
Open source Puppet 6.28.0

Puppet | Contents | ii

Contents

Puppet 6.28.0... 8
Introduction to Puppet.. 8

What is Puppet?..8
Why use Puppet desired state management?... 9
Key concepts behind Puppet.. 10
The Puppet platform... 10
Open source Puppet vs Puppet Enterprise (PE)...13
The Puppet ecosystem.. 13
Use cases...14

Puppet platform lifecycle... 15
Navigating the documentation..18
Archived Puppet documentation.. 19
Glossary...19

Release notes..20
Puppet release notes... 20
Puppet known issues...85
Puppet Server release notes..86

Puppet Server 6.20.0...86
Puppet Server 6.19.0...86
Puppet Server 6.18.0...87
Puppet Server 6.17.1...87
Puppet Server 6.17.0...87
Puppet Server 6.16.1...88
Puppet Server 6.16.0...88
Puppet Server 6.15.3...89
Puppet Server 6.15.1...89
Puppet Server 6.15.0...89
Puppet Server 6.14.1...89
Puppet Server 6.14.0...89
Puppet Server 6.13.0...90
Puppet Server 6.12.1...90
Puppet Server 6.12.0...90
Puppet Server 6.11.1...90
Puppet Server 6.11.0...91
Puppet Server 6.10.0...91
Puppet Server 6.9.2...91
Puppet Server 6.9.1...91
Puppet Server 6.9.0...91
Puppet Server 6.8.0...92
Puppet Server 6.7.2...92
Puppet Server 6.7.1...92
Puppet Server 6.7.0...92
Puppet Server 6.6.0...92
Puppet Server 6.5.0...93
Puppet Server 6.4.0...94
Puppet Server 6.3.0...94
Puppet Server 6.2.1...94

Puppet | Contents | iii

Puppet Server 6.2.0...94
Puppet Server 6.1.0...95
Puppet Server 6.0.0...95

Puppet Server known issues...96
Access CA endpoint to update CRLs.. 96
Cipher updates in Puppet Server 6.5..96
Server-side Ruby gems might need to be updated for upgrading from JRuby 1.7................................ 97
Potential JAVA ARGS settings..97
tmp directory mounted noexec...97
Puppet Server Primary Server Fails to Connect to Load-Balanced Servers with Different SSL

Certificates...98
Facter release notes...98
Facter known issues..105

Installing and configuring..107
Installing and upgrading... 107

System requirements...107
Installing Puppet... 109
Installing and configuring agents... 111
Manually verify packages...120
Managing Platform versions...122
Upgrading..122

Configuring Puppet settings... 125
Puppet settings.. 125
Key configuration settings..128
Puppet's configuration files.. 131
Configuring Puppet Server... 142
Adding file server mount points.. 161
Checking the values of settings..163
Editing settings on the command line..166
Configuration Reference...167
Differing behavior in puppet.conf..195

The Puppet platform.. 198
Puppet Server..199

About Puppet Server...199
Deprecated features...201
Primary server and agent compatibility... 207
Installing Puppet Server... 207
Configuring Puppet Server... 209
Differing behavior in puppet.conf..234
Using and extending Puppet Server... 238
Developer information.. 267
Puppet Server HTTP API...274
Metrics API endpoints..309
Status API endpoints.. 313
Server-specific Puppet API endpoints..316
Administrative API endpoints.. 326
Bootstrap upgrade notes... 327
Certificate authority and SSL...329

PuppetDB.. 349
Facter...350

Facter: Core Facts...350
Custom facts overview... 393

Puppet | Contents | iv

Writing custom facts...399
External facts.. 404
Configuring Facter with facter.conf... 407

Hiera.. 409
About Hiera...410
Getting started with Hiera.. 414
Configuring Hiera... 417
Creating and editing data... 425
Looking up data with Hiera... 433
Writing new data backends.. 438
Upgrading to Hiera 5..445

Environments...458
About environments..458
Creating environments.. 460
Environment isolation...464

Important directories and files..465
Code and data directory (codedir)..466
Config directory (confdir).. 467
Main manifest directory... 468
The modulepath.. 469
SSL directory (ssldir)... 471
Cache directory (vardir)..472

Puppet services and tools... 474
Puppet commands... 475
Running Puppet commands on Windows.. 477
primary Puppet server...481
Puppet agent on *nix systems..483
Puppet agent on Windows..486
Puppet apply... 490
Puppet device..492

Custom functions.. 498
Custom functions overview.. 498
Writing custom functions in the Puppet language... 499
Writing custom functions in Ruby...504
Deferring a function... 516

Classifying nodes.. 519
Puppet reports... 522

Reporting...522
Report reference..523
Writing custom report processors.. 524
Report format..525

Puppet's internals.. 531
Agent-server HTTPS communications...531
Catalog compilation.. 533

Developing Puppet code... 536
The Puppet language.. 536

Puppet language overview..538
Puppet language syntax examples..541
The Puppet language style guide... 546
Files and paths on Windows.. 570
Code comments...571
Variables..571
Resources...574
Resource types.. 582

Puppet | Contents | v

Relationships and ordering... 728
Classes...733
Defined resource types... 740
Bolt tasks...744
Expressions and operators.. 744
Conditional statements and expressions...754
Function calls..760
Built-in function reference..763
Node definitions..842
Facts and built-in variables.. 844
Reserved words and acceptable names.. 850
Custom resources.. 855
Values, data types, and aliases...885
Templates.. 934
Advanced constructs... 949
Details of complex behaviors...964
Securing sensitive data... 972

Modules...975
Modules overview...975
Plug-ins in modules.. 979
Module cheat sheet... 980
Installing and managing modules from the command line..982
Beginner's guide to writing modules..990
Module metadata...995
Documenting modules.. 1001
Documenting modules with Puppet Strings...1005
Puppet Strings style guide..1012
Publishing modules...1018
Contributing to Puppet modules...1021

Designing system configs: roles and profiles.. 1025
The roles and profiles method..1025
Roles and profiles example.. 1028
Designing advanced profiles.. 1030
Designing convenient roles.. 1047

Puppet Forge... 1050
Puppet Development Kit (PDK).. 1050
Puppet VSCode extension.. 1050

Orchestration in Puppet... 1051

Example configurations..1051
Manage NTP... 1051
Manage sudo... 1054
Manage DNS...1058
Manage firewall rules... 1061
Forge examples... 1064

References.. 1065
Experimental features... 1065

Msgpack support...1066
Configuration Reference...1067

Configuration settings...1067
Metaparameter reference.. 1096

Puppet | Contents | vi

Built-in function reference..1100
undef values in Puppet 6... 1100
abs..1100
alert...1101
all..1101
annotate..1102
any..1103
assert_type...1104
binary_file...1105
break...1105
call... 1105
camelcase... 1106
capitalize...1107
ceiling.. 1108
chomp...1108
chop... 1108
compare.. 1109
contain.. 1110
convert_to...1110
create_resources...1110
crit... 1111
debug...1111
defined.. 1111
dig..1113
digest...1113
downcase..1113
each... 1114
emerg...1116
empty...1116
epp..1116
err..1117
eyaml_lookup_key...1117
fail... 1117
file... 1117
filter...1117
find_file... 1119
find_template..1119
flatten.. 1120
floor...1120
fqdn_rand... 1121
generate..1121
get..1121
getvar...1122
group_by..1123
hiera...1124
hiera_array...1125
hiera_hash...1126
hiera_include..1127
hocon_data...1128
import...1128
include.. 1128
index...1129
info... 1130
inline_epp...1130
inline_template...1131
join... 1131

Puppet | Contents | vii

json_data... 1132
keys... 1132
length...1132
lest... 1132
lookup...1133
lstrip...1135
map..1135
match...1136
max..1137
md5..1138
min..1138
module_directory...1139
new..1140
next... 1156
notice...1157
partition... 1157
realize.. 1157
reduce...1158
regsubst..1159
require.. 1161
return...1161
reverse_each.. 1162
round...1163
rstrip...1163
scanf...1163
sha1... 1164
sha256...1164
shellquote...1164
size... 1164
slice...1164
sort... 1165
split...1166
sprintf.. 1166
step... 1166
strftime..1167
strip...1170
tag..1171
tagged...1171
template..1171
then... 1171
tree_each... 1172
type... 1175
unique...1175
unwrap...1177
upcase...1177
values...1178
versioncmp...1178
warning.. 1179
with... 1179
yaml_data... 1179

Puppet Man Pages.. 1179
Core Tools...1179
Secondary subcommands..1180
Niche subcommands... 1180

Puppet | Welcome to Puppet 6.28.0 | 8

Welcome to Puppet 6.28.0

Puppet provides tools to automate managing your infrastructure. Puppet is an open source product with a vibrant
community of users and contributors. You can get involved by fixing bugs, influencing new feature direction,
publishing your modules, and engaging with the community to share knowledge and expertise.

Helpful Puppet docs links Other useful links

Getting started

Introduction to Puppet

Release notes

Glossary

Install and configure Puppet

Install Puppet

Configure Puppet settings

Puppet platform

Puppet Server

PuppetDB

Facter

Develop Puppet code

Puppet language

Modules overview

Docs for related Puppet products

Bolt

Puppet Enterprise

Continuous Delivery for Puppet Enterprise

Puppet Development Kit

Puppet VSCode exention

Share and contribute

Puppet Forge

Puppet Community

Open source projects on GitHub

Learn more about Puppet

Blog posts about Puppet

Puppet training

Introduction to Puppet
Welcome to the open source Puppet documentation!

This introduction is intended for new users to Puppet. We go over what Puppet is, what problems it solves, and the
concepts and practices that are key to being successful with Puppet.

What is Puppet?
Puppet is a tool that helps you manage and automate the configuration of servers.

When you use Puppet, you define the desired state of the systems in your infrastructure that you want to manage.
You do this by writing infrastructure code in Puppet's Domain-Specific Language (DSL) — Puppet Code — which
you can use with a wide array of devices and operating systems. Puppet code is declarative, which means that you
describe the desired state of your systems, not the steps needed to get there. Puppet then automates the process of
getting these systems into that state and keeping them there. Puppet does this through Puppet primary server and a
Puppet agent. The Puppet primary server is the server that stores the code that defines your desired state. The Puppet
agent translates your code into commands and then executes it on the systems you specify, in what is called a Puppet
run.

The diagram below shows how the server-agent architecture of a Puppet run works.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/7/server/about_server.html
https://puppet.com/docs/puppetdb/
https://puppet.com/docs/bolt/
https://puppet.com/docs/pe/latest/
https://puppet.com/docs/continuous-delivery/
https://puppet.com/docs/pdk/
https://puppet-vscode.github.io/docs/
https://forge.puppet.com/
https://puppet.com/community
https://github.com/puppetlabs/
https://puppet.com/blog/category/puppet/
https://puppet.com/support-services/training

Puppet | Welcome to Puppet 6.28.0 | 9

The primary server and the agent are part of the Puppet platform, which is described in The Puppet platform — along
with facts, catalogs and reports.

Why use Puppet desired state management?
There are many benefits to implementing a declarative configuration tool like Puppet into your environment — most
notably consistency and automation.

• Consistency. Troubleshooting problems with servers is a time-consuming and manually intensive process.
Without configuration management, you are unable to make assumptions about your infrastructure — such as
which version of Apache you have or whether your colleague configured the machine to follow all the manual
steps correctly. But when you use configuration management, you are able to validate that Puppet applied the
desired state you wanted. You can then assume that state has been applied, helping you to identify why your
model failed and what was incomplete, and saving you valuable time in the process. Most importantly, once you
figure it out, you can add the missing part to your model and ensure that you never have to deal with that same
problem again.

• Automation. When you manage a set of servers in your infrastructure, you want to keep them in a certain state.
If you only have to manage homogeneous 10 servers, you can do so with a script or by manually going into each
server. In this case, a tool like Puppet may not provide much extra value. But if you have 100 or 1,000 servers, a
mixed environment, or you have plans to scale your infrastructure in the future, it is difficult to do this manually.
This is where Puppet can help you — to save you time and money, to scale effectively, and to do so securely.

Check out the following video of how a DevOps engineer uses Puppet:

© 2024 Puppet, Inc., a Perforce company

Puppet | Welcome to Puppet 6.28.0 | 10

Key concepts behind Puppet
Using Puppet is not just about the tool, but also about a different culture and a way of working. The following
concepts and practices are key to using and being successful with Puppet.

Infrastructure-as-code

Puppet is built on the concept of infrastructure-as-code, which is the practice of treating infrastructure as if it were
code. This concept is the foundation of DevOps — the practice of combining software development and operations.
Treating infrastructure as code means that system administrators adopt practices that are traditionally associated with
software developers, such as version control, peer review, automated testing, and continuous delivery. These practices
that test code are effectively testing your infrastructure. When you get further along in your automation journey, you
can choose to write your own unit and acceptance tests — these validate that your code, your infrastructure changes,
do as you expect. To learn more about infrastructure-as-code and how it applies to Puppet, see our blog What is
infrastructure as code?.

Idempotency

A key feature of Puppet is idempotency — the ability to repeatedly apply code to guarantee a desired state on a
system, with the assurance that you will get the same result every time. Idempotency is what allows Puppet to run
continuously. It ensures that the state of the infrastructure always matches the desired state. If a system state changes
from what you describe, Puppet will bring it back to where it is meant to be. It also means that if you make a change
to your desired state, your entire infrastructure automatically updates to match. To learn more about idempotency, see
our Understanding idempotency documentation.

Agile methodology

When adopting a tool like Puppet, you will be more successful with an agile methodology in mind — working in
incremental units of work and reusing code. Trying to do too much at once is a common pitfall. The more familiar
you get with Puppet, the more you can scale, and the more you get used to agile methodology, the more you can
democratize work. When you share a common methodology, a common pipeline, and a common language (the
Puppet language) with your colleagues, your organization becomes more efficient at getting changes deployed
quickly and safely.

Git and version control

Git is a version control system that tracks changes in code. While version control is not required to use Puppet, it
is highly recommended that you store your Puppet code in a Git repository. Git is the industry standard for version
control, and using it will help your team gain the benefits of the DevOps and agile methodologies

When you develop and store your Puppet code in a Git repository, you will likely have multiple branches — feature
branches for developing and testing code and a production branch for releasing code. You test all of your code on
a feature branch before you merge it to the production branch. This process, known as Git flow, allows you to test,
track, and share code, making it easier to collaborate with colleagues. For example, if someone on your team wants
to make a change to an application's firewall requirements, they can create a pull request that shows their proposed
changes to the existing code, which everyone on your team can review before it gets pushed to production. This
process leaves far less room for errors that could cause an outage. For more information on version control, see the
GitHub guides Git flow and What is version control?.

The Puppet platform
Puppet is made up of several packages. Together these are called the Puppet platform, which is what you use to
manage, store and run your Puppet code. These packages include puppetserver, puppetdb, and puppet-
agent — which includes Facter and Hiera.

Puppet is configured in an agent-server architecture, in which a primary node (system) controls configuration
information for one or more managed agent nodes. Servers and agents communicate by HTTPS using SSL
certificates. Puppet includes a built-in certificate authority for managing certificates. Puppet Server performs the role
of the primary node and also runs an agent to configure itself.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/blog/what-is-infrastructure-as-code/
https://puppet.com/blog/what-is-infrastructure-as-code/
https://puppet.com/docs/pe/2019.2/understanding_idempotency.html
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/git-handbook/

Puppet | Welcome to Puppet 6.28.0 | 11

Facter, Puppet’s inventory tool, gathers facts about an agent node such as its hostname, IP address, and operating
system. The agent sends these facts to the primary server in the form of a special Puppet code file called a manifest.
This is the information the primary server uses to compile a catalog — a JSON document describing the desired state
of a specific agent node. Each agent requests and receives its own individual catalog and then enforces that desired
state on the node it's running on. In this way, Puppet applies changes all across your infrastructure, ensuring that each
node matches the state you defined with your Puppet code. The agent sends a report back to the primary server.

You keep nearly all of your Puppet code, such as manifests, in modules. Each module manages a specific task in your
infrastructure, such as installing and configuring a piece of software. Modules contain both code and data. The data
is what allows you to customize your configuration. Using a tool called Hiera, you can separate the data from the
code and place it in a centralized location. This allows you to specify guardrails and define known parameters and
variations, so that your code is fully testable and you can validate all the edge cases of your parameters. If you have
just joined an existing team that uses Puppet, take a look at how they organize their Hiera data.

All of the data generated by Puppet (for example facts, catalogs, reports) is stored in the Puppet database
(PuppetDB). Storing data in PuppetDB allows Puppet to work faster and provides an API for other applications
to access Puppet's collected data. Once PuppetDB is full of your data, it becomes a great tool for infrastructure
discovery, compliance reporting, vulnerability assessment, and more. You perform all of these tasks with PuppetDB
queries.

The diagram below shows how the Puppet components fit together.

© 2024 Puppet, Inc., a Perforce company

Puppet | Welcome to Puppet 6.28.0 | 12

© 2024 Puppet, Inc., a Perforce company

Puppet | Welcome to Puppet 6.28.0 | 13

Related information
Facter on page 350
Facter is Puppet’s cross-platform system profiling library. It discovers and reports per-node facts, which are available
in your Puppet manifests as variables.

Hiera on page 409
Hiera is a built-in key-value configuration data lookup system, used for separating data from Puppet code.

Certificate authority and SSL on page 329
Puppet can use its built-in certificate authority (CA) and public key infrastructure (PKI) tools or use an existing
external CA for all of its secure socket layer (SSL) communications.

Open source Puppet vs Puppet Enterprise (PE)

Puppet Enterprise (PE) is the commercial version of Puppet and is built on top of the Puppet platform. Both products
allow you to manage the configuration of thousands of nodes. Open source Puppet does this with desired state
management. PE provides an imperative, as well as declarative, approach to infrastructure automation.

If you have a complex or large infrastructure that is used and managed by multiple teams, PE is a more suitable
option, as it provides a graphical user interface, point-and-click code deployment strategies, continuous testing and
integration, and the ability to predict the impact of code changes before deployment.

For more information on the differences between open source Puppet and PE, see our comparison page. For
additional information on PE, see the PE documentation.

The Puppet ecosystem
Alongside Puppet the configuration tool, there are additional Puppet tools and resources to help you use and be
successful. These make up the Puppet ecosystem

Install existing modules from Puppet Forge

Modules manage a specific technology in your infrastructure and serve as the basic building blocks of Puppet desired
state management. On the Puppet Forge, there is a module to manage almost any part of your infrastructure. Whether
you want to manage packages or patch operating systems, a module is already set up for you. See each module’s
README for installation instructions, usage, and code examples.

When using an existing module from the Forge, most of the Puppet code is written for you. You just need to install
the module and its dependencies and write a small amount of code (known as a profile) to tie things together. Take
a look at our Getting started with PE guide to see an example of writing a profile for an existing module. For more
information about existing modules, see the module fundamentals documentation and Puppet Forge.

Develop existing or new modules with Puppet Development Kit (PDK)

You can write your own Puppet code and modules using Puppet Development Kit (PDK), which is a framework to
successfully build, test and validate your modules. Note that most Puppet users won’t have to write full Puppet code
at all, though you can if you want to. For installation instructions and more information, see the PDK documentation.

Write Puppet code with the VSCode extension

The Puppet VSCode extension makes writing and managing Puppet code easier and ensures your code is high
quality. Its features include Puppet DSL intellisense, linting, and built-in commands. You can use the extension with
Windows, Linux, or macOS. For installation instructions and a full list of features, see the Puppet VSCode extension
documentation.

Run acceptance tests with Litmus

Litmus is a command line tool that allows you to run acceptance tests against Puppet modules for a variety of
operating systems and deployment scenarios. Acceptance tests validate that your code does what you intend it to do.
For more information, see the Litmus documentation.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/products/puppet-enterprise/open-source-comparison/
https://puppet.com/docs/pe/latest/pe_user_guide.html
https://puppet.com/docs/pe/latest/getting_started_pe_overview.html
https://puppet.com/docs/puppet/latest/modules_fundamentals.html
https://forge.puppet.com/
https://puppet.com/docs/pdk/1.x/pdk_overview.html#develop-modules-pdk
https://puppet-vscode.github.io/
https://puppet-vscode.github.io/
https://puppetlabs.github.io/litmus/

Puppet | Welcome to Puppet 6.28.0 | 14

Use cases
Puppet Forge has existing modules and code examples that assist with automating the following use cases:

• Base system configuration

• Including registry, NTP, firewalls, services
• Manage web servers

• Including apache, tomcat, IIS, nginx
• Manage database systems

• Including Oracle, Microsoft SQL Server, MySQL, PostgreSQL
• Manage middleware/application systems

• Including Java, WebLogic/Fusion, IBM MQ, IBM IIB, RabbitMQ, ActiveMQ, Redis, ElasticSearch
• Source control

• Including Github, Gitlab
• Monitoring

• Including Splunk, Nagios, Zabbix, Sensu, Prometheus, NewRelic, Icinga, SNMP
• Patch management

• OS patching on Enterprise Linux, Debian, SLES, Ubuntu, Windows
• Package management

• Linux: Puppet integrates directly with native package managers
• Windows: Use Puppet to install software directly on Windows, or integrate with Chocolatey

• Containers and cloud native

• Including Docker, Kubernetes, Terraform, OpenShift
• Networking

• Including Cisco Catalyst, Cisco Nexus, F5, Palo Alto, Barracuda
• Secrets management

• Including Hashicorp Vault, CyberArk Conjur, Azure Key Vault, Consul Data

See each module’s README for installation, usage, and code examples.

If you don’t see your use case listed above, have a look at the following list to see what else we might be able to help
you with:

• Continuous integration and delivery of Puppet code

• Continuous Delivery for Puppet Enterprise (PE) offers a prescriptive workflow to test and deploy Puppet code
across environments. To harness the full power of PE, you need a robust system for testing and deploying
your Puppet code. Continuous Delivery for PE offers prescriptive, customizable work flows and intuitive tools
for Puppet code testing, deployment, and impact analysis — so you know how code changes will affect your
infrastructure before you deploy them — helping you ship changes and additions with speed and confidence.
For more information, see CD4PE.

• Incident remediation

• If you need to minimize the risk of external attacks and data breaches by increasing your visibility into the
vulnerabilities across your infrastructure, take a look at Puppet Remediate. With Remediate, you can eliminate
the repetitive and error-prone steps of manual data handovers between teams. For more information, see
Puppet Remediate.

• Integrate Puppet into your existing workflows

• Take a look at our integrations with other technology, including Splunk and VMware vRA.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/registry
https://forge.puppet.com/puppetlabs/ntp
https://forge.puppet.com/puppetlabs/firewall
https://forge.puppet.com/puppetlabs/service
https://forge.puppet.com/puppetlabs/apache
https://forge.puppet.com/puppetlabs/tomcat
https://forge.puppet.com/puppetlabs/iis
https://forge.puppet.com/puppet/nginx
https://forge.puppet.com/enterprisemodules/ora_config
https://forge.puppet.com/puppetlabs/sqlserver
https://forge.puppet.com/puppetlabs/mysql
https://forge.puppet.com/puppetlabs/postgresql
https://forge.puppet.com/puppetlabs/java
https://forge.puppet.com/enterprisemodules/wls_config
https://forge.puppet.com/enterprisemodules/mq_config
https://forge.puppet.com/enterprisemodules/iib_install
https://forge.puppet.com/puppet/rabbitmq
https://forge.puppet.com/puppetlabs/activemq
https://forge.puppet.com/puppet/redis
https://forge.puppet.com/elastic/elasticsearch
https://forge.puppet.com/enterprisemodules/github_config
https://forge.puppet.com/puppet/gitlab
https://forge.puppet.com/puppetlabs/splunk_hec
https://forge.puppet.com/herculesteam/augeasproviders_nagios
https://forge.puppet.com/puppet/zabbix
https://forge.puppet.com/sensu/sensu
https://forge.puppet.com/puppet/prometheus
https://forge.puppet.com/claranet/newrelic
https://forge.puppet.com/icinga/icinga2
https://forge.puppet.com/puppet/snmp
https://forge.puppet.com/albatrossflavour/os_patching
https://forge.puppet.com/puppetlabs/chocolatey
https://forge.puppet.com/puppetlabs/docker
https://forge.puppet.com/puppetlabs/kubernetes
https://forge.puppet.com/puppetlabs/terraform
https://forge.puppet.com/openshift/openshift_origin
https://forge.puppet.com/puppetlabs/cisco_ios
https://forge.puppet.com/puppetlabs/ciscopuppet
https://forge.puppet.com/f5/f5
https://forge.puppet.com/puppetlabs/panos
https://forge.puppet.com/barracuda/cudawaf
https://forge.puppet.com/puppetlabs/vault
https://forge.puppet.com/cyberark/conjur
https://forge.puppet.com/tragiccode/azure_key_vault
https://forge.puppet.com/ploperations/consul_data/readme
https://puppet.com/resources/whitepaper/getting-started-continuous-delivery-puppet-enterprise
https://puppet.com/products/puppet-remediate/
https://puppet.com/integrations/splunk/
https://puppet.com/docs/vro/3.x/plugin_for_vmware_vra_user_guide.html

Puppet | Welcome to Puppet 6.28.0 | 15

Puppet platform lifecycle
Open source Puppet is made up of several packages: puppet-agent, puppetserver, and, optionally,
puppetdb. Understanding what versions are maintained and which versions go together is important when
upgrading and troubleshooting.

