. In the Continuous Delivery for PE web UI, click Hardware.

2. Click Add job hardware.

3. Select Linux / MacOS or Windows. SSH into the machine you're using as job hardware. In sudo or
Administrator mode, install the Continuous Delivery agent by running the commands shown in the web UI.

Important:  If you created a distelli.yml file to store your agent credentials, add -conf
<PATH_TO_DISTELLI.YML_FILE> to the end of the distelli agent install command and skip to
step 5 below.

4. When prompted for your email and password, enter the credentials associated with your  Continuous Delivery for
PE account.

Important:  Do not enter the root account credentials.

5. In the Continuous Delivery for PE web UI, click Hardware and locate the newly upgraded server.

6. Click the Job hardware active toggle to mark the upgraded job hardware as active.

7. Click + Add capability and enter up to three capabilities associated with this piece of job hardware, such as
PUPPET-AGENT or DOCKER, clicking Save after each addition.
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Configure global shared job hardware running a Continuous Delivery agent
The Continuous Delivery agent is deprecated as of Continuous Delivery for PE version 3.4.0, and will be removed in
a future release. While existing global shared job hardware running the Continuous Delivery agent will continue to
function until the removal date, you cannot make changes or updates to these shared job hardware servers.

A super user must perform this action. Once set up, all super users and the root user can view global shared job
hardware in the root console.

Important:  See Migrating your job hardware agents for instructions on updating your global shared job hardware to
use a Puppet agent.

1. Log into the root console by selecting Root console from the workspaces menu at the top of the Continuous
Delivery for PE navigation bar.

2. Click Hardware, then click Add job hardware.

3. Select Linux / MacOS or Windows. Install the Continuous Delivery agent by running the commands shown in
the web UI on the machine you've designated as global shared job hardware.

Important:  On Linux hosts, the agent installation process adds a sudoers rule to /etc/sudoers.d/
distelli that enables the distelli user to run any command with sudo privileges and without requiring a
password.

4. When prompted for your login email and password, enter the credentials associated with your super user account.

5. At the prompt To which hardware collection should this agent be added? select Global
shared hardware.

6. In the root console, close the Add job hardware pane. You might need to refresh the Job hardware page to see
your newly configured global shared job hardware.

7. Click the Job hardware active toggle to mark your new job hardware as active.

8. Optional: Click + Add capability and enter up to three capabilities associated with this piece of job hardware,
such as PUPPET-AGENT or DOCKER, pressing Save after each addition.

The Continuous Delivery agent automatically detects and displays four reserved capabilities: WINDOWS,
LINUX, DARWIN, and RASPBIAN.

When creating a job, users can specify which job hardware capabilities are required. This ensures that jobs
requiring specific conditions, such as a particular operating system or piece of software, are run only on job
hardware meeting those conditions.

Important:  In order to run jobs in Docker containers (including pre-built jobs), make sure Docker is installed on
your job hardware and set DOCKER as a capability.

Note:  Running Docker-enabled job hardware on an Alpine Linux base image requires the libgcc, bash, wget, and
ca-certificates packages.

Now that shared global job hardware is available, a Use shared hardware option is shown when creating or editing a
job.

Configure LDAP
Continuous Delivery for Puppet Enterprise (PE) supports use of the Lightweight Directory Access Protocol (LDAP)
for managing user authentication. Once an LDAP configuration is in place, use group mapping to associate your
existing LDAP groups with role-based access control (RBAC) groups in Continuous Delivery for PE.

For organizational or failover protection purposes, you can add multiple LDAP configurations, each specifying a
separate LDAP server, to your Continuous Delivery for PE instance. Continuous Delivery for PE uses the LDAP
configurations you set up to search your LDAP users in a specified order. Once a user is found, the search ends and
that LDAP configuration is used to perform the login operation.
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Configuring LDAP server search result limits

Beginning with version 3.10.0, by default Continuous Delivery for PE requests 500 search results at a time
from a connected LDAP server. If your LDAP server has a search result limitation below 500, you can
configure Continuous Delivery for PE to match the LDAP server's search result threshold by setting the
CD4PE_LDAP_GROUP_SEARCH_SIZE_LIMIT environment variable on the cd4pe_docker_extra_params
parameter. See Advanced configuration options for more information.

Create a new LDAP configuration
Add an LDAP configuration to Continuous Delivery for PE by providing key information on the mapping of user and
group attributes in your LDAP server implementation.

1. Log into the root console by selecting Root console from the workspaces menu at the top of the Continuous
Delivery for PE navigation bar or signing in as the root user.

2. Click Settings, then click Single sign on.

3. Select LDAP and click + Add LDAP configuration.
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4. In the New LDAP configuration pane, enter the requested information as per the instructions below.

Name

A friendly identifier for this LDAP configuration. This name cannot be changed, so select it carefully.

Endpoint URL

The endpoint URL of the LDAP server, including the LDAP scheme, hostname, and port. If these aren’t
included, the default scheme is ldaps and the default port is 636.

Bind DN

The distinguished name of the LDAP account that Continuous Delivery for PE will bind as when performing
LDAP operations. An admin account or a service account created specifically for Continuous Delivery for PE
is generally used here. If you choose to create a new account, ensure that it has permission to search for users
and groups.

Bind DN password

The password associated with the bind DN account.

Note:  You must enter this password each time the LDAP configuration is updated. Entering the password is
not required when disabling the LDAP configuration.

User base DN

The LDAP base DN that informs Continuous Delivery for PE where users are located in the directory. The
more specific the DN, the better your LDAP search performance will be.

User attribute

Which LDAP user attribute to use to map LDAP users to Continuous Delivery for PE usernames. The mail
attribute is most commonly used, but any attribute can be used so long as duplicate values aren't present in the
LDAP database.

Optional: User base filter

A filter that Continuous Delivery for PE can use to restrict user search results. This is useful in edge cases
where certain users should be included or excluded.

Group base DN

The LDAP base DN that informs Continuous Delivery for PE where groups are located in the directory. The
more specific the DN, the better your LDAP search performance will be.

Note:  If users and groups are stored in the same location, the value in this field will be the same as the value
in the User attribute field.

Group user attribute

The user attribute that group entries use to identify users. In most cases the value of this option is dn.

Group member attribute

The group attribute that maps to a group member. In most cases the value of this option is either member or
uniqueMember.

Group name attribute

The group attribute that identifies the group name. In most cases the value of this option is cn.

Optional: Group base filter

A filter that Continuous Delivery for PE can use to restrict group search results. This is useful in edge cases
where certain groups should be included or excluded.

User object class

Specifies the value of the objectClass attribute that allows Continuous Delivery for PE to query user
entries. In most cases the value of this option is user or person.

Group object class

Specifies the value of the objectClass attribute that allows Continuous Delivery for PE to query group
entries. In most cases the value of this option is group or groupOfUniqueNames.

Optional: Mail attribute

The LDAP user attribute used to identify each member's email address. Defaults to mail if unset.

Optional: User member attribute

Specifies the user attribute that can be used to identify the membership of a group. If present, the value of this
option is generally memberOf.
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5. Select the Priority number for this LDAP configuration. This number indicates the order in which your LDAP
configurations are used to search for users during login and when synchronizing groups.

6. Optional: Enter the trusted server's CA certificate. If the LDAP server uses a certificate signed by a trusted CA,
you do not need to enter a CA certificate here.

7. Optional: Set the toggle to enable recursive LDAP queries for nested groups. This option is available only if your
LDAP server's implementation supports the ExtensibleMatch search filter.

8. Set the toggle to Enable LDAP, then click Run configuration test to check the connection between Continuous
Delivery for PE and the LDAP server.

Note:  This configuration test checks to see if the LDAP server can be reached; it does not test the other
configuration options.

9. Click Save configuration. Your new LDAP configuration is now shown on the Single sign on settings page,
where you have the option to edit or delete the configuration.

Important:  Once you enable an LDAP configuration, Continuous Delivery for PE will automatically disable
all local Continuous Delivery for PE accounts other than the root account, and will attempt to use LDAP
authentication. If your LDAP authentication fails, sign in as the root user by adding /root/login to the end of
the base URL of the Continuous Delivery for PE web UI and adjust your settings.

Create an LDAP group map
Once you add an LDAP configuration to Continuous Delivery for PE, use a group map to map your existing LDAP
groups to Continuous Delivery for PE RBAC groups. This makes it possible to mirror group membership defined in
LDAP to groups in Continuous Delivery for PE.

Before you begin
Add at least one LDAP configuration to your Continuous Delivery for PE instance.

1. Log into the root console by adding /root/login to the end of the base URL of the web UI and signing in as
the root user.

2. Click Settings, then click Single sign on.

3. Click LDAP, then click Manage groups. Click + Add LDAP group mapping

4. Select the LDAP configuration to associate the group mapping with.

5. From the list of available LDAP groups, select the group to be used to perform the mapping.

Tip:  You can search for groups by name (partial matches and case-insensitive matches allowed) or distinguished
name (case-insensitive matches allowed).

6. Select a Continuous Delivery for PE account that is associated with the RBAC group you wish to map to the
selected LDAP group.

7. From the list of available Continuous Delivery for PE RBAC groups, select the RBAC group you wish to map to
the selected LDAP group.

8. Click Add group mapping.
Once a group map is set up, Continuous Delivery for PE synchronizes with your LDAP groups based on the
mapping you create.

Configure SMTP
Configure SMTP for your Continuous Delivery for Puppet Enterprise (PE) installation so that users can receive email
notifications from the software.

The root user or a super user must complete this process. The email address associated with the root user is used as
the from: address when email is sent by Continuous Delivery for PE.
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1. Log into the root console by selecting Root console from the workspaces menu at the top of the Continuous
Delivery for PE navigation bar or signing in as the root user.

2. Click Settings > SMTP.

3. If your SMTP server requires authentication, enter the SMTP username and SMTP password in the relevant
fields.

CAUTION:  The specified SMTP account must have permission to send emails from the email address
associated with the Continuous Delivery for PE root user.

4. Enter the name of your SMTP host and the SMTP port number in the relevant fields.

Note:  Contact your email server administrator if you need help determining the correct SMTP port.

5. If your server requires TLS authentication, click the toggle to Enable TLS.

6. Click Save settings.

7. To test your new SMTP configuration, generate a password reset email.

a) Log out of Continuous Delivery for PE. On the sign-in screen, click Forgot your password?
b) Enter the email address associated with your Continuous Delivery for PE account and click Send reset

instructions.

Important:  You can safely ignore the reset password instructions and keep your current password.

Now that SMTP is configured, Continuous Delivery for PE sends email in these situations:

• Password reset instructions when requested by a user
• Password reset confirmation once a password is updated
• Deployment approval request notifications when a deployment to a protected environment is proposed

Configure SSL
Continuous Delivery for Puppet Enterprise (PE) supports the use of Secure Sockets Layer (SSL) for enhanced
security when using the software.

When SSL is enabled, it impacts these elements of your Continuous Delivery for PE installation:

• The web UI
• Communication of Puppet agents running on job hardware nodes
• OAuth applications used with some source control providers

SSL configuration requirements and prerequisites

Before enabling SSL on your system, review the following important information.

1. Enabling SSL requires super user permissions.
2. Enabling SSL requires a restart of the Continuous Delivery for PE Docker container.
3. If you installed Continuous Delivery for PE from the PE console: Before configuring SSL, you must install the

cd4pe module, which automates upgrades of Continuous Delivery for PE and manages your configuration. For
instructions, see Automate upgrades of Continuous Delivery for PE.

4. If you are running legacy (now deprecated) Continuous Delivery agents on your job hardware: After
configuring SSL you must delete and reinstall the Continuous Delivery agent on all job hardware. See What to do
next at the bottom of this page for instructions.

Setting up a new SSL configuration
Configure your Continuous Delivery for PE instance to use SSL by entering the relevant certificates in the root
console and then updating your web UI endpoint to reflect the new DNS host and SSL port.
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Before you begin
Review the SSL configuration requirements and prerequisites section above.

1. Log into the root console by selecting Root console from the workspaces menu at the top of the Continuous
Delivery for PE navigation bar or signing in as the root user.

2. Click Settings and make sure you're viewing the Endpoints tab.

3. In the Configure SSL area, paste in the CA certificate, server certificate, and server private key for your
Continuous Delivery for PE host.

Note:  If you also have an intermediary CA certificate, paste both the CA certificate and the intermediary CA
certificate into the CA certificate field.

4. Optional: Click the toggle to Enable SSL.

Note:  You can leave your SSL configuration disabled and save the information you've entered. If SSL
information is entered and saved but not enabled, your certificates are saved and the private key is saved in an
encrypted format until you're ready to enable SSL.

5. Click Save SSL settings. If you've enabled SSL, proceed to the next step.

6. In the Configure Endpoints area of the page, update the web UI endpoint. The format for the new web UI endpoint
is https://<DNS_HOST>:<SSL_PORT>.

By default, Continuous Delivery for PE uses port 8443 for SSL.

7. Azure DevOps Services users: Update the backend service endpoint to use https. This change allows Azure
DevOps Services webhooks to function correctly.

Important:  Continuous Delivery for PE does not support webhooks using SSL. This step is only to provide
compatibility with Azure DevOps Services.

8. Click Update endpoints.

9. Stop and restart the Continuous Delivery for PE container by running the following:

service docker-cd4pe stop
service docker-cd4pe start

You can now access Continuous Delivery for PE over SSL by pointing your web browser to the new web UI endpoint
you entered. Access over both https and http is allowed.

If you are running legacy (now deprecated) Continuous Delivery agents on your job hardware: After
configuring SSL you must delete and reinstall the Continuous Delivery agent on all job hardware. To delete and
reinstall an agent, SSH into your job hardware agent node and run the following:

sudo /usr/local/bin/distelli agent stop
sudo /usr/local/bin/distelli agent uninstall
sudo /usr/local/bin/distelli agent install

Note:  The uninstall command throws an expected POST not supported for resource /
decommission-server/ error. You can safely ignore this error.

Managing teams and team members
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• Managing workspaces on page 71
Workspaces enable you to share access to key Continuous Delivery for PE resources, such as control repos, modules,
and jobs, with the other members of your team. Once you set up a workspace, add your team members to that
workspace and give them the user permissions needed to do their work.
• Managing access on page 72
Use the user access and management tools in Continuous Delivery for Puppet Enterprise (PE) to ensure that each user
has the access and permissions appropriate to their role on the team, from read-only users to super users.

Managing workspaces
Workspaces enable you to share access to key Continuous Delivery for PE resources, such as control repos, modules,
and jobs, with the other members of your team. Once you set up a workspace, add your team members to that
workspace and give them the user permissions needed to do their work.

Best practices when creating workspaces
This section offers suggestions and best practices for creating workspaces. This guidance is intended to help you and
your organization understand Continuous Delivery for PE workspaces and use them effectively.

Workspaces support teams writing Puppet code and deploying that code to nodes managed by PE. Whether your
organization tasks one team with writing and deploying all Puppet code, or has organized multiple teams to write
and test Puppet code while a central deployment team pushes those changes to production, workspaces can help you
ensure that each team member has exactly the Continuous Delivery for PE resources they need.

If your organization uses... Workspace recommendation

One team to write, test, and deploy all Puppet code

A single source control repository to store all Puppet
code

• Use one workspace for the whole team
• Set permissions carefully to ensure that each team

member has access to the resources they need

Multiple teams to write and test Puppet code

Multiple source control repositories to store Puppet
code

A deployment team responsible for getting Puppet code
changes into production

• Set up separate workspaces for each writing and
testing team, ideally one workspace for each control
repository

• Create a separate workspace for the deployment
team, and allow these team members access to all
other workspaces

• Set permissions carefully to ensure that each team
member has access to the resources they need

Set up a new workspace for a team
Perform these steps to set up a single workspace for a small, centralized team, or to create one of several team
workspaces for a larger, less centralized organization.

Before you begin
Make sure all members of the team have created individual Continuous Delivery for PE accounts.