Puppet releases and lifecycle

Open source Puppet has two release tracks:

• Update track: Puppet versions that are not associated with any PE version get updated minor (or "y") releases
about once a month. Releases in this track include fixes and new features, but typically do not get patch (or "z")
releases. Each update in this track supersedes the previous minor release. Documentation for the current release
is available at puppet.com/docs/puppet/latest. The latest Release notes on page 20 contain a history of all
updates to this release track.

• Long-term releases: Puppet versions associated with Puppet Enterprise LTS (long-term support) releases get
patch (or "z") releases about quarterly. Each release contains bug and security fixes from several developmental
releases, but does not get new features. Versioned documentation for long-term releases is available at
puppet.com/docs/puppet/<X.Y> (for example, puppet.com/docs/puppet/6.4).

Important: To ensure that you have the most recent features, fixes, and security patches, update your Puppet version
whenever there is a new version in your release track.

The following table lists the maintained Puppet, Puppet Server, and PuppetDB versions, with links to their respective
documentation. Developmental releases ('latest') are superseded by new versions about once a month. Open source
releases that are associated with PE versions have projected End of Life (EOL) dates.

Puppet version Puppet Server
version

PuppetDB version Associated PE
version

Projected EOL date

7.18.0 (latest) 7.9.0 7.11.0 Superseded by next
developmental
release.

6.28.0 6.20.0 6.22 2019.8.x February 2023

Note: To access docs for unmaintained Puppet versions, visit our Archived Puppet documentation on page 19
page.

For information about Puppet's operating system support, see the platform support lifecycle page.

Puppet platform packages

The Puppet platform bundles the components needed for a successful deployment. We distribute open source Puppet
in the following packages:

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest
https://puppet.com/docs/puppet/7/release_notes_puppet.html
https://puppet.com/docs/puppet/7/server/release_notes.html
https://puppet.com/docs/puppetdb/7/release_notes.html
https://puppet.com/docs/puppet/6/release_notes_puppet.html
https://puppet.com/docs/puppet/6/server/release_notes.html
https://puppet.com/docs/puppetdb/6/release_notes.html
https://puppet.com/docs/pe/2019.8/release_notes_pe_index.html
https://puppet.com/misc/platform-support-lifecycle

Puppet | Welcome to Puppet 6.28.0 | 16

Package Contents

puppet-agent This package contains Puppet’s main code and all of the
dependencies needed to run it, including Facter, Hiera,
the PXP agent, root certificates, and bundled versions
of Ruby and OpenSSL. After it’s installed, you have
everything you need to run the Puppet agent service and
the puppet apply command.

Note: In Puppet version 3.8 and later, Enterprise Linux
5 packages contain only the agent component.

puppetserver Puppet Server is a JVM-based application that, among
other things, runs instances of the primary Puppet server
application and serves catalogs to nodes running the
agent service. It has its own version number and might
be compatible with more than one Puppet version.
This package depends on puppet-agent. After it’s
installed, Puppet Server can serve catalogs to nodes
running the agent service.

puppetdb PuppetDB (optional) collects data generated by Puppet.
It enables additional features such as exported resources,
advanced queries, and reports about your infrastructure.

puppetdb-termini Plugins to connect your primary server to PuppetDB

The puppetserver component of the Puppet platform is available only for Linux. The puppet-agent
component is available independently for over 30 platforms and architectures, including Windows and macOS.

Note: As of Puppet agent 5.5.4, MCollective was deprecated. It was removed in Puppet 6.0. If you use Puppet
Enterprise, consider Puppet orchestrator. If you use open source Puppet, migrate MCollective agents and filters using
tools such as Bolt and PuppetDB’s Puppet Query Language.

puppet-agent component version numbers

Each puppet-agent package contains several components. This table shows the components shipped in this
release track, and contains links to available component release notes. Agent release notes are included on the same
page as Puppet release notes.

Note: Hiera 5 is a backward-compatible evolution of Hiera, which is built into Puppet. To provide some backward-
compatible features, it uses the classic Hiera 3 codebase. This means that Hiera is still shown as version 3.x in the
table above, even though this Puppet version uses Hiera 5.

puppet-
agent

Puppet Facter Hiera Resource API Ruby OpenSSL

6.28.0 6.28.0 3.14.24 3.9.0 1.8.14 2.5.9 1.1.1q

6.27.1 6.27.0 3.14.23 3.8.1 1.8.14 2.5.9 1.1.1n

6.27.0 This version of Puppet was never released.

6.26.0 6.26.0 3.14.22 3.8.0 1.8.14 2.5.9 1.1.1l

6.25.1 6.25.1 3.14.21 3.7.0 1.8.14 2.5.9 1.1.1l

6.25.0 6.25.0 3.14.20 3.7.0 1.8.14 2.5.9 1.1.1l

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/latest/
https://puppet.com/docs/puppet/6.7/lang_exported.html
https://puppet.com/docs/pe/2018.1/migrating_from_mcollective_to_orchestrator.html
https://puppet.com/docs/bolt/
https://puppet.com/docs/puppetdb/

Puppet | Welcome to Puppet 6.28.0 | 17

puppet-
agent

Puppet Facter Hiera Resource API Ruby OpenSSL

6.24.0 6.24.0 3.14.19 3.7.0 1.8.14 2.5.9 1.1.1k

6.23.0 6.23.0 3.14.18 3.7.0 1.8.14 2.5.9 1.1.1k

6.22.1 6.22.1 3.14.17 3.6.0 1.8.13 2.5.9 1.1.1k

6.21.1 6.21.1 3.14.16 3.6.0 1.8.13 2.5.7 1.1.1i

6.21.0 6.21.0 3.14.16 3.6.0 1.8.13 2.5.7 1.1.1i

6.20.0 6.20.0 3.14.15 3.6.0 1.8.13 2.5.7 1.1.1i

6.19.1 6.19.1 3.14.14 3.6.0 1.8.13 2.5.7 1.1.1g

6.19.0 6.19.0 3.14.14 3.6.0 1.8.13 2.5.7 1.1.1g

6.18.0 6.18.0 3.14.13 3.6.0 1.8.13 2.5.7 1.1.1g

6.17.0 6.17.0 3.14.12 3.6.0 1.8.13 2.5.7 1.1.1g

6.16.0 6.16.0 3.14.11 3.6.0 1.8.13 2.5.7 1.1.1g

6.15.0 6.15.0 3.14.10 3.6.0 1.8.13 2.5.7 1.1.1g

6.14.0 6.14.0 3.14.9 3.6.0 1.8.13 2.5.7 1.1.1d

6.12.0 6.12.0 3.14.7 3.6.0 1.8.11 2.5.7 1.1.1d

6.11.1 6.11.1 3.14.6 3.6.0 1.8.10 2.5.7 1.1.1d

6.11.0 6.11.0 3.14.5 3.6.0 1.8.10 2.5.7 1.1.1d

6.10.1 6.10.1 3.14.5 3.6.0 1.8.9 2.5.7 1.1.1d

6.10.0 6.10.0 3.14.5 3.6.0 1.8.8 2.5.3 1.1.1a

6.9.0 6.9.0 3.14.4 3.5.0 1.8.7 2.5.3 1.1.1a

6.8.0 6.8.0 3.14.3 3.5.0 1.8.6 2.5.3 1.1.1a

6.7.2 6.7.2 3.14.2 3.5.0 1.8.6 2.5.3 1.1.1a

6.7.1 This version of Puppet was never released.

6.7.0 6.7.0 3.14.2 3.5.0 1.8.6 2.5.3 1.1.1a

6.6.0 6.6.0 3.14.1 3.5.0 1.8.5 2.5.3 1.1.1a

6.5.0 6.5.0 3.14.0 3.5.0 1.8.4 2.5.3 1.1.1a

6.4.0 6.4.0/ 3.13.1 3.5.0 1.8.1 2.5.3 1.1.1a

6.3.0 6.3.0 3.13.0 3.5.0 1.7.0 2.5.3 1.1.1a

6.2.0 6.2.0 3.12.3 3.5.0 1.6.3 2.5.3 1.1.1a

6.1.0 6.1.0 3.12.2 3.5.0 1.6.2 2.5.3 1.1.0h

6.0.0 6.0.0 3.12.0 3.4.5 1.5.0 2.5.1 1.1.0h

© 2024 Puppet, Inc., a Perforce company

Puppet | Welcome to Puppet 6.28.0 | 18

Primary server and agent compatibility
Use this table to verify that you're using a compatible version of the agent for your PE or Puppet server.

Server

Agent PE 2017.3 through
2018.1

Puppet 5.x

PE 2019.1 through 2019.8

Puppet 6.x

PE 2021.0 and later

Puppet 7.x

5.x # #

6.x # #

7.x #

Note: Puppet 5.x has reached end of life and is not actively developed or tested. We retain agent 5.x compatibility
with later versions of the server only to enable upgrades.

Navigating the documentation
Puppet maintains a large amount of documentation and learning resources to help you learn Puppet. When navigating
the documentation, take note of the following.

The search bar

The Puppet documentation search bar at the top of the page can be useful when you know exactly what you are
looking for. Unlike search engines, it has the added benefit of being able to filter by Puppet product and version. The
filter appears on the right side of the page after you search for something.

The version switcher

If you land on a documentation page from an external search engine, make sure you are looking at the correct Puppet
version. You can see what version of the documentation you are viewing by looking at the version switcher in the top
left corner.

© 2024 Puppet, Inc., a Perforce company

Puppet | Welcome to Puppet 6.28.0 | 19

Note that, other than the latest version, we only maintain and update the open source Puppet versions that are built
into Puppet Enterprise (PE) versions receiving long-term support. For information on which versions we currently
support, see Puppet packages and versions. If we no longer update a page, the following banner is shown across the
top.

Code examples

We have code examples throughout the docs. These are often general examples designed to help a wide audience.
To see more real-life and specific examples, take a look at the relevant module on Puppet Forge. For example, to see
what a code example for managing NTP services looks like, take a look at the NTP README. However, if you spot
a place in the documentation where you would like more examples, please let us know.

The glossary

If you come across a term that you are unfamiliar with, you will likely find a definition for it in our glossary.

We welcome your feedback!

If you don’t see what you need, if something isn't clear enough, or if you spot a mistake, please let the Puppet
documentation team know, either by using the star rating at the bottom of the page or by opening a ticket (you'll need
a Jira account). Whichever feedback method you choose, a member of the docs team reads every piece of feedback,
so the more specific you can be about the request or issue, the more quickly and easily we’ll be able to help and
update the documentation. As noted before, we can only update maintained Puppet versions. We greatly appreciate
your feedback!

Archived Puppet documentation
Open source Puppet docs for recent end-of-life (EOL) product versions are archived in place, meaning that we
continue to host them at their original URLs, but we limit their visibility on the main docs site and no longer update
them. You can access archived-in-place docs using their original URLs, or from the links here.

Open Source Puppet docs for EOL versions earlier than those listed here are archived in our open source Puppet docs
archive.

Puppet Version URL

5.5 https://puppet.com/docs/puppet/5.5/puppet_index.html

Glossary
Definitions of terms used in Puppet documentation

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/ntp#usage
https://tickets.puppetlabs.com/browse/DOCUMENT/?selectedTab=com.atlassian.jira.jira-projects-plugin:summary-panel
https://github.com/puppetlabs/docs-archive
https://github.com/puppetlabs/docs-archive
https://puppet.com/docs/puppet/5.5/puppet_index.html

Puppet | Release notes | 20

Release notes

These release notes contain important information about the Puppet® 6.28 platform, including Puppet agent, Puppet
Server, Facter and PuppetDB.

This release incorporates new features, enhancements, and resolved issues from all previous releases. If you're
upgrading from an earlier version of Puppet, check the release notes for any interim versions for details about
additional improvements in this release over your current release.

Version numbers for Puppet and the agent use the format X.Y.Z, where:

• X must increase for major, backward-incompatible changes.
• Y can increase for backward-compatible new functionality or significant bug fixes.
• Z can increase for bug fixes.

The following table lists the maintained Puppet, Puppet Server, and PuppetDB versions. Developmental releases
('latest') are superseded by new versions about once a month. Open source releases that are associated with PE
versions have projected End of Life (EOL) dates.

Puppet version Puppet Server
version

PuppetDB version Associated PE
version

Projected EOL date

7.18.0 (latest) 7.9.0 7.11.0 Superseded by next
developmental
release.

6.28.0 6.20.0 6.22 2019.8.x February 2023

• Puppet release notes on page 20
These are the new features, resolved issues, and deprecations in this version of Puppet.
• Puppet known issues on page 85
These are the known issues in this version of Puppet.
• Puppet Server release notes on page 86

These are the new features, resolved issues, and deprecations in this version of Puppet Server.
• Puppet Server known issues on page 96

These are the known issues in this version of Puppet Server.
• PuppetDB release notes (link)

These are the new features, resolved issues, and deprecations in this version of PuppetDB.
• Facter release notes on page 98
These are the new features, resolved issues, and deprecations in this version of Facter.
• Facter known issues on page 105
These are the known issues in this version of Facter.

Puppet release notes
These are the new features, resolved issues, and deprecations in this version of Puppet.

Important: Security and vulnerability announcements are posted at https://puppet.com/docs/security-vulnerability-
announcements.

Important: Before upgrading, read the upgrade cautions found at https://puppet.com/docs/puppetdb/7/
release_notes.html#upgrade-cautions.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/7/release_notes_puppet.html
https://puppet.com/docs/puppet/7/server/release_notes.html
https://puppet.com/docs/puppetdb/7/release_notes.html
https://puppet.com/docs/puppet/6/release_notes_puppet.html
https://puppet.com/docs/puppet/6/server/release_notes.html
https://puppet.com/docs/puppetdb/6/release_notes.html
https://puppet.com/docs/pe/2019.8/release_notes_pe_index.html
https://puppet.com/docs/puppetdb/latest/release_notes.html
https://puppet.com/docs/security-vulnerability-announcements
https://puppet.com/docs/security-vulnerability-announcements
https://puppet.com/docs/puppetdb/7/release_notes.html#upgrade-cautions
https://puppet.com/docs/puppetdb/7/release_notes.html#upgrade-cautions

Puppet | Release notes | 21

Puppet 6.28.0
Released August 2022.

Enhancements

Extend Package Source to include HTTP Urls (Windows)

Puppet now supports installing .exe packages using https as a package source. For example:

package { 'mysql':
ensure => '5.5.16',
source => 'https://example.com/packages/mysql-5.5.16-winx64.exe’,
install_options => ['INSTALLDIR=C:\mysql-5.5'],
}

PUP-11502

Bump to openssl-fips-1.1.1k-6

Updated openssl-fips on Red Hat to 1.1.1k-6. PA-4498

Update puppet-ca-bundle

Updated root certificate authority bundle included with puppet-agent. PA-4496

Support for macOS 12 (M1)

This release adds support for macOS 12 (M1). PA-4457

Support for Windows 11 Enterprise (x86_64)

This release adds support for Windows 11 Enterprise (x86_64). PA-4249

Support for Ubuntu 22.04 (x86_64)

This release adds support for Ubuntu 22.04 (x86_64). PA-4233

Resolved issues

Puppet::HTTP::Client cannot connect to a server requiring client cert authentication and whose
server cert is issued by a CA in the ssl_trust_store

Puppet's http client can now establish a mutually authenticated TLS connection when passing
include_system_store: true such as when retrieving file content from HTTPS servers. Previously puppet
did not add its client certificate to the SSL context, so the connection would fail if the HTTPS server required a client
certificate. PUP-11522

Legacy function error does not include the source ref

If a 3x function produces an error, the error message now includes the path to the file in which the function is defined.
Contributed by Puppet community member lollipopman. PUP-11472

puppetserver_gem doesn't install gems when they are loaded by Facter

Fixed a bug that prevented the puppetserver_gem provider from managing gems that were first loaded by Facter.
PUP-11452

© 2024 Puppet, Inc., a Perforce company

https://example.com/packages/mysql-5.5.16-winx64.exe',
https://tickets.puppetlabs.com/browse/PUP-11502
https://tickets.puppetlabs.com/browse/PA-4498
https://tickets.puppetlabs.com/browse/PA-4496
https://tickets.puppetlabs.com/browse/PA-4457
https://tickets.puppetlabs.com/browse/PA-4249
https://tickets.puppetlabs.com/browse/PA-4233
https://tickets.puppetlabs.com/browse/PUP-11522
https://github.com/lollipopman
https://tickets.puppetlabs.com/browse/PUP-11472
https://tickets.puppetlabs.com/browse/PUP-11452

Puppet | Release notes | 22

Puppet Agent does not automatically refresh CRLs on crl_refresh_interval

Puppet Agent now reloads its CA and CRL bundles every 30 minutes during each run. Previously it only loaded
it when the process started, which meant the service had to be restarted if the CA/CRL files changed on disk.
PUP-11428

Puppet agent --disable is ignored with cron puppet agent (splay).

Puppet agent now checks the disabled lock file after sleeping due to splay. PUP-9998

puppet-cacerts keystore is missing on Red Hat 9, SLES 15 and Ubuntu 20.04

If Puppet agent is installed, there is a java keystore file. PA-4440

Deprecations and removals

Removed EOL operating system support

This release removes support for the following operating systems: Fedora 32, CentOS 8, Ubuntu 16.04. PA-4328

Security

Update puppet runtime's curl to 7.83.1

Updated runtime to fix CVE-2022-22576, CVE-2022-27774, and CVE-2022-27776. PA-4472

Puppet 6.27.1
Released April 2022.

Enhancements

Allow Puppet::HTTP::Client to connect to trusted server using the puppet certificate for client
authentication

You can now specify an https URL as the source of a file resource when the TLS server requires a client
certificate for authentication. PUP-11471

Resolved issues

Ruby security fix

Applied patch for security vulnerability in Ruby 2.5.9 (CVE-2022-28739). PA-4364

Puppet::Util::Windows is undefined on non-Windows platforms

Fixed a bug that prevented pdk unit tests from working when trying to test a resource with a Windows provider, such
as "service" resources. PUP-11459

No option to fail fast when agent-specified environment does not exist

When using strict_environment_mode=true, a run now fails early if the requested environment does not
exist on the server, or if the server does not allow the agent to specify its own environment. PUP-11440

puppet lookup fails to interpolate topscope variables when an environment is specified

Fixed an issue where Puppet 6.26 and 7.14 failed to resolve toplevel facts in hiera configs when using the --
environment option for puppet lookup. PUP-11437

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-11428
https://tickets.puppetlabs.com/browse/PUP-9998
https://tickets.puppetlabs.com/browse/PA-4440
https://tickets.puppetlabs.com/browse/PA-4328
https://tickets.puppetlabs.com/browse/PA-4472
https://tickets.puppetlabs.com/browse/PUP-11471
https://tickets.puppetlabs.com/browse/PA-4364
https://tickets.puppetlabs.com/browse/PUP-11459
https://tickets.puppetlabs.com/browse/PUP-11440
https://tickets.puppetlabs.com/browse/PUP-11437

Puppet | Release notes | 23

Rspec tests with custom facts fail on some modules

This release fixes an issue where rspec module tests would compile with the runner node’s facts instead of using the
custom facts supplied by the test. PUP-11435

Nokogiri upgrade for macOS

Upgraded nokogiri gem to 1.13.2 on macOS due to upstream security fix. PA-4323

Some gemspecs are missing from puppet-agent MSI

On Windows, it is now possible to install a gem that has a dependency on Facter or Hiera into Puppet's vendored
ruby. PA-4313

Puppet 6.27.0
This version was never released.

Puppet 6.26.0
Released January 2022.

Enhancements

ENC-enforced environment bypass for lookup

You can now bypass the ENC-enforced environment when performing a lookup. To bypass the enforced
environment, use lookup with the --environment option to specify the desired environment. Puppet always
uses the environment you specified regardless of the ENC-enforced environment. PUP-7479

Support for RHEL 9

This release includes support for Red Hat Enterprise Linux (RHEL) 9. PUP-11364

Support for Windows Server 2022(x86_64)
This release includes support for Windows Server 2022(x86_64) . PUP-11238

Resolved issues

Failures when using purge_ssh_keys

Puppet no longer fails when using purge_ssh_keys if the user's home directory doesn't exist yet. PUP-11380

Puppet::FileSystem.chmod does not validate its arguments

Puppet::FileSystem.chmod now validates its arguments like other methods. PUP-11345

Warning: #<Puppet::Transaction::Persistence after upgrading to Puppet agent 6.25.0

Fixes a regression introduced in 6.25.0 and 7.10.0 that caused a Puppet::Transaction::Persistence
warning during each agent run. PUP-11321

User resource tries to create rather than modify users created by a utility

This release moves the ssh_authorized_key resource's creation to the end of the user type flow, after all user
properties and parameters were resolved, to avoid order dependency errors. PUP-11320

Puppet code merger using incorrect command

Reduces memory usage when parsing manifests. PUP-11318

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-11435
https://tickets.puppetlabs.com/browse/PA-4323
https://tickets.puppetlabs.com/browse/PA-4313
https://tickets.puppetlabs.com/browse/PUP-7479
https://tickets.puppetlabs.com/browse/PUP-11364
https://tickets.puppetlabs.com/browse/PUP-11238
https://tickets.puppetlabs.com/browse/PUP-11380
https://tickets.puppetlabs.com/browse/PUP-11345
https://tickets.puppetlabs.com/browse/PUP-11321
https://tickets.puppetlabs.com/browse/PUP-11320
https://tickets.puppetlabs.com/browse/PUP-11318

Puppet | Release notes | 24

Failure when using the names "apply" and "plan" within an apply() block in a plan

The names "apply" and "plan" can now be used as resource parameter names in all cases. Previously, using them
within an apply() block in a plan would fail. PUP-11315

Puppet attempts to execute directories from /etc/init.d/

Prevents Puppet from considering directories from /etc/init.d/ as services. PUP-11313

High memory consumption from lib/puppet/pops/parser/lexer2.rb

Reduced lexer2 memory usage. PUP-11236

versioncmp() treats 11.0 as greater than 11

versioncmp() now strips redundant numbers. PUP-11235

puppet lookup --facts {filename} fails if filename does not contain a dot

Before this release, puppet lookup --facts {filename} failed early when the filename given did not
contain a dot. This fix removes the early extensions check and adds a fallback instead: tries both formats (JSON then
YAML) to read the given facts file when its path doesn't end with any of the expected extensions (yaml/yml/json).
Otherwise, it follows previous implementation and respects the given extension. PUP-11204

Facts provided in a file cannot be used for classification

Fixed a bug where facts provided in a file were not being merged with the facts used for classification. This is
because Puppet collected and merged the said facts after the classification happened. To fix this, we ensured that
Puppet resolves the facts being used for classification before the node request. PUP-10435

Inconsistent handling of trusted facts in the lookup CLI

When using puppet lookup with --facts, if the facts file overrides any of hostname, domain, fqdn,
clientcert, then it must override all of them. Also, if a value for certname is provided in a fact file for
the lookup application, use it when creating the trusted information object. This makes it possible to override
trusted.certname for classification. PUP-8220

Lookup ignores environment from the classifier when using a rule with trusted facts

Fixed an issue where trusted facts could not be used as rules for classification. This was fixed by gathering the trusted
facts from the PuppetDB query result, and overriding the trusted facts context. PUP-8094

Misleading results when using --node flag in puppet lookup

Fixed an issue where puppet lookup would result in misleading results when using the --node flag. This
happened because there can be cases where the target node does not have any facts cached. To avoid this, the fix
implemented checks for the node facts/facts given in a fact file, and if it doesn't find any it raises an error. PUP-7362

Puppet could not retrieve attributes from fifo and socket files

This release allows Puppet to retrieve attributes for fifo and socket files and manage them when the given
manifest has a file resource which is recursing over a given path. PUP-4045

Puppet hangs trying to replace a FIFO

Puppet no longer hangs when trying to replace a fifo with a file, directory or symlink. PUP-1460

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-11315
https://tickets.puppetlabs.com/browse/PUP-11313
https://tickets.puppetlabs.com/browse/PUP-11236
https://tickets.puppetlabs.com/browse/PUP-11235
https://tickets.puppetlabs.com/browse/PUP-11204
https://tickets.puppetlabs.com/browse/PUP-10435
https://tickets.puppetlabs.com/browse/PUP-8220
https://tickets.puppetlabs.com/browse/PUP-8094
https://tickets.puppetlabs.com/browse/PUP-7362
https://tickets.puppetlabs.com/browse/PUP-4045
https://tickets.puppetlabs.com/browse/PUP-1460

Puppet | Release notes | 25

Puppet uses deprecated psych features

Puppet is now compatible with psych 4.0. PUP-11405

Agent no longer calls the Puppet::Node terminus to resolve the environment during the run

Introduced a Puppet setting use_last_environment=true|false and a corresponding puppet agent -
t --no-use_last_environment boolean command line option that forces the agent to make a node request
like it did prior to 7.12 and 6.25. By default, the agent does not make a node request. PUP-11379

Puppet user and service resources are slow on Mac OS X

Managing users and services on macOS is much faster. PUP-11332

Puppet::Node#environment_name may return the wrong value

Puppet::Node#environment_name now always returns the symbolic name of the environment (if one has
been set on the node). PUP-11330

Puppet lookups failed due to missing certificates

The puppet lookup command now works if the agent does not have certificates available locally. PUP-11402

The generate types command does not handle errors correctly

If the generate types command failed to generate a custom type, it logged an error and returned a 0 exit code
instead of failing. The command now correctly fails with a non-zero exit code if the command cannot generate a type.
PUP-11078

Bump Ruby date gem

We've bumped the date gem in our vendored Ruby to fix a vulnerability. PA-4131

Puppet 6.25.1
Released November 2021.

Enhancements

Faster iterative functions

This release speeds up the amount of time it takes to type check arguments passed to blocks of iterative functions,
such as reduce and merge. PUP-9561

Resolved issues

Puppet can leak credentials when following HTTP redirects

Previously, Puppet followed HTTP redirects, the Authentication and Cookie headers were passed to different hosts,
which could leak sensitive information. Now the Authentication and Cookie headers are only sent when redirecting to
the same hosts. This fixes CVE-2021-27023. PUP-11188

Puppet agent silently skips unknown resources

Previously, all unknown resources were converted into a component (Puppet::Type::Component) by default
and skipped when applying a catalog. This release adds a new resource attribute that specifies the type of resource
— this is used to differentiate between built-in types and user defined types. Resources that are known and available
on the server node are also verified on the agent node, which now fails when something unknown is found in the
received catalog. This fixes CVE-2021-27025. PUP-11209

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-11405
https://tickets.puppetlabs.com/browse/PUP-11379
https://tickets.puppetlabs.com/browse/PUP-11332
https://tickets.puppetlabs.com/browse/PUP-11330
https://tickets.puppetlabs.com/browse/PUP-11402
https://tickets.puppetlabs.com/browse/PUP-11078
https://tickets.puppetlabs.com/browse/PA-4131
https://tickets.puppetlabs.com/browse/PUP-9561
https://puppet.com/security/cve/cve-2021-27023
https://tickets.puppetlabs.com/browse/PUP-11188
https://puppet.com/security/cve/cve-2021-27025
https://tickets.puppetlabs.com/browse/PUP-11209

Puppet | Release notes | 26

Note: Puppet Agent 6.25.1 and 7.12.1 introduced a new catalog resource field in order to resolve CVE-2021-27025.
This field was not handled properly by older versions of PuppetDB and results in catalogs not being stored in
PuppetDB. Before upgrading any agents in your installation to 6.25.1 or 7.12.1, you must first upgrade your
PuppetDB(s) to this version. (PDB-5338)

Puppet gem and rspec-puppet failures

This release moves the DEFAULT_TIMEOUT constant from lib/puppet/util/windows/service.rb
to lib/puppet/util/windows.rb in a non-OS guarded code area. This change avoids uninitialized
constant errors when compiling catalogs on non-Windows operating systems. PUP-11319

Puppet agent downloads all plugins after updating

Puppet 6.25.0 and 7.12.0 introduced a regression which caused a newly upgraded agent to download all of its plugins.
Now the agent performs a single node request to resynchronize its environment with the server. PUP-11328

Puppet 6.25.0
Released October 2021.

We would like to thank the following Puppet community member for their contributions to this release: natemccurdy.

New features

The write-catalog-summary setting

This release adds the write_catalog_summary setting to control whether the resources.txt and
classes.txt files are written to disk after applying a catalog. By default, puppet agent and puppet apply
behave the same as before — puppet agent writes the files, and puppet apply does not. PUP-1042

Enhancements

Support for Ubuntu 18.04 (aarch64)

This release adds support for Ubuntu 18.04 (aarch64). PUP-11162

Support for AlmaLinux 8 (x86_64)

This release adds support for AlmaLinux 8 (x86_64). PUP-11242

Support for Rocky Linux 8 (x86_64)

This release adds support for Rocky Linux 8 (x86_64). PUP-11231

Puppet module type scripts directory

This release adds a new scripts/ subdirectory to the module class. It automatically generates the scripts?
(), scripts(), and script() functions in the class for retrieving the available scripts. This helps to standardize
specific file loading from either the files directory or scripts directory in a module. PUP-11165

Lower memory consumption in Ruby files

This release lowers memory consumption by 10%. This is achieved by freezing string literals in Ruby classes with
high memory consumption. PUP-11232

Facter.value replaced by Puppet.runtime[:facter]

This release replaces calls to Facter.value with calls to Puppet.runtime[:facter], and removes
require 'facter' statements. PUP-11217

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PDB-5338
https://tickets.puppetlabs.com/browse/PUP-11319
https://tickets.puppetlabs.com/browse/PUP-11328
https://github.com/natemccurdy
https://tickets.puppetlabs.com/browse/PUP-1042
https://tickets.puppetlabs.com/browse/PUP-11162
https://tickets.puppetlabs.com/browse/PUP-11242
https://tickets.puppetlabs.com/browse/PUP-11231
https://tickets.puppetlabs.com/browse/PUP-11165
https://tickets.puppetlabs.com/browse/PUP-11232
https://tickets.puppetlabs.com/browse/PUP-11217

Puppet | Release notes | 27

Support for multiple Facter implementations

You can now register a Facter implementation when initializing Puppet via the
Puppet.initialize_settings method. PUP-11216

Load Task files from scripts

Tasks can now load files from the scripts mount. PUP-11200

onlyif and unless in --noop documented

This release documents the noop behavior of the onlyif and unless parameters of the exec resource. PUP-11199

Scripts file serving mount

When using Puppet APIs to load file content and metadata, you can access files in the scripts/ directory of a
module using the scripts file mount. PUP-11187

RHEL9 support for services
Puppet now uses systemd as the default service provider for EL 9 variants, such as the Red Hat or CentOS stream.
PUP-11168

The launchd service provider fails if a parsable but invalid LaunchAgent or LaunchDaemon plist
file exists
This release fixes an issue where the launchd service provider failed if a parsable but invalid LaunchAgent or
LaunchDaemon plist file existed. PUP-11164

Cleaned up ext/ directory

This release removes unused files from the ext/ directory used by upstream Linux and Solaris packages.
PUP-10685

Option to enable long filename support in the Windows MSI installer
This release updates the MSI installer for Puppet agents to enable long filenames either through a check box in the
installer or by setting the ENABLE_LONG_PATHS=true option in the command line. PA-3843

OpenSSL updates

• On Windows 2012 FIPS (x64), OpenSSL 1.0.2 has been patched for CVE-2020-1971, CVE-2021-23839,
CVE-2021-23840, CVE-2021-23841 and CVE-2021-3712 - PA-3976

• On redhatfips-7-x86_64 RedHat 7 FIPS (x64), OpenSSL has been bumped to 1.1.1k and patched for
CVE-2021-3712 and CVE-2021-3711 - PA-3974

On all other platforms, OpenSSL has been bumped to 1.1.1l - PA-3925

Deprecations and removals

Support for Fedora 30 (x86_64) removed

This release removes support for Fedora 30 (x86_64). PUP-11092

Support for Fedora 31 (x86_64) removed

This release removes support for Fedora 31 (x86_64). PUP-11093

Support for Mac OS X 10.14 (x86_64) removed

This release removes support for Mac OS X 10.14 (x86_64). PUP-11094

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-11216
https://tickets.puppetlabs.com/browse/PUP-11200
https://tickets.puppetlabs.com/browse/PUP-11199
https://tickets.puppetlabs.com/browse/PUP-11187
https://tickets.puppetlabs.com/browse/PUP-11168
https://tickets.puppetlabs.com/browse/PUP-11164
https://tickets.puppetlabs.com/browse/PUP-10685
https://tickets.puppetlabs.com/browse/PA-3843
https://tickets.puppetlabs.com/browse/PA-3976
https://tickets.puppetlabs.com/browse/PA-3974
https://tickets.puppetlabs.com/browse/PA-3925
https://tickets.puppetlabs.com/browse/PUP-11092
https://tickets.puppetlabs.com/browse/PUP-11093
https://tickets.puppetlabs.com/browse/PUP-11094

Puppet | Release notes | 28

Support for Red Hat 5 (x86_64, i386) removed

This release removes support for Red Hat 5 (x86_64, i386). PUP-11091

Resolved issues

Default timeout ignores Windows services

Previously, default timeouts caused issues on Windows when services took longer than 10 seconds to change state.
You can now specify the default timeout value for syncing service properties. PUP-10925

User attributes ignores forcelocal

This release fixes an issue where setting forcelocal => true on an user resource checked the resource's home
and shell attributes against their values from the directory service provider. Contributed by Puppet community
member natemccurdy. PUP-11241

Puppet fails to install packages on Solaris if another pkg install is running
Installing packages on Solaris with the pkg command does not work if another instance of pkg is already running.
Now Puppet tries the install command 5 times, and only fails if the package cannot be installed. PUP-11208

The concat module ignores the ENC environment

This release fixes an issue where an ENC-specified environment was not pushed during a Puppet run. This caused
indirector requests with no specified environment to default to using an incorrect environment. PUP-11265

Util::JSON.dump receives non-hash options

Previously, Puppet's /puppet/v3/file_metadatas REST API failed if the multi_json gem was
uninstalled or when it was running puppetserver from source. PUP-11237

Puppet sends warning for BOM and US-ASCII encoding

This release removes BOM for non-UTF encoding and its warnings. ASCII characters are single bytes, which means
there is no need for a BOM to detect byte ordering (LSB/MSB). PUP-11196

User resource not removing password on AIX agents

This release fixes an issue where deleting an AIX user with Puppet would not clean up the user's password.
PUP-11190

Undefined method [] for nil:NilClass when handling
SemanticPuppet::Dependency::UnsatisfiableGraph

Previously, the puppet module install command broke when dependencies could not be resolved. Puppet now
emits an error message instead. PUP-11172

User resource unable to remove the home directory
This release fixes an issue where the user home directory was not removed when managehome was set to true.
PUP-11170

Static catalogs not working for file resources when versioned_deploys is enabled

Previously, when :versioned_environment_dirs was set to true, catalog compilation failed to add
metadata for static catalog file resources; this meant that an agent receiving a catalog would not attempt to
request that static file content. This has been fixed and the metadata is now correctly added to the catalog when
:versioned_environment_dirs is set to true. PUP-11169

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-11091
https://tickets.puppetlabs.com/browse/PUP-10925
https://github.com/natemccurdy
https://tickets.puppetlabs.com/browse/PUP-11241
https://tickets.puppetlabs.com/browse/PUP-11208
https://tickets.puppetlabs.com/browse/PUP-11265
https://tickets.puppetlabs.com/browse/PUP-11237
https://tickets.puppetlabs.com/browse/PUP-11196
https://tickets.puppetlabs.com/browse/PUP-11190
https://tickets.puppetlabs.com/browse/PUP-11172
https://tickets.puppetlabs.com/browse/PUP-11170
https://tickets.puppetlabs.com/browse/PUP-11169

Puppet | Release notes | 29

Changes to current working directory when listing modules

Puppet Server and agent no longer change their current working directories when listing modules in an environment
directory. PUP-11166

An environment reloaded during a single compilation could fail

Previously, Puppet Server could reload an environment while it was being used to compile a catalog. If translations
were enabled (Puppet[:disable_i18n] set to false), compilation could fail. Now Puppet Server prevents
environments from being reloaded while they are in use, and instead reloads the environment the next time it is
requested. PUP-11158

The pkg provider cannot unhold and update packages in the same run

Previously, the pkg package provider was unable to handle manifests where a package was updated and marked as
unhold at the same time. This is now fixed. PUP-10956

Environment caches string and symbol environment names differently

This release fixes an issue that resulted in Puppet caching duplicate copies of an environment. PUP-10955

A lookup fails if lookup_options is empty
Previously, when lookup_options were defined at the global or environment layer, and the module defined an
empty hash, the compilation failed. This is now fixed and the empty hash is ignored. PUP-10890

Rich data types can corrupt the transaction store

This release fixes an issue that prevented Puppet from reporting corrective changes when using rich data types such as
Deferred, Binary, and Sensitive. PUP-10820

Puppet.lookup(:current_environment) is wrong if the environment changes during
convergence

This release fixes an issue where an old environment could be used if the environment had changed due to
pluginsync. PUP-10308

Failure to fetch node definition results in bad pluginsync and cascading failure
Previously, Puppet agents would make a node definition request to the server to find out the correct
environment to run in. This request has now been removed, and the agent saves its last used environment in the
last_run_summary.yaml file. If the environment is not set in the CLI or config, agents attempt to use the
environment in last_run_summary.yaml — only if the previous run had an agent/server environment
mismatch. PUP-10216

The puppet resource --to_yaml emits class tags

This release stops the resource --to_yaml command emitting Puppet class tags, such as
Puppet::Util::Execution::ProcessOutput, by ensuring that the PScalarDataType only checks the
instance of String, and not other subclasses. PUP-10105

Catalog failure on first run due to pluginsync and environment switch
Previously, an agent failed its run if it switched to a new environment where the manifests relied on a fact that only
existed in the new environment. Now the agent redirects to the server-specified environment and the run continues
using that environment. PUP-9570

Agent cannot compile catalog if it specifies an non-existent environment in puppet.conf

This release fixes an issue that caused the agent run to fail if the agent requested an environment that did not exist on
the server — even when the classifier controlled the environment. PUP-6802

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-11166
https://tickets.puppetlabs.com/browse/PUP-11158
https://tickets.puppetlabs.com/browse/PUP-10956
https://tickets.puppetlabs.com/browse/PUP-10955
https://tickets.puppetlabs.com/browse/PUP-10890
https://tickets.puppetlabs.com/browse/PUP-10820
https://tickets.puppetlabs.com/browse/PUP-10308
https://tickets.puppetlabs.com/browse/PUP-10216
https://tickets.puppetlabs.com/browse/PUP-10105
https://tickets.puppetlabs.com/browse/PUP-9570
https://tickets.puppetlabs.com/browse/PUP-6802

Puppet | Release notes | 30

Puppet agent does not save local copy of last_run_report.yaml

The agent now saves a local copy of its last run report, even if it fails to submit the report to the primary Puppet
Server. PUP-6708

User resource exposes hashed password when changing password or adding a user
Previously, when managing passwords with the useradd provider, the password hash appeared when listing running
processes. Now the password is set with the chpasswd command that uses stdin to receive the password from a
temporary file, so it no longer appears in the process list. PUP-3634

Puppet 6.24.0
Released July 2021.

We would like to thank the following Puppet community member for their contributions to this release: cocker-cc

Enhancements

The puppet ssl show command prints custom object identifiers (OID)

The puppet ssl show command now shows the names of certificate extensions containing custom OIDs —
when the trusted_oid_mapping_file exists. This functionality used to exist in the puppet cert print
command. PUP-11120

Updated argument error message

If you call a function with an argument Puppet does not accept, the error message provides a list of acceptable
function signatures. PUP-7792

Updated error message for incorrect module name

If the author component of a module name is omitted, the puppet module install <author-module>
command provides a name suggestion in the error message. PUP-10641

Puppet reports the license gem on Apache

Puppet now reports the Apache 2.0 license when installed as a gem. PUP-11118

Support for Debian 11 Bullseye amd64

This release adds support for Debian 11 Bullseye amd64. PUP-11030

macOS puppet-agent code-signs executables

The macOS puppet-agent AIO packages now provide code-signed executables for puppet and pxp-agent.
PA-3756

Solaris OpenSSL patching replaced with compiler arguments

This release adds AES CTR-DRGB performance improvements to Puppet’s vendored OpenSSL. PA-3698

The empty function accepts Sensitive data types

The empty function now accepts Sensitive data types, which allows you to test a Sensitive variable that is
neither nil or empty. For example, a variable in an ERB template. Contributed by Puppet community member cocker-
cc. PUP-11124

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-6708
https://tickets.puppetlabs.com/browse/PUP-3634
https://github.com/cocker-cc
https://tickets.puppetlabs.com/browse/PUP-11120
https://tickets.puppetlabs.com/browse/PUP-7792
https://tickets.puppetlabs.com/browse/PUP-10641
https://tickets.puppetlabs.com/browse/PUP-11118
https://tickets.puppetlabs.com/browse/PUP-11030
https://tickets.puppetlabs.com/browse/PA-3756
https://tickets.puppetlabs.com/browse/PA-3698
https://github.com/cocker-cc
https://github.com/cocker-cc
https://tickets.puppetlabs.com/browse/PUP-11124

Puppet | Release notes | 31

The unwrap function accepts Any data type

The unwrap function now accepts the Any data type. This means that the component modules, such as
puppetlabs-postgresql, can migrate to using Sensitive values, while still accepting non-Sensitive values.
You do not need to special case when unwrapping the value. Contributed by Puppet community member cocker-cc.
PUP-11123

The exec provider supports commands as an Array

When a command is an Array of Strings, passed as [cmdname, arg1, ...], it is now executed directly instead
of being passed to the standard shell. This is supported for the following exec parameters: comand, onlyif,
unless, refresh. Note that onlyif and unless already accept multiple commands as an Array — you need to
pass the value as an Array of Array to use this new behaviour. PUP-5704

Embedded Ruby (ERB) templates allow a leading Byte Order Mark (BOM)

Previously, when a template contained a BOM, it was preserved by the template function and included in the
resulting file or PowerShell command. Puppet now passes the bom option when reading the file, removing the BOM
as it is read. PUP-8243

Deprecations and removals

Support for Debian 8 removed

This release removes support for Debian 8. PUP-11059

Resolved issues

The --extra cli option is not functional

The puppet help command no longer displays the --extra command line option. PUP-8700

The parsedfile provider produces an undefined method each for nil:NilClass

Puppet now prints an error if a parsedfile provider returns nil, for example, when using the nagios_core
module. PUP-9369

Unclear error message if user or group providers are not suitable

Puppet now prints a more detailed error message if the user or group providers are not functional. PUP-9825

The Puppet::Resources.search method fails when conditions are provided

This release fixes an issue that prevented the Puppet::Resource.indirection.search method from
accepting conditions when filtering results. PUP-7799

Repository error message URL is missing part of the path

Previously, the puppet module command reported an incorrect URL in the error message when the
module_repository setting was overridden. This is now fixed. PUP-8650

The desired_value file mode is reported without leading zeros

Puppet now reports file modes with a leading zero in the desired_value field — for example, 0755 — which is
consistent with the previous_value. PUP-7493

Filebucket fails when using a non-default environment from the server

The filebucket application no longer requires an environment to exist locally. PUP-10796

© 2024 Puppet, Inc., a Perforce company

https://github.com/cocker-cc
https://tickets.puppetlabs.com/browse/PUP-11123
https://tickets.puppetlabs.com/browse/PUP-5704
https://tickets.puppetlabs.com/browse/PUP-8243
https://tickets.puppetlabs.com/browse/PUP-11059
https://tickets.puppetlabs.com/browse/PUP-8700
https://tickets.puppetlabs.com/browse/PUP-9369
https://tickets.puppetlabs.com/browse/PUP-9825
https://tickets.puppetlabs.com/browse/PUP-7799
https://tickets.puppetlabs.com/browse/PUP-8650
https://tickets.puppetlabs.com/browse/PUP-7493
https://tickets.puppetlabs.com/browse/PUP-10796

Puppet | Release notes | 32

Unable to load PKey.read with private keys

Puppet agent now loads private keys in the PKCS#8 format. PUP-11082

Cached environments are not deleted when the directory is removed

Puppet now removes environments that are no longer on disk. PUP-11129

Unable to run the puppet resource command when the environment is specified

Previously, running puppet resource on the agent with an invalid environment would fail. With this release, the
application falls back to the default environment, if the specified one does not exist. PUP-6554

Puppet prints unnecessary errors in debug

Puppet no longer prints an unnecessary error message when resolving account names to security identifiers on
Windows. PUP-10967

Setting age=0 on a tidy resource does not remove all files

Previously, the age parameter of the tidy resource only removed files older than those specified. This is now fixed
and Puppet removes all files. PUP-11079

The agent_specified_environment fact is not populating

This release fixes an issue where the agent_specified_environment fact did not populate when the
environment was set in the [agent] section. This is now fixed and populates in the following order: CLI, agent
section, main section. PUP-6801

pip ensure=>latest fails with pip>=20.3.0

In version 20.3b1, pip removed the ability to list available versions of a package. This release adds the --use-
deprecated=legacy-resolver argument so that you can query available versions. PUP-11029

The pxp-agent does not use the wrapper script

The pxp-agent service script on the AIX, OSX, and Solaris platforms now manipulates the service using the
wrapper script located in /opt/puppetlabs/bin/pxp-agent, which cleans up the linker environment before
calling the actual environment. This prevent failures due to incompatible libraries being loaded. To modify the pxp-
agent linker environment, directly call the pxp-agent binary, for example, /opt/puppetlabs/puppet/
bin/pxp-agent. PCP-890

Puppet 6.23.0
Released June 2021.

We would like to thank the following Puppet community member for their contributions to this release: tobias-urdin.