Note:  When new users reach the Choose a workspace screen in the new account creation process, ask them to log
out of Continuous Delivery for PE until the team workspace is fully set up.
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1. Create a new workspace by navigating to Manage workspaces at top of the navigation bar in the Continuous
Delivery for PE web UI and clicking + Add new workspace. Give the workspace a descriptive name (if
necessary, you can change this later in the Settings menu).

When you create a workspace, you are automatically set as the owner of the workspace. Other Continuous
Delivery for PE super users can also access your workspace by navigating to the root console and clicking the
name of your workspace in the Workspaces tab.

2. Switch to the newly created workspace by clicking its name in the list of My workspaces, or by selecting it from
the workspaces menu in the Continuous Delivery for PE web UI.

3. Follow the new workspace prompts at the top of the screen to set up the required resources for the workspace:

a) If necessary, integrate Puppet Enterprise
b) Integrate with your source control system
c) Set up job hardware for this workspace or use global shared job hardware

4. Add the control repo where your team keeps its Puppet code to Continuous Delivery for PE. Click Control repos,
then click Add control repo.

5. Add the members of your team as users of the workspace. Click Settings, then Users, and add each team member.

6. Click Groups and create one or more new groups, assigning appropriate permissions and users to each group.
Make sure that every team member is assigned to at least one group.

If a user is added to a workspace but not assigned to any groups, they will see a 403 error when they sign into
Continuous Delivery for PE.

7. Invite the members of the team to sign into Continuous Delivery for PE. They'll now see your newly created team
workspace in the workspaces area of the Continuous Delivery for PE. web UI.

Team members are now able to view and interact with the resources you've added to the workspace according to the
permissions you've assigned.

You can delete unneeded workspaces by navigating to Settings > Workspace and clicking Delete workspace. Only
the workspace owner or a super user can perform this action.

Transfer ownership of a workspace
When the owner of a workspace changes teams, leaves your organization, or is otherwise no longer the right person to
manage a workspace, you can reassign ownership of the workspace to a different Continuous Delivery for PE user.

You must have root or super user permissions to access the root console and perform this action.

1. Log into the root console by selecting Root console from the workspaces menu at the top of the Continuous
Delivery for PE navigation bar or signing in as the root user.

2. Click Workspaces.

3.
Locate the workspace you wish to reassign and click Reassign workspace .

4. Select the username of the new owner of the workspace, then click Save changes.

Ownership of the workspace is now transferred. The original owner of the workspace is automatically removed from
the workspace. If necessary, the new owner can add the former owner as a workspace user by navigating to Settings
> Users.

Managing access
Use the user access and management tools in Continuous Delivery for Puppet Enterprise (PE) to ensure that each user
has the access and permissions appropriate to their role on the team, from read-only users to super users.

• Create a user account on page 73
After Continuous Delivery for Puppet Enterprise (PE) has been installed by an administrator on your team, each
person who will use the software must create an individual user account.
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• Adding users and creating groups on page 73
Continuous Delivery for Puppet Enterprise (PE) is built to facilitate collaboration between the members of your team.
You can share resources by adding users to your workspace, and set up groups to manage the permissions granted to
each member of your team.
• Permissions reference on page 75
The table below lists the group permissions available in Continuous Delivery for Puppet Enterprise (PE), along with a
short explanation of each permission's scope.
• Using the root console on page 76
Super users and the root user can access the root console in Continuous Delivery for Puppet Enterprise (PE). Use the
root console to manage users' account credentials, change super user permissions, configure single sign-on, access all
workspaces associated with the installation, transfer ownership of workspaces, and update your installation's settings.

Create a user account
After Continuous Delivery for Puppet Enterprise (PE) has been installed by an administrator on your team, each
person who will use the software must create an individual user account.

Before you begin

Obtain the Continuous Delivery for PE web UI endpoint from the administrator on your team who installed the
software.

1. Point your browser to the Continuous Delivery for PE web UI endpoint.

2. On the login page, click Create an account.

3. Fill in the registration form and create a username and password.

4. Click Sign up.

Congratulations! You now have a Continuous Delivery for PE account.

View your account credentials by clicking your username at the bottom of the navigation bar.

Adding users and creating groups
Continuous Delivery for Puppet Enterprise (PE) is built to facilitate collaboration between the members of your team.
You can share resources by adding users to your workspace, and set up groups to manage the permissions granted to
each member of your team.

Add a user to a workspace
Adding users to your workspace allows you to collaborate on projects and share account resources such as jobs and
pipelines. You can add users in the Settings area of the Continuous Delivery for PE web UI.

Before you begin

Make sure each user you wish to add has signed up for a Continuous Delivery for PE account. You'll need their
selected username or the email address they used when signing up.

1. In the Continuous Delivery for PE web UI, click Settings then click Users.

2. Click + Add users.

3. On the Add users page, enter the username or email address of the user you wish to add to your workspace.

4. Check the box next to the name of each user you wish to add to the workspace, then click Add users to
workspace.

5. Repeat these steps to add additional users.

6. When you're finished adding users, click Done to return to the Users screen, where you'll see the full list of users
with access to your Continuous Delivery for PE workspace.

© 2024 Puppet, Inc., a Perforce company



continuous-delivery | Managing teams and team members | 74

Create a new group and set group permissions
You can set up groups to organize users by permission level, job focus, geography, or other criteria. Permissions are
the tasks members of a group can perform in Continuous Delivery for PE, such as adding new control repos, editing
jobs, and deploying code changes. Assign permissions to a group based on that group's function and needs.

1. In the Continuous Delivery for PE web UI, click Settings.

2. In the Groups tab, click + Create new group.

3. Enter a name and description for your new group.

Tip:  Use a name for your group that describes the group's function or permission level, such as "Read-only users"
or "Module developers."

CAUTION:  Once submitted, group names and descriptions cannot be edited. If you wish to change the
name or description of your group, you must delete the group and recreate it.

4. Select the permissions you wish to assign to this group. Group permissions are additive. If a user is a member
of multiple groups, that user is able to perform all of the actions described by all of the permissions in all their
assigned groups.

You can assign permissions on only a certain subset of the modules in your workspace to a group. To define the
module subset:

a)
In the modules permissions section, click  next to Modules subset:.

b) Select the modules that you want to include in the subset. When the list is complete, click Save selection.
c) Select which permissions you wish to give the user group. You can allow the group list, edit, and delete

permissions on all modules in the workspace or only on your selected subset.

If you create a module subset, but do not assign group any permissions on the subset, the subset will be lost
when you save your permission selections.

For an explanation of the scope of each permission, see the Permissions reference.

5. Click Save and add users.

6. On the Add users screen, select the workspace members who you wish to add to this group. Click Add users to
group.

7. Click Done. Your user group is created, and you are redirected to the group page.

Review the group members and permissions on the group page, where you can also make any needed changes.

If you need to delete a group, first remove all members from the group and then click Remove group .

Remove a user from a workspace
If you wish to remove a user from Continuous Delivery for PE workspace, you can do so in the Settings area of the
Continuous Delivery for PE web UI.

Note:  If you remove a user from a Continuous Delivery for PE workspace, that user is automatically removed from
all groups in that workspace.

1. In the Continuous Delivery for PE web UI, click Settings then click Users.

2. In the list of users, locate the user you wish to remove from your workspace.

3.
Click Remove user  and confirm your action.

4. Repeat these steps to remove additional users from the workspace.
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Permissions reference
The table below lists the group permissions available in Continuous Delivery for Puppet Enterprise (PE), along with a
short explanation of each permission's scope.

Type Permission Definition

Control repos Create The ability to create new control
repos in Continuous Delivery for PE.

Control repos Delete The ability to delete existing control
repos.

Control repos Edit The ability to edit existing control
repos.

The ability to deploy code.

Control repos List The ability to view all existing
control repos.

Modules Create The ability to create new module
repos in Continuous Delivery for PE.

Modules Delete The ability to delete existing module
repos.

Modules Edit The ability to edit existing module
repos.

Modules List The ability to view all existing
module repos.

Jobs Create The ability to create new jobs in
Continuous Delivery for PE.

Jobs Delete The ability to delete existing jobs.

Jobs Edit The ability to edit existing jobs.

Jobs List The ability to view all existing jobs
and job hardware capabilities.

Jobs Run The ability to run all existing jobs.

Users Edit The ability to add new users to
Continuous Delivery for PE, and to
remove existing users.

Groups Create The ability to create new user groups.

Groups Delete The ability to delete existing user
groups.

Groups Edit The ability to edit existing user
groups by adding or removing
members and user permissions.

Groups List The ability to view all existing user
groups and their permissions.

Integrations Connect The ability to create new source
control or Puppet Enterprise
integrations.

© 2024 Puppet, Inc., a Perforce company



continuous-delivery | Managing teams and team members | 76

Type Permission Definition

Integrations Disconnect The ability to remove existing
source control or Puppet Enterprise
integrations.

Using the root console
Super users and the root user can access the root console in Continuous Delivery for Puppet Enterprise (PE). Use the
root console to manage users' account credentials, change super user permissions, configure single sign-on, access all
workspaces associated with the installation, transfer ownership of workspaces, and update your installation's settings.

To access the root console:

• If you are the root user, sign into Continuous Delivery for PE with the root account credentials established during
installation.

• If you are a super user, select Root console from the workspaces menu at the top of the Continuous Delivery for
PE navigation bar.

To exit the root console, click the name of a workspace.

Designate super users
Any Continuous Delivery for PE user except the root user can be designated as a super user. Super users have access
to the root console, where they can reset other users' credentials and delete users. Super users can also manage
global shared job hardware and designate which users are able to manually approve deployments to protected Puppet
environments.

You must have root or super user permissions to access the root console and perform this action.

1. Log into the root console by selecting Root console from the workspaces menu at the top of the Continuous
Delivery for PE navigation bar or signing in as the root user.

2. Click Accounts.

3. Locate the user's name in the list and select the Super User toggle, then confirm your action.

The selected user is now a super user.

Change a user's password
Users can reset their own passwords at any time by clicking Forgot your password? on the Continuous Delivery for
PE login screen. If you need to update the root user's password, change a user's password on their behalf, or revoke a
user's access to Continuous Delivery for PE, use the root console.

You must have root or super user permissions to access the root console and perform this action.

CAUTION:  Resetting a user's password does not automatically log the user out of Continuous Delivery for
PE. If you reset a user's password in order to revoke their access to Continuous Delivery for PE, remember
that the user can still access their account until their session expires or they log out.

1. Log into the root console by selecting Root console from the workspaces menu at the top of the Continuous
Delivery for PE navigation bar or signing in as the root user.

2. Click Accounts.

3. Locate the user whose password you wish to update by searching by username or email address. and click User

settings .

4. Click Change password. Enter and confirm the new password, then click Change password.

Reset a user's email address
Users can change their own email address at any time by clicking Change email on the Profile page. If you need to
change a user's email address on their behalf, use the root console.  

You must have root or super user permissions to access the root console and perform this action.
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1. Log into the root console by selecting Root console from the workspaces menu at the top of the Continuous
Delivery for PE navigation bar or signing in as the root user.

2. Click Accounts.

3. Locate the user whose password you wish to update by searching by username or email address. and click User

settings .

4. Enter the new email address for the user and click Change email.

Delete a user
Use the root console to permanently delete a user from Continuous Delivery for PE. Delete users with caution:
deleting a user also deletes all artifacts that user has created in Continuous Delivery for PE, including workspaces,
pipelines, jobs, integrations, control repos, and module repos.

You must have root or super user permissions to access the root console and perform this action.

1. Log into the root console by selecting Root console from the workspaces menu at the top of the Continuous
Delivery for PE navigation bar or signing in as the root user.

2. Click Accounts.

3.
Locate the user's name in the list and click Delete user .

4. In the confirmation pane, confirm that you want to permanently delete the user by entering the user name in the
box and clicking Yes, delete user.

The user and all artifacts associated with that user are permanently deleted from your Continuous Delivery for PE
installation.

Reviewing node inventory

The nodes from all Puppet Enterprise (PE) instances integrated with a workspace are shown on that workspace's
Nodes page. This page gives you a federated view of all the nodes that your workspace deploys code to.

Enabling the Nodes page

In order to display node data, the Nodes page query service listens on port 8888. To make this port available to your
Continuous Delivery for PE instance, upgrade to version 2.0.1 or later of the puppetlabs-cd4pe module.

If the port is not accessible (generally because the module has not yet been upgraded), you'll see an Unable to
connect to the query service on http://<cd4pehost>:8888>/query message in the web UI.

Using the Nodes page with SSL enabled

If you have enabled SSL for your Continuous Delivery for PE installation, you cannot view the Nodes page using an
HTTP connection. Connect using HTTPS to reach the page.

Firefox users who have enabled SSL and are using a self-signed certificate must add the certificate to the Firefox trust
store.

Customize your node table
The Nodes page shows a list of every node from every PE instance integrated with your workspace, along with basic
information about each node. You can customize your page view to display node facts that are relevant to your work.

By default, the node table displays the following information about each node:
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• Node name

Note:  Click the node name to view all facts for the node and a list of all available PE reports for the node.

• Time since the node's most recent PE report was generated
• Node run status for the most recent Puppet run
• The PE server the node is associated with
• The value of the ipaddress fact
• The value of the operatingsystem fact

You can add additional columns showing other fact values to the node table, or remove default columns that do not
meet your needs.

1. In the Continuous Delivery for PE web UI, click Nodes.

2. Click Columns +/- to open the column selector.

3. To add a new column, search for the fact value you wish to view and click Add. The fact value appears in the list
of columns.

4. To determine which columns are shown or hidden, use the checkmarks next to the list of columns to indicate
which columns you want to display.

5. When your column list is ready, click Apply. Your changes are reflected in the table.

Testing Puppet code with jobs

Jobs are fully customizable tests for your Puppet code. You can create a job that runs any sort of test you wish, from
module validation to linting.

Important:  Make sure you have set up job hardware and installed any needed software (such as Docker or Puppet
Development Kit) before you attempt add one of these jobs to a pipeline.

What is a job?
In Continuous Delivery for PE, jobs are tests for your Puppet code. Jobs are created and stored in the web UI, where
you can run them on demand and add them to an automated pipeline that runs tests every time new code is committed
to a repository.

Jobs are fully customizable and can be written to test any aspect of your code. Jobs can be written to take advantage
of Puppet Development Kit (PDK) and other testing tools created and maintained by the Puppet community, such as:

• rspec-puppet
• onceover
• puppet-lint
• rspec-puppet-facts

It's important to be aware of any prerequisites or dependencies needed to run your jobs, and to ensure that your job
hardware has the necessary software, operating systems, and other resources installed before attempting to run the
job.

Pre-built job reference
Continuous Delivery for PE offers users six pre-built Docker-based jobs for testing control repos and modules. These
jobs run inside a Docker container, and must be run on job hardware on which you've set a Docker capability.
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Validate the syntax of a control repo's Puppetfile

To add this job to your Continuous Delivery for PE instance, click New job. Fill in the fields indicated with the
information provided, then click Create job.

Field Content

Job Name control-repo-puppetfile-syntax-validate

Description Validate that a control repo’s Puppetfile is syntactically
correct

Commands: Job rake -f /Rakefile r10k:syntax

Docker Configuration Run this job in a Docker container

Docker Image Name puppet/puppet-dev-tools

Job Hardware: Capabilities DOCKER

Before running this job, configure job hardware and ensure that Docker is installed.

Validate the syntax of a control repo's Puppet templates

To add this job to your Continuous Delivery for PE instance, click New job. Fill in the fields indicated with the
information provided, then click Create job.

Field Content

Job Name control-repo-template-syntax-validate

Description Validate that a control repo’s Puppet templates are
syntactically correct

Commands: Job rake -f /Rakefile syntax:templates

Docker Configuration Run this job in a Docker container

Docker Image Name puppet/puppet-dev-tools

Job Hardware: Capabilities DOCKER

Before running this job, configure job hardware and ensure that Docker is installed.

Validate the syntax of a control repo's Hiera data

To add this job to your Continuous Delivery for PE instance, click New job. Fill in the fields indicated with the
information provided, then click Create job.

Field Content

Job Name control-repo-hiera-syntax-validate

Description Validate that a control repo’s Hiera data is syntactically
correct

Commands: Job rake -f /Rakefile syntax:hiera

Docker Configuration Run this job in a Docker container

Docker Image Name puppet/puppet-dev-tools

Job Hardware: Capabilities DOCKER

Before running this job, configure job hardware and ensure that Docker is installed.
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Validate the syntax of a control repo's Puppet manifest code

To add this job to your Continuous Delivery for PE instance, click New job. Fill in the fields indicated with the
information provided, then click Create job.

Field Content

Job Name control-repo-manifest-validate

Description Validate that a control repo’s Puppet manifest code is
syntactically correct

Commands: Job rake -f /Rakefile syntax:manifests

Docker Configuration Run this job in a Docker container

Docker Image Name puppet/puppet-dev-tools

Job Hardware: Capabilities DOCKER

Before running this job, configure job hardware and ensure that Docker is installed.

Validate the syntax of a module's Puppet manifest code

To add this job to your Continuous Delivery for PE instance, click New job. Fill in the fields indicated with the
information provided, then click Create job.

Field Content

Job Name module-pdk-validate

Description Validate that a module’s Puppet manifest code is
syntactically correct

Commands: Job pdk validate --parallel

Docker Configuration Run this job in a Docker container

Docker Image Name puppet/puppet-dev-tools

Job Hardware: Capabilities DOCKER

Before running this job, configure job hardware and ensure that Docker is installed.

Run rspec-puppet unit tests on a module

To add this job to your Continuous Delivery for PE instance, click New job. Fill in the fields indicated with the
information provided, then click Create job.

Field Content

Job Name module-rspec-puppet

Description Run rspec-puppet unit tests on a module

Commands: Job pdk test unit

Docker Configuration Run this job in a Docker container

Docker Image Name puppet/puppet-dev-tools

Job Hardware: Capabilities DOCKER

Before running this job, configure job hardware and ensure that Docker is installed.
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Sample non-Docker-based module jobs
This section lists sample jobs that you can use with Continuous Delivery for PE. These jobs can be entered as-is into
the New Job creation screen in the Continuous Delivery for PE web UI, or you can make alterations to suit your
deployment's needs.

Note:  When composing a non-Docker-based job, the $REPO_DIR environment variable can be used to reference the
directory that houses the relevant module repo.

Puppet Development Kit validation tests

Use the sample jobs below to validate your module code against PDK. Select the version appropriate to your
operating system.  

In order to use this job successfully, you must:

• Install PDK on your job hardware
• Install puppet-agent on your job hardware

Job name Description Commands Capabilities

module-pdk-validate-linux Validate via PDK pdk validate LINUX

module-pdk-validate-
windows

Validate via PDK powershell.exe -c
"pdk validate"

WINDOWS

Puppet Development Kit rspec-puppet tests

Use the sample jobs below to run unit tests on your module code with rspec-puppet. Select the version
appropriate to your operating system.  

In order to use this job successfully, you must:

• Install PDK on your job hardware
• Install puppet-agent on your job hardware

Job name Description Commands Capabilities

module-pdk-test-unit-linux Run unit tests via PDK pdk test unit LINUX

module-pdk-test-unit-
windows

Run unit tests via PDK powershell.exe -c
"pdk test unit"

WINDOWS

Sample non-Docker-based control repo jobs
This section lists sample jobs that you can use with Continuous Delivery for PE. These jobs can be entered as-is into
the New Job creation screen in the Continuous Delivery for PE web UI, or you can make alterations to suit your
deployment's needs.

Note:  When composing a non-Docker-based job, the $REPO_DIR environment variable can be used to reference the
directory that houses the relevant control repo.

Syntax validation

This job validates the syntax of everything in your control repo.

In order to use this job successfully, you must:

• Use a *nix host
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• Install puppet-agent on your job hardware

Job name Description Commands Capabilities

control-repo-validate-linux Validate syntax [See below] LINUX

#!/bin/bash
 
shopt -s globstar nullglob
green="$(tput setaf 2)"
red="$(tput setaf 1)"
reset="$(tput sgr0)"
 
for f in **/**pp; do
   [[ $f =~ plans/ ]] && continue
 
   if puppet parser validate "$f"; then
      echo "${green}SUCCESS: $f${reset}"
   else
      echo "${red}FAILED: $f${reset}"
      failures+=("$f")
   fi
done
 
if (( ${#failures[@]} > 0 )); then
   echo "${red}Syntax validation on the Control Repo has failed in the
 following manifests:"
   echo -e "\t ${failures[@]}${reset}"
   exit 1
else
   echo "${green}Syntax validation on the Control Repo has succeeded.
${reset}"
fi

Puppet linter

This job checks the Puppet code in your control repo for programming and stylistic errors.

In order to use this job successfully, you must:

• Use a *nix host
• Install puppet-agent on your job hardware

Job name Description Commands Capabilities

control-repo-lint-linux Lint Puppet code [See below] LINUX

#!/bin/bash
 
shopt -s globstar nullglob
green="$(tput setaf 2)"
red="$(tput setaf 1)"
reset="$(tput sgr0)"
 
sudo /opt/puppetlabs/puppet/bin/gem install puppet-lint || {
   echo "${red}Failed to install puppet-lint gem"
   exit 2
}
 
LINT_OPTS=("--fail-on-warnings" "--no-documentation-check"
 "--no-140chars-check" "--no-autoloader_layout-check" "--no-
class_inherits_from_params_class-check")
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for f in **/**pp; do
   [[ $f =~ plans/ ]] && continue
 
   if /opt/puppetlabs/puppet/bin/puppet-lint "${LINT_OPTS[@]}" "$f"; then
      echo "${green}SUCCESS: $f${reset}"
   else
      echo "${red}FAILED: $f${reset}"
      failures+=("$f")
   fi
done
 
if (( ${#failures[@]} > 0 )); then
   echo "${red}Puppet-lint validation on the Control Repo has failed in the
 following manifests:"
   echo -e "\t ${failures[@]}${reset}"
   exit 1
else
   echo "${green}Puppet-lint validation on the Control Repo has succeeded.
${reset}"
fi

Key concepts

• Working with Git branches in Continuous Delivery for PE on page 83
Continuous Delivery for PE is designed to watch for Puppet code changes you make in Git and help you deploy those
changes to your environment node groups. You and Continuous Delivery for PE work together, so it's important to
understand what to do in Git, and what Git work Continuous Delivery for PE handles for you.
• Understanding the Continuous Delivery for PE workflow on page 85
Continuous Delivery for Puppet Enterprise (PE) enables you to deliver change to your organization's infrastructure-
as-code. Use the workflow outlined here to develop and deploy changes with Continuous Delivery for Puppet
Enterprise (PE).
• Using the feature branch workflow on page 87
Use the feature branch workflow to safely and efficiently move new code from an isolated development environment
through initial testing and validation and then into your organization's staging, review, and promotion to production
process. This guide provides an outline of this core Continuous Delivery for PE workflow; adapt the steps as needed
to meet your team's requirements and best practices.

Working with Git branches in Continuous Delivery for PE
Continuous Delivery for PE is designed to watch for Puppet code changes you make in Git and help you deploy those
changes to your environment node groups. You and Continuous Delivery for PE work together, so it's important to
understand what to do in Git, and what Git work Continuous Delivery for PE handles for you.

Continuous Delivery for PE automates management of Git branches for Puppet environments, letting you focus on
Git workflows for developing and deploying changes to your code.

You and your team own the master branch in Git, as well as any other development-focused branches you create, such
as feature, hotfix, or release branches. In simple Git workflows, the master branch is designated as the branch to file
pull requests against, tag releases off of, and treat as the leading edge of new development.

It is also your responsibility to create new environment branches when you first set up environment node groups.
Environment branches are long-lived Git branches used to control which version of code is made available in
corresponding Puppet environments. Continuous Delivery for PE owns environment branches after they're created,
deploying changes to them and keeping them up to date. You and your team won't make changes to these branches
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directly, because manual changes to environment branches get overwritten whenever an automated deployment
occurs.

While you focus on making commits to master and getting pull requests merged, Continuous Delivery for PE works
in your environment branches on your behalf, making sure your commits or changes are tested, deployed, and
promoted to your environment node groups in accordance with the control repo pipelines you create and your manual
deployment directives.

Continuous Delivery for PE also uses a small set of Git branches for bookkeeping, which are not part of the
standard Git process. These branches are visible to users, but should be protected so that users cannot modify them.
Continuous Delivery for PE manages these bookkeeping branches automatically.

Organizing Puppet content in your source control repository
Most of the Puppet content that developers interact with is infrastructure-as-code, which is versioned and committed
to a Git source-control repository.

When using Continuous Delivery for PE, every Git repository, regardless of its type or contents (control repo or
module), works the same way and has the same key components:

• A master branch that tracks the latest developing code
• Tags to identify meaningful code versions
• Short-lived "feature" branches that are created and deleted as part of the code development lifecycle

Tip:  Most "Git 101" tutorials describe how to interact with standard Git repositories of this type, and provide an
overview of the basic branching and merging process.

Control repos

A control repo is a hub for Puppet configuration content. In its purest form, that's all it is. More typically, however,
the control repo serves as a hub for modularized content, and also contains some directly embedded content.
Typically, the embedded content includes the "role" module, the "profile" module, and Hiera data. (In a pure control
repo, this content is modularized rather than embedded.)

The control repo contains a Puppetfile. The Puppetfile is the switchboard or ledger that makes the control repo a
hub. It is a file that enumerates all of the modular content Puppet will incorporate and make available. Reading the
Puppetfile should convey a good sense of all the Puppet content being used at a given site or Puppet implementation.

Depending on how much content has been embedded in the control repo, it might also contain a small handful of
Puppet configuration files, and possibly some directories for the embedded content.

Puppet module repos

A Puppet module is a collection of content laid out in a particular way. A module can contain desired state code,
Bolt tasks or plans, Puppet extensions, or a variety of other things. The module is the standard content container for
everything Puppet.

Puppet knows how to consume modules automatically, provided they are placed somewhere in its modulepath.

Other "non-module" repos

It's sometimes useful to partition off certain types of Puppet for development purposes, even if the content is not
technically a Puppet module. The prime example of this is Hiera data. Hiera data can be kept in a dedicated Git
repository and evoked by the control repo using the Puppetfile, just like any standard Puppet content.

Other use cases for carving off non-module Git repositories exist, but they are rare. The commonality is that all such
content will be committed to a Git repository and be referenced in the control repo's Puppetfile.

Puppet typically doesn't consume non-module content automatically, and correct consumption of this content requires
some kind of configuration in one of the control repo's configuration files.
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Understanding the Continuous Delivery for PE workflow
Continuous Delivery for Puppet Enterprise (PE) enables you to deliver change to your organization's infrastructure-
as-code. Use the workflow outlined here to develop and deploy changes with Continuous Delivery for Puppet
Enterprise (PE).

Tip:  Before you begin, review Working with Git branches in Continuous Delivery for PE.

Workflow phase 1: Developing changes
The high-level process for developing a change is always the same regardless of whether the content is in the control
repo, a module repo, or a non-module repo. The change development process is driven through Git.

Here's the high-level process for developing a change:

1. Using Git, create a feature branch from the master branch. This feature branch is where you'll develop your
change.

2. Work on your change. Edit files, run tests, and do anything else necessary in order to realize, in code, the change
you want to make. The details of what files you edit and how you test your change locally will vary depending on
which kind of content you're working on.

3. Using Git, commit all the files you've changed to your feature branch. You may be committing frequently as you
iterate, or you may not commit until you're fully satisfied with your work. How much you like to involve (or not
involve) Git in your process up to this point is totally up to you.

4. Submit a pull/merge request to have your feature branch merged into master.
5. Assuming whatever CI or process requirements your organization uses are satisfied, you or someone else merges

your feature branch into master. Once the merge is complete, your change is now available and ready to be put
on the path to production, and you can safely delete your feature branch.

At this point your change is finished, as it has been merged into the master branch. Note that a finished change
is not the same as a deployed change; a finished change is a change ready to be tested and deployed using the
deployment process described below.

A note on continuous integration

When you submit a pull/merge request against a Puppet content repo (a control repo, a module repo, or a non-module
repo), the continuous integration (CI) pipeline configured in Continuous Delivery for PE for that content repo runs
and reports back success/failure results in your pull/merge request.

Pipelines in Continuous Delivery for PE are not cleanly separated into CI and CD. Instead, you see a single
contiguous pipeline. However, it is a fair approximation to say that everything in a Continuous Delivery for PE
pipeline that occurs before a special marker called the Pull Request Gate is the CI portion of the pipeline, and is
(usually) focused on validating that proposed changes pass requisite acceptance tests or governance requirements.

The CI portion of a Continuous Delivery for PE pipeline therefore aids the development workflow.

Workflow phase 2: Deploying changes
Once a proposed change has been merged into the master branch of a Puppet content repo, the new content version
(in the master branch) containing the change needs to be deployed.

In broad terms, to deploy a change means to select a version of content, select a target environment, and cause the
selected change to take effect in the selected environment.

In Continuous Delivery for PE, this process looks like:

1. Pick a version.
2. Pick a target environment.
3. Optionally, set some deployment parameters.
4. Click "Deploy."
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A version is any commit in the history of the master branch. There are no chronological requirements for picking
a version to deploy. Deploying a version will neither change the contents of the master branch nor affect it in any
way.

Environments

An environment is a target set of nodes to which content versions can be deployed. Environments are configured
using Environment Node Groups in the PE console.

Note:  See Create environment node groups for more information.

Per the definition of deploying above, environment node groups need to be configured as a prerequisite to deploying
any content versions. At a minimum, the environment you want to target must be defined as an environment node
group.

Some basic characteristics of defining environment node groups:

• Each node can only belong to a single environment node group.
• The environment node group can be named anything that makes sense to your organization.
• The environment node group must be assigned a "Puppet environment."

• The functional importance of a "Puppet environment" relates to how Continuous Delivery for PE performs
bookkeeping of the environment's content in Git (using the bookkeeping branches mentioned earlier).

• Each environment node group should be assigned a unique "Puppet environment" value. This ensures simple
bookkeeping and that change deployments do not affect nodes they are not supposed to.

Deploying changes from control repos

The basic process:

1. Pick a version.
2. Pick a target environment.
3. Optionally, set some deployment parameters.
4. Click "Deploy."

Because a control repo contains a Puppetfile, which is the switchboard or ledger to which all modularized content is
attached, how that modularized content is deployed in a target environment depends on the Puppetfile deployed to
that environment.

Modularized content can be attached to a Puppetfile statically, such that the modularized content cannot be
independently deployed or updated, or the content can be attached dynamically, so that the modularized content can
be deployed independent of the control repo using a different Continuous Delivery for PE pipeline or deployment
action.

If modularized content is defined statically in the Puppetfile, the only way to update it is to develop a change to the
control repo itself, which modifies the Puppetfile to update the static module, and then deploy that change to the
control repo.

Deploying changes from module repos

The basic process:

1. Pick a version.
2. Pick a target environment.
3. Optionally, set some deployment parameters.
4. Click "Deploy."

The inverse of the note about control repos above is that to be able to deploy module changes this way, the control
repo version deployed to the target environment must have a Puppetfile that attaches this modularized content
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dynamically. If the target environment does not have such a Puppetfile, it is not possible to independently deploy the
module changes.

Pipelines, or the path to production

Many organizations have a semi-linear sequence of target environments to which a change will be deployed—a
sequence which terminates at the highest-value target environment. This final target is frequently called "production."

A pipeline in Continuous Delivery for PE is automation reflecting this sequence of deployments. It is a progression
of deployments (and other actions) which, when triggered, will run in a defined manner, pausing, terminating, or
continuing after each step as configured to by the pipeline creator.

The pipeline can contain many kinds of actions besides deployments. As mentioned in the "note on continuous
integration" section above, the first part of a Continuous Delivery for PE pipeline up until the special Pull Request
Gate step is typically CI validation and testing actions, rather than deployment actions. Deployment actions will
usually not be placed in the pipeline until after this step.