Enhancements

Fedora 34 support

This release adds support for Fedora 34. PUP-10892

File limit with the max_files parameter

By default, the file and tidy resource types generate a warning on the Puppet Enterprise (PE) console and
report when Puppet tries to manage more than 1000 files with the recurse parameter set to true. The file and
tidy resource types now support a new parameter — max_files — that enforces a hard limit. If the number of

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-11082
https://tickets.puppetlabs.com/browse/PUP-11129
https://tickets.puppetlabs.com/browse/PUP-6554
https://tickets.puppetlabs.com/browse/PUP-10967
https://tickets.puppetlabs.com/browse/PUP-11079
https://tickets.puppetlabs.com/browse/PUP-6801
https://tickets.puppetlabs.com/browse/PUP-11029
https://tickets.puppetlabs.com/browse/PCP-890
https://github.com/tobias-urdin
https://tickets.puppetlabs.com/browse/PUP-10892

Puppet | Release notes | 33

recursive files is greater than the limit, the agent run fails. You can set the max_files parameter to -1 to disable
the warning. PUP-10946

Case sensitive parameter for the fqdn_rand() function

The fqdn_rand() function now accepts an optional parameter to downcase the FQDN fact, so that the function's
result is not case sensitive. You must pass the parameter after the seed string, for example, fqdn_rand(100,
'expensive job 1', true). By default, the function remains case-sensitive. PUP-10922

Improve enable=delayed_start error message

This release improves an error message to properly convey that you cannot set a systemd service to
delayed_start on operating systems other than Windows. PUP-11062

Ruby support long paths on Windows

This release adds the following patch into the Puppet Agent vendored Ruby. The patch implements long path support
on Windows. PA-3759

Improved Ruby Performance

New Ruby performance patches — reducing 50-90% of file IO when loading Puppet and Facter. PA-3526

Bump curl to 7.77.0

This release bumps the curl dependency to 7.77.0. PA-3762

Resolved issues

PUPPET_SERVER MSI install property does not work

Previously, using PUPPET_SERVER as an MSI property did not set the server setting. This is now fixed. PA-3667

Puppet does not specify SELinux filetype when getting the default context

Previously, Puppet created files with the wrong default SELinux context, which was only corrected after a subsequent
Puppet run. This is now fixed. Contributed by Puppet community member tobias-urdin. PUP-7559

NIM provider used very restrictive regular expressions

Previously, the NIM provider only allowed numbers when parsing RPM release tags and didn't accept bff
(installp) packages marked as security updates in the header. In this release, Puppet allows installation of such
packages. PUP-3631

Unable to mask a static systemd service

This release fixes an issue where the systemd provider did not mask static systemd services. Contributed by
Puppet community member nmaludy. PUP-11034

Masking service failed

Previously, Puppet failed to mask a systemd service that did not exist. This bug is now fixed. PUP-10974

Sensitive instances shared the same value yet weren’t equal

Previously, two type Sensitive instances failed to compare as equal—despite sharing the same underlying strings.
In this release, comparisons such as $a = Sensitive("secret"); $b = Sensitive("secret");
notice($a == $b) now return as true. PUP-11061

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-10946
https://tickets.puppetlabs.com/browse/PUP-10922
https://tickets.puppetlabs.com/browse/PUP-11062
https://github.com/ruby/ruby/commit/229cb0fcdb7957b19d7042b000d803ae58cc6593
https://tickets.puppetlabs.com/browse/PA-3759
https://tickets.puppetlabs.com/browse/PA-3526
https://tickets.puppetlabs.com/browse/PA-3667
https://github.com/tobias-urdin
https://tickets.puppetlabs.com/browse/PUP-7559
https://tickets.puppetlabs.com/browse/PUP-3631
https://github.com/nmaludy
https://tickets.puppetlabs.com/browse/PUP-11034
https://tickets.puppetlabs.com/browse/PUP-10974
https://tickets.puppetlabs.com/browse/PUP-11061

Puppet | Release notes | 34

SemVer datatype components failed to pass as hash or argument list

Previously, the build or prerelease components of the SemVer datatype failed to pass as a hash or list of
arguments. This bug is now fixed. PUP-11077

User keychains were inaccessible to Puppet Agent

Previously, user keychains were inaccessible to Puppet Agent if you ran Puppet Agent through the macOS daemon.
This bug is now fixed. PUP-11081

Puppet returned an error when specifying the purge_ssh_keys parameter

Previously, Puppet returned an error if you specified the purge_ssh_keys parameter for a user resource
that didn’t previously exist. To fix this bug, Puppet prioritizes the ensure property of a user before the
purge_ssh_keys parameter. PUP-11067

Nil vertices caused resource management errors

Previously, managing resources that call the generate method — failed when using the puppet resource
subcommand— due to the presence of a nil vertex in the catalog. To fix this bug, Puppet can no longer add nil
vertices to the catalog. PUP-11074

Unable to update UserRightAssignment

Previously, validating the logonaccount and logonpassword parameters for the service resource on
Windows failed too early. This release moves the parameters further down the catalog compilation order list to avoid
early errors. PUP-10999

Puppet cannot change/set new user passwords on macOS Big Sur

Previously, you could not set or change the password of a new user created on macOS Big Sur. This bug is now fixed
by ensuring the ApplicationAuthority field exists whenever you create a new user. PUP-11026

Puppet returned an error when creating new users on macOS 10.14

Previously, if you created a new user on macOS 10.14, Puppet returned an Operation not permitted @
rb_sysopen error. This bug is now fixed.PUP-11095

Agent failures with server_list

Previously, when Puppet processed server_list and tried to find a functional server, it threw an error if it could
not connect, causing the agent to fail. This is now fixed. PUP-10844

Puppet 6.22.1
Released 26 April 2021.

We would like to thank the following Puppet community members for their contributions to this release:
gcampbell12, cschug, and StackKorora.

New features

Improvements to the puppet facts diff command

This release makes the following improvements to the puppet facts diff CLI command:

• The command shows all of the differences between Facter 3 and Facter 4 — including facts only available in
Facter 4 — and sorts the output results in alphabetical order. You can also remove certain facts from the output
using the --exclude <regex> CLI option and see the results in a fully structured form. PUP-10985

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-11077
https://tickets.puppetlabs.com/browse/PUP-11081
https://tickets.puppetlabs.com/browse/PUP-11067
https://tickets.puppetlabs.com/browse/PUP-11074
https://tickets.puppetlabs.com/browse/PUP-10999
https://tickets.puppetlabs.com/browse/PUP-11026
https://tickets.puppetlabs.com/browse/PUP-11095
https://tickets.puppetlabs.com/browse/PUP-10844
https://github.com/gcampbell12
https://github.com/cschug
https://github.com/StackKorora
https://tickets.puppetlabs.com/browse/PUP-10985

Puppet | Release notes | 35

• The command filters the output based on an exclude list. This only contains volatile facts — those that are
expected to change value between consecutive Facter runs. PUP-10947

• The command pretty-prints JSON output. You can specify the older form with --render_as json.
PUP-10973

Backport logic to detect migrated CA directory location

After migrating the CA directory, Puppet now reports the correct cadir setting value. PUP-11004

Curl bumped to 7.76.0

This release bumps Curl to 7.76.0, fixing the following CVEs:

• CVE-2021-22890
• CVE-2021-22876

PA-3690

OpenSSL bumped to 1.1.1k

This release bumps OpenSSL to 1.1.1k, fixing the following CVEs:

• CVE-2021-3450
• CVE-2021-3449

PA-3669

Ruby bumped to 2.5.9

This release bumps Ruby to 2.5.9, fixing the following CVEs:

• CVE-2020-25613
• CVE-2021-28965

PA-3695

The GlobalSignRoot CA R3

This release adds the GlobalSignRoot CA R3 certificate for rubygems.org. PA-3525

The ciphers setting

The ciphers setting configures which TLS ciphersuites the agent supports. The default set of ciphersuites is the
same, but you can now make the list of ciphersuites more restricted, for example, to only accept TLS v1.2 or greater
ciphersuites. PUP-10889

The puppet ssl show command

The puppet ssl show command prints the full-text version of a host's certificate, including extensions.
PUP-10888

The puppet facts show command backported to 6.x agent

The puppet facts show command can now retrieve a list of facts from the system. Run puppet facts
show --help to see all of the supported options. PUP-10884

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-10947
https://tickets.puppetlabs.com/browse/PUP-10973
https://tickets.puppetlabs.com/browse/PUP-11004
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22890
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22876
https://tickets.puppetlabs.com/browse/PA-3690
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3450
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3449
https://tickets.puppetlabs.com/browse/PA-3669
https://www.ruby-lang.org/en/news/2020/09/29/http-request-smuggling-cve-2020-25613/
https://www.ruby-lang.org/en/news/2021/04/05/xml-round-trip-vulnerability-in-rexml-cve-2021-28965/
https://tickets.puppetlabs.com/browse/PA-3695
https://tickets.puppetlabs.com/browse/PA-3525
https://tickets.puppetlabs.com/browse/PUP-10889
https://tickets.puppetlabs.com/browse/PUP-10888
https://tickets.puppetlabs.com/browse/PUP-10884

Puppet | Release notes | 36

Resolved issues

Puppet cannot parse systemd instances when the list-unit-files output has an additional
column

This release fixes an issue affecting the parsing of systemd service instances caused by a change in the
systemctl list-unit-files command output. PUP-10949

Race condition with agent_disabled_lockfile

This release fixes a race condition that caused the agent to become disabled and no longer enforce desired state.
Contributed by Puppet community member gcampbell12. PUP-11000

Retrieve SID for users under APPLICATION PACKAGE AUTHORITY

A known issue with LookupAccountNameW caused Puppet to fail when managing Windows users under
APPLICATION PACKAGE AUTHORITY with fully qualified names. This is now fixed and we have added an
account name step to prevent faulty queries. PUP-10899

Retrieving the current user with the fully-qualified username fails on Windows

Previously, retrieving the current username SID on Windows caused Puppet to fail in certain scenarios, for example,
when the user was a secondary domain controller. This release adds a fallback mechanism that uses the fully
qualified domain name for lookup. You can retrieve the current user with the fully-qualified username and domain on
Windows. PUP-10898

Windows package provider continues to read the DisplayVersion key after it is embedded NULL

Previously, Puppet would not stop reading the registry at the correct WCHAR_NULL because it was encoded to
UTF-16LE, causing Puppet to read bad data and fail. This is now fixed. PUP-10943

Listing environments during code deploys prevents environment cache invalidation

Previously, catalog compilations for a newly created environment directory could fail if the environment was listed
while the directory was being created. This issue only occurred when using an environment_timeout value
greater than 0 and less than unlimited. This is now fixed.

PUP-10942

User resource with forcelocal and groups attributes set fails if /etc/group contains empty lines

This release fixes an issue where Puppet failed when applying user resources with forcelocal if there were empty
lines in /etc/group. PUP-10997

Augeas fails with Postgresql 13

This release patches the vendored Augaes in puppet-agent so that PostgreSQL 13 configuration file is no longer
parsed. PA-3406

The puppet facts diff command logs error when the apt module is installed

Previously, the puppet facts diff command, which compares Facter 3 and Facter 4 facts, did not run Facter 4
in a clean environment, causing undefined behavior for custom facts resolving. With this release, Puppet 4 facts are
read when running puppet facts in a new shell and custom facts resolve correctly. PUP-10940

Cannot ensure dnfmodule with no default profile

Previously, using the dnfmodule provider to install a module with no default profile and without passing the
enable_only parameter failed in newer versions of DNF. PUP-11024

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-10949
https://github.com/gcampbell12
https://tickets.puppetlabs.com/browse/PUP-11000
https://tickets.puppetlabs.com/browse/PUP-10899
https://tickets.puppetlabs.com/browse/PUP-10898
https://tickets.puppetlabs.com/browse/PUP-10943
https://tickets.puppetlabs.com/browse/PUP-10942
https://tickets.puppetlabs.com/browse/PUP-10997
https://tickets.puppetlabs.com/browse/PA-3406
https://tickets.puppetlabs.com/browse/PUP-10940
https://tickets.puppetlabs.com/browse/PUP-11024

Puppet | Release notes | 37

Puppet 6.21.1
Released 16 February 2021.

Resolved issues

Puppet users with forcelocal are no longer idempotent
This release fixes a regression where setting the gid parameter on a user resource with forcelocal was not
idempotent. PUP-10896

Puppet 6.21.0
Released 9 February 2021.

Resolved issues

User resource with forcelocal uses getent for groups

The useradd provider now checks the forcelocal parameter and gets local information on the groups (from /
etc/groups) and gid (from /etc/passwd) of the user when requested. PUP-10857

Slow Puppet agent run after upgrade to version 6

This release improves the performance of the apt package provider when removing packages by reducing the calls to
apt-mark showmanual. PUP-10856

The apt provider does not work with local packages

The apt package provider now allows you to install packages from local file using source parameter. PUP-10854

Puppet 6.20.0
Released 20 January 2021.

New features

JSON terminus for node and report

This release implements JSON termini for node and report indirection. The format of the
last_run_report.yaml report can be affected by the cache setting key of the report terminus in the
routes.yaml file. To ensure the file extension matches the content, update the lastrunreport configuration to
reflect the terminus changes (lastrunreport = $statedir/last_run_report.json). PUP-10712

JSON terminus for facts

This release adds a new JSON terminus for facts, allowing them to be stored and loaded as JSON. Puppet agents
continue to default to YAML, but you can use JSON by configuring the agent application in routes.yaml. Puppet
Server 7 also caches facts as JSON instead of YAML by default. You can re-enable the old YAML terminus in
routes.yaml. PUP-10656

Multiple logdest locations in puppet.conf accepted

You can set multiple logdest locations using a comma separated list. For example: /path/file1,console,/
path/file2. PUP-10795

New serverport setting type

The serverport setting is an alias for masterport. PUP-10725

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-10896
https://tickets.puppetlabs.com/browse/PUP-10857
https://tickets.puppetlabs.com/browse/PUP-10856
https://tickets.puppetlabs.com/browse/PUP-10854
https://tickets.puppetlabs.com/browse/PUP-10712
https://tickets.puppetlabs.com/browse/PUP-10656
https://tickets.puppetlabs.com/browse/PUP-10795
https://tickets.puppetlabs.com/browse/PUP-10725

Puppet | Release notes | 38

The puppet module install command lists unsatisfiable dependencies

If the puppet module install command fails, Puppet returns a more detailed error, including the unsatisfiable
module(s) and its ranges. PUP-9176

Interpolation of sensitive values in EPP templates

Previously, if you interpolated a sensitive value in a template, you were required to unwrap the sensitive
value and rewrap the result. Now the epp and inline_epp functions automatically return a Sensitive
value if any interpolated variables are sensitive. For example: inline_epp("Password is <%=
Sensitive('opensesame') %>"). Note that these changes just apply to EPP templates, not ERB templates.
PUP-8969

OpenSSL bumped to 1.1.1i

This release bumps OpenSSL to 1.1.1i. PA-3513

Curl bumped to 7.74.0

This release bumps Curl to 7.74.0. PA-3512

(Experimental feature) puppet facts diff action

This release adds a new action called puppet facts diff to check if there are differences between Facter 3 and
Facter 4 outputs. Facts that change over time like memory and uptime are ignored. PUP-10815

Deprecations

func3x_check setting removed

The func3x_check setting has been removed. PUP-10724

Resolved issues

The puppet apply command creates warnings
This release eliminates Ruby 2.7.x warnings when running puppet apply with node statements. PUP-10845

Remove Pathname#cleanpath workaround

This release removes an unnecessary workaround when cleaning file paths, as Ruby 1.9 is no longer supported.
PUP-10840

Cached catalog contains the result of deferred evaluation instead of the deferred function

Puppet 6.12.0 introduced a regression that caused the result of a deferred function to be stored in the cached catalog.
As a result, an agent running with a cached catalog would not re-evaluate the deferred function. This is now fixed.
PUP-10818

Calling scope#tags results in undefined method

Previously, calling the tags method within an ERB template resulted in a confusing error message. The error message
now makes it clear that this method is not supported. PUP-10779

Puppet agent installation fails when msgpack is enabled on puppetserver

Previously, the agent failed to deserialize the catalog and fail the run if the msgpack gem was enabled but not
installed. Now the agent only supports that format when the msgpack gem is installed in the agents vendored Ruby.
PUP-10772

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-9176
https://tickets.puppetlabs.com/browse/PUP-8969
https://tickets.puppetlabs.com/browse/PA-3513
https://tickets.puppetlabs.com/browse/PA-3512
https://tickets.puppetlabs.com/browse/PUP-10815
https://tickets.puppetlabs.com/browse/PUP-10724
https://tickets.puppetlabs.com/browse/PUP-10845
https://tickets.puppetlabs.com/browse/PUP-10840
https://tickets.puppetlabs.com/browse/PUP-10818
https://tickets.puppetlabs.com/browse/PUP-10779
https://tickets.puppetlabs.com/browse/PUP-10772

Puppet | Release notes | 39

Setting facterng twice raises an exception

Previously, calling puppet config set facterng true twice resulted in a failure. This is now fixed and
facterng is only enabled if it is not already. PUP-10731

Puppet feature detection leaves Ruby gems in a bad state

This release fixes a Ruby gem caching issue that prevented the agent from applying a catalog if a gem was managed
using the native package manager, such as yum or apt. PUP-10719

Fine grained environment timeout issues

Previously, if the environment.conf for an environment was updated and the environment was cleared,
puppetserver used old values for per-environment settings. This happened if the environment timed out or if
the environment was explicitly cleared using puppetserver's environment cache REST API. With this fix, if an
environment is cleared, Puppet reloads the per-environment settings from the updated environment.conf.
PUP-10713.

Setting certname in multiple sections bypasses validation

Previously, Puppet only validated the certname setting when specified in the main setting, but not if the value was in
a non-global setting like agent. As a result, it was possible to set the certname setting to a value containing uppercase
letters and prevent the agent from obtaining a certificate the next time it ran. Puppet now validates the certname
setting regardless of which setting the value is specified in. PUP-9481

puppet config set certname accepts upper-case names

Previously, the puppet config set command could set a value that was invalid, causing Puppet to fail the
next time it ran or the service was restarted. Now the command validates the value before committing the change to
puppet.conf. PUP-2173

3x functions cannot be called from deferred functions in Puppet agent

This release allows deferred 3.x functions, like sprintf, to be called during a Puppet agent run. PUP-10819

Issue with Puppet creating production folder when multiple environment paths are set

Previously, the production environment folder was automatically created at every Puppet ran in the first search
path, if it did not already exist. This release Puppet Puppet searches all the given paths before creating a new
production environment folder.PUP-10842

Puppet 6.19.1
Released 22 October 2020.

Resolved issues

Masterport not honoured when configured in a section other than main

Puppet 6.28.0 added the serverport config as an alias for masterport. This introduced a regression — when
masterport was set in a section of puppet.conf that was not main, it ignored masterport and set it to the
default value. This is now fixed, and both masterport and serverport are visible in other sections. PUP-10722

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-10731
https://tickets.puppetlabs.com/browse/PUP-10719
https://tickets.puppetlabs.com/browse/PUP-10713
https://tickets.puppetlabs.com/browse/PUP-9481
https://tickets.puppetlabs.com/browse/PUP-2173
https://tickets.puppetlabs.com/browse/PUP-10819
https://tickets.puppetlabs.com/browse/PUP-10842
https://tickets.puppetlabs.com/browse/PUP-10722

Puppet | Release notes | 40

Puppet 6.19.0
Released 20 October 2020

New features

New server_used report parameter

This release adds a new report parameter called server_used. It behaves like master_used. PUP-10672

Removed Puppet::Agent::Locker#running? deprecation warning

The Locker#running? method is still in use. This release removes the deprecation message. PUP-10624

The puppetserver_gem package provider added to core Puppet

Previously, the provider was part of the puppetlabs-puppetserver_gem module, which no longer receive
updates. This release moves the puppetserver_gem provider to core Puppet. PUP-10604

Added pip2 package provider when pip3 is the system default

This release adds the pip2 provider to allow you to explicitly use the Python 2 pip. PUP-7526

New environment_timeout_mode setting to clear short-lived Puppet environments from memory

This release adds the environment_timeout_mode setting, which allows you to clear short-lived Puppet
environments from memory, while also caching frequently used environments indefinitely. This reduces the Puppet
Server memory footprint. For more information, see the release notes summary in the ticket. PUP-8014

Resolved issues

Puppet does not log connection error details when a functional master cannot be located

Previously, errors were only logged at the debug level or at the err level if the no servers were available.
Puppet agents now log errors that occur when trying to connect to each server in server_list at the err level.
PUP-10664

Performance regression with large hashes using lookup

This release fixes a performance regression in 5.5.x and 6.0x. which affected Hiera lookups in large hashes.
PUP-10628

Status endpoint does not use the extra_headers setting

If http_extra_headers is set, Puppet sends the headers for each HTTP request it makes when processing the
server_list setting to determine which server to use. PUP-10617

Fact yaml does not quote mac addresses

Previously, when Puppet facts were called with the --render-as yaml option, the macaddress fact was
unquoted. This resulted in bad data if other tools parsed the resulted yaml and interpreted the value as a sexagesimal
(base 60) integer when the address did not contain chars A-F. This release adds quoting to all yaml strings that
contain the : character. PUP-9505

Data type casts cause Puppet Server to retain compiler instances

This issue is now fixed when running under JRuby. PUP-10659

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-10672
https://tickets.puppetlabs.com/browse/PUP-10624
https://tickets.puppetlabs.com/browse/PUP-10604
https://tickets.puppetlabs.com/browse/PUP-7526
https://tickets.puppetlabs.com/browse/PUP-8014
https://tickets.puppetlabs.com/browse/PUP-10664
https://tickets.puppetlabs.com/browse/PUP-10628
https://tickets.puppetlabs.com/browse/PUP-10617
https://tickets.puppetlabs.com/browse/PUP-9505
https://tickets.puppetlabs.com/browse/PUP-10659

Puppet | Release notes | 41

Resource collector overrides cause Puppet Server to retain compiler instances

This issue is now fixed when running under JRuby. PUP-10657

Puppet 6.18.0
Released 25 August 2020

New features

New property and parameter to manage user rights on Windows

You can now manage rights and privileges for local Windows users with the roles property and
role_membership parameter. PUP-10547

Curl upgraded to 7.71.1

This release upgrades Curl to 7.71.1 PA-3333

Resolved issues

Add facts and vars back to PAL ScriptCompiler scope

As part of work on PUP-10397, we removed vars and facts from PAL ScriptCompiler which resulted in a
breaking change to a public API. This release adds local facts back. PUP-10615

Misuse of URL encoding in file resource HTTP GET

Puppet 6.16.0 introduced a regression when using HTTP file sources, the URL request path or query contained
special characters. This release restores the previous behavior. To specify a path or query that contains a space, you
need the URL encoded in the manifest. PUP-10603

Puppet lookup loads external facts on the initiating node

Previously, some Puppet default settings required Facter to retrieve data that loaded all external facts and slowed
down Puppet. With this release, local external facts are not evaluated when performing a lookup command on a
remote node. PUP-10599

The ppt package provider does not mark managed packages as manual

With this release, the apt package provider can now mark packages as manual. PUP-6631

An error is logged during an agent run if Puppet Server does not have at least one <module>/lib
dir in its modules directory

If Puppet Server does not have at least one modules directory, the file_metadatas REST API for the plugins,
pluginfacts and locales mounts returns file metadata for /etc/puppetlabs/code, instead of returning
HTTP 404. PUP-2608

Puppet agent fails to install on a Windows VM if the Windows installer is not used
This release fixes a regression introduced in 6.17.0. You can now install packages when HKLM:\SOFTWARE
\Microsoft\Windows\CurrentVersion\Installer\UserData\S-1-5-18\Components does not
exist. PA-3351

Constant corrective changes on SLES 12

This release fixes a regression introduced in Puppet 6.16.0 where the zypper package provider reported corrective
changes when the package_version package was installed. PUP-10609

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-10657
https://tickets.puppetlabs.com/browse/PUP-10547
https://tickets.puppetlabs.com/browse/PA-3333
https://tickets.puppetlabs.com/browse/PUP-10397
https://tickets.puppetlabs.com/browse/PUP-10615
https://tickets.puppetlabs.com/browse/PUP-10603
https://tickets.puppetlabs.com/browse/PUP-10599
https://tickets.puppetlabs.com/browse/PUP-6631
https://tickets.puppetlabs.com/browse/PUP-2608
https://tickets.puppetlabs.com/browse/PA-3351
https://tickets.puppetlabs.com/browse/PUP-10609

Puppet | Release notes | 42

Puppet::Util::Yaml safe_load not loading Time class which leads to compilation error for
time serial data

Previously, when an agent run enforced a time-based property of a resource, the next agent run generated an error and
lost the ability to report on corrective changes accurately. This occurred when using the {{audit}} metaparameter
to monitor file mtime. This is now fixed. PUP-10585

The puppet apply command fails if Puppet types have been generated

Previously, running puppet apply failed if the Puppet generate types command was run before. In this release,
puppet apply ignores resource type in the environment resource_types directory. PUP-9602

Puppet run continues despite failed Pluginsync

Previously, Puppet agents ignored pluginsync errors and applied the catalog with incorrect facts
and plugin versions, leading to obscure errors or data corruption. This release adds a new setting —
ignore_plugin_errors. If set to false, the agent aborts the run if pluginsync fails. The setting defaults to
true so the old behavior is preserved.PUP-1763

The puppet_gem provider does not use vendored PKG_CONFIG_PATH when installing native
extensions

This release allows you to install gems with native extensions that require PKG_CONFIG_PATH, when using
puppet_gem provider, for example the rugged gem PUP-10584

Puppet::Util.default_env method unintentionally removed in 6.17.0

Testing modules using rspec-puppet versions earlier than 2.7.10 resulted in the error undefined local
variable or method 'default_env' for Puppet::Util:Module. This is now fixed. PUP-10586

Allow running Puppet commands via AWS Session Manager on Windows 2019

Previously, installing a Puppet agent on EC2 Windows Server 2019 via AWS Session Manager caused an error. This
is now fixed. PUP-10600

Puppet 6.17.0
Released 14 July 2020.

New features

Extended trusted_external_command setting

The trusted_external_command setting can now be set to a directory. For each executable file in the
directory, the external trusted facts will be stored in the basename key of the trusted['external'] hash.
PUP-10528

Updated permissions for files in /cache/state/

This release updates the permission for state.yaml and transactionstore.yaml to remove the group write
access. PUP-8922

HTTPS file sources allow additional CA certificates
The releases allows you to configure Puppet agents to trust additional CA certificates when connecting to HTTPS
servers when the CA certificate is neither the Puppet CA or in the CA cert bundle of the puppet-agent package. To
enable this setting, set ssl_trust_store to a file containing CA cert(s) in PEM format concatenated together, for
example, /etc/pki/tls/cert.pem. Note that this setting only applies when Puppet makes an HTTPS request to
non-Puppet REST endpoints. PUP-7814

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-10585
https://tickets.puppetlabs.com/browse/PUP-9602
https://tickets.puppetlabs.com/browse/PUP-1763
https://tickets.puppetlabs.com/browse/PUP-10584
https://tickets.puppetlabs.com/browse/PUP-10586
https://tickets.puppetlabs.com/browse/PUP-10600
https://tickets.puppetlabs.com/browse/PUP-10528
https://tickets.puppetlabs.com/browse/PUP-8922
https://tickets.puppetlabs.com/browse/PUP-7814

Puppet | Release notes | 43

Support for file content from artifactory

Puppet can now retrieve file content from artifactory using an HTTP(S) source parameter. PUP-6114

Support for username:password@domain for HTTP/HTTPS sources

You can now retrieve file content using HTTP basic authentication. The credentials should not appear in debug output
or reports. PUP-6916

boost and yaml-cpp dependencies in the SLES 15 puppet-agent package

The boost and yaml-cpp dependencies are now vendored in the SLES 15 agent build. PA-3006

Added logonaccount and logonpassword

This release adds the logonaccount and logonpassword fields for managing the logon credentials used by
services on Windows. PUP-1289

Resolved issues

Puppet cannot apply a cached catalog containing binary rich data

Previously, Puppet could not apply a cached catalog if it contained binary or deferred data types, causing it to always
fallback to requesting a new catalog. PUP-10572

File sources with path starting with double slashes are interpreted as a local file

Puppet incorrectly handled a file resource if the source’s parameter path component had an extra slash, for example,
puppet:////modules/mymodule. PUP-10544

Puppet agents can't download file content from puppetserver via "raw" HTTPS
If Puppet tries to download file metadata from an HTTP(S) file source and the HEAD request results in "HTTP 403
Forbidden" or "405 Method Not Allowed", it fallback to a GET request with a 0 byte range. PUP-10543

Resolve Rspec warnings for Ruby 2.7

You can now run Puppet from source on Ruby 2.7 using bundler without warnings. PUP-10537

Checksums are not validated when downloading file http(s):// sources

If a file resource has a desired checksum type and value, but the file downloaded from the remote source does not
match, Puppet will raise an error that they mismatch, and will not update the file on the local system. PUP-10368

HTTP file sources fail for GET-only URIs

Puppet can now retrieve file content from Amazon AWS and GitHub releases, for example, source =>
https://github.com/path/to/released/artifact. PUP-6380

Ensure Windows wide character strings have a wide terminator

This release improves memory safety when Puppet converts Ruby strings to wide character strings on Windows.
PUP-10254

“HTTP 406 Not Acceptable” error message should contain format names

This release prints the MIME types, instead of format objects, from the Accept header, in cases where puppetserver
cannot generate a catalog in the requested format. PUP-10549

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-6114
https://tickets.puppetlabs.com/browse/PUP-6916
https://tickets.puppetlabs.com/browse/PA-3006
https://tickets.puppetlabs.com/browse/PUP-1289
https://tickets.puppetlabs.com/browse/PUP-10572
https://tickets.puppetlabs.com/browse/PUP-10544
https://tickets.puppetlabs.com/browse/PUP-10543
https://tickets.puppetlabs.com/browse/PUP-10537
https://tickets.puppetlabs.com/browse/PUP-10368
https://tickets.puppetlabs.com/browse/PUP-6380
https://tickets.puppetlabs.com/browse/PUP-10254
https://tickets.puppetlabs.com/browse/PUP-10549

Puppet | Release notes | 44

Puppet Windows package provider fails if there are garbage characters after an embedded NULL

This release fixes a bug in the Windows package provider when reading package version from registry. This
happened if there were garbage characters after the wide NULL terminator. PUP-10536

Sensitive data type lost when declaring multiple resources using title arrays

This release fixes support of sensitive data type parameters when declaring multiple resources using title arrays
PUP-10511

Agent runs failing with "Invalid or unsupported charset:ANSI_X3.4-1968"

Previously, agent runs failed when the locale settings where unrecognised or in an error state because leatherman
logging expects a working locale. This release implements a defense for the leatherman logging function. PA-3254

Puppet does not add correct command flags

This release fixes an issue where Puppet would not add the correct command flags when ensuring a user resource
with managehome enabled. PUP-8897

Puppet agent should ignore nssm.exe during an upgrade

Previously, if a puppet-agent upgrade on Windows happened when nssm.exe was loaded by EventLog service,
certain services were restarted, leading to unreachable machines. This release includes an nssm executable for pxp-
agent (nssm-pxp-agent.exe) and we have remove Windows registry references to the old nssm.exe. PA-3263

Puppet should ignore system Ruby settings

Running Puppet using a wrapper script from the puppet-agent package will now ignore the following ruby related
environment variables: GEM_HOME, GEM_PATH, DLN_LIBRARY_PATH, RUBYLIB, RUBYLIB_PREFIX,
RUBYOPT, RUBYPATH, RUBYSHELL PA-3248

Deprecations

The application orchestration features

The application orchestration features are deprecated and will be removed in Puppet 7. As a result, the following will
also be deprecated:

• The {{site}}, {{produces}} or {{consumes}} keywords.
• The export and consume metaparameters.
• The environment catalog REST API.

Puppet 6.16.0
Released 3 June 2020.

New features

New puppet help command to generate ronn output

This release adds a puppet help <app> --ronn command to generate help text for an application in ronn
format. This eliminates the need for puppet man which is deprecated and will be removed in Puppet 7. PUP-10502

FileMetadata HTTP terminus to use the new Puppet::HTTP::Client code

Puppet now uses the HTTP client to retrieve file metadata from HTTP(S) sources. PUP-10482

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-10536
https://tickets.puppetlabs.com/browse/PUP-10511
https://tickets.puppetlabs.com/browse/PA-3254
https://tickets.puppetlabs.com/browse/PUP-8897
https://tickets.puppetlabs.com/browse/PA-3263
https://tickets.puppetlabs.com/browse/PA-3248
https://tickets.puppetlabs.com/browse/PUP-10502
https://tickets.puppetlabs.com/browse/PUP-10482

Puppet | Release notes | 45

New method for registering runtime implementations

This feature allows caller to register runtime implementations. Currently only HTTP is supported. PUP-10429

Puppet observes waitforlock when acquiring the ssl lock

Puppet uses an ssl lockfile to ensure its certificates and keys on disk are not modified by multiple Puppet processes. If
Puppet is unable to acquire the ssl lockfile, and the new Puppet[:waitforlock] setting is enabled, Puppet will
wait that many seconds before retrying the ssl lock. Puppet will wait for Puppet[:maxwaitforlock] seconds at
most before giving up. PUP-10420

External trusted data is executed for file_content requests

The trusted_external_command is now only run once when external data is requested, instead of every time a
request is made. PUP-10292

Improved error message when a file resource requires a non-existent directory

This release improves the error message that occurs when trying to manage a file resource whose parent directory
does not exist. PUP-4442

Support on version ranges for the eq operator

Now all the providers that support version ranges will also handle simple versions, making the behaviour consistent
between package providers, for example, 1.2.3. PUP-10496

New disabled value in dnfmodule package provider

This release adds a disabled value to the ensure field in the dnf module provider. PUP-10419

Added SemVerRange support to zypper package provider

This release adds support of >, >=, <, <=, >=A <=B ranges for package version specified in :ensure for zypper
provider. PUP-10299

The Puppet runtime API now accept symbols as names

This release changes the Puppet.runtime method to take symbols instead of strings. PUP-10471

New Puppet agent options when waiting for lock

Previously, an agent run would immediately exit if there was an ongoing instance. Two Puppet configuration settings
have been added to solve this issue.

• Waitforlock: The frequency an agent should run when there is an ongoing Puppet agent instance.
• Maxwaitforlock: The maximum amount of time an agent should wait for another agent to finish before

starting a new run.

PUP-8051

New Puppet introduction in the documentation

An introduction to Puppet to help new users learn the basic concepts and features. See the Puppet introduction.

Resolved issues

Installer switch service-enable true reports wrong actions in certain conditions

Previously, the puppet resource command wrongly reporting the enabled state of a systemd service when
the ensure parameter was also specified. This is now fixed. PUP-10479

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-10429
https://tickets.puppetlabs.com/browse/PUP-10420
https://tickets.puppetlabs.com/browse/PUP-10292
https://tickets.puppetlabs.com/browse/PUP-4442
https://tickets.puppetlabs.com/browse/PUP-10496
https://tickets.puppetlabs.com/browse/PUP-10419
https://tickets.puppetlabs.com/browse/PUP-10299
https://tickets.puppetlabs.com/browse/PUP-10471
https://tickets.puppetlabs.com/browse/PUP-8051
https://puppet.com/docs/puppet/6/puppet_overview.html
https://tickets.puppetlabs.com/browse/PUP-10479

Puppet | Release notes | 46

OpenSSL errors on AWS FIPS

Previously, interleaving ruby/leatherman OpenSSL on RehHat7 FIPS led to OpenSSL module errors when the Ruby
HTTP client was reused. This is now fixed to adapt openssl.cnf and configure FIPS algorithms, by setting
evp_setting to fips_mode = true. PA-3223

An "unable to set ownership" error with logdest on agents running as root

Puppet no longer generates an error when using a log file destination. PUP-10407

Puppet plugin download fails if an agent specified environment does not exist on the agent

Calling puppet plugin download --environment <env> failed if the environment directory did not
exist locally. This is now fixed. PUP-10307

The agent incorrectly reports corrective changes when base64 padding is missing from Content-
MD5

Previously, when managing file resources with HTTP(S) source parameters, Puppet only parsed the header, causing
interoperability problems when the base64 encoded value was not padded. Now Puppet parses the Content-MD5
header according to RFC 2045. PUP-10164

The purge_ssh_keys parameter requires you to set the home directory in the manifest

The release fixes an issue where Puppet required you to manage the home directory when purging SSH keys with
purge_ssh_keys. PUP-10506

The pip package provider does not handle pip executable paths with spaces

Paths containing spaces will now be quoted in the pip package providers. PUP-10485

Portage package provider does not work on Gentoo-based distributions

This release fixes an issue where the Gentoo provider was incorrectly selected on Gentoo-family distributions.
PUP-10469

Running remove_old_postgresql_versions after upgrade fails

This release fixes an issue in Puppet's behaviour when listing information about a single specific service and all
available ones by showing services in a static state. PUP-10437

Zypper provider does not recognize --no-gpg-checks as a global option

This release allows --no-gpg-checks to be passed as an item to install_options property for the zypper
package provider. Note that for backward compatibility --no-gpg-check was not removed. PUP-10433

Puppet agent fails to self-restart with configuration changes or updates

Previously, when two agent runs were taking place at the same time, under some circumstances, the Puppet agent
could get in a restart_requested state. This is now fixed. PUP-10351

User resource expiry incorrect on SLES 11

On SLES 11, setting a user resource expiry to absent resulted in disabling the user instead. This is now fixed.
PUP-7663

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PA-3223
https://tickets.puppetlabs.com/browse/PUP-10407
https://tickets.puppetlabs.com/browse/PUP-10307
https://tickets.puppetlabs.com/browse/PUP-10164
https://tickets.puppetlabs.com/browse/PUP-10506
https://tickets.puppetlabs.com/browse/PUP-10485
https://tickets.puppetlabs.com/browse/PUP-10469
https://tickets.puppetlabs.com/browse/PUP-10437
https://tickets.puppetlabs.com/browse/PUP-10433
https://tickets.puppetlabs.com/browse/PUP-10351
https://tickets.puppetlabs.com/browse/PUP-7663

Puppet | Release notes | 47

The systemd provider does not honor documented enabled states

Previously, enabling indirect services caused an idempotency issue in Puppet. This has been fixed by not allowing
users to enable/disable these services and to print a debug log instead. PUP-7163

Deprecations

The puppet module search command

Instead, search for modules on Puppet Forge. PUP-10480

The {find,search,save,destroy,head} methods in the abstract rest terminus

Calling Puppet::Indirection::Rest.{find,search,save,destroy,head} is deprecated as part of
an effort to separate the indirector and HTTP requests. If a custom terminus extends the abstract rest terminus, it will
implement the networking request itself or call Puppet's HTTP client. PUP-10445

HTTP file content terminus

The HTTP terminus for retrieving file content is deprecated and will be removed in Puppet 7. PUP-10444

Route HttpPool.connection through HTTP client

Calls to Puppet::Network::HttpPool are routed to the new HTTP client, but preserve the existing behavior
for that API. The HttpPool class is deprecated and will be removed in Puppet 7. PUP-10289

The Puppet::Network::HTTP::{Connection,NoCachePool,Compression} class

The Puppet::Network::HTTP::Connection class is deprecated and will be removed in Puppet 7. Calls to
the Puppet::Network::HttpPool factory methods (such as http_instance) are routed to the new HTTP
client in Puppet. PUP-10481

Puppet 6.15.0
Released 30 April 2020.

New features

HTTP client API uses a generic options hash

Instead of using keyword arguments, the HTTP client API uses a generic options hash. This change allows more
flexibility with development and ensures there are no problematic version dependencies. PUP-10353

HTTP report processor uses HTTP client

The HTTP report processor uses new Puppet HTTP client when running in puppet apply. Note that it still uses
the existing HTTP client when running in puppetserver. PUP-10316

HTTP report processor setting includes system truststore

Previously, when an HTTPS URL was specified, the processor would only trust the Puppet CA when verifying the
server SSL certificate. This release adds a Puppet[:report_include_system_store] setting, which
defaults to false. If set to true, the report processor trusts CA certificates in the puppet-agent CA bundle, as well
as Puppet CA. This change only affects the HTTPS processor when running in the context of puppet apply.
PUP-7737

Unified service return values

The return values of the HTTP client service methods now returns the request response, as well as previous return
values. PUP-10418

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-7163
https://forge.puppet.com/
https://tickets.puppetlabs.com/browse/PUP-10480
https://tickets.puppetlabs.com/browse/PUP-10445
https://tickets.puppetlabs.com/browse/PUP-10444
https://tickets.puppetlabs.com/browse/PUP-10289
https://tickets.puppetlabs.com/browse/PUP-10481
https://tickets.puppetlabs.com/browse/PUP-10353
https://tickets.puppetlabs.com/browse/PUP-10316
https://tickets.puppetlabs.com/browse/PUP-7737
https://tickets.puppetlabs.com/browse/PUP-10418

Puppet | Release notes | 48

Filebucket rest terminus uses HTTP client code

The filebucket rest terminus now uses the new HTTP client code. All HTTP requests that are routed through the
rest terminus will go through HTTP::Client. This includes the logic to find which server to submit requests to.
PUP-10385

New metric for Puppet agent run

This release adds a new Startup time metric that accounts for the interval between Puppet agent initialization
and the actual run. PUP-10371

New certificate extension OID

This release adds a new certificate extension OID — 1.3.6.1.4.1.34380.1.1.26 — and short name —
pp_owner. PUP-10364

SemVerRange support for yum, apt, pip and gem package providers

This release adds support for range intersection for the yum, apt, pip and gem package providers. Note that when
using version ranges with the yum package provider, there is a limitation that requires you to specify the epoch for the
version in the range. See known issues for more information. PUP-10298, PUP-`10297, PUP-10296, PUP-10295

Custom retrieve() method with non-standard return values removed

This release removes the retrieve() custom method and adjusts tests dependent on the behavior. PUP-9943

Facts and vars from ScriptCompiler scope removed

This release removes node specific values from the scope of script compiles, as they did not happen in the context of
a node. PUP-10397

Partitioned reports table

The PuppetDB reports table is now partitioned by day for better query and garbage collection performance. If you
are an open source user, have a large database and do not delete your reports prior to the upgrade, you need to change
the start timeout manually. This can take 80-85 minutes per 10GB — note that is an estimate and will be different for
every user. PDB-4606

Ubuntu 20.04 support

This release adds puppet-agent support for Ubuntu 20.04. PUP-10284

Resolved issues

Upgrade Puppet Server 6.9.2 from Puppet 6.5

Previously, when querying environments without an environments directory, Puppet Server would report a 406
with an undefined method error. Now it reports an empty environments list. PUP-10405

The pkgng provider does not parse latest version properly

The pkgng provider now correctly parses the latest versions for packages. PUP-10382

The pkgng provider does not support install_options

The pkgng provider now supports install_options. PUP-10380

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-10385
https://tickets.puppetlabs.com/browse/PUP-10371
https://tickets.puppetlabs.com/browse/PUP-10364
https://tickets.puppetlabs.com/browse/PUP-10298
https://tickets.puppetlabs.com/browse/PUP-10297
https://tickets.puppetlabs.com/browse/PUP-10296
https://tickets.puppetlabs.com/browse/PUP-10295
https://tickets.puppetlabs.com/browse/PUP-9943
https://tickets.puppetlabs.com/browse/PUP-10397
https://tickets.puppetlabs.com/browse/PDB-4606
https://tickets.puppetlabs.com/browse/PUP-10284
https://tickets.puppetlabs.com/browse/PUP-10405
https://tickets.puppetlabs.com/browse/PUP-10382
https://tickets.puppetlabs.com/browse/PUP-10380

Puppet | Release notes | 49

puppet plugin download does not download from locales mount

This release fixes a regression in 6.14.0 that caused puppet plugin download to not download files from the
locales mount in the same way that the agent does. PUP-10374

Puppet apply recursive copy of directory fails in file resource

This release fixes a regression in Puppet 6.14.0 that prevented the puppet apply application from recursively
copying a directory from a module using a puppet:// URL. PUP-10367

Puppet agent unable to fetch file from HTTPS source

This release fixes a regression in 6.14.0 that prevented Puppet agents from retrieving file content from HTTPS
sources, when the server's certificate was issued by a CA other than the Puppet CA. PUP-10365

server_list processed up to four times per agent run

This release fixes a regression in 6.14.0 that caused Puppet agents to process their server_list up to 4 times per
agent run, instead of once per run. This release restores the behavior that existed in 6.13.0 and before. PUP-10363

Can't disable Puppet::SSL::Host deprecation warning when using PuppetDB terminus

Puppet no longer generates a deprecation warning when calling
Puppet::Network::HttpPool.http_instance, which used to happen when using the puppetlabs-
puppetdb module to install and manage PuppetDB. PUP-10355

The puppet_gem package provider ensure => absent breaks file resources

The puppet_gem provider can now uninstall a gem during an agent run. PUP-10319

Puppet 6 daemons do not release ssl_lockfile

Previously, daemonized Puppet agents kept the ssl_lockfile locked while waiting for Puppet Server to
issue their certificate. This prevented foreground Puppet commands from working. Now the agent releases the
ssl_lockfile while it sleeps and reacquires the lock when it wakes up. PUP-10228

Pacman provider does partial upgrades

This release prevents the Pacman package provider from partial upgrades. PUP-10152

Persistent HTTP connection timeouts cannot be changed when using the new HTTP client

The release fixes a regression in 6.14.0 that caused Puppet to cache persistent HTTP connections for
15 seconds, instead of the expected 4 seconds, and it was not possible to change the timeout using the
Puppet[:http_keepalive_timeout] setting. PUP-10434

RedHat RHBA-2020:1028 breaks `yum.rb` in yum provider

This release fixes an issue where Red Hat Subscription Manager updates caused ensure => latest to do
nothing. PUP-10432

Windows service calls deprecated puppet agent --configprint

This release fixes an issue where Puppet Windows service called deprecated puppet agent --configprint.
PUP-10414

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-10374
https://tickets.puppetlabs.com/browse/PUP-10367
https://tickets.puppetlabs.com/browse/PUP-10365
https://tickets.puppetlabs.com/browse/PUP-10363
https://tickets.puppetlabs.com/browse/PUP-10355
https://tickets.puppetlabs.com/browse/PUP-10319
https://tickets.puppetlabs.com/browse/PUP-10228
https://tickets.puppetlabs.com/browse/PUP-10152
https://tickets.puppetlabs.com/browse/PUP-10434
https://tickets.puppetlabs.com/browse/PUP-10432
https://tickets.puppetlabs.com/browse/PUP-10414

Puppet | Release notes | 50

Puppet .dmg packages fail on macOS 10.15

In macOS 10.15, the -noidme flag caused .dmg package installation to fail. This release removes the -noidme
flag with hdiutil when using pkgdmg package provider. PUP-10408

Gem provider reports changes when using composed requirements

This release fixes idempotency of gem resources with composite requirements, such as range intersections (>=1.3,
<2.2). PUP-10395

Ruby file loaded twice

Previously, the gem package provider’s Ruby file loaded twice and caused warnings on each Puppet run. This release
removes an unnecessary file requirement that caused this issue. PUP-10390

Puppet resource service does not return all active services on Ubuntu

This release fixes an inconsistency in Puppet's behaviour when listing information about a specific service.
PUP-10378

Custom file ownership for lastrunreport ignored

This release fixes a bug introduced in 6.13.0 where ownership for the lastrunreport file ignored what was
defined in puppet.conf. PUP-10376

Custom file mode for lastrunreport ignored

This release fixes a bug introduced in 6.13.0 where the mode for the lastrunreport file was reset and ignored
what was defined in puppet.conf. PUP-10325