The continuous element of a pipeline is in reference to what triggers it, or when it is run. Pipelines typically start
automatically as soon as a new change has been merged to the master branch of a content repository.

Deployment pipelines typically deploy validated changes automatically up to some level lower than "production," but
pause or wait for human approval before continuing to run and deploy to more sensitive, higher-tiered environments.

Using the feature branch workflow
Use the feature branch workflow to safely and efficiently move new code from an isolated development environment
through initial testing and validation and then into your organization's staging, review, and promotion to production
process. This guide provides an outline of this core Continuous Delivery for PE workflow; adapt the steps as needed
to meet your team's requirements and best practices.

Part 1: Develop and test code changes
The first phase of the feature branch workflow focuses on writing new code in a feature branch, then testing and
validating that code.

Before you begin
Create a regex branch pipeline for the control repo or module repo you’re working on. This pipeline can be as simple
or complex as you need it to be, but at minimum it must:

• Use commits as a pipeline trigger
• Contain a deployment using the feature branch deployment policy

We also strongly advise including jobs that perform syntax validation tests in your regex branch pipeline before the
deployment stage. Here’s a sample regex branch pipeline as it appears in the web UI:
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Here’s what the pipeline above looks like when expressed as code:

pipelines:
  /feature_.*/:
    triggers:
    - "PULL_REQUEST"
    - "COMMIT"
    stages:
    - name: "Lint/Parser validation"
      steps:
      - type: "JOB"
        name: "control-repo-puppetfile-syntax-validate"
        concurrent_compilations: 0
        all_deployments: false
      - type: "JOB"
        name: "control-repo-template-syntax-validate"
        concurrent_compilations: 0
        all_deployments: false
      auto_promote: "all_succeeded"
    - name: "Deploy feature environment"
      steps:
      - type: "DEPLOYMENT"
        name: "Feature branch deployment on cdpe-delivery"
        policy:
          name: "cd4pe_deployments::feature_branch"
        concurrent_compilations: 0
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        all_deployments: false
        pe_server: "cdpe-delivery"
      auto_promote: false

1. In your source control system, navigate to the control repo or module repo you want to update.

2. Create a feature branch. Make a new branch based on the master branch and name it
feature_<BRANCHNAME>, substituting a relevant ticket number, fix description, or feature name for
<BRANCHNAME>.

Continuous Delivery for PE automatically recognizes feature branches by their names. By default, the software
uses feature_.* as the regular expression that triggers regex pipelines, so it’s important to give your feature
branch the feature_ prefix.

Tip:  If you need to use a different naming convention for your control repo or module repo’s feature branches,
you can change the regular expression in the web UI by clicking Manage pipelines.

3. On your feature branch, make your code changes.

4. When your work is complete, commit the changes to the feature branch and push the commit to your source
control system. This commit triggers your regex branch pipeline. You can monitor the pipeline's progress in the
web UI.

When your pipeline is triggered, Continuous Delivery for PE runs any jobs and impact analysis tasks you've set
up. If the promotion conditions set in your pipeline are met (if all the jobs succeed, for example), the pipeline
starts a feature branch deployment.

How does a feature branch deployment work? Using Code Manager, Continuous Delivery for PE deploys the
code in your commit to a Puppet environment with the same name as the branch that triggered the pipeline. If an
environment with this name doesn't already exist (as is most likely the case), Continuous Delivery for PE creates
it.

5. When the feature branch deployment is complete, run Puppet on a test node, specifying the special environment
created by Continuous Delivery for PE. This Puppet run will apply your changes to the test node so you can
review them. You can run Puppet from the command line or from the PE console:

a) From the command line: Run puppet job run --nodes <TEST_NODE_NAME> --
environment <feature_BRANCHNAME>

Tip:  For more on the puppet job run command, see Running Puppet on demand from the CLI.

b) From the PE console: Navigate to the Run Puppet page and create a job with the following settings:

• Job description: Enter a description for your test run
• Environment: Select Select an environment for nodes to run in and choose the environment that matches

your feature branch name
• Schedule: Now
• Run Mode: Leave these options unchecked
• Inventory: Select Node list and add the name of your test node

Click Run job.

6. When the Puppet run is complete, navigate to your test node and review your changes. If further work is needed,
repeat steps 3 through 5 until your code is ready for deployment to production.

When you're satisfied with your new code, move on to Part 2: Review and merge to production.

Part 2: Review and merge to production
In the second phase of the feature branch workflow, the new code is reviewed and merged to the master branch, then
deployed to production. Along the way, Continuous Delivery for PE provides checks and safeguards to ensure new
code is only sent to production nodes when it has been fully vetted.
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Before you begin
Make sure your master branch pipeline uses pull requests as a pipeline trigger and includes a PR gate.

1. In your source control system, create a pull request from your feature_<BRANCHNAME> branch to the master
branch.

Note:  If you're a GitLab user, you might be more familiar with the term "merge request" than "pull request."
Although the two terms refer to the same concept and can be used interchangeably, for the sake of simplicity and
consistency, the Continuous Delivery for PE web UI and these instructions use the term "pull request" (PR).

2. The pull request triggers a run of your master branch pipeline, which tests your PR code against the jobs and
impact analysis report tasks included in the pipeline before the PR gate. You can monitor the pipeline's progress in
the Continuous Delivery for PE web UI.

The success or failure of each stage of the pipeline is also displayed on the pull request's page in your source
control system.

3. The appropriate stakeholders on your team can now review the results of the jobs and impact analysis reports
generated by the pipeline. If the PR is approved, merge it into the master branch.

Note:  After the PR is merged, you can safely delete the feature_<BRANCHNAME> branch you've been using
from your source control system.

Merging the PR (which your version control system views as a commit to the master branch) automatically re-
triggers the master branch pipeline. The pipeline starts over from the top, re-running all the jobs and impact
analysis tasks and making sure the newly updated master branch code is fully tested and vetted.

Since this pipeline run was triggered by a commit, the pipeline proceeds past the PR gate and performs any tasks
included in the pipeline after the PR gate, such as additional jobs or deployment to a staging environment.

4. Once the code is deployed to a staging environment, perform additional testing by running Puppet against test or
staging nodes, specifying the staging environment. The scope of this testing should be determined by your team or
company best practices.

5. When testing is complete and the code changes have been approved, promote the code to the production
environment.

In most cases, the master branch pipeline does not auto-promote to a deployment to the production environment.
A stakeholder must click Promote in the pipeline to trigger the final stage. This kicks off a deployment to the
production environment.

However, if the production environment is a protected environment, the deployment requires review and approval
from a member of a designated approval group before it can proceed. The deployment remains in a pending state
until an approval decision is provided.

Note:  See Require approval for deployments to protected Puppet environments for more information on setting
up approval groups.

6. Finally, if necessary, run Puppet to apply the new code to the nodes in your production environment. Depending
on which deployment policy you've used, a Puppet run might be included in the deployment Continuous Delivery
for PE performs. Otherwise, you can trigger Puppet manually, or wait for the next scheduled Puppet run.

When the Puppet run is complete, your code changes are officially deployed to production.

Constructing pipelines

Pipelines enable the "continuous" in Continuous Delivery for Puppet Enterprise (PE). Constructing a pipeline means
defining the work that needs to happen to make sure every new line of Puppet code is ready for deployment. Once
your pipeline is set up, this work happens automatically each time the pipeline is triggered.
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Stages and tasks

Pipelines in Continuous Delivery for PE are made up of stages and tasks. Tasks include deployments, impact
analyses, and jobs to test code; stages group tasks into a series of sequential phases.

If you want to set up some logic of the "if this job succeeds, then run the next one, otherwise stop and tell me what
happened," variety, use stages to break up the pipeline into a series of incremental steps. You can set your pipeline to
require manual promotion before moving on to the next stage, or to promote automatically when certain conditions
are met.

Building and managing pipelines: web UI or code?

You have two options when deciding how to build and manage your pipelines: using the controls in the web UI, or
defining pipelines in a YAML file.

• Building a pipeline with the web UI is the simplest method for building and managing pipelines. The web UI
controls allow you to more easily make iterative changes.

• Building a pipeline as code is more complex, but ideal if you need a record of changes to your pipeline over time,
or if you want to avoid hand-creating similar pipelines for many control repos or modules. Using the pipelines-
as-code method also lets you commit changes to your pipeline alongside changes to your Puppet code that will
necessitate a new pipeline definition.

Important:  You can't use a mixture of the two methods within a single control repo or module. User controls are
disabled for pipelines that are managed as code.
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• Constructing pipelines in the web UI on page 93
Build and manage pipelines for your control repo or module in the Continuous Delivery for Puppet Enterprise (PE)
web UI using the tools built into the interface. If you complete the tasks on this page in the order presented, you'll set
up and learn to use a basic pipeline.
• Constructing pipelines from code on page 96
Managing your pipelines with code, rather than in the web UI, lets you maintain a record of pipeline changes over
time. When you elect to manage pipelines with code, a .cd4pe.yaml file with the pipelines' definitions for a
control repo or module is stored in your source control system alongside the Puppet code for that control repository or
module.

Constructing pipelines in the web UI
Build and manage pipelines for your control repo or module in the Continuous Delivery for Puppet Enterprise (PE)
web UI using the tools built into the interface. If you complete the tasks on this page in the order presented, you'll set
up and learn to use a basic pipeline.

Create a pipeline
Set up a pipeline to enable automatic testing of newly added code by adding stages and jobs in the Continuous
Delivery for PE web UI.

1. In the Continuous Delivery for PE web UI, click Control repos. Click the name of the control repo you wish to
set up a pipeline for.

Continuous Delivery for PE automatically creates a pipeline for the branch you selected when setting up the
control repo (the master branch). You'll see this branch name at the top of the Pipelines area of the web UI.

Tip:  You can also set up pipelines for other branches in this repo, in order to automatically run tests on the code
changes that Continuous Delivery for PE makes on your behalf. To create a pipeline for a different branch, click

Add pipeline . You can undo this action with Delete pipeline .

2. Every pipeline needs at least one stage. Click + Add stage and select Jobs.

3. Select a job from the list, and click Add stage. Your job is added to the pipeline. Click Done.

If you need to run a single test on your new code, your pipeline can be this simple. But if you wish to add
additional tests, you can either add them to the existing stage by clicking Add job, or create another stage.

4. Create a second stage in your pipeline by clicking Add another stage and selecting Job. Select a job from the list
and click Add stage, then Done.

Tip:  If you wish to remove or reorder the stages in your pipeline, click More actions . To delete all stages in

a pipeline and start fresh, click Delete pipeline .
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5. You now have a two-stage pipeline with a promotion step between the stages. Select Auto promote and choose a
promotion condition from the options.

The promotion condition you select tells the pipeline what to do at the end of the pipeline stage. The available
permission conditions, listed from most to least restrictive, are:

• All succeeded: The pipeline moves on to the next stage only if all the steps in the current stage finish with a
"succeeded" or "done" status.

• All completed: The pipeline moves on to the next stage if all the steps in the current stage finish with a
"succeeded," "done," or "failed" status. The pipeline does not move on if any step in the current stage is
canceled.

• Any succeeded: The pipeline moves on to the next stage if at least one of the steps in the current stage finishes
with a "succeeded" or "done" status.

• Any completed: The pipeline moves on to the next stage if at least one of the steps in the current stage finishes
with a "succeeded," "done," or "failed" status. The pipeline does not move on if all steps in the current stage
are canceled.

Your pipeline is ready for use.

Create a regex branch pipeline
Most pipelines are associated with a single branch in your control repo or module repo. A regex branch pipeline
is configured to recognize and act on changes to any branch on your control repo or module repo that has a name
matching the regular expression you set.

A regex branch pipeline lets you use a single pipeline for all the feature branches you and your team create and
destroy in the process of developing new code. When you create a commit or pull request to a feature branch whose
name uses the naming convention you've established for your regex branch pipeline, Continuous Delivery for PE
automatically runs the regex pipeline.

1. In the Continuous Delivery for PE web UI, navigate to a control repo or module repo.

2.
Click Add pipeline .

3. In the Add pipeline window, select Branch regex.

Only one regex branch pipeline can be created for each module repo or control repo. If you don't see the option to
select Branch regex at the top of the window, a regex branch pipeline already exists for this repo.

4. Enter the regular expression that your regex branch pipeline will use to recognize feature branches that should
trigger pipeline runs. The default regular expression is feature_.*. If you use the default regex, your feature
branches must use a feature_<BRANCHNAME> naming convention.

Tip:  All members of your team must use this naming convention when creating feature branches in order for their
changes to trigger the regex branch pipeline. We strongly recommend using the default regular expression or one
that's similarly simple and memorable.

5. Click Add pipeline. The regex branch pipeline is created.

6. Optional. To adjust the settings for your regex branch pipeline, click Manage pipelines. On this screen, you can
set whether your regex branch pipeline will be triggered by commits, pull requests, or both.

7. Build out your pipeline by adding jobs, impact analysis tasks, and deployments.

You now have a pipeline configured to run in response to trigger conditions on any branch named with the naming
convention you've selected.

Test code automatically with a pipeline
Every time you commit new code to your development or master branch, the pipeline runs the jobs you've set up to
test the code and reports any errors or failures.

1. To see the pipeline in action, make a trivial change (such as adding a new line to the README file) in the master
branch of your control repo. Commit your change.
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2. In the Continuous Delivery for PE web UI, click Control repos, then click the name of the control repo you just
committed code to.

3. The Events area now shows you the push event initiated by your code commit, and an entry for each job in
your pipeline. The jobs report their status here, and update to show their success or failure when the job run is
complete.

Each event summary includes a link to the commit in the control repo. Job events also include a job number;
clicking on this number takes you to the Job details page, where you can see the job's log for its run and review
error messages.

Test pull requests automatically
When "pull request" is enabled as a pipeline trigger, your pipeline automatically tests new code each time a pull
request is opened against the relevant branch. By setting up a PR gate in the pipeline, you can ensure that the relevant
tests run on the new code, but stop the pipeline before it proceeds to further tests or a deployment.

Note:  If you're a GitLab user, you might be more familiar with the term "merge request" than "pull request."
Although the two terms refer to the same concept and can be used interchangeably, for the sake of simplicity and
consistency, the Continuous Delivery for PE web UI and these instructions use the term "pull request" (PR).

1. Add a pull request (PR) gate to your pipeline. A PR gate indicates that any pipeline runs triggered by a pull
request stops at a certain point in the pipeline. This allows you to automatically run acceptance tests on new pull
requests, but to manage additional testing or deployment of the new code manually based on the results of the
initial automated tests.

a)
In your pipeline's first stage, click More actions . Click Add item to stage, and select Pull request gate.

b) Click Add PR gate. When the gate has been added, you'll see a success message. Click Done.

Important:  You can add only one PR gate to a pipeline. If you decide to move the placement of a PR gate,
delete the existing gate and create a new one in the desired stage.

2. To see the PR gate in action, switch to a branch in your control repo other than master. Make a trivial change
(such as adding a new line to the README file) in your control repo, and commit your change, then open a pull
request against the master branch for this commit.

Remember:  The pull request must be made against the branch the pipeline is set up to use in order to trigger the
pipeline.

3. In the Continuous Delivery for PE web UI, click Control repos, then click the name of the control repo you just
committed code to.

4. The Events area now shows you the pull request event initiated by your code commit, and an entry for the job in
your pipeline that precedes the PR gate. Note that the job in the pipeline's second stage, beyond the PR gate, has
not been triggered.

Deploy code automatically with a pipeline
You can use a control repo pipeline to automatically deploy new code to a specified set of nodes every time a commit
is made.

1. In the Continuous Delivery for PE web UI, click Control repos. Click the name of the control repo you've created
a pipeline for.

2. Click + Add stage.

3. In the Add new stage window, select Deployment.

4. Select your Puppet Enterprise instance and the node group you wish to deploy changes to every time this pipeline
runs.
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5. Select a deployment policy. For purposes of this getting started guide, select Direct deployment policy.

See Deployment policies to learn more about the four deployment policies and how they work.

6. Optional: Set termination conditions for this pipeline's deployments, and choose the number of nodes that can fail
before the deployment is stopped.

7. Click Add Stage and close the Add new stage window. Your new stage, showing the details of the deployment, is
added to the pipeline.

8. To see the pipeline in action, make a trivial change (such as adding a new line to the README file) on the master
branch of your control repo. Commit your change.

The control repo Events area now shows you the push event initiated by your code commit, and a deployment
event. The deployment reports its status here, and updates to show its success or failure when the deployment is
complete.

Each event summary includes a link to the commit in the control repo. Deployment events also include a
deployment number; clicking on this number takes you to the deployment's details page, where you can see more
information.

9. You can run the same deployment again from the web UI by retriggering the webhook. In the Events area, locate
the push event you wish to rerun, and click View webhook.

The webhook's request and response data is shown in the Webhook data pane, which can be useful for
troubleshooting.

10. Click Redeliver webhook, and confirm your action. The Events area now shows the new event triggered by the
redelivery of the webhook.

Note:  If you've made changes to your pipeline since the last time this webhook was delivered, the redelivered
webhook follows the current pipeline's sequence and rules.

Constructing pipelines from code
Managing your pipelines with code, rather than in the web UI, lets you maintain a record of pipeline changes over
time. When you elect to manage pipelines with code, a .cd4pe.yaml file with the pipelines' definitions for a
control repo or module is stored in your source control system alongside the Puppet code for that control repository or
module.

• Configuring your pipelines for management with code on page 96
To begin managing your existing pipelines with code, or to create new pipelines using a .cd4pe.yaml file, follow
the instructions on this page appropriate to your circumstances.
• Structuring a .cd4pe.yaml file on page 98
When managing your pipelines with code, the pipeline definitions are expressed in a structured format and stored in a
file named .cd4pe.yaml, which is kept in your control repo or module repo.

Configuring your pipelines for management with code
To begin managing your existing pipelines with code, or to create new pipelines using a .cd4pe.yaml file, follow
the instructions on this page appropriate to your circumstances.

Have you added your control repo
or module to Continuous Delivery
for PE?

Do you have a .cd4pe.yaml file
containing the pipeline definitions
you want to use?

Follow these instructions

yes not yet Convert your existing pipelines to
code

yes yes Update your pipelines using a new
.cd4pe.yaml file
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Have you added your control repo
or module to Continuous Delivery
for PE?

Do you have a .cd4pe.yaml file
containing the pipeline definitions
you want to use?

Follow these instructions

not yet yes Create new pipelines using a
.cd4pe.yaml file

Convert your existing pipelines to code
If you've created pipelines using the Continuous Delivery for PE web UI, but now want to manage those pipelines
with code, Continuous Delivery for PE will render your existing pipelines in YAML format.

Before you begin
Add a control repo or module to Continuous Delivery for PE and set up a pipeline. For instructions, see steps 4 and 5
of Getting started with Continuous Delivery for PE.

1. In the Continuous Delivery for PE web UI, navigate to the control repo or module whose pipelines you want to
manage with code.

2. At the top of the Pipelines section, click Manage pipelines.

3. Select Manage as code. Continuous Delivery for PE displays your pipelines in YAML format.

4. Copy the YAML code by scrolling to the bottom of the code block and clicking Copy to clipboard.

5. Create a new file named .cd4pe.yaml and paste the YAML code into it.

Important:  The file must be named .cd4pe.yaml.

6. Save the new .cd4pe.yaml file to the root directory of your control repo or module, and commit the change in
your source control system.

You can save the .cd4pe.yaml file to whichever branch you prefer. In the next step, you'll tell Continuous
Delivery for PE where to look for the file in your source control system.

7. In the Continuous Delivery for PE web UI, in the Select branch area, select the branch to which you saved the
.cd4pe.yaml file.

8. Click Save settings.

Continuous Delivery for PE now reads the contents of your .cd4pe.yaml file before every pipeline run, and uses
the YAML code to render the pipelines' definitions in the web UI. Because you're managing your pipelines with code,
the pipeline controls in the web UI are disabled.

Update your pipelines using a new .cd4pe.yaml file
If you've created pipelines using the Continuous Delivery for PE web UI, but now want to update those pipelines to
use new definitions housed in a .cd4pe.yaml file, you can do so by saving the file to your control repo or module.

Before you begin
You'll need a properly formatted .cd4pe.yaml file containing the definitions of the pipelines you want to create.
For more on .cd4pe.yaml file syntax, see Structuring a .cd4pe.yaml file.

1. Add a .cd4pe.yaml file containing the definitions of the pipelines you want to create to the root directory of
your control repo or module. Commit the file to your source control system.

You can save the .cd4pe.yaml file to whichever branch you prefer. Later, you'll tell Continuous Delivery for
PE where to look for the file in your source control system.

2. In the Continuous Delivery for PE web UI, navigate to the control repo or module whose pipelines you want to
manage with code.

3. At the top of the Pipelines section, click Manage pipelines.

4. Select Manage as code.

5. In the Select branch area, select the branch to which you saved the .cd4pe.yaml file.

6. Click Save settings.
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Continuous Delivery for PE now reads to contents of your .cd4pe.yaml file before every pipeline run, and uses
the YAML code to render the pipelines' definitions in the web UI. Because you're managing your pipelines with code,
the pipeline controls in the web UI are disabled.

Create new pipelines using a .cd4pe.yaml file
You can create pipelines with code for a brand-new control repo or module in Continuous Delivery for PE. If a
.cd4pe.yaml file exists in your control repo or module when it is first added to Continuous Delivery for PE, the
software will detect this file and ask if you want to use it to build and manage your pipelines.

1. Add a .cd4pe.yaml file to the root directory of your control repo or module on the master branch. Commit the
file to your source control system.

2. Add the control repo or module to Continuous Delivery for PE.

For instructions, see steps 4 and 5 of Getting started with Continuous Delivery for PE.

3. When adding the control repo or module, Continuous Delivery for PE will detect the .cd4pe.yaml file and ask
if you want to use it to build and manage your pipelines. Click Confirm.

Continuous Delivery for PE now reads to contents of your .cd4pe.yaml file before every pipeline run, and uses
the YAML code to render the pipelines' definitions in the web UI. Because you're managing your pipelines with code,
the pipeline controls in the web UI are disabled.

Stop managing your pipelines with code
If you want to stop managing your pipelines with a .cd4pe.yaml file, and return to using the pipeline controls in
the web UI, use the Manage pipelines control to make the switch.

1. In the Continuous Delivery for PE web UI, navigate to the control repo or module whose pipelines you are
currently managing with a .cd4pe.yaml file.

2. At the top of the Pipelines section, click Manage pipelines.

3. Select Manage in the web UI and make any needed adjustments to your pipeline settings.

4. Click Save settings.

The pipeline controls in the web UI are enabled. Your .cd4pe.yaml file is now ignored by Continuous Delivery
for PE, and all pipeline changes must be made in the web UI.

Tip:  To avoid confusion, remove the .cd4pe.yaml file from your control repo or module.

Structuring a .cd4pe.yaml file
When managing your pipelines with code, the pipeline definitions are expressed in a structured format and stored in a
file named .cd4pe.yaml, which is kept in your control repo or module repo.

Your .cd4pe.yaml file must use this structure:

• spec_version - The version of the pipelines-as-code file specification you've used to write this YAML file.
Currently, only one specification version, v1, is available.

• config - Pipeline configuration settings for the control repo or module repo as a whole.
• pipelines - The names of the pipelines you're creating.

• triggers - What source control activities the pipeline will listen for.
• stages - The parts of the pipeline, and how the pipeline run will advance (or pause and wait for instructions)

based on the results of each part.

• steps - All the details about the exact work the pipeline will perform.

Here's an example of a complete .cd4pe.yaml file for a control repo. This file describes pipelines for two branches
(a master branch and a regex branch).

spec_version: v1
config:
  enable_pull_requests_from_forks: false
  deployment_policy_branch: production
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  enable_pe_plans: true
pipelines:
  /feature_.*/:
    triggers:
      - pull_request
      - commit
    stages:
      - name: "Lint/Parser validation"
        auto_promote: all_succeeded
        steps:
          - type: job
            name: control-repo-puppetfile-syntax-validate
          - type: job
            name: control-repo-template-syntax-validate
      - name: "Deploy feature environment"
        steps:
          - type: deployment
            pe_server: cdpe-delivery
            policy: feature_branch
  master:
    triggers:
      - pull_request
      - commit
    stages:
      - name: "Lint/Parser validation"
        auto_promote: all_succeeded
        steps:
          - type: job
            name: control-repo-puppetfile-syntax-validate
          - type: job
            name: control-repo-template-syntax-validate
          - type: job
            name: control-repo-hiera-syntax-validate
          - type: job
            name: control-repo-manifest-validate
      - name: "Impact Analysis"
        auto_promote: any_succeeded
        steps:
          - type: impact_analysis
            concurrent_compilations: 10
            deployments:
              - "Direct merge to Production"
              - "my custom deploy 1"
          - type: pull_request_gate
      - name: "Deploy to lower UAT"
        auto_promote: false
        steps:
          - type: deployment
            policy: direct_merge
            name: "Direct merge to Production"
            target:
              type: node_group
              node_group_id:   fcda068f-e499-44ef-81f2-255fc487b2e2
            pe_server: cdpe-delivery
            parameters:
              stop_if_nodes_fail: 10
              noop: false
              timeout: 60
          - type: deployment
            name: "my custom deploy 1"
            policy: 
              source: control-repo
              name: deployments::canary
            target:
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              type: node_group
              node_group_id: fcda068f-e499-44ef-81f2-255fc487b2e2
            pe_server: cdpe-delivery
            parameters:
              noop: true
              max_node_failure: 50
              canary_size: 4

Using a .cd4pe.yaml file with a module

A .cd4pe.yaml file for a module looks almost identical to one for a control repo, with a few important exceptions:

1. If the module pipeline includes an impact analysis step, you must include a pointer to the control repo used in the
deployment associated with the impact analysis task.

2. If the .cd4pe.yaml file includes a regex branch pipeline using the feature branch deployment policy, your
deployment step must include the name of the control repo associated with the module and the control repo branch
on which to base the feature branches Continuous Delivery for PE will create.

Here's an example of a complete .cd4pe.yaml file for a for a module. The control_repo pointer for the
impact analysis task is included in the target: key section at the bottom of the staging pipeline.

spec_version: v1
config:
  enable_pull_requests_from_forks: false
pipelines:
  staging:
    triggers:
      - commit
    stages:
    - name: "Impact analysis"
      steps:
      - type: impact_analysis
        deployments:
        - "Deployment to staging-rustler-1"
        concurrent_compilations: 10
        all_deployments: false
      auto_promote: false
    - name: "Deployment to staging"
      steps:
      - type: deployment
        name: "Deployment to staging-rustler-1"
        policy:
          name: eventual_consistency
        timeout: 3600000
        concurrent_compilations: 0
        all_deployments: false
        pe_server: pe-github
        target:
          type: node_group
          node_group_id: 250fd263-8456-4114-b559-9c6d9fa27748
          control_repo: cdpe-code-rustler-app-2020

Here's a module's regex branch pipeline entry using the feature branch deployment policy. The control_repo and
base_feature_branch parameters at the bottom of the type: deployment step are required for this special
type of pipeline. These parameters specify which control repo is associated with this module, and which branch of
that control repo should be used to create feature branches when this pipeline is triggered.

pipelines:
 /feature_.*/:
    triggers:
    - commit
    stages:
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    - name: "Validation stage"
      steps:
      - type: job
        name: "module-pdk-validate"
      auto_promote: any_completed
    - name: "Feature branch deployment stage"
      steps:
      - type: deployment
        name: "Deployment to hot-dog-prod-2"
        policy:
          name: "cd4pe_deployments::feature_branch"
        all_deployments: false
        pe_server: "hot-dog-prod-2"
        target:
          type: node_group
        control_repo: "cc-hot-dog-app"
        base_feature_branch: "production"
      auto_promote: false

Validating your .cd4pe.yaml file
Every time you commit a change to your .cd4pe.yaml file in your control repo or module repo, Continuous
Delivery for PE uses the YAML code to render the pipelines' definitions in the web UI. To ensure that you commit
only well-formed YAML code, use the validation tool in the Continuous Delivery for PE web UI before committing.

1. In the Continuous Delivery for PE web UI, navigate to the control repo or module whose pipelines you're
managing with code.

2. At the top of the Pipelines section, click Manage pipelines.

3. Select Manage as code. Continuous Delivery for PE displays your current pipelines in YAML format.

4. Update the code in the window with the changes you wish to make. Alternatively, you can delete the contents of
the window and paste in code you've written elsewhere.

5. To check the syntax of your code, click Validate.

• If your syntax is invalid, an error message about the location of the issue appears.
• If your syntax is valid, Copy to clipboard is activated.

6. Once your changes are complete and successfully validated, copy them into the .cd4pe.yaml file in your
source control or module and commit your change.

.cd4pe.yaml file syntax
Your .cd4pe.yaml file must be formatted according to the syntax in this section.

Spec version

Every .cd4pe.yaml file begins with a spec_version declaration expressed as v<VERSION NUMBER>. This
sets the version of the Continuous Delivery for PE Pipelines as Code specification used when writing the file.

Presently, there is only one version of the Continuous Delivery for PE Pipelines as Code specification, so your file
must begin as follows:

---
spec_version: v1

Config

The config section of your .cd4pe.yaml file provides global pipeline configuration settings for all the pipelines
for the control repo or module where the YAML file is housed.
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config key Description Value Default

enable_pull_requests_from_forksStates whether pull requests
from forks of the control
repo or module can trigger
its pipelines.

Accepts a Boolean. false

deployment_policy_branchOptional. The name of
the branch where custom
deployment policies are
kept. If custom deployment
policies are found on the
specified branch, they can
be used when building
pipelines.

Accepts a string. -

enable_pe_plans Optional. States whether to
allow the inclusion of Bolt
tasks in custom deployment
policies used in pipelines
for this control repo or
module.

Accepts a Boolean. true

Here's a sample config section for a control repo that allows pull requests from forks and serves custom
deployment policies from the production branch:

config:
  enable_pull_requests_from_forks: true
  deployment_policy_branch: production
  enable_pe_plans: true

Pipelines

The pipelines section names each pipeline you're creating for a control repo or module. Its value is key/value
pairs where each key corresponds to a pipeline. The key must have either the same name as a branch or a regular
expression (regex).

Note:  Only one regular expression entry is allowed per control repo or module.

To create two pipelines (one for a regex branch and one for the master branch), format the pipelines section as
follows:

pipelines:
  /feature_.*/:
 triggers:
   - pull_request
   - commit
 stages:
   - name: "Lint/Parser validation"
       auto_promote: all_succeeded
       steps:
          - type: job
            name: control-repo-puppetfile-syntax-validate
   
  master:
 triggers:
   - pull_request
   - commit
 stages:
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   - name: "Deploy to production"
       auto_promote: all_succeeded
       steps:
          - type: deployment
         policy: direct_merge
         name: "Direct merge to Production"
         target:
             type: node_group
             node_group_id:   fcda068f-e499-44ef-81f2-255fc487b2e2
         pe_server: cdpe-delivery
         parameters:
             stop_if_nodes_fail: 10
             noop: false

Triggers

The triggers section must be set for each pipeline you create.

This section specifies the events in your source control system that cause the pipeline to start a run.

The only allowed values are pull_request and commit. You can set either or both of these values. If no value is
set, the pipeline will not run except when triggered manually.

Stages

At least one stages section must be set for each pipeline you create.

The stages section accepts an array where each item is a stage in the pipeline. Each stage has a name, instructions
about when and whether to auto-promote to the next stage in the pipeline, and a list of steps to be executed in parallel.

stages key Description Value Default

name The name you're giving the
pipeline stage.

Accepts a string in quotes. Stage <STAGE
NUMBER>
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stages key Description Value Default

auto_promote Instructions on whether or
not to automatically go on
to the next pipeline stage
based on the conditions
specified.