Latest version ensured for python package is incorrect

Previously, using pip to ensure the latest package available could cause a lack of idempotency, with Puppet
identifying the latest version incorrectly. This release improves the comparing and sorting mechanism of versions.
PUP-10375

5.5.17 agents fails on interval runs

There were various paths in a Puppet run that did not explicitly return an exit code, leading to a TypeError
exception. With this release, the exit argument from run_in_fork is unaffected by these errors. PUP-10366

Facter 4 debug logs do not use Puppet logger

This release fixes an issue where enabling the facterng feature flag stopped the debug logs from being forwarded
to Puppet. PUP-10322

Windows user management fails if group contains not resolvable Domain accounts

Previously, if an Active Directory user was added as a member of a local group and then deleted, Puppet did not
manage the respective group members. With this release, Puppet will manage the group by showing SID instead of
the account name for non-resolvable users. PUP-10303

Windows pidlock access denied

With this release, use SeDebugPrivilege on Windows when opening a lockfile PID to determine whether the
process is a Puppet process. PUP-10248

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-10408
https://tickets.puppetlabs.com/browse/PUP-10395
https://tickets.puppetlabs.com/browse/PUP-10390
https://tickets.puppetlabs.com/browse/PUP-10378
https://tickets.puppetlabs.com/browse/PUP-10376
https://tickets.puppetlabs.com/browse/PUP-10325
https://tickets.puppetlabs.com/browse/PUP-10375
https://tickets.puppetlabs.com/browse/PUP-10366
https://tickets.puppetlabs.com/browse/PUP-10322
https://tickets.puppetlabs.com/browse/PUP-10303
https://tickets.puppetlabs.com/browse/PUP-10248

Puppet | Release notes | 51

Ruby security update

This version upgrades the Ruby version to 2.5.8 to address security issues:

• CVE-2020-10663: Unsafe Object Creation Vulnerability in JSON
• CVE-2020-10933: Heap exposure vulnerability in the socket library

PA-3176

OpenSSL security update

This version upgrades the OpenSSL version from 1.1.1f to 1.1.1g on non-fips platforms to address CVE-2020-1967.
PA-3186

Agent upgrade restarts Windows DHCP Server service

Previously, Windows components (such as DHCP Client) restarted after Puppet agent upgrades. This was a result of
nssm.exe being registered as the EventMessageFile, which got loaded and locked into svchost.exe when
viewing events raised by pxp-agent. The agent upgrade tried to replace nssm.exe, but failed as it was loaded,
and the only way to unload it was to restart. This fix removes the usage of nssm.exe for events and replaces it with
EventCreate.exe when generating event messages, so now the EventCreate.exe will get loaded and locked
by svchost.exe when viewing Puppet events. This will no longer interfere with the agent upgrade. PA-3175

Puppet 6.14.0
Released 10 March 2020

New features

Hiera-eyaml prints error message when decryption fails

If Puppet fails to decrypt a value stored in hiera-eyaml, include the name of the key where the lookup failed in an
error message. PUP-10317

Puppet uses new http client for all REST requests

Prior to this release, the agent only used the http client for certificate related requests. Note that this does not change
how Puppet works when running as a library inside Puppet Server. PUP-10260

Send extra headers when requesting a catalog compilation

You can now define custom headers to send with http requests to Puppet infrastructure. Use the
:http_extra_headers setting to define these. They should be a comma separated string of key:value pairs.
PUP-9566

Puppet HTTP API does not allow callers to trust system cacerts

The HTTP client now accepts a parameter to trust the system certificate store when making HTTPS connections. By
default, it only trusts the Puppet PKI. The API is private and may change in a future release. PUP-5069

macOS 10.12, macOS 10.13 and Fedora 28 support removed

This release of the puppet-agent package removes support for macOS 10.12, macOS 10.13 and Fedora 28.
PUP-10244, PUP-10245, PUP-10242.

© 2024 Puppet, Inc., a Perforce company

https://www.ruby-lang.org/en/news/2020/03/19/json-dos-cve-2020-10663/
https://www.ruby-lang.org/en/news/2020/03/31/heap-exposure-in-socket-cve-2020-10933/
https://tickets.puppetlabs.com/browse/PA-3176
https://www.openssl.org/news/secadv/20200421.txt
https://tickets.puppetlabs.com/browse/PA-3186
https://tickets.puppetlabs.com/browse/PA-3175
https://tickets.puppetlabs.com/browse/PUP-10317
https://tickets.puppetlabs.com/browse/PUP-10260
https://tickets.puppetlabs.com/browse/PUP-9566
https://tickets.puppetlabs.com/browse/PUP-5069
https://tickets.puppetlabs.com/browse/PUP-10244
https://tickets.puppetlabs.com/browse/PUP-10245
https://tickets.puppetlabs.com/browse/PUP-10242

Puppet | Release notes | 52

Resolved issues

Disable metrics v1 endpoint and restrict v2 to localhost

To prevent information exposure as a result of CVE-2020-7943, the /metrics/v1 endpoints are disabled by
default, and access to the /metrics/v2 endpoints are restricted to localhost. PE-28468

Secondary group handling causing issues in 6.13.0

The members parameter of a group resource was validated by checking if each user exists before the manifest was
applied, resulting in a manifest containing both user creation and group members update, which would fail. You can
now dd new user and update group membership in the same manifest apply. PUP-10320

Client does not reconnect when the server closes a persistent connection

Previously, Puppet failed to reuse a previously cached connection if it was using the new HTTP client, if the previous
request was kept alive, or if the server closed the connection between when the client caches it and when the client
tries to reuse it. PUP-10347

Replace find_functional_server call with http client

Puppet agents now use the new HTTP client to resolve the first available server in the server_list setting.
PUP-10315

Puppet tries to print ssl information for non-ssl connections in debug mode

In debug mode, Puppet now only prints TLS protocols and ciphersuites for HTTPS connections, but not HTTP
connections. PUP-10314

Close http client

During the SSL bootstrapping process, Puppet now closes all active HTTP connections before sleeping for
"waitforcert" seconds. PUP-10288

When a site has no active connections, it should be removed from the pool.

Reduction in memory usage when the last connection from the HTTP pool is borrowed and not returned. PUP-10286

The puppet apply command does not stream file content

Now the puppet apply command uses the same code path as puppet agent to stream file content from
puppet://" and "http(s):// file sources. As a result, the memory footprint is reduced. PUP-8338

The puppet describe --list command requires the description to include a period

The puppet describe --list command now displays summary information for each type and provider,
regardless of whether the summary contains a period. PUP-2641

The Puppet agent fails due to a Ruby error

This release fixes an issue with large environment blocks on Windows, which caused a Ruby error. PA-3113

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/security/cve/CVE-2020-7943
https://tickets.puppetlabs.com/browse/PE-28468
https://tickets.puppetlabs.com/browse/PUP-10320
https://tickets.puppetlabs.com/browse/PUP-10347
https://tickets.puppetlabs.com/browse/PUP-10315
https://tickets.puppetlabs.com/browse/PUP-10314
https://tickets.puppetlabs.com/browse/PUP-10288
https://tickets.puppetlabs.com/browse/PUP-10286
https://tickets.puppetlabs.com/browse/PUP-8338
https://tickets.puppetlabs.com/browse/PUP-2641
https://tickets.puppetlabs.com/browse/PA-3113

Puppet | Release notes | 53

Puppet 6.13.0
Released 18 February 2020

New features

Puppet reads parameter resource for forcelocal set

When managing a user or group resource with a forcelocal set, Puppet reads /etc/passwd or /etc/group
for each parameter of the resource. Files are read once per managed resource. PUP-10117

forcelocal parameter available for user and group resources

The forcelocal parameter can be used on AIX for managing local user and group resources, however this option
conflicts with the ia_load_module parameter. PUP-10169

Default behavior changed for strict_hostname_checking

Puppet 6.13.0 changes the default behavior for strict_hostname_checking from false to true.
It is recommended that Open Source Puppet and Puppet Enterprise users that are not upgrading still set
strict_hostname_checking to true to ensure secure behavior. You also must specify the FQDN of the host.

Note: Partial hostname matches are no longer supported, for example node /^foo/

Thank you to Puppet user @Abaddon for reporting this issue.

pe_serverversion optionally added to server_facts

If the file /opt/puppetlabs/server/pe_version exists on an agent then the file will be read and added to
server_facts under the name pe_serverversion. PUP-9750

Puppet follows symlink to source directory if versioned_environment_dirs setting is true

If the path to an environment is a symlink and the versioned_environment_dirs setting is true, Puppet
follows that symlink to the source directory. PUP-10255

Improvements to groupadd provider

The groupadd provider now manages members using the members resource parameter. PUP-9465

Update to flavor package parameter

The flavor package parameter is now a property which can be changed after initially set. Supported providers are
dnfmodule and openbsd. PUP-10171

Agent sleeps then retries connection after 429, 503 message

When Puppet Server returns a 429 or 503 to an agent after it tries to make an http request, the agent run will sleep
and then retry the connection after. Previously, the agent kept the http connection open during the sleep. Now, the
connection closes prior to the sleep in order to reduce the resource load on the Puppet Server. PUP-10227

mark property added as alternative to held value for ensure

This release adds the mark property with Debian and Solaris instead of setting the ensure attribute to held. The
held value for ensure is deprecated. Allowed values for mark are hold or none, and it defaults to none. You
can specify mark along with ensure. If ensure is missing, mark defaults to present. You cannot use the
mark property together with purged, absent, or held values for ensure. PUP-1537

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-10117
https://tickets.puppetlabs.com/browse/PUP-10169
https://tickets.puppetlabs.com/browse/PUP-9750
https://tickets.puppetlabs.com/browse/PUP-10255
https://tickets.puppetlabs.com/browse/PUP-9465
https://tickets.puppetlabs.com/browse/PUP-10171
https://tickets.puppetlabs.com/browse/PUP-10227
https://tickets.puppetlabs.com/browse/PUP-1537

Puppet | Release notes | 54

Puppet docs updated to include OSX Catalina 10.15 (amd64)

Puppet's public-facing documentation now includes information on this platform. PUP-10111

Resolved issues

Puppet incorrectly parsed XML plist data

Previously, Puppet tried to parse an XML property list file as ASCII instead of UTF-8. This fix resolves the issue.
PUP-10241

Missing ppAuthCertExt added to custom_extensions

The custom_extension method allows certificate extensions to access the manifest. Although, ppAuthCertExt
was added it never updated to be included. This fix adds the missing ppAuthCertExt OID and updates docs to
reference it. PUP-10234

Functions slowed when called with chained syntax

The Puppet language supports calling functions using prefix or chained syntax, for example: each($var) and
$var.each, respectively. Chained syntax should result in the same behaviour as prefixed syntax. However, chained
syntax preform slower. This fix addresses the gap. Now, chained syntax is much faster, especially with a large hash,
such as $facts from the node. PUP-10113

Array settings printed poor default values and error reporting

Puppet now prints a clear error message if the disable_warnings setting is specified incorrectly: "Cannot
disable unrecognized warning types foo. Valid values are deprecations, undefined_variables,
undefined_resources." PUP-2820

puppet facts upload face only tried first primary server in server_list

puppet facts upload now tries each server entry in the server_list setting, similar to how puppet agent
does. Previously, it only tried the first entry in the server_list setting. PUP-8900

PObjectTypeExtension doesn't implement implementation_class

Objects that inherit from the {{PObjectTypeExtension}} base type--for example {{Puppet::Datatypes::Error}}
objects-- raise errors when serialized to pcore due to missing methods. The missing methods have been implemented
and the types are now able to be serialized to pcore. PUP-10221

Puppet incorrectly detected stale pidfile

When an agent is incorrectly terminated, it occasionally detected a stale pidfile . This fix orders a pidfile lock removal
when an agent is started as a LightWeight Process (LWP) and is incorrectly terminated on POSIX operating systems.
PUP-10218

Yum provider doesn't allow array of strings

The Yum package provider now accepts an array of strings to be specified for the install_options parameter
in addition to the previous implementation which only accepted an array of hashes. Fix provided by community
contributor Corey Osman. PUP-10177

Fixed syntax error in pxp-agent init script

The pxp-agent init script no longer errors if there are multiple instances of the service running. PUP-889

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-10111
https://tickets.puppetlabs.com/browse/PUP-10241
https://tickets.puppetlabs.com/browse/PUP-10234
https://tickets.puppetlabs.com/browse/PUP-10113
https://tickets.puppetlabs.com/browse/PUP-2820
https://tickets.puppetlabs.com/browse/PUP-8900
https://tickets.puppetlabs.com/browse/PUP-10221
https://tickets.puppetlabs.com/browse/PUP-10218
https://github.com/logicminds
https://tickets.puppetlabs.com/browse/PUP-10177
https://tickets.puppetlabs.com/browse/PCP-889

Puppet | Release notes | 55

puppet resource now returns the name of the provider

The puppet resource <type> command returns resources from all suitable providers. Previously, the name
of the provider was not included in the output. However, the result was ambiguous for resource types like package
which support multiple providers at the same time, for example yum and gem. The puppet resource command
now returns the name of the provider so that resources are uniquely identified. PUP-3721

Couldn't set, change password of a user resource in macOS 10.15

Due to a change in user management in Apple's macOS 10.15, Puppet could no longer manage user passwords on that
version. Puppet now uses the dsimport utility to manage passwords on macOS 10.15 or higher. PUP-10246

Mailalias performs a change when value has a comma

When a mailalias resources is used, Puppet refreshes the alias without prompting, changing the value. To mitigate
this, do not use commas. Mailalias records field separators when surrounded by double quotes . Example: "...project"
is okay, but "...project," will cause an issue). PUP-10287

Puppet agent cannot run as administrator if first PA run is done as system

If the first Puppet agent run was done under SYSTEM account, following runs done by administrator users failed
to send the report to primary server. This was due to insufficient file permissions caused by the implementation
of Puppet::Util.replace_file. Puppet now uses the new Puppet::FileSystem.replace_file
method which correctly handles files permissions on Windows. PUP-9719

Puppet 6.12.0
Released 14 January 2020

New features

Update to compilation warnings

This release includes improvements to the evaluator, meaning some compilation warnings now take less time to
compute. PUP-10213

Improvements to some manifest function performance

Performance of manifests that use the PuppetStack.top_of_stack function have been greatly improved. This
includes manifests that use the puppetlabs-stdlib deprecation function or the pseudo keywords break, return,
and next. PUP-10170

Merge dependency warnings

If a class has a failed dependency every resource in that class generates a notice level message about the
dependency failure and a warning level message about skipping the resource. At large-node or large-code scale,
one dependency failure can create an overwhelming number of warnings. To collapse all messages caused by one
class dependency failure into one message associated with the class, set merge_dependency_warnings=true.
PUP-10017

OpenSSL 1.0.2 updated to 1.1.1d

OpenSSL1.0.2 reached end of life on 31 Dec 2019. The OpenSSL version used in Puppet 5.5.x has been upgraded to
OpenSSL 1.1.1d. PUP-3029

Deprecation warning for Windows Server 2008 and 2008 R2

On January 14, 2020 support for Windows Server 2008 and 2008 R2 ends. PA-3018

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-3721
https://tickets.puppetlabs.com/browse/PUP-10246
https://tickets.puppetlabs.com/browse/PUP-10287
https://tickets.puppetlabs.com/browse/PUP-9719
https://tickets.puppetlabs.com/browse/PUP-10213
https://tickets.puppetlabs.com/browse/PUP-10170
https://tickets.puppetlabs.com/browse/PUP-10017
https://tickets.puppetlabs.com/browse/PA-3029
https://tickets.puppetlabs.com/browse/PA-3018

Puppet | Release notes | 56

puppet module install uses Puppet's HTTP client

The puppet module install command now uses Puppet's HTTP client to connect to the Forge. It observes
the Puppet[:sourceaddress] setting, useful when running the install command on a puppetserver with
multiple network interfaces. PUP-10041

Systemd is the default service provider for Cumulus 4

This release adds systemd as the default service provider for Cumulus 4. PR contributed by Brian Rak PUP-10162

Resolved issues

Introduces puppet_trace and bug fix in trace

This release fixes a bug where stacktraces from errors no longer had the Ruby stack frames interleaved with the
Puppet stack frames when using trace. This release also introduces a new setting, puppet_trace, which prints
the Puppet stack without the Ruby frames interleaved. If the trace setting is enabled, it overrides the value of
puppet_trace. PUP-10150

Puppet loaded types and providers during environment convergence

Previously, Puppet agents could fail to apply a catalog if the agent switched environments based on node
classification and if there were different versions of a module in those environments. As a result of this fix, an agent
loads types and providers only once, convergences to its server-assigned environment quickly, and updates its cached
catalog after the environment converges. PUP-10160

Premature loading of module-provided facts under -p

Previously, when running facter -p on Windows with custom facts or module facts that required additional files
that were not present in $LOAD_PATH, an error would occur. Now, $LOAD_PATH are set without using Facter,
getting it directly from the system environment. PUP-10136

Debian Puppet-agent package lacked SELinux Ruby library

Ruby SELinux libraries are now also provided for Debian and Ubuntu platforms. PA-2985

puppetdb_query didn't respond to hostprivkey & hostcert settings

Previously, an override of the client certificate and corresponding private key in Puppet settings using the hostcert
and hostprivkey was not possible. This fix restores that capability. PUP-10165

Package provider removed colon from package name

This fix corrects the implementation of a colon (:) as a version slot separator for Gentoo Linux. PUP-10124

When checking binary file changes, puppet agent -t, puppet apply --show_diff
occasionally generated an error

Previously, puppet agent -t or puppet apply --show_diff could generate an error when trying to
display the changes it made to a binary file. Puppet now detects this case and prints a generic message stating that the
binary files differ. PUP-10097

Windows confused domain and local accounts

Puppet no longer checks for domain users or groups when managing local resources on Windows. This fix addresses
a local user management issue occurring when an Active Directory account existed with the same name as the local
user. PUP-10057

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-10041
https://tickets.puppetlabs.com/secure/ViewProfile.jspa?name=devicenull
https://tickets.puppetlabs.com/browse/PUP-10162
https://tickets.puppetlabs.com/browse/PUP-10150
https://tickets.puppetlabs.com/browse/PUP-10160
https://tickets.puppetlabs.com/browse/PUP-10136
https://tickets.puppetlabs.com/browse/PA-2985
https://tickets.puppetlabs.com/browse/PUP-10165
https://tickets.puppetlabs.com/browse/PUP-10124
https://tickets.puppetlabs.com/browse/PUP-10097
https://tickets.puppetlabs.com/browse/PUP-10057

Puppet | Release notes | 57

Fixed HP-UX usermod syntax

The HP-UX provider forced command line arguments to usermod to be in a specific order. This is now fixed.
PUP-9391

server_list setting not observed when making CA requests

The CA service now observes the ServerList resolver when attempting to resolve routes. Previously, SRV Records or
the server/ca_server setting found this information. PUP-10157

Could not create local user when username already exists in Windows domain

As of this release, Puppet ignores case for the domain/computer name comparison when checking for local accounts
on domain-joined Windows machines. PUP-10219

Template rendering updated to enhance ease of use
Secret values resolved by deferred functions can now be used directly with tools like Vault. This fix makes it easier to
render templates on the agent. PUP-10139

Password did not update when account disabled for Win 2012 R2

Puppet can now change the password for a non-active account on Windows. PUP-10021

Regression: Puppet 6.11 can't manage SELinux on Centos/Redhat 8

This release fixes an issue with management of SELinux using Puppet on RedHat and Debian based systems.
PA-3067

Puppet 6.11.1
Released 20 November 2019

Resolved Issues

Fixed systemd daemon-reload issue
This release fixes a regression where the daemon-reload method returned all properties instead of the value for a
specific NeedDaemonReload property. Contributed by alexjfisher. PUP-10149

Puppet 6.11.0
Released 19 November 2019

New features

SSL state machine and application now use the Puppet HTTP client

This release modifies puppet ssl, puppet device, and puppet agent to use the Puppet HTTP client to
bootstrap SSL certificates on the node. PUP-10040

Virtual package support for apt and dpkg providers

To allow virtual packages, ensure that the packages attribute allow_virtual is set to true in your Puppet
resource file. PUP-10023

Package support for DNF modules

Puppet now supports managing DNF modules, which are groups of packages that represent an application, a language
runtime, or any logical group.

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-9391
https://tickets.puppetlabs.com/browse/PUP-10157
https://tickets.puppetlabs.com/browse/PUP-10219
https://tickets.puppetlabs.com/browse/PUP-10139
https://tickets.puppetlabs.com/browse/PUP-10021
https://tickets.puppetlabs.com/browse/PA-3067
https://github.com/alexjfisher
https://tickets.puppetlabs.com/browse/PUP-10149
https://tickets.puppetlabs.com/browse/PUP-10040
https://tickets.puppetlabs.com/browse/PUP-10023

Puppet | Release notes | 58

Modules can be available in multiple streams, usually representing a major version of the software they include.
Profiles are package subsets representing a specific use case of the module (these are handled by the flavor parameter
of the package type).

Due to the significant difference between a package and a module, dnfmodule is an opt-in provider and should be
explicitly specified in the manifest. PUP-9978

Boolean support for selboolean

The selboolean value property now accepts true and false values in addition to on and off. PUP-9963

Windows improvements

This release removes a dependency on .bat files when running Puppet as a service on Windows. PUP-9940

Resubmit facts at the end of an agent's run

Puppet submits facts when requesting a catalog, but if the agent modifies the system while applying the catalog, then
the facts in PuppetDB won't be refreshed until the agent runs again, which may be 30 minutes depending on how
runinterval is configured. This feature makes it possible to submit facts again at the end of the agent's run, after
the catalog has been applied. To enable this feature, set resubmit_facts=true in the agent's puppet.conf.
Resubmitting facts doubles the fact submission load on PuppetDB, since each agent will submit facts twice per run.
This feature is disabled by default. PUP-5934

Experimental feature: catalog compilation with external trusted data from third parties

Use trusted_external_command to add trusted facts from an external source during catalog compilation.

The value for trusted_external_command is a path to an executable command that can produce external
trusted facts. The command must:

• Take the name of a node as a command-line argument.
• Return a JSON hash with the external trusted facts for this node.
• Exit with a non-zero exit code for unknown or invalid nodes.