Accepts one of the
following:

• false - Only manual
promotions allowed.

• all_succeeded -
Auto-promote only if all
steps succeed.

• any_succeeded -
Auto-promote if any
step succeeds.

• all_completed -
Auto-promote only if all
steps complete (succeed
or fail) and no steps are
canceled.

• any_completed
- Auto-promote if
any step completes
(succeeds or fails)
and not all steps are
canceled.

all_succeeded

Steps

At least one step section must be set for each stages section you create.

A step defines a particular job to be performed in a pipeline stage. All steps are run concurrently, so the order in
which you list steps in a stage doesn't matter.

Every step is defined using a hash of key/value pairs. The type key is always required, and the other keys are
dependent on the type of step selected. The type key accepts the following values:

type values Description

job A named test for Puppet code. The jobs available to your
workspace are found by clicking Jobs in the navigation
bar in the web UI.

impact_analysis A report assessing the code change in the pipeline
for potential impact to nodes and configurations in
deployments defined later in the pipeline.
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type values Description

pull_request_gate A conditional checkpoint that ends the pipeline execution
at the pull request gate if the pipeline was triggered by a
pull request. If the pipeline was triggered by a commit,
the pipeline execution will continue beyond the pull
request gate.

deployment A Puppet code deployment.

Keys for type: job

job key Description Required? Default

name The name of the job as
listed in the Jobs page for
the workspace.

yes -

To add a job called control-repo-puppetfile-syntax-validate to a pipeline, format the type: job
entry as follows:

steps:
  - type: job
    name: control-repo-puppetfile-syntax-validate

Keys for type: impact_analysis

Note:  If you include an impact analysis step in a .cd4pe.yaml file for a module, see the instructions in the Keys
for type: deployment section about setting control_repo on the deployment associated with the imapct
analysis task.

impact_analysis key Description Required? Default

concurrent_compilationsHow many catalog
compilations to perform at
the same time.

Tip:

If your compilers are
hitting capacity when
performing an impact
analysis, lower this
number. Lowering this
number increases the
impact analysis run time.

no 10

deployments A list of the deployments to
assess the potential impact.

Accepts an array of strings
where each item is the
name of a deployment in
your pipeline definition.

You must set either
deployments or
all_deployments.

-
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impact_analysis key Description Required? Default

all_deployments Whether to assess the
impact to all deployments
in the pipeline.

Accepts a Boolean value.

false

puppetdb_connection_timeout_secThe timeout period (in
seconds) for requests to
PuppetDB during an impact
analysis task.

no 120

To add an impact analysis task running 10 compilations at a time on two specific deployments, and a second impact
analysis task running on all deployments in your pipeline that times out PuppetDB requests after three minutes, form
the type: impact_analysis entries as follows:

steps:
  - type: impact_analysis
    concurrent_compilations: 10
    deployments:
      - "Direct merge to Production"
      - "My PCI deployment"
  - type: impact_analysis
    all_deployments: true
    puppetdb_connection_timeout_sec: 180

Keys for type: pull_request_gate

The pull_request_gate step type does not take any additional keys.

To add a pull request gate to your pipeline, format the type: pull_request_gate entry as follows:

steps:
  - type: pull_request_gate

Keys for type: deployment

deployment key Description Value Required?

policy The deployment policy to
be used.

For built-in deployment
policies, accepts the policy
name as a string.

For custom deployment
policies, accepts a key-
value pair defining the
policy to be used.

yes

name The name you're giving the
deployment.

Accepts a string in quotes. yes
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deployment key Description Value Required?

target The infrastructure (node
group) that the deployment
will target.

The target key is not
used for deployments from
regex branches.

Accepts key/value pairs
and requires a type:
node_group key. If
used for a module pipeline
that contains an impact
analysis task, also requires
a control_repo: key.

Note:  See Formatting the
target key below.

yes, except for regex
branches

pe_server The name in Continuous
Delivery for PE of the
Puppet Enterprise instance
the deployment will target.

Accepts a string.

Tip:

Find the name of your
PE instance by going
to Settings > Puppet
Enterprise in the web UI.

yes

parameters Any relevant parameters
defined by the deployment
policy. To find out which
parameters the policy takes,
see Built-in deployment
policies or refer to the
custom deployment
policy’s documentation.

Accepts key/value pairs. no

control_repo The name of the control
repo a module is associated
with.

Accepts a string. only for module regex
branch pipelines using the
feature branch deployment
policy

base_feature_branch The branch in the
control_repo that
Continuous Delivery for PE
will use to create feature
branches.

Accepts a string. only for module regex
branch pipelines using the
feature branch deployment
policy

To add a deployment using a built-in deployment policy to your pipeline, format the type: deployment entry as
follows:

steps:
  - type: deployment
    policy: cd4pe_deployments::direct_merge
    name: "Direct merge to Production"
    target:
      type: node_group
      node_group_id:  fcda068f-e499-44ef-81f2-255fc487b2e2
    pe_server: cdpe-delivery
    parameters:
      stop_if_nodes_fail: 10
      noop: false
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      timeout: 60

To add a deployment using a custom deployment policy to your pipeline, format the type: deployment entry as
follows:

steps:
  - type: deployment
    policy: 
      name: deployments::custom_policy1
      source: name-of-control-repo
    name: "Direct merge to Production"
    target:
      type: node_group
      node_group_id:  fcda068f-e499-44ef-81f2-255fc487b2e2
    pe_server: cdpe-delivery
    parameters:
      policy_parameter1: 10
      policy_parameeter2: false

CAUTION:  Do not include sensitive parameters in your custom deployment policy if you use the custom
deployment policy in a pipeline managed with code.

To add a deployment to a module for a regex branch pipeline using the feature branch deployment policy, format the
type: deployment entry as follows:

steps:
  - type: deployment
    policy:
      name: "cd4pe_deployments::feature_branch"
    name: "Deployment to hot-dog-prod-2"
    target:
          type: node_group
    pe_server: "hot-dog-prod-2"
    control_repo: "cc-hot-dog-app"
    base_feature_branch: "production"

Formatting the target key

Note:  The target key is not used for deployments from regex branches.

When used for a control repo pipeline or a module pipeline that does not include impact analysis, the target key
must be formatted as follows:

    target:
      type: node_group
      node_group_id:  fcda068f-e499-44ef-81f2-255fc487b2e2

Presently, node_group is the only available type.

To locate your target node group's ID:

1. In the PE console, click Classification.
2. Locate your target node group and click its name. A page with information about the node group opens.
3. In the URL for the page, locate and copy the alphanumeric string that follows /groups/. This is your node

group ID.

When used for a module pipeline that includes an impact analysis step, the target key must be formatted as
follows:

    target:
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      type: node_group
      node_group_id:  fcda068f-e499-44ef-81f2-255fc487b2e2
      control_repo:  cdpe-2018-1-pe-master-1-control

The control_repo key's value is the name of the control repo used in the deployment associated with the impact
analysis task.

Analyzing the impact of code changes

Continuous Delivery for Puppet Enterprise (PE) lets you see the potential impact that new Puppet code will have on
your PE-managed infrastructure even before the new code is merged. You can generate an impact analysis report on
demand for any commit to a control repo or module, or add impact analysis to a pipeline to automatically generate a
report on all proposed code changes.

• Generating impact analysis reports on page 109
Impact analysis reports show you the effect and risk of proposed code changes, allowing for quick review of lower-
risk changes while enabling additional scrutiny for higher-risk changes. Add an impact analysis task to each control
repo and module repo pipeline to generate an impact analysis report for every change submitted to your repos.
• Limitations of impact analysis on page 111
Some code changes may impact your infrastructure beyond what an impact analysis report displays. The technical
limitations of impact analysis reports are outlined here.

Generating impact analysis reports
Impact analysis reports show you the effect and risk of proposed code changes, allowing for quick review of lower-
risk changes while enabling additional scrutiny for higher-risk changes. Add an impact analysis task to each control
repo and module repo pipeline to generate an impact analysis report for every change submitted to your repos.

Note:  When impact analysis is enabled, catalog compiles are generated every time an impact analysis task detects
that a node may be impacted by a change to your Puppet code. These additional compiles increase the performance
load placed on your PE master.

Add impact analysis to a module pipeline
Once you add an impact analysis task to your module pipeline, the impact analysis report is automatically generated
each time the pipeline is triggered and the conditions you've set are met.

Before you begin

1. Configure impact analysis.
2. Set up a pipeline for your module that includes at least one deployment.

CAUTION:  Impact analysis fails if you include the $environment variable in your Puppet manifest.
Instead, use Hiera and class parameters.

Impact analysis reports are generated by diffing a newly generated catalog for the deployment conditions you've
set against the current catalog for the same deployment. The results of this process are shown in the impact analysis
report.

You can add as many impact analysis tasks to your pipeline as you wish, but each stage in the pipeline can have only
one impact analysis task. An impact analysis task cannot be in the same stage as a deployment.

1. In the Continuous Delivery for PE web UI, click Modules. Click the name of the module you wish to add impact
analysis to.
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2. Select the pipeline you wish to add impact analysis to. Make sure there is at least one deployment present in the
pipeline.

Impact analysis is calculated for your pipeline using the deployment conditions you've chosen.

3.
Add impact analysis to a stage that does not contain a deployment. Click More actions . Select Add item to
stage, then select Impact analysis.

Tip:  For best results, add impact analysis to a stage in your pipeline that comes before a PR gate and before any
deployment stages.

4. Optional: Set the catalog compilation batch size. By default, Continuous Delivery for PE compiles 10 catalogs at a
time when performing an impact analysis task.

5. Select the environments you want to generate an impact analysis report for.

6. For each selected environment, choose the control repo where the code associated with that environment is stored.

7. Click Add impact analysis.

Impact analysis is now enabled for your module pipeline. An impact analysis report is generated each time the
pipeline runs.

Add impact analysis to a control repo pipeline
Once you add an impact analysis task to your control repo pipeline, the impact analysis report is automatically
generated each time the pipeline is triggered and the conditions you've set are met.

Before you begin

1. Configure impact analysis.
2. Set up a pipeline for your control repo that includes at least one deployment.

CAUTION:  Impact analysis fails if you include the $environment variable in your Puppet manifest.
Instead, use Hiera and class parameters.

Impact analysis reports are generated by diffing a newly generated catalog for the deployment conditions you've
set against the current catalog for the same deployment. The results of this process are shown in the impact analysis
report.

You can add as many impact analysis tasks to your pipeline as you wish, but each stage in the pipeline can have only
one impact analysis task. An impact analysis task cannot be in the same stage as a deployment.

1. In the Continuous Delivery for PE web UI, click Control repos. Click the name of the control repo you wish to
add impact analysis to.

2. Select the pipeline you wish to add impact analysis to. Make sure there is at least one deployment present in the
pipeline.

Impact analysis is calculated for your pipeline using the deployment conditions you've chosen.

3.
Add impact analysis to a stage that does not contain a deployment. Click More actions . Select Add item to
stage, then select Impact analysis.

Tip:  For best results, add impact analysis to a stage in your pipeline that comes before a PR gate and before any
deployment stages.

4. Optional: Set the catalog compilation batch size. By default, Continuous Delivery for PE compiles 10 catalogs at a
time when performing an impact analysis task.
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5. Determine which environments you want to generate an impact analysis report for.

• Select Run for all environments in the pipeline to generate impact analysis for all environments used by all
deployments in the pipeline.

• Select Run for selected environments to choose which environments to run impact analysis on from among
those used by the pipeline's deployments.

6. Click Add impact analysis.

Impact analysis is now enabled for your control repo pipeline. An impact analysis report is generated each time the
pipeline runs.

Generate an impact analysis report on demand
You can create a new impact analysis report for any code change committed to a control repo or module in
Continuous Delivery for PE without triggering a pipeline.

Before you begin

1. Configure impact analysis.

Impact analysis reports are generated by diffing a newly generated catalog for the deployment conditions you've
set against the current catalog for the same deployment. The results of this process are shown in the impact analysis
report.

1. In the Continuous Delivery for PE web UI, navigate to the control repo or module you wish to generate an impact
analysis report for.

2. Click Manual actions and select New impact analysis.

3. Select the branch where the code you want to analyze is located, then select the specific commit that contains the
new code.

4. Select the PE instance that manages the nodes you want to analyze, then select the specific node group.

• For impact analysis on a control repo: If relevant, select an environment prefix.
• For impact analysis on a module: Select the control repo where the module's environment code is deployed.

5. Finally, set the number of node catalogs that should be compiled concurrently.

6. Click Analyze. A new impact analysis report based on your selections is generated for you. Click View impact
analysis to be redirected to the report.

Note:  Depending on the size of your node group, it may take several minutes for the impact analysis report to be
created.

Limitations of impact analysis
Some code changes may impact your infrastructure beyond what an impact analysis report displays. The technical
limitations of impact analysis reports are outlined here.

We've designed impact analysis to give you helpful information about the potential results of code changes to your
infrastructure. However, impact analysis is not designed to be an exhaustive report — do not use it as a substitute
for more exhaustive testing. For instance, there are certain circumstances in which we can't reliably calculate the full
impact of a code change. As an impact analysis user, it's critical that you understand that these limitations exist, and
that you remain alert to the possibility that code changes might have consequences for your infrastructure beyond
what impact analysis shows.

The following is a non-exhaustive list of some of the limitations of impact analysis. This list might be updated from
time to time, but is not complete.

• Changes to an environment's environment.conf file. The downstream impact of changes to an
environment.conf file cannot be analyzed.
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• Brand-new code. New Puppet classes, facts, or functions that have never before been applied to any of your
nodes cannot be analyzed.

• Changes to functions. The impact of changes to a function cannot be analyzed.
• Changes to facts. The impact of changes to a fact cannot be analyzed.
• Changes to class names used in classification. Changes to the names of classes that have been previously

classified in the classifier cannot be analyzed. A classification update in the classifier is required before Puppet
can locate the newly renamed class.

• Imported resources. While impact analysis can provide information about nodes that export resources, the
impact to nodes that receive those exported resources cannot be analyzed.

• Sensitive data types. Any changes to data types marked as sensitive will not be analyzed.
• Alias metaparameter. Any resources using the alias metaparameter cannot be analyzed.
• Changes to Embedded Puppet templates. The impact of changes made to Embedded Puppet (.epp) or

Embedded Ruby (.erb) template files alone cannot be analyzed.

Remember:  Reports generated by impact analysis are provided "AS-IS."

Deploying Puppet code

• Built-in deployment policies on page 112
Deployment policies are prescriptive workflows for Puppet code deployment that are built into Continuous Delivery
for Puppet Enterprise (PE). You select the best deployment policy for your situation, and Continuous Delivery for PE
does all the Git heavy lifting for you, deploying your code to the right nodes.
• Creating custom deployment policies on page 117
If the built-in deployment policies included in Continuous Delivery for PE don't align with the way your organization
works with Puppet Enterprise, you can write a custom deployment policy tailored to your needs.
• Deploy code manually on page 118
Use the manual deployment workflow to push a code change to a specified group of nodes on demand.
• Deploy module code on page 118
You can deploy new module code to your Puppet environments via a Continuous Delivery for PE module pipeline.
To do so, you must first add a :branch => :control_branch declaration to the module's entry in your control
repo's Puppetfile.
• Require approval for deployments to protected Puppet environments on page 119
If your organization's business processes require manual review and approval before Puppet code is deployed to
certain environments, set up an approval group of individuals with the authority to provide the needed review and
sign-off. These approvers are contacted each time a deployment to a protected environment is proposed.

Built-in deployment policies
Deployment policies are prescriptive workflows for Puppet code deployment that are built into Continuous Delivery
for Puppet Enterprise (PE). You select the best deployment policy for your situation, and Continuous Delivery for PE
does all the Git heavy lifting for you, deploying your code to the right nodes.

Which deployment policy should I use?
Continuous Delivery for PE includes built-in deployment policies, each with a different branching workflow. Use the
table below to select the best deployment policy for your circumstances. 
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Deployment policy Best for...