PUP-9994

Hardened Linux Executable and Linkable Format (ELF) binaries

Linux ELF binaries and shared objects are now compiled with Position Independent Executables (PIE) support, stack
canary, and Relocation Read-Only (RELRO). PA-2986

Resolved issues

Certificate requests sometimes raised confusing error messages

Previously, when Puppet encountered a connection error, it would create a new exception with additional contextual
information around what was causing the error. However, this new exception could cause an additional "Wrong
number of arguments" error. Puppet now raises the original error and logs it with any additional contextual
information. PUP-10121

The no_proxy setting ignored FQDN suffixes unless they had a leading wildcard or period

Previously, Puppet would only bypass a proxy if no_proxy had a leading wildcard or period. For example,
*.example.comor .example.com. Puppet now bypasses the HTTP proxy if the no_proxy environment
variable or puppet setting is a suffix of the destination server FQDN. PUP-10106

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-9978
https://tickets.puppetlabs.com/browse/PUP-9963
https://tickets.puppetlabs.com/browse/PUP-9940
https://tickets.puppetlabs.com/browse/PUP-5934
https://tickets.puppetlabs.com/browse/PUP-9994
https://tickets.puppetlabs.com/browse/PA-2986
https://tickets.puppetlabs.com/browse/PUP-10121
https://tickets.puppetlabs.com/browse/PUP-10106

Puppet | Release notes | 59

Puppet device runs would fail when specifying csr_attributes.yaml

The csr_attributes.yaml file can now be specified when requesting a certificate signing request for a device
using puppet device --target devicename. PUP-10104

On certain Linux distributions, Puppet could incorrectly handle the service setting

On Linux distributions that do not have a default service provider, Puppet sometimes defaulted to using the
defpath before verifying that runit was suitable. PUP-10102

Error messages for exec commands with paths that could not be resolved included sensitive data
passed to the command

If an exec resource's command is not executable or cannot be resolved into a fully qualified path, Puppet now only
prints the command, and not the potentially sensitive arguments passed to the command. Puppet also redacts the
output of sensitive commands when the logoutput parameter is set to true, or the parameter is on_failure
(the default), and the command fails. PUP-10100

Puppet wouldn't install dpkg sub-packages when ensure was set to held

Puppet now correctly installs dpkg sub-packages and sets them to held if ensure is set to held. PUP-10059

skip_tags was missing help documentation

Added help documentation for skip_tags. Contributed by cvquesty. PUP-10026

The deep_merge Ruby gem was vendored by Puppet

This release adds a runtime gem dependency for the deep_merge gem and ensures that the gem is no longer vendored.
PUP-10014

Puppet couldn't manage pip resources if the pip command was in a directory containing spaces

Puppet can now manage pip resources in directories containing spaces, such as C:\Program Files
\Python27on Windows. PUP-9647

User resource did not respect forcelocal for the comment parameter

Prior to this release, a user resource configured with forcelocal would still try to sync the comment parameter
with the external directory services. PUP-9562

Pluginsynced module API improvements

If a module used a legacy Ruby (Puppet version 3) function, and it was pluginsynced (via puppet agent -t),
the function could not be loaded when using Puppet as a library.Puppet 3 API functions are now available from the
cached lib directory. If a function exists in both version 3 and version 4, Puppet uses the version 4 implementation.
PUP-9509

Improved handling of pip version detection during catalog compilation

Previously, the pip provider failed if pip --version did not emit the version on the first line of output. PUP-8986

The pip package provider did not use install_options when ensure was set to latest

Puppet now uses install_options whenever pip install is executed. PUP-8949

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-10104
https://tickets.puppetlabs.com/browse/PUP-10102
https://tickets.puppetlabs.com/browse/PUP-10100
https://tickets.puppetlabs.com/browse/PUP-10059
https://github.com/cvquesty
https://tickets.puppetlabs.com/browse/PUP-10026
https://tickets.puppetlabs.com/browse/PUP-10014
https://tickets.puppetlabs.com/browse/PUP-9647
https://tickets.puppetlabs.com/browse/PUP-9562
https://tickets.puppetlabs.com/browse/PUP-9509
https://tickets.puppetlabs.com/browse/PUP-8986
https://tickets.puppetlabs.com/browse/PUP-8949

Puppet | Release notes | 60

The systemd service provider failed on services whose names started with a dash

The systemd service provider can now manage services whose names start with a dash. Contributed by j-collier.
PUP-7218

Improvements to working directory handling

Previously, if the cwd parameter was not specified, puppet would change its working directory to the current working
directory, which was redundant and could fail if the current working directory was not accessible. Now, wxec
resources only change the current working directory if the cwd parameter is specified in a manifest. PUP-5915

Puppet was unable to manage passwords for disabled Windows users

Puppet can now manage passwords for disabled Windows users. PUP-10021

Puppet 6.10.1
Released 15 October 2019

New features

Module installation performance with minitar improved

Installation time on larger modules has been improved. Previously, on platforms that had the minitar gem installed,
mintar would fsync every directory and file, causing long extraction times during module installation. Puppet now
uses minitar 0.9, with the fsync option turned off by default. PUP-10013

Automatic (delayed start) is now an option for Windows services

Puppet can now set Windows service startup type to Auto-Start (Delayed). To set a service to use this setting, set
the enable parameter of the service resource to "delayed". PUP-6382

Resolved issues

Module repository credentials redacted during installation

When you install a module, if the module repository URL includes credentials, Puppet now redacts the credentials in
the command line output. PUP-9787

Sensitive values redacted in notify resource messages

Prior to this release, the notify resource leaked data if the message was a sensitive datatype with a raw value,
not encapsulated in quotes. Now sensitive values are redacted when they are interpolated in a notify resource's
message. PUP-9295

Ruby security update

This version upgrades the Ruby version to 2.5.7 to address security issues:

• RDoc vulnerabilities
• CVE-2019-16255: A code injection vulnerability of Shell#[] and Shell#test
• CVE-2019-16201: Regular Expression Denial of Service vulnerability of WEBrick's Digest access authentication
• CVE-2019-16254: HTTP response splitting in WEBrick
• CVE-2019-15845: A NUL injection vulnerability of File.fnmatch and File.fnmatch?

Curl security update

This version includes a security update to curl 7.66.0 to address CVE-2019-5481 and CVE-2019-5482.

© 2024 Puppet, Inc., a Perforce company

https://github.com/j-collier
https://tickets.puppetlabs.com/browse/PUP-7218
https://tickets.puppetlabs.com/browse/PUP-5915
https://tickets.puppetlabs.com/browse/PUP-10021
https://tickets.puppetlabs.com/browse/PUP-10013
https://tickets.puppetlabs.com/browse/PUP-6382
https://tickets.puppetlabs.com/browse/PUP-9787
https://tickets.puppetlabs.com/browse/PUP-9295
https://www.ruby-lang.org/en/news/2019/08/28/multiple-jquery-vulnerabilities-in-rdoc/
https://www.ruby-lang.org/en/news/2019/10/01/code-injection-shell-test-cve-2019-16255/
https://www.ruby-lang.org/en/news/2019/10/01/webrick-regexp-digestauth-dos-cve-2019-16201/
https://www.ruby-lang.org/en/news/2019/10/01/http-response-splitting-in-webrick-cve-2019-16254/
https://www.ruby-lang.org/en/news/2019/10/01/nul-injection-file-fnmatch-cve-2019-15845/
https://curl.haxx.se/docs/CVE-2019-5481.html
https://curl.haxx.se/docs/CVE-2019-5482.html

Puppet | Release notes | 61

OpenSSL security update

This version upgrades OpenSSL to 1.1.1d to address CVE-2019-1547, CVE-2019-1549 and CVE-2019-1563. For
more details, see the OpenSSL Security Advisory.

Puppet 6.10.0
Released 1 October 2019

Resolved issues

Puppet tried to install packages that were already installed

Previously, Puppet incorrectly parsed the output of pip freeze when it reported package versions using the
arbitrary equality operator, ===. As a result, Puppet treated the package as not installed and tried to reinstall it during
every Puppet run. PUP-10015

Query parameters for HTTP and HTTPS file resources are preserved

When retrieving metadata and content for HTTP or HTTPS file resources, Puppet now preserves query parameters.
Previously, Puppet requested only the path element of the URI and skipped the query parameters. PUP-9109

YAML output with special characters was not valid

Previously, the puppet resource --to_yaml and puppet device --to_yaml commands did not
generate valid YAML if the output contained special characters such as a single quote. PUP-7808

Puppet 6.9.0
Released 17 September 2019

New features

serverip6 fact added

This release adds the serverip6 fact, which returns the server's IPv6 address. If Puppet cannot find either
serverip or serverip6 facts, it returns a warning. PUP-5109

Agent startup logged at debug level in daemon mode

When running in daemon mode, Puppet logs the configuration used on agent startup at the debug level. The log
is sent to the output specified by the --logdest option. Configuration is reloaded and also logged on SIGHUP.
PUP-9754

puppet plugin information was not included in help

The puppet help command did not include help information for puppet plugin Now the plugin command
is included in puppet help output. PUP-9959

Resolved issues

system.d could not run as non-root

This release fixes a regression introduced in Puppet 6.8.0, where the systemd provider was prevented from working
when running as non-root. For example, the command puppet resource service did not include systemd
services. PUP-10016

Puppet

© 2024 Puppet, Inc., a Perforce company

https://www.openssl.org/news/secadv/20190910.txt
https://tickets.puppetlabs.com/browse/PUP-10015
https://tickets.puppetlabs.com/browse/PUP-9109
https://tickets.puppetlabs.com/browse/PUP-7808
https://tickets.puppetlabs.com/browse/PUP-5109
https://tickets.puppetlabs.com/browse/PUP-9754
https://tickets.puppetlabs.com/browse/PUP-9959
https://tickets.puppetlabs.com/browse/PUP-10016

Puppet | Release notes | 62

puppet module uninstall now works in FIPS mode

Previously, the puppet module uninstall command failed if you ran it in FIPS mode. With the release,
puppet module uninstall now works in FIPS mode, provided you specify either the --ignore_changes
or --force arguments. If you do not specify one of these arguments, then uninstall fails, so that local changes to the
module are not lost. PUP-9991

no_proxy setting correctly bypasses proxy even when HTTP_PROXY environment is set

Fixes a bug where Puppet attempted to use a proxy specified in the HTTP_PROXY environment variable, even though
the no_proxy setting was set to bypass the proxy. PUP-9990

exec conditionals respect sensitive types

The exec type's onlyif and unless checks now return redacted output if it is marked sensitive. PUP-9956

install_only parameter added for yum, dnf providers

This release adds a new parameter, install_only, for yum and dnf package providers. Set this parameter for
packages that should only be installed, but never updated, such as kernels. PUP-9605

Plug-in download speed improved

The puppet plugin download command now reuses HTTPS connections. This significantly speeds up the
download process. PUP-8662

Puppet no longer ignores truncated file downloads caused by a Ruby issue

Prior to this release, Puppet silently ignored truncated file downloads, such as when using a file resource whose
source parameter contained a puppet://, http://, or https:// URL. This issue was caused by a Ruby issue
and is fixed in this release. PA-2849

Puppet 6.8.1
Released 28 August 2019

Resolved issues

Virtual package support removed for apt and dpkg providers

This release removes the virtual package support added for the dpkg and apt providers in the previous release.

Puppet 6.8.0 added virtual package support to these providers with an allow_virtual setting that defaulted to
true. This caused issues because virtual packages are not enabled by default on apt and dpkg. PUP-9974

Fixed command execution with certain sensitive non-string arguments

Puppet could not execute commands with non-string arguments if the command was also marked as sensitive and
the arguments were passed as an Array to the execute method. The issue is fixed for all providers, including the
useradd provider. PUP-9973

Puppet 6.8.0
Released 21 August 2019

New features

puppet module install command prefers SHA-256 for verifying tarball

The puppet module install command now prefers SHA-256 when verifying the downloaded module tarball,
but falls back to MD5 if necessary. PUP-9909

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-9991
https://tickets.puppetlabs.com/browse/PUP-9990
https://tickets.puppetlabs.com/browse/PUP-9956
https://tickets.puppetlabs.com/browse/PUP-9605
https://tickets.puppetlabs.com/browse/PUP-8662
https://tickets.puppetlabs.com/browse/PA-2849
https://tickets.puppetlabs.com/browse/PUP-9974
https://tickets.puppetlabs.com/browse/PUP-9973
https://tickets.puppetlabs.com/browse/PUP-9909

Puppet | Release notes | 63

puppet-agent packages for Debian 10 added

A puppet-agent package for Debian is now available.

Virtual packages support for apt, dpkg

This release allows apt and dpkg providers to install virtual packages. By default, the allow_virtual setting
defaults to true, which enables the ability to install virtual packages.

If a package is defined as virtual, by default Puppet searches for a real package on that system. For example, for a
virtual package named rubygems:

package { 'rubygems': ensure => 'latest' }

Puppet finds and installs the real package ruby. You can also uninstall a virtual package this way, by setting the
package's ensure attribute to absent:

package {'rubygems':
ensure => 'absent'
allow_virtual => false
}

By default, this removes the ruby package. To disable virtual packages, set allow_virtual to false.

This feature also address the Ubuntu reporting issue in MODULES-2047. PUP-9909

New no_proxy setting available in puppet.conf

You can now specify no_proxy as a Puppet setting, consistent with other http_proxy_* Puppet settings. The
NO_PROXY environment variable takes precedence over the no_proxy Puppet setting. PUP-9316

bolt-shim module no longer required to run scripts over pxp-agent

Previously, to run a script over a pxp-agent, you had to first install the bolt_shim module. This fix allows
pxp-agent to respond to requests to execute a script run action without the module. PUP-869

Resolved issues

Agents now connect directly if target host is set to NO_PROXY

If the agent is configured to use an HTTP proxy, and it attempts to connect to a host that matches an entry in the
NO_PROXY environment variable, then Puppet connects directly to the host instead of using the proxy. This feature
was originally introduced in Puppet 4.2, but it did not work. PUP-9942

Windows components restarted on agent upgrades

During puppet-agent upgrades, Windows Network Components were sometimes restarted. This occurred when
the upgrade process tried to modify a DLL file that was already loaded. This release fixes the issue, and Windows
components no longer restart during upgrades. PA-2701

Conflict between puppet-agent and puppetserver packages resolved

Puppet might fail to load under JRuby 9.1, if puppet-agent 6.4 or greater and puppetserver 6.0.x were
installed on the same host. PUP-9927

Services incorrectly reported as absent after change

When Puppet runs a resource service that changes the state of the service, the returned status would always fail,
causing the ensure status of the service to be absent. Now Puppet correctly returns the service status when a change
of the service is requested. PUP-9908

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/MODULES-2047
https://tickets.puppetlabs.com/browse/PUP-9909
https://tickets.puppetlabs.com/browse/PUP-9316
https://tickets.puppetlabs.com/browse/PCP-869
https://tickets.puppetlabs.com/browse/PUP-9942
https://tickets.puppetlabs.com/browse/PA-2701
https://tickets.puppetlabs.com/browse/PUP-9927
https://tickets.puppetlabs.com/browse/PUP-9908

Puppet | Release notes | 64

Passing code to the parser failed on STDIN

Resolved an issue where puppet parser validate failed with an error when a valid manifest was passed in
through the STDIN pipe. PUP-9816

Puppet selects systemd

Puppet selects systemd as the default service provider on Debian 10, "buster". PUP-9752

Puppet repeated file mode changes on some Windows files

When puppet apply changes the mode on a file inside a protected Windows directory, Puppet changes the mode
on every run, even if the desired mode matches the current mode. This fix improves the analysis of the file mode, so
that if the desired mode matches the current mode, Puppet does not set the mode. PUP-9722

Passwords for the user type were output in Debug logging

User providers will not output exec command lines with passwords during debugging level logging. Instead, the
passwords are now marked [redacted]. PUP-9585

Device certificates could be lost in backup and restore

Prior to this change, Puppet device certificates were stored under the cache directory. When the proxy agent for
a device is the primary server, and the user executes a backup and restore, either manually or automated as in
OpsWorks, the certificate and keys were lost, requiring certificate regeneration for those devices.

This fix moves the device certificate directory to a persistent path, leaving the old path as a symbolic link for
compatibility purposes.

If you are using the device_manager module to manage your devices, upgrade to 3.0.1 or later to avoid deleting
certificates from their new location. PUP-8736

systemd provider confined to init system matching systemd

This change allows the systemd provider to work in a chrooted environment. PUP-7312

HTTP connections did not support authenticating proxies

Agents could not connect through an authenticating HTTP proxy when making REST requests to Puppet
infrastructure, such as when requesting a catalog. Now agents will observe the http_proxy_user and
http_proxy_password settings or HTTP_PROXY_USER/PASSWORD environment variables when making
those requests. PUP-4470

Puppet does not use proxy to connect to localhost

If an HTTP proxy is configured either in Puppet settings or the HTTP_PROXY_* environment variables, then Puppet
does not use the proxy when connecting to localhost or 127.0.0.1. This behavior can be modified by changing the
no_proxy setting in puppet.conf or the NO_PROXY environment variable. PUP-2172

Puppet was unable to appropriately manage SELinux file contexts

Previously, Puppet was unable to effectively manage the SELinux file context without restarting the Puppet service.
This issue was due to an infinitely cached default context for each file. Now Puppet clears this cache after each
catalog apply. PUP-2169

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-9816
https://tickets.puppetlabs.com/browse/PUP-9752
https://tickets.puppetlabs.com/browse/PUP-9722
https://tickets.puppetlabs.com/browse/PUP-9585
https://tickets.puppetlabs.com/browse/PUP-8736
https://tickets.puppetlabs.com/browse/PUP-7312
https://tickets.puppetlabs.com/browse/PUP-4470
https://tickets.puppetlabs.com/browse/PUP-2172
https://tickets.puppetlabs.com/browse/PUP-2169

Puppet | Release notes | 65

Deprecations

SSL-related API classes deprecated

Various classes are marked as deprecated in API documentation, and will be removed in a future
major version of Puppet. Constructing an instance of Puppet::SSL::Host, attempting to get or set
Puppet[:ssl_server_ca_auth], or attempting to set Puppet[:ssl_client_ca_auth] now generates
a deprecation warning. PUP-9513

The following classes or methods are deprecated and will be removed in a future version of Puppet:

• Puppet::Network::HttpPool.http_instance
• Puppet::Network::HttpPool.http_ssl_instance
• Puppet::SSL::Host

Indirected Types:

• Puppet::SSL::Base
• Puppet::SSL::Key
• Puppet::SSL::Certificate
• Puppet::SSL::CertificateRequest (just the indirector related stuff, the rest is ok)

Termini:

• Puppet::Indirector::SslFile
• Puppet::SSL::Key::*
• Puppet::SSL::Certificate::*
• Puppet::SSL::CertificateRequest::*

Validators:

• Puppet::SSL::Validator
• Puppet::SSL::Validator::*
• Puppet::SSL::VerifierAdapter

Settings:

• ssl_client_ca_auth
• ssl_server_ca_auth

Puppet 6.7.2
Released 26 July 2019

Resolved issues

Catalog application failed with puppetlabs-ciscopuppet module

Catalog application failed when using a custom resource type whose automatic relationship method, such as
autorequire or autobefore, returned an instance of Puppet::Type instead of a resource name. This
occurred in particular when using the puppetlabs-ciscopuppet module. This issue was caused by a regression
in Puppet 6.7.0. PUP-9926

Use of the mailalias resource type returned errors

This release fixes an issue affecting the mailalias resource type. Puppet was unable to correctly parse files,
resulting in errors such as:

Could not prefetch mailalias provider 'aliases': Could not
parse line "mailer-daemon: postmaster" (file: /etc/aliases, line: 12

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-9513
https://tickets.puppetlabs.com/browse/PUP-9926

Puppet | Release notes | 66

This issue was caused by a regression introduced inPuppet 6.7.0. PUP-9914

Puppet 6.7.1
This version of Puppet was never released.

Puppet 6.7.0
Released 23 July 2019

New features

New ca_fingerprint setting verifies the CA bundle download against a fingerprint

This release adds a ca_fingerprint setting to specify that newly provisioned agents should verify the CA
certificate when it is initially downloaded. This provides a way to securely bootstrap new agents. To enable this
verification, set ca_fingerprint to the SHA256 digest of the CA certificate, which can be calculated on the
Puppet Server. To calculate this SHA, run the following command on the primary server, or on the CA server if you
have specified a server other than the primary server:

openssl dgst -sha256 -r /etc/puppetlabs/puppet/ssl/certs/ca.pem | cut -f1 -
d' '

PUP-9638

Resolved issues

Some commands could not be found

Some Puppet commands, such as puppet-infra, might not be found in the system PATH. This fix ensures that
the relevant directory, opt/puppetlabs/bin, is available in the PATH. PA-2750

Custom MSI actions are logged

Custom MSI actions did not correctly log STDERR to the MSI log. PA-2691

Puppet 6.6.0
Released 1 July 2019

New features

--evaltrace option now shows total number of resources to be evaluated

The --evaltrace argument, used with the puppet agent and puppet apply commands, now returns the
number of resources evaluated and the total number of resources to be evaluated. This option is useful for showing
which resource in the catalog is being evaluated and the progress through the current catalog. PUP-9465

Resolved issues

Provider autoloading issue fixed

In the 6.5.0 release, Puppet was unable to autoloading providers on some systems. This issue has been fixed.
PUP-9794

pip provider error fixed

In the 6.5.0 release, Puppet encountered an undefined method error when running the pip provider. This issue has
been fixed. PUP-9790

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-9914
https://tickets.puppetlabs.com/browse/PUP-9638
https://tickets.puppetlabs.com/browse/PA-2750
https://tickets.puppetlabs.com/browse/PA-2691
https://tickets.puppetlabs.com/browse/PUP-6465
https://tickets.puppetlabs.com/browse/PUP-9794
https://tickets.puppetlabs.com/browse/PUP-9790

Puppet | Release notes | 67

puppet agent --fingerprint returns the CSR hash

When you run the puppet agent --fingerprint command, if the agent doesn't have a client cert yet,
thePuppet returns the SHA256 digest of the certificate request (CSR). This functionality was broken as of Puppet
6.4.0, and is now fixed. PUP-9720

Recurring Puppet runs exited on some SSL bootstrap errors

Recurring Puppet runs wait a specified amount of time while bootstrapping the SSL system, and then retry if an error
is encountered. This behavior was broken as of Puppet 6.4.0, and this release restores the behavior.

The wait interval is controlled by the waitforce setting. One-time Puppet runs such as puppet agent --
test or puppet agent --onetime do not retry, and instead exit when the first error occurs. PUP-9717

Lockfile retained old PID, causing agent failure

This release fixes an issue where if a Puppet run is killed, the lockfile containing the PID that was being used for
the process remains. If another process subsequently starts and uses this PID, the agent fails. Puppet now checks
that the PID belongs to Puppet so it can lock the PID correctly. This fix works for Puppet even if you run it as a
gem.PUP-9691

Puppet now registers OIDs in the SSL application

SSL requests might sometimes return errors because Puppet was not registering OIDs in the SSL application. This is
now fixed. PUP-9746

Puppet 6.5.0
Released 19 June 2019

New features

Use the staging_location parameter to customize the temporary location for new files

You can now use the staging_location parameter to render a file in a different location before you validate it
with the validate_cms parameter. PUP-9389

Use puppet catalog compile to compile catalogs

The puppet catalog compile action works in the same way puppet server --compile worked
before it was removed in Puppet 6.0.0. You must run the command on the puppetserver with access to your
environments, modules, manifests, and Hiera data. PUP-9055

Create a Regexp with all special characters escaped

Create a Regexp that escapes all regexp special characters by adding a Boolean true as a second argument in a call
to new. For example, Regexp(".[/", true) or Regexp.new(".[/", true). The default value is false.
PUP-9554

Package providers now support an alternative gem command

Previously, package providers relied on $PATH for the default gem. This release adds a targetable feature to the
package type, allowing package providers to implement a command attribute. The gem and pip providers now
implement that attribute. This feature allows Puppet to manage packages in software collections, such as Red Hat
Software Collections. PUP-6488

For example:

package { 'colorize':
 name => 'colorize',

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-9720
https://tickets.puppetlabs.com/browse/PUP-9717
https://tickets.puppetlabs.com/browse/PUP-9691
https://tickets.puppetlabs.com/browse/PUP-9746
https://tickets.puppetlabs.com/browse/PUP-9389
https://tickets.puppetlabs.com/browse/PUP-9055
https://tickets.puppetlabs.com/browse/PUP-9554
https://tickets.puppetlabs.com/browse/PUP-6488

Puppet | Release notes | 68

 provider => gem,
}

package { 'colorize-opt':
 name => 'colorize',
 provider => gem,
 command => '/opt/ruby/bin/gem',
}

Manage multiple Python installations with pip and pip3 package providers

You can now add a custom path to your pip and pip3 providers using a package command. If you have multiple
Python installations, this allows you to point to a specific installation. PUP-1082

Specify the maximum amount of time an agent should wait for its certificate

By default, Puppet agents attempt to download their signed certificate indefinitely. This release adds a
maxwaitforcert setting, which specifies the maximum amount of time an agent should wait for its certificate.
Acceptable values are unlimited (the current behavior), or a duration such as 10m, or 1h. If you specify a
duration, the agent waits the full amount of time and, if the certificate is not downloaded, exits with an error.
PUP-3237

Elliptic-curve cryptography (ECC) key support

Configure your agent to use elliptic curve private keys using the key_type=ec setting. By default, Puppet uses the
prime256v1 elliptic curve, but you can specify an alternate curve using the named_curve setting if the curve is
supported by Ruby and OpenSSL. See OpenSSL::PKey::EC.builtin_curves for a list of supported curves.
PUP-2606

Note: Puppet ignores the key_type and named_curve settings if the agent already has a private key. These
settings only control the type of private key that the agent generates. The settings do not affect which curve is selected
in the TLS protocol.