Direct deployment policy • Small or trivial changes
• Changes that you have a high level of confidence will

not cause issues when deployed

Temporary branch policy • Fully tested changes
• Changes you'd like to have validated through

deployment
• Workflows that don't require extensive logging of

historic data

Eventual consistency policy • Fully tested changes
• Large PE installations with regularly scheduled

Puppet runs
• Situations in which running additional orchestrator

jobs is undesirable

Feature branch policy • Changes made on a feature branch that haven't been
merged

Direct deployment policy
The direct deployment policy is the most basic of the four deployment policies offered in Continuous Delivery for PE.
This policy is best to use if you wish to deploy a certain commit to a specified environment, then run Puppet on that
environment (and only that environment) to deploy your changes.

When you kick off a deployment using the direct deployment policy, Continuous Delivery for PE performs the
following steps.

Step 1: puppet-code deploy

Using Code Manager, Continuous Delivery for PE synchronizes the selected code change with your PE instance by
running puppet-code deploy on Puppet Server.
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Step 2: Temporary environment group

Continuous Delivery for PE creates a new environment group that's a child of the node group you selected when
setting up your deployment. The child node group inherits all the rules, configuration settings, and variables of its
parent node group. A Puppet Query Language query pins all the nodes associated with the parent node group to the
child node group.

This environment node group is temporary; when the deployment is complete, it is automatically deleted. It's likely
that you won't ever need to interact directly with this environment group.

Step 3: Running Puppet

Continuous Delivery for PE uses the orchestrator to kick off a Puppet run on the nodes in the child node group. The
orchestrated Puppet run updates nodes as quickly as the concurrency limits of Puppet Server allow. You can monitor
the progress of this process on the deployment details page in the Continuous Delivery for PE web UI.

Step 4: Clean-up

When the Puppet run is complete, Continuous Delivery for PE deletes the child environment group and moves the
HEAD of your target branch in your source control repository to the commit you chose to deploy.

Direct deployment policy parameters

The following optional parameters are available to customize the behavior of your direct deployment. Set these
parameters in the web UI when creating a new deployment using the direct deployment policy, or add them to the
your .cd4pe.yaml file as part of a deployment step type declaration.

Parameter Description Required? Default value Value type

max_node_failureThe maximum
number of nodes
that can fail before
the deployment is
stopped and reported
as a failure.

no - integer

noop Whether to perform
the Puppet runs in no-
op mode.

no false Boolean

fail_if_no_nodesWhether to stop the
deployment and
report a failure if the
selected node group
does not contain any
nodes.

no false Boolean

Temporary branch policy
During a deployment using the temporary branch policy, Continuous Delivery for PE creates a temporary Git branch
containing the code you wish to deploy, and a temporary environment group containing the nodes you're deploying
code to. Your new code is then mapped to the temporary environment group in batches, allowing you to be certain
that your new Puppet code works with each node before the changes are deployed to the full environment.
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When you kick off a deployment using the temporary branch policy, Continuous Delivery for PE performs the
following steps.

Step 1: New branch

Continuous Delivery for PE creates a new branch in your source control repository with the commit you've selected at
its tip. This branch is temporary; when the deployment is complete, it will be automatically deleted. It's likely that you
won't ever need to interact directly with this temporary branch.

Step 2: puppet-code deploy

Using Code Manager, Continuous Delivery for PE synchronizes the code changes with your PE instance by running
puppet-code deploy on Puppet Server.

Step 3: Temporary environment group

Continuous Delivery for PE creates a new environment group that's a child of the node group you selected when
setting up your deployment. The child node group inherits all the rules, configuration settings, and variables of its
parent node group. A Puppet Query Language query pins all the nodes associated with the parent node group to the
child node group.

This environment node group is temporary; when the deployment is complete, it is automatically deleted. It's likely
that you won't ever need to interact directly with this environment group.

Step 4: Running Puppet

Continuous Delivery for PE uses the orchestrator to kick off a Puppet run on the nodes in the child node group.
Puppet runs on a few nodes at a time, based on the stagger settings you specified when setting up the deployment.
You can monitor the progress of this process on the deployment details page in the Continuous Delivery for PE web
UI.

Step 5: Clean-up

When all the Puppet runs have completed successfully (or in the event that the termination conditions you specified
are met), Continuous Delivery for PE deletes the child environment group, moves the HEAD of the target branch in
your source control repository to point to your chosen commit, and deletes the temporary Git branch created at the
beginning of this process.  

Temporary branch deployment policy parameters

The following optional parameters are available to customize the behavior of your temporary branch deployment. Set
these parameters in the web UI when creating a new deployment using the temporary branch deployment policy, or
add them to the your .cd4pe.yaml file as part of a deployment step type declaration.
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Parameter Description Required? Default value Value type

batch_delay How many seconds
to wait between each
deployment batch.

no 60 integer

batch_size How many nodes
to include in a
deployment batch.

no 10 integer

max_node_failureThe maximum
number of nodes
that can fail before
the deployment is
stopped and reported
as a failure.

no - integer

noop Whether to perform
the Puppet runs in no-
op mode.

no false Boolean

fail_if_no_nodesWhether the
deployment should
fail if there are
no nodes in the
target node group or
environment.

no true Boolean

Eventual consistency policy
The eventual consistency policy is designed for situations in which you wish to deploy new Puppet code, but prefer to
wait for nodes to check in on their regular schedule to pick up the changes, rather than kicking off a dedicated Puppet
run with the orchestrator. By using this policy, impacted nodes all eventually reach consistency with the new code.

When you kick off a deployment using the eventual consistency policy, Continuous Delivery for PE performs the
following steps:

Step 1: puppet-code deploy

Using  Code Manager,  Continuous Delivery for PE synchronizes the selected code change with your  PE instance by
running puppet-code deploy on  Puppet Server.

Step 2: Code changes are implemented during the next round of scheduled Puppet runs

The new code is delivered to the impacted nodes the next time they check in according to their established schedule.

Eventual consistency deployment policy parameters

The eventual consistency deployment policy does not have any optional or required policy parameters.

Feature branch deployment policy
The feature branch deployment policy is used only in regex branch pipelines. Code changes you've made in a feature
branch are deployed to a Puppet environment with the same name as the feature branch.

When you kick off a deployment to a regex branch pipeline using the feature branch deployment policy, Continuous
Delivery for PE performs the following steps:

Step 1: puppet-code deploy

Using Code Manager, Continuous Delivery for PE deploys the commit in the pipeline to a Puppet environment with
the same name as the branch that triggered the pipeline. If an environment with this name doesn't already exist,
Continuous Delivery for PE creates it during the deployment.
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Feature branch deployment policy parameters

The feature branch deployment policy does not have any optional or required policy parameters.

Creating custom deployment policies
If the built-in deployment policies included in Continuous Delivery for PE don't align with the way your organization
works with Puppet Enterprise, you can write a custom deployment policy tailored to your needs.

CAUTION:  Custom deployment policies are a beta feature. As such, they may not be fully documented or
work as expected; please explore them at your own risk.

In a custom deployment policy, you declare the steps that need to happen in order to deploy your Puppet code
changes. Because custom deployment policies leverage Bolt plans, you can configure your policies to automate the
processes that make up your current deployment workflow. This means your custom policies can include:

• Git processes in your source control provider of choice
• Changes to your node groups with Puppet orchestrator
• Bolt tasks and plans
• Automatic notifications via the third-party services you use daily, such as Slack and ServiceNow

The puppetlabs-cd4pe_deployments module is built into Continuous Delivery for PE, so you don't need to
download or install anything in order to use custom deployment policies. To see the full list of what's available for
inclusion in your custom deployment policy, see the documentation for the puppetlabs-cd4pe_deployments
module.

If you need some inspiration, see how the deployment policies built into Continuous Delivery for PE look when
written in custom deployment policy format.

Custom deployment policy prerequisites and cautions

• In order for your custom deployment policies to be available for use in the web UI, you must have webhooks
enabled between Continuous Delivery for PE and your source control system.

• Do not include sensitive parameters in your custom deployment policy if you use the custom deployment policy in
a pipeline managed with code.

Add a custom deployment policy to your control repo
Each custom deployment policy file you create must be stored in a module named deployments in the control repo
that will utilize the policy.

Before you begin
Decide which branch in your control repo will house your custom deployment policies. By default, Continuous
Delivery for PE looks for custom deployment policies on the production branch.

If your control repo doesn't have a production branch, or if you prefer to store custom deployment policies on
a different branch, tell Continuous Delivery for PE where to look for your custom deployment policies by using
the deployment_policy_branch setting of the config section of .cd4pe.yaml file. For details, see
Structuring a .cd4pe.yaml file.

Important:  If you don't store your custom deployment policies on the production branch, you must manage your
control repo's pipelines with a .cd4pe.yaml file in order to use them.
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1. In your control repo, on the production branch (or the branch you've set as the
deployment_policy_branch in your .cd4pe.yaml file), create a new Puppet module named
deployments.

In order for Continuous Delivery for PE to find and run your custom deployment policies correctly, this module
must live in the /modules, /site, or /site-modules directory of your control repo.

2. Add your custom deployment policy file to the /plans directory in the deployments module.

Deploy code manually
Use the manual deployment workflow to push a code change to a specified group of nodes on demand.

1. In the Continuous Delivery for PE web UI, click Control repos, then select the control repo you wish to deploy
from.

2. Click Manual actions and select New deployment.

3. Select the branch on which you made the change you're going to deploy, the commit you want to deploy, and your
Puppet Enterprise instance.

Note:  If you're creating an on-demand deployment for a regex branch pipeline, the commit at the HEAD of your
feature branch is selected for you.

4. Select the Puppet environment you wish to deploy the change to.

5. Select a deployment policy.

See Deployment policies to learn more about the deployment policies and how they work.

6. Optional: Set termination conditions for this deployment, and choose the number of nodes that can fail before the
deployment is stopped.

7. Give the deployment a name, then click Deploy.

Monitor the progress of your deployment on the deployment details page that opens when you launch the
deployment.

Deploy module code
You can deploy new module code to your Puppet environments via a Continuous Delivery for PE module pipeline.
To do so, you must first add a :branch => :control_branch declaration to the module's entry in your control
repo's Puppetfile.

Module code is deployed to your Puppet environments using the eventual consistency deployment policy. When you
trigger a module deployment, Continuous Delivery for PE creates a new branch in your module repository with the
same name as your target Puppet environment. This new branch contains the code to be deployed.

Continuous Delivery for PE then triggers Code Manager, which reads the :branch => :control_branch
declaration referring to the module in the control repo's Puppetfile and adds the new module code to the control repo.
The new module code is now ready to be deployed to your chosen Puppet environments on the next scheduled Puppet
run.

1. Open the Puppetfile that includes the module you wish to deploy. Add a :branch => :control_branch
declaration to the module's section of the Puppetfile, as in the following example.

mod 'apache',
  :git    => 'https://github.com/puppetlabs/puppetlabs-apache',
  :branch => :control_branch, 
  :default_branch => 'master'

To learn more about the :branch => :control_branch option, see Declare content from a relative control
repo branch in the Code Manager documentation.
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2. In the Continuous Delivery for PE web UI, click Modules and select the module you wish to deploy.

3. If you haven't already done so, create a pipeline for your module.

4. Click + Add stage. Select Module deployment.

5. Select your PE instance and choose the Puppet environment the module code will be deployed to.

6. Click Add deployment.

Your module pipeline is now set up to deploy new module code to your chosen Puppet environments any time the
pipeline is triggered.

Require approval for deployments to protected Puppet environments
If your organization's business processes require manual review and approval before Puppet code is deployed to
certain environments, set up an approval group of individuals with the authority to provide the needed review and
sign-off. These approvers are contacted each time a deployment to a protected environment is proposed.

Before you begin
Make sure SMTP has been configured for your Continuous Delivery for PE installation. For instructions, see
Configure SMTP.

Enabling a manual approval checkpoint on deployments to protected Puppet environments is a two-step process. First,
designate the Continuous Delivery for PE users with the authority to approve or reject deployment requests. Next,
designate the Puppet environments that require manual deployment approval.

Important:  Designating approvers requires super user permissions.

1. Create an approval group. The members of this group review all proposed deployments to the environments you
designate as protected and manually approve or decline each deployment.

a) In the Continuous Delivery for PE web UI, click Settings.
b) In the Groups tab, click + Create new group.
c) Enter a name (such as Approval) and description for your new group, then click Save.
d) In each permissions category, select the permissions you wish to assign to the approval group and click Save

and add users.

Important:  At a minimum, the approval group must have the List permission for Control repos in order to
view and approve or deny deployments.

e) On the Add users page, add the individuals with the authority to approve or deny deployments to protected
environments.

• Search for users by username or email address.

2. Designate which Puppet environments require deployment approval.

a) Click the Puppet Enterprise tab.
b) Click the number (likely "0") in the Protected environments column for your PE instance.
c) Select the Puppet environment that requires deployment approval.
d) Select the approval group you created in step 1.
e) Click Add.
f) If necessary, repeat these steps to designate additional environments as protected, then click Done.

Now that this set-up process is complete, each time a deployment to the protected environment is triggered, either
manually or through a pipeline run, the members of the approval group receive an email and a message in the
message center alerting them that approval of the deployment is required.

A member of the approval group must review the deployment's details page and click Provide approval decision.
After they approve or decline the deployment, a record of their decision is added to the deployment's details page.
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Troubleshooting

Use this guide to troubleshoot issues with your Continuous Delivery for Puppet Enterprise (PE) installation.

Note:  For PE instances with a replica configured for disaster recovery. In the event of a partial failover,
Continuous Delivery for PE is not available. Learn more at What happens during failovers in the PE documentation.
To restore Continuous Delivery for PE functionality, you must promote the replica to primary server.

Stopping and restarting the Continuous Delivery for PE container
Continuous Delivery for PE is run as a Docker container, so stopping and restarting the container is an appropriate
first step when troubleshooting.

If you installed Continuous Delivery for PE with the cd4pe module:

• Stop the container: service docker-cd4pe stop
• Restart the container: service docker-cd4pe start

If you installed Continuous Delivery for PE from the PE console and installed the cd4pe module to automate
upgrades:

• Stop the container: service docker-cd4pe stop
• Restart the container: service docker-cd4pe start

If you installed Continuous Delivery for PE using Docker, or if you installed from the PE console but have not
installed the cd4pe module:

• Stop the container: docker stop <CONTAINER_NAME>
• Restart the container: docker run <CONTAINER_NAME>, passing in any applicable environment variables

Note:  To print the name of the container, run docker ps.

Accessing the Continuous Delivery for PE logs
Because Continuous Delivery for PE is run as a container in Docker, the software's logs are housed in Docker.

To access the Continuous Delivery for PE logs, run docker logs <CONTAINER_NAME>.

Note:  To print the name of the container, run docker ps.

If you installed the software using the cd4pe module, run docker logs cd4pe.

PE component errors in Docker logs

The Docker logs include errors for both Continuous Delivery for PE and for the numerous PE components used
by the software. It’s important to realize that an error in the Continuous Delivery for PE Docker log may actually
indicate an issue with Code Manager, r10k, or another component running outside the Docker container.

For example, this Docker log output indicates a Code Manager issue:

Module Deployment failed for
 PEModuleDeploymentEnvironment[nodeGroupBranch=cd4pe_lab, 
nodeGroupId=a923c759-3aa3-43ce-968a-f1352691ca02, nodeGroupName=Lab
 environment, 
peCredentialsId=PuppetEnterpriseCredentialsId[domain=d3, name=lab-MoM], 
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pipelineDestinationId=null, targetControlRepo=null,
 targetControlRepoBranchName=null, 
targetControlRepoHost=null, targetControlRepoId=null]. 
Puppet Code Deploy failure: Errors while deploying environment
 'cd4pe_lab' (exit code: 1): 
ERROR -> Unable to determine current branches for Git source 'puppet' (/etc/
puppetlabs/code-staging/environments) 
Original exception: malformed URL 'ssh://git@bitbucket.org:mycompany/
control_lab.git' 
at /opt/puppetlabs/server/data/code-manager/worker-caches/deploy-pool-3/
ssh---git@bitbucket.org-mycompany-control_lab.git

For help resolving issues with PE components, see the Puppet Enterprise troubleshooting documentation.

Error IDs in web UI error messages

Occasionally, error messages shown in the Continuous Delivery for PE web UI include an error ID and instructions to
contact the site administrator. For example:

Errors of this kind are shown without additional detail for security purposes. Users with root access to the Continuous
Delivery for PE host system can search the Docker log for the error ID to learn more.

Duplicate job logs after reinstall

A job's log is housed in object storage after the job is complete. If you reinstall Continuous Delivery for PE but reuse
the same object storage without clearing it, you might notice logs for multiple jobs with the same job number, or job
logs already present when a new job has just started.

To remove duplicate job logs and prevent their creation, make sure you clear both the object storage and the database
when reinstalling Continuous Delivery for PE.

Name resolution
Inside its Docker container, Continuous Delivery for PE relies on its host's DNS system for name resolution. Many
can't reach and timeout connecting errors reported in the Docker logs are actually DNS lookup failures.

To address name resolution in Continuous Delivery for PE, you have two options:

1. Set up a DNS server for Continuous Delivery for PE that includes all the required hosts.
2. Use the cd4pe_docker_extra_params flag to add hostnames to the container's /etc/hosts file. The

value will be an array of strings in the format --add-host <HOSTNAME>:<IP_ADDRESS>. For example:

["--add-host pe-201920-master.mycompany.vlan:10.234.3.142", "--
add-host pe-201920-agent.mycompany.vlan:10.234.3.110", "--add-host
 gitlab.mycompany.vlan:10.32.3.110"]

See Advanced configuration options for more information.
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If you need a temporary workaround to solve a name resolution issue, you can edit the Docker container's /etc/
hosts file directly. However, these changes will be erased whenever the Docker container restarts, so this method
should not be used as a permanent solution.

Improving job performance by caching Git repositories
Users with large Git repositories can enable Git repository caching in order to improve job performance. By default,
repository caching is disabled.

To enable Git repository caching, set CD4PE_ENABLE_REPO_CACHING=TRUE as a value for the
cd4pe_docker_extra_params parameter on the cd4pe class.

Note:  To pass additional arguments to the Docker process running the Continuous Delivery
for PE container, you must specify them as an array. For example: ["--add-host
gitlab.puppetdebug.vlan:10.32.47.33","-v /etc/puppetlabs/cd4pe/
config:/config","--env-file /etc/puppetlabs/cd4pe/env-extra","-e
CD4PE_LDAP_GROUP_SEARCH_SIZE_LIMIT=250"]

Including the .git directory in cached repositories

Beginning with version 3.12.0, the .git directory is automatically omitted when copying cached Git repositories to
job hardware. This means that the job cannot perform Git actions on the code. If needed, you can adjust this setting so
that the .git directory is included in the cached repository.

To include the .git directory in copies of cached Git repositories sent to job hardware,
set CD4PE_INCLUDE_GIT_HISTORY_FOR_CD4PE_JOBS=TRUE as a value for the
cd4pe_docker_extra_params parameter on the cd4pe class.

Adjusting the timeout period for jobs
In some circumstances, such as when working with large Git repositories, you may need to adjust the length of the job
timeout period. Use the environment variables in this section to customize your job timeout period.

To use any of the environment variables in this section, set them as a value for the
cd4pe_docker_extra_params parameter on the cd4pe class.

Note:  To pass additional arguments to the Docker process running the Continuous Delivery
for PE container, you must specify them as an array. For example: ["--add-host
gitlab.puppetdebug.vlan:10.32.47.33","-v /etc/puppetlabs/cd4pe/
config:/config","--env-file /etc/puppetlabs/cd4pe/env-extra","-e
CD4PE_LDAP_GROUP_SEARCH_SIZE_LIMIT=250"]

Variable Description Default value

CD4PE_JOB_GLOBAL_TIMEOUT_MINUTESSets the default timeout period
for jobs. Once this timeout period
elapses, the job fails and a timeout
message is printed to the log.

12 (minutes)
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Variable Description Default value

CD4PE_JOB_HTTP_READ_TIMEOUT_MINUTESSets the timeout period for a job
connecting to an endpoint.

11 (minutes)

CD4PE_REPO_CACHE_RETRIEVAL_TIMEOUT_MINUTESOnly used if Git repository caching
is enabled. Sets the timeout period
for a thread attempting to access a
cached Git repository.

10 (minutes)

CD4PE_BOLT_PCP_READ_TIMEOUT_SECSets the Bolt PCP read timeout
period.

Note:  Jobs cannot proceed while
file sync is running. If a file sync
operation is not completed before
the Bolt PCP read timeout period
elapses, the job fails. Increase the
Bolt PCP read timeout period to
prevent these job failures.

60 (seconds)

In order to ensure that all useful error messages are printed to the logs, make sure that
the value of CD4PE_JOB_GLOBAL_TIMEOUT_MINUTES is larger than the value of
CD4PE_JOB_HTTP_READ_TIMEOUT_MINUTES, and that both are larger than the value of
CD4PE_REPO_CACHE_RETRIEVAL_TIMEOUT_MINUTES.

Migrating 3.x data to 4.x

The Continuous Delivery for PE 4.x series runs on a managed Kubernetes cluster, so your 3.x series data must be
migrated to the new installation.

The migration process has four main steps:

1. Upgrade your existing 3.x installation to version 3.13.8.
2. Create a new installation of Continuous Delivery for PE version 4.x.
3. From the version 3.x root console, run the migration task.
4. Restart the 4.x installation, which is now populated with your 3.x data.

What gets migrated?

The migration task copies and migrates to 4.x:

• The database, which contains all your Continuous Delivery for PE 3.x installation's information, users,
integrations, history, and artifacts except job commands and job logs.

Note:  If you've configured your 4.x installation to use an externally managed PostgreSQL database, this step is
skipped.

• The object store, which contains all of your 3.x installation's job commands and job logs.

Note:  The 4.x series replaces external Artifactory and Amazon S3 object storage with a built-in highly available
object storage system. Your 3.x object store will be migrated to the built-in 4.x object store.
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• Any of the following configuration settings, if in use on 3.x:

CD4PE_REPO_CACHE_RETRIEVAL_TIMEOUT_MINUTES
CD4PE_LDAP_GROUP_SEARCH_SIZE_LIMIT
CD4PE_ENABLE_REPO_CACHING
CD4PE_HTTP_CONNECTION_TIMEOUT_SEC
CD4PE_HTTP_READ_TIMEOUT_SEC
CD4PE_HTTP_WRITE_TIMEOUT_SEC
CD4PE_HTTP_REQUEST_TIMEOUT_SEC
CD4PE_INCLUDE_GIT_HISTORY_FOR_CD4PE_JOBS
CD4PE_JOB_GLOBAL_TIMEOUT_MINUTES
CD4PE_JOB_HTTP_READ_TIMEOUT_MINUTES

The migration task updates in the 4.x installation:

• The webhooks between your source control system and the Continuous Delivery for PEbackend endpoint URL.

Note:  This step is optional when running the migration task. The migration task is designed to be safely run
more than once, so you can make sure your 4.x installation is ready for full-time use before you enable webhook
updates.

The migration task does not copy or move to 4.x:

• The 3.x root user, as you created a new root user when installing 4.x.
• The JVM_ARGS configuration setting, if in use on 3.x.
• Backup tables created for you by Continuous Delivery for PE during the 3.x series:

• app-pipelines-3-0-backup.pfi - created during the upgrade from 2.x to 3.x
• pe-ia-node-results-cve-2020-7944-backup.pfi and pe-ia-resource-results-

cve-2020-7944-backup.pfi - created as part of the CVE 2020-7944 remediation in version 3.4.0

Migration cautions

A super user or the root user must perform this process.

Migrating from a local database in a 3.x installation to an external database in a 4.x installation is not supported.

New data created in the 3.x installation during the migration process might not be migrated to the 4.x installation. If
data created during the migration process is missing after migration is complete, re-run the migration task.

The migration process is potentially memory-intensive, and can exceed the default Java heap size set by Continuous
Delivery for PE. If you encounter an out of memory error during the migration process, double the heap size
on your 4.x installation by adding Java virtual machine arguments such as the following on the Config page of the
platform admin console:

-Xms512m -Xmx1G

Run the migration task
The migration task uses temporary credentials to establish a connection between your 3.x and 4.x installations, then
migrates your 3.x installation data to a new 4.x installation.

Before you begin

1. Upgrade your 3.x installation to version 3.13.8. The migration task fails if you run it on any other 3.x version.
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2. Create a new 4.x installation.

a. Review the Puppet Application Manager system requirements.
b. Follow the instructions that match your environment to Install Puppet Application Manager.
c. According to your environment, either Configure and deploy Continuous Delivery for PE, or Configure and

deploy Continuous Delivery for PE in an offline environment.

CAUTION:  Do not perform any integrations or create any new data in the 4.x installation until migration
is complete.

3. Make sure that your 3.x installation can reach the Kubernetes API running on your 4.x installation.
4. If your new 4.x installation is behind a proxy, set both HTTP_PROXY and HTTPS_PROXY as values for the

cd4pe_docker_extra_params parameter on the cd4pe class for your 3.x installation, passing in the URL
of your proxy.

Note:  To pass additional arguments to the Docker process running the Continuous Delivery for PE container, you
must specify them as an array. For example: "-e HTTPS_PROXY=https://proxy.example.com", "-
e HTTP_PROXY=https://proxy.example.com"

1. In the platform admin console, click Config.

2. In the Migration area, select the We're migrating an existing Continuous Delivery for PE 3.x instance option.
Scroll to the bottom of the page and click Save config.

When this setting is enabled, data is allowed to move between your 3.x and 4.x installations.

3. When the success message appears, click Go to new version. On the Version history page, click Deploy.
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4. Generate the temporary credentials needed to connect the two installations. On the server where you installed 4.x,
run the following script:

#!/bin/bash
C_DEFAULT="\e[0m"
C_GREEN="\e[0;32m"

CD4PE_NAMESPACE="default"

K8S_SERVER_URL="$(kubectl config view --minify -o
 jsonpath='{.clusters[*].cluster.server}')"
K8S_TOKEN="$(kubectl -n $CD4PE_NAMESPACE get secret $(kubectl -n
 $CD4PE_NAMESPACE get secrets | grep ^cd4pe-migration | cut -f1 -d ' ') -o
 jsonpath="{['data']['token']}")"
if [ -z "${K8S_TOKEN}" ]; then
  printf "Kubernetes token not found.  Check to ensure 'Enable
 migration of an existing CD4PE instance' is checked in the application
 configuration\n"
  exit -1
fi

K8S_CA_CERT="$(kubectl config view --raw --minify -o
 jsonpath='{.clusters[*].cluster.certificate-authority-data}')"

printf "${C_GREEN}Kubernetes API server URL:${C_DEFAULT}\n\n%s\n\n" \
  "${K8S_SERVER_URL}"

printf "${C_GREEN}Kubernetes service account token:${C_DEFAULT}\n\n%s\n\n"
 \
  "${K8S_TOKEN}"

printf "${C_GREEN}Kubernetes API CA certificate:${C_DEFAULT}\n\n%s\n\n" \
  "${K8S_CA_CERT}"

Note:  If necessary, change the value of the CD4PE_NAMESPACE variable to your installation's namespace. Most
installations use the default namespace.

5. In the Continuous Delivery for PE root console of your 3.x installation, navigate to Settings > Migration. Copy
the credentials you generated in step 4 into the appropriate fields.

6. Click Start migration and confirm your settings.

7. Monitor the status of the migration task in the 3.x Docker logs. Access the logs by running docker logs
cd4pe.

The migration task first migrates your database tables, then your object store, and finally updates your webhooks,
if applicable. When complete, a Ran migration task in <time elapsed> message is printed to the
log.

8. Next, redeploy the 4.x installation. In the platform admin console, click Config.

9. In the Migration area, deselect the We're migrating an existing Continuous Delivery for PE 3.x instance
option. Click Save config.

10. When the success message appears, click Go to new version. On the Version history page, locate the newly
created version and click Deploy. Navigate to the 4.x installation, which now is populated with migrated data, and
log in with your 3.x user credentials (not the root account).

Test the new 4.x installation
It's extremely important to thoroughly test the 4.x installation to make sure that the data has been properly migrated
and all functionality is working as expected before moving on.
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1. Test the data migration. Make sure that the data from your 3.x installation is now present in your 4.x installation
by completing the following for each workspace in your 4.x installation:

• Review the event logs for all control repos and modules
• Check that all jobs and hardware connections are present
• Check that all users and user groups are present

2. If you discover that any data is missing or looks incorrect, rerun the migration task.

Note:  Each time it runs, the migration task deletes any database tables it finds in the 4.x installation and recreates
the tables from the 3.x installation's current status.

3. Test manual pipeline runs. To make sure that the 4.x installation is functioning properly, trigger a manual
pipeline run for each control repo and module in each workspace in your 4.x installation.

Run a pipeline manually by selecting Trigger pipeline from the Manual actions menu located above the
pipeline.

4. When you've confirmed that all your 3.x data is present in the 4.x installation and manual pipeline runs complete
successfully, move on to the next migration step: updating webhooks.

Update webhooks
As a final step in the 3.x to 4.x data migration process, or any time you change the location of your Continuous
Delivery for PE installation, update the webhooks that connect Continuous Delivery for PE with your source control
provider.

1. In the Continuous Delivery for PE 4.x root console, click Settings > Webhooks.

2. Enter the backend service endpoint of your previous Continuous Delivery for PE installation.

If you're updating webhooks as the final step in a 3.x to 4.x data migration, enter the backend service endpoint
shown on the Settings > Endpoints page in the 3.x root console.

3. Click Update webhooks.

Continuous Delivery for PE updates all webhooks to point to the current installation.

Once you update your webhooks to point to the 4.x installation, do not create new data in the 3.x installation, and do
not run the migration task again.

Post-migration next steps and troubleshooting
Once your 3.x data is migrated, the 4.x installation has been thoroughly tested, and webhooks are updated, you're
ready to begin using 4.x with your team. However, you should not immediately decommission your 3.x installation,
as it may be necessary to roll back to 3.x if issues arise.

Keep your 3.x installation intact until you are fully confident that all features of the new 4.x installation are working
as expected. As a precautionary measure, we strongly advise maintaining the inactive 3.x installation for the
first two months of using 4.x.

Maintaining the dormant 3.x installation for an extended test period allows you to roll back to 3.x and prevent
production environment disruptions in the event that an issue arises with your 4.x migration.

Rolling back to the 3.x installation

If necessary, you can temporarily roll back to the 3.x installation by switching the active webhooks from the 4.x
installation to the 3.x installation and generating new access tokens for all PE instances connected with the 3.x
installation.

1. In your 3.x installation, navigate to a control repo's pipeline and click Manage pipelines.
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2. Select Manage in the web UI and locate the Automation webhook section, where the webhook (including
token) for your control repo is printed.

3. Copy the webhook and navigate to the corresponding repository in your source control provider. Add the
webhook to the repository and remove the webhook that points to the 4.x installation.

4. Repeat this process for each control repo and module repo in your 3.x installation.
5. Generate a new access token for each PE instance connected with the 3.x installation by navigating to Settings >

Puppet Enterprise and clicking Edit credentials .
6. Select Basic authorization or API token and enter the required information:

• For Basic authorization, enter the username and password for your "Continuous Delivery" user. Continuous
Delivery for PE uses this information to generate an API token for you. The username and password are not
saved.

• For API token, generate a PE access token for your "Continuous Delivery" user using puppet-access or
the RBAC v1 API, and paste it into the API token field. For instructions on generating an access token, see
Token-based authentication.

Note:  To avoid unintended service interruptions, create an access token with a multi-year lifespan.

Once the 3.x webhooks and new PE access tokens are in place, you can resume using the 3.x installation.

When you're ready to return to 4.x, repeat the migration process from the beginning.
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