Specify a refresh interval for certificate revocation lists (CRLs)

Use the crl_refresh_interval setting to specify a refresh interval for CRLs. If specified as a duration, such as
8h, or 7d, the agent refreshes its CRL on its first run after the specified duration has elapsed. If the agent downloads
a new CRL, it uses the new CRL for all subsequent network requests. If the refresh request fails or if the CRL is
unchanged on the certificate authority (CA), the agent run continues using the local CRL. PUP-2310

Note: Always set the duration to be greater than the runinterval. Setting runinterval to an equal or lesser
value than the duration causes Puppet to refresh the CRL on every agent run.

Improved server_list output and error messaging

Previously, using config print to view your server_list would output a nested array that was difficult
to read. Using config print now outputs the text in the same human-readable format as its entry in
puppet.conf. Puppet uses the same human-readable output for errors you receive from being unable to connect to
a server in server_list. PUP-9495

Improved JSON output support for validation errors

The puppet parser validate subcommand now supports a --render-as=json option to output validate
errors in a machine readable JSON format. Additionally, if you use the command with multiple files, Puppet
continues to validate additional files when it finds a parse error, instead of halting immediately on the first error
encountered. PUP-8984

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-1082
https://tickets.puppetlabs.com/browse/PUP-3237
https://tickets.puppetlabs.com/browse/PUP-2606
https://tickets.puppetlabs.com/browse/PUP-2310
https://tickets.puppetlabs.com/browse/PUP-9495
https://tickets.puppetlabs.com/browse/PUP-8984

Puppet | Release notes | 69

Note: puppet parser validate returns a maximum of one parse error per file.

Fedora 30 support

This release adds puppet-agent support for Fedora 30. PA-2675

Resolved issues

puppet device failed to manage multiple devices

The puppet device command would not manage multiple network devices in a single run. This was a regression
introduced in Puppet 6.0.5. PUP-9587

Security update to curl

This release includes an update to curl to address security issues. See https://curl.haxx.se/docs/CVE-2019-5435.html
and https://curl.haxx.se/docs/CVE-2019-5436.html for information about the CVEs. PA-2689

Amazon platforms now use yum as the default provider

Prior to this release, Amazon platforms did not have a default provider set. This resulted in Puppet trying to use the
gem provider to install Amazon packages. PUP-9724

On Windows, Puppet no longer applies corrective changes to the administrator password on every
Puppet run

Puppet now applies corrective changes to the administrator password only on the first run. PUP-9688

Improved syntax error feedback for legacy Ruby functions

If you loaded a legacy Ruby function with syntax errors, you'd get an error saying that your function "does not seem
to be a Puppet 3x API function." Puppet now alerts you to syntax errors. PUP-9643

Password protected private key support for agent-only nodes

If a private key password file (Puppet[:passfile]) exists and the agent doesn't yet have a private key, the agent
generates a key and uses the contents of the passfile to encrypt the key on disk using AES-128-CBC. If the agent
already has an unencrypted private key, no change occurs. PUP-9466

Note: Puppet Server does not support password protected private keys. You can enable password protected private
keys on agent-only nodes.

Temporary files created from validate_cmd use the same permissions as the file resource

Prior to this release, the permissions of temporary files created by validate_cmd were different to the permissions
defined on the file resource. PUP-8983

Uninstall an rpm package without specifying a version or build number

You can now remove a package with rpm package provider using ensure => absent without specifying a
version or build number. PUP-8664

Tags specified via --skip_tags are no longer expanded by splitting on the namespace

Using --skip_tags split tags on the namespace separator (::) and caused Puppet to expand and skip all resources
in the specified namespace. For example, using fruit:apples expanded and skipped ['fruit::apples',
'fruit', 'apples'] . PUP-8215

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-2675
https://tickets.puppetlabs.com/browse/PUP-9587
https://curl.haxx.se/docs/CVE-2019-5435.html
https://curl.haxx.se/docs/CVE-2019-5436.html
https://tickets.puppetlabs.com/browse/PA-2689
https://tickets.puppetlabs.com/browse/PUP-9724
https://tickets.puppetlabs.com/browse/PUP-9688
https://tickets.puppetlabs.com/browse/PUP-9643
https://tickets.puppetlabs.com/browse/PUP-9466
https://tickets.puppetlabs.com/browse/PUP-8983
https://tickets.puppetlabs.com/browse/PUP-8664
https://tickets.puppetlabs.com/browse/PUP-8215

Puppet | Release notes | 70

Improved error message when listing provider resources

You now get a more helpful error message if you try to list resources for a provider type that does not have the
instances class method defined. PUP-4930

Performing two or more rapid-fire Puppet runs no longer results in a race condition

When an additional Puppet run was triggered immediately after Puppet had requested a certificate from the primary
server, the primary server receives the original Certificate Signing Request (CSR) and continuously return the original
certificate, which wouldn't match the new keys generated by the second Puppet run. PUP-2958

Removing a user resource on Solaris 11 installations with home directory configurations

Previously, trying to remove a user resource on a Solaris 11 installation using a home directory configuration resulted
in an error. PUP-9706

Hiera 3 lookups with convert_to keys

If you used a Hiera 3 lookup or Hiera handled an alias and the key was configured with convert_to, you'd get
an error: "undefined method 'call_function' for Hiera::Scope". PUP-9693

Perform string to integer conversions on decimal strings with leading zeros

Converting a decimal string with leading zeros – for example, Integer("08", 10)– to an integer would result in
an error. PUP-9689

puppet device always initializes SSL directories with the correct permissions

When initializing new device certificates, puppet device would sometimes set permissions in a way that
prevented the pe-puppet user from reading some directories PUP-9642.

The Windows package resource removes trailing whitespace

This release updates the Windows registry read method to replace null byte sequences with a space. This issue
caused PuppetDB to discard updated facts from affected nodes. PUP-9639

Puppet no longer upgrades Debian upgrade packages before setting them on hold

Prior to this release, if you set a Debian package on hold with ensure => held and the package had a pending
upgrade, Puppet installed the upgrade before locking the package. PUP-9564

Disabled Ruby 2.5.1 automatic HTTP retry mechanism

This Ruby mechanism could cause the same report to be submitted multiple times, increasing the load on the Puppet
Server report processor. PUP-3905

System updates to Ruby in the Puppet agent conflicted with other software

This release fixes an issue where the gem update --system command used in the Puppet agent caused conflicts
with software that depends on gems in Puppet's vendored Ruby directory, such as r10k. Now gem paths always
contain the path for this directory, even after updating. PA-2628

Dependency issues when installing tools that require gems

This release fixes an issue where incorrectly named spec files caused gem dependency lookup failures. If you tried to
install tools that rely on gems such as Facter, Puppet and Hiera gem dependencies could not be referenced. PA-2670

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-4930
https://tickets.puppetlabs.com/browse/PUP-2958
https://tickets.puppetlabs.com/browse/PUP-9076
https://tickets.puppetlabs.com/browse/PUP-9693
https://tickets.puppetlabs.com/browse/PUP-9689
https://tickets.puppetlabs.com/browse/PUP-9642
https://tickets.puppetlabs.com/browse/PUP-9639
https://tickets.puppetlabs.com/browse/PUP-9564
https://tickets.puppetlabs.com/browse/PUP-3905
https://tickets.puppetlabs.com/browse/PA-2628
https://tickets.puppetlabs.com/browse/PA-2670

Puppet | Release notes | 71

Puppet 6.4.0
Released 26 March 2019

New features

HTTP certification requests

When run with debug, Puppet now prints the HTTP request and the response information. For example:

Debug: HTTP GET https://puppet.delivery.puppetlabs.net:8140/puppet/v3/
file_metadatas/pluginfacts
returned 200 OK

PUP-8769

Debug logging for the exec resource
This version introduces the following improvements to debug logging for the exec resource:

• Running the exec resource with --debug and --noop now prints a debug message with the command if
checks prevent it from being executed. If command, onlyif, or unless are marked as sensitive, all commands
are redacted from the log output. PUP-9357

• Puppet now gives a debug message when checking the existence of a file specified by creates. PUP-9511

New method: Puppet::FileSystem.replace_file

Use Puppet::FileSystem.replace_file to replace a file. If a mode is specified, it will always be applied
to the file. Otherwise, if the file being replaced exists, its mode will be preserved. If the file doesn't exist, then the
mode will default to 0640. This method supersedes Puppet::Util.replace_file, which will be deprecated
in a future release. PUP-9499

SSL Improvements
This version introduces several features to improve Puppet agent's SSL subsystem, including the introduction of an
SSL state machine. PUP-9459

The following SSL improvements have been made:

• Puppet no longer uses Puppet::SSL::Host. Puppet::SSL::Host will be deprecated in a future release.
PUP-9459

• Puppet no longer saves its public key to disk, because the public key is derivable from its private key and
is contained in its certificate. If you need to, you can extract the public key using $ openssl rsa -in
$(puppet config print hostprivkey) -pubout. PUP-9459

• The puppet ssl, puppet device, and puppet agent applications are now the only applications that
can initialize SSL. Puppet applications other than puppet agent, puppet device, and puppet ssl
now raise an error if they attempt to make an SSL connection while the SSL bootstrap process is incomplete.
PUP-9461 PUP-9459

• Added an API for loading certificates, keys, and certificate revocation lists (CRLs). PUP-9455
• Added an API for creating an SSLContext containing certificates and keys needed to make an SSL connection.

PUP-9456
• Added a method to Puppet::Network::HttpPool to create an HTTPS connection using a specified

SSLContext. PUP-9457
• Instead of using Puppet::SSL::HOST, puppet ssl now uses an SSL state machine to download certificate

authority (CA) and certificate revocation list (CRL) bundles. PUP-9458
• Puppet preserves existing user and group behavior when saving SSL-related files. PUP-9463
• The new puppet ssl bootstrap action submits a CSR and downloads the client certificate without running

puppet agent -t. PUP-9556

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-8769
https://tickets.puppetlabs.com/browse/PUP-9357
https://tickets.puppetlabs.com/browse/PUP-9511
https://tickets.puppetlabs.com/browse/PUP-9499
https://tickets.puppetlabs.com/browse/PUP-9459
https://tickets.puppetlabs.com/browse/PUP-9459
https://tickets.puppetlabs.com/browse/PUP-9459
https://tickets.puppetlabs.com/browse/PUP-9461
https://tickets.puppetlabs.com/browse/PUP-9459
https://tickets.puppetlabs.com/browse/PUP-9455
https://tickets.puppetlabs.com/browse/PUP-9456
https://tickets.puppetlabs.com/browse/PUP-9457
https://tickets.puppetlabs.com/browse/PUP-9458
https://tickets.puppetlabs.com/browse/PUP-9463
https://tickets.puppetlabs.com/browse/PUP-9556

Puppet | Release notes | 72

SUSE Linux Enterprise Server support removed

This release of the puppet-agent package removes support for SUSE Linux Enterprise Server 11/12 s390x.
PA-2489

Resolved issues

Ruby security patch in puppet-agent package

This puppet-agent package release includes a security patch for Ruby 2.5.3. To learn more about the CVEs that
this patch address, see the Ruby security advisories. PA-2512

Resolved SSL issues
Improvements in the SSL subsystem (PUP-9459) have resolved the following issues:

• Puppet no longer conditionally sends its certificate signing request (CSRs) based on the presence or absence of the
file on disk. Instead it generates and sends the CSR whenever it needs to check for a certificate. Puppet still saves
the CSR to disk, but it never reads it back in. PUP-4568

• Puppet no longer downloads the CSR from the server, so it can never get into a state where it saves the wrong
CSR to disk, causing it to be stuck. As a result, it's now possible to enable allow_duplicate_certs=true
and have the agent submit a CSR with the same name as a previous instance of the node. The admin still needs to
revoke the old cert and sign the new CSR in order for the agent to get its certificate. PUP-2354

• Puppet no longer uses the indirector to handle certificates or keys. PUP-6207
• Puppet was too permissive about skipping SSL verification if no client certificate was found. Puppet now never

downgrades verification based on the absence of a client certificate. PUP-7295
• Mismatched certificates were cached on the host, causing Puppet to print an error on each run until an admin

removed the files. If a client certificate, Certificate Authority (CA) bundle, or certificate revocation list (CRL)
bundle are invalid, Puppet now discards them. PUP-7903

• The error message for a mismatched certificates name was not helpful. When a Puppet agent tries to connect to
an SSL server where the certificate does not match the hostname it is trying to connect to, it will now return the
expected error message. PUP-8213

• The Puppet agent was not verifying its peer in an SSL connection when downloading a CRL. Puppet now verifies
the server's SSL certificate when retrieving a CRL. PUP-9142

filebucket type server and port settings no longer have explicit defaults

For the filebucket type, server and port no longer have explicit default values in the type definition. If
server is not set, it defaults to the first entry in server_list if set; otherwise, it defaults to server. If port
is not set, it defaults to the port in the first entry of server_list if set; otherwise, it defaults to serverport.
PUP-9025

Custom functions can now be correctly called

This release fixes an issue where the call() function could call only functions that existed in Puppet core; custom
functions could not be called. Now any function in the environment is visible and can be called. PUP-9477

Puppet agent now produces an error when a functional server is not found

If server_list is set and a functional server is not found, Puppet returns an error rather than falling back to the
server setting. PUP-9076

Optional type without arguments no longer returns an error

Previously, if you used the type Optional without any arguments, it could result in an internal error. This is now
fixed. On its own, Optional means the same as Any. Supply a type argument with the desired type if the value is
not undef. PUP-9467

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PA-2489
https://blog.rubygems.org/2019/03/05/security-advisories-2019-03.html
https://tickets.puppetlabs.com/browse/PA-2512
https://tickets.puppetlabs.com/browse/PUP-9459
https://tickets.puppetlabs.com/browse/PUP-4568
https://tickets.puppetlabs.com/browse/PUP-2354
https://tickets.puppetlabs.com/browse/PUP-6207
https://tickets.puppetlabs.com/browse/PUP-7295
https://tickets.puppetlabs.com/browse/PUP-7903
https://tickets.puppetlabs.com/browse/PUP-8213
https://tickets.puppetlabs.com/browse/PUP-9142
https://tickets.puppetlabs.com/browse/PUP-9025
https://tickets.puppetlabs.com/browse/PUP-9477
https://tickets.puppetlabs.com/browse/PUP-9076
https://tickets.puppetlabs.com/browse/PUP-9467

Puppet | Release notes | 73

Fixed remote MSI package installation on Windows

This release fixes a regression that prevented installing MSI packages from an HTTP URL on Windows. PUP-9496

Puppet 6.3.0
Released 20 February 2019

New features

Corrective changes explicitly logged

Prior to this release, agent runs provided the same output for both intentional and corrective changes. Now corrective
changes are now explicitly called out in the logs as corrective. PUP-9324

New collections and index functions

This release adds group_by and partition functions that operate on collections.

The group_by function is useful for separating targets into categories based on properties of those targets. The
partition function allows you to use a Boolean condition to separate targets that otherwise be two opposite filter
operations. PUP-9372

This release also adds an index() function that can return the index of a specified element in an Array, Hash,
String, or other iterable value that is either equal to a given value or for which a given lambda returns a truthy value.
PUP-9482

puppet-agent package added for macOS 10.14 Mojave

This release adds a puppet-agent package for macOS 10.14 Mojave.

On macOS 10.14 Mojave, you must grant Puppet Full Disk Access to be able to manage users and groups. To give
Puppet access on a machine running macOS 10.14, go to System Preferences > Security & Privacy > Privacy >
Full Disk Access, and add the path to the Puppet executable. Alternatively, set up automatic access using Privacy
Preferences Control Profiles and a Mobile Device Management Server. PA-2226, PA-2227

Resolved issues

Syntax errors on interpolated heredocs are resolved

Heredoc expressions with interpolation using an access expression such as $facts['somefact'] sometimes
failed with a syntax error. This error was related to the relative location of the heredoc and surrounding whitespace
and is now resolved. PUP-9303

Restarting pxp-agent service kills all processes when restarted

This release modifies the pxp-agent service to kill all pxp-agent processes when the service is restarted, rather
than only the current process. PCP-833

Custom functions can now be correctly called

This release fixes an issue where the call() function could call only functions that existed in Puppet core; custom
functions could not be called. Now any function in the environment is visible and can be called. PUP-9477

Optional type without arguments no longer returns an error

Previously, if you used the type Optional without any arguments, it could result in an internal error. This is now
fixed. On its own, Optional means the same as Any. Always supply a type argument with the desired type if the
value is not undef. PUP-9467

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-9496
https://tickets.puppetlabs.com/browse/PUP-9324
https://tickets.puppetlabs.com/browse/PUP-9372
https://tickets.puppetlabs.com/browse/PUP-9482
https://tickets.puppetlabs.com/browse/PA-2226
https://tickets.puppetlabs.com/browse/PA-2227
https://tickets.puppetlabs.com/browse/PUP-9303
https://tickets.puppetlabs.com/browse/PCP-833
https://tickets.puppetlabs.com/browse/PUP-9477
https://tickets.puppetlabs.com/browse/PUP-9467

Puppet | Release notes | 74

Invalid path to --logdest option was ignored

Now if you give a --logdest location that Puppet cannot find or write to, the run fails with an error. PUP-6571

Upstart provider evaluated during provider check instead of during loading

The upstart provider was being evaluated when loaded, causing issues with testing and availability during
transactions. This has been fixed so that the provider is evaluated only when provider suitability is being checked.
PUP-9336

Deprecations

Fine grained control of file and environment timeouts deprecated

Fine grained control of file and environment timeouts is deprecated. Instead, use 0 or unlimited to control default
caching behavior and the environment-cache endpoint in Puppet Server's administrativeAPI to expire the cache as
needed. PUP-9497

SublocatedExpression class

The AST SublocatedExpression class is no longer generated by the parser. The
SublocatedExpressionclass itself will be removed from Puppet in a future release. PUP-9303

Puppet 6.2.0
Released 24 January 2019

New features

Improved support for Solaris pkg provider

This release adds support for install_options for the pkg provider on Solaris. PUP-5287

puppet-agent package available for Red Hat 8 beta

A puppet-agent package is available for the beta release of Red Hat 8. Because this Red Hat version is a beta
release, not all functions are verified to work correctly. Do not use this version of puppet-agent in production.

Added protection against illegal methods in legacy functions

Puppet now protects against illegal method definitions in loaded legacy functions. Illegal methods in legacy
functionsdisrupt the entire system and can cause difficult-to-diagnose issues. For information on how to remove such
methods from legacy functions, see Refactoring legacy 3.x functions. PUP-9294

Puppet logs JSON in newline-delimited format

For newline-delimited JSON logs, set the logdest setting or command line option to an absolute path ending with
the .jsonl extension, such as puppet agent --logdest /var/log/puppet.jsonl. This is preferable
to the JSON format, since the generated log is not valid JSON and requires an appended closing] to make it valid.
PUP-8687

Fedora 27 puppet-agent package no longer available

Fedora 27 reached end of life in November 2018. Updated puppet-agent packages for this version are no longer
available.

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-6571
https://tickets.puppetlabs.com/browse/PUP-9497
https://tickets.puppetlabs.com/browse/PUP-9303
https://tickets.puppetlabs.com/browse/PUP-5287
https://puppet.com/docs/puppet/6/functions_refactor_legacy.html
https://tickets.puppetlabs.com/browse/PUP-9294
https://tickets.puppetlabs.com/browse/PUP-8687

Puppet | Release notes | 75

Resolved issues

Fix for specifying package versions in portage provider

Prior to this release, you could not specify package versions when managing packages with the portage package
provider. The provider now accepts and honors a version string for managing packages. PUP-9071

Exceptions encountered during resource pre-fetch are logged

If the Puppet agent encounters exceptions when pre-fetching resources for catalog application, it now logs the
exceptions and returns a more useful error message. PUP-8962

Puppet commands fail if the puppet.conf file is unreadable

Puppet commands now fail if Puppet Server is unable to read the puppet.conf file. Only the --help and --
version commands work if the puppet.conf file is unreadable. PUP-5575

Improved error handling for PNTransformer

When parsing Puppet into structured AST, the Puppet parser produced an error on some empty constructs because the
PNTransformer could not resolve them. Now it generates a Nop expression instead. PUP-9400

Failed dependency resources are reported only once

After a failed resource has been reported, other resources that depend on the failed resource will not be reported
again. However, you still get the skip message for each skipped resource. PUP-6562

Command line module installation improved

The puppet module install command now downloads only the release metadata it needs to perform
dependency resolution, drastically reducing data download and improving installation time. For the puppetlabs-
stdlib module, this change reduces the data download from 25MB to 68KB, and any module that depends on
stdlib installs faster. PUP-9364

Puppet no longer ignores the srv_domain setting

This release fixes an issue where Puppet 6.0 ignored the srv_domain setting when using DNS SRV records to
connect to the ca_server. PUP-9399

Puppet 6.1.0
Released 18 December 2018

New features

Package provider included in puppet resource default output

The puppet resource <package-name> command now includes the package provider as part of its output.

Clean certificates for remote nodes

The puppet ssl clean command now accepts a --target CERTNAME parameter to clean certificates for
remote nodes configured through device.conf. PUP-9248

puppet-agent package available for Fedora 29

A puppet-agent package is now available for Fedora 29.

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-9071
https://tickets.puppetlabs.com/browse/PUP-8962
https://tickets.puppetlabs.com/browse/PUP-5575
https://tickets.puppetlabs.com/browse/PUP-9400
https://tickets.puppetlabs.com/browse/PUP-6562
https://tickets.puppetlabs.com/browse/PUP-9364
https://tickets.puppetlabs.com/browse/PUP-9399
https://tickets.puppetlabs.com/browse/PUP-9248

Puppet | Release notes | 76

The systemd provider checks for new and changed units

When Puppet starts or restarts a service, the systemd provider checks to see whether the service requires a daemon
reload, and reloads the systemd daemon if necessary. This ensures the service runs with the latest configuration on
disk. PUP-3483

New service timeout parameter for Windows

On Windows systems, you can now specify a service timeout parameter that configures how long, in seconds,
Puppet should wait when syncing service properties. PUP-9132

For example:

service { "service-name":
 enable => true,
 ensure => running,
 timeout => 45
}

Format strings with double quotes

You can now force strings to have double quotes when formatting strings with the String.new function.
Previously, this function dynamically determined whether to use single quotes or double quotes for the string.

To force double quotes, specify the alternative format flag # when you specify the string format. PUP-9344

Service support for systemd on Linux Mint 18 and newer

This release adds support for services on Linux Mint 18 and newer, which use the init systemd instead of upstart for
services. PUP-9326

Parser validation finds and reports syntax issues in heredocs

Heredoc syntax checking is now performed during validation, unless the heredoc contains any interpolated
expressions. This includes manifest and EPP template syntax checks. Heredocs with interpolation are checked during
evaluation. Prior to this release, heredoc syntax checks were run only during evaluation.

By default, heredocs are treated as text unless otherwise specified with the end-of-text tag, such as @(EOT:json),
@(EOT:pp), or @(EOT:epp). To check syntax in heredocs, run puppet parser validate. PUP-9257

Resolved issues

Improved handling of incompletely configured services

Puppet now treats incomplete services the same way as nonexistent services, returning enabled => false and
ensure => :stopped in either case. If you try to set ensure => running or enabled => true on an
incomplete or nonexistent service, Puppet raises an error. PUP-9240

Refreshed resource status now included in event report

This release fixes an issue where refreshed resources, such as reboot or some execs, did not create a status event in the
event report. PUP-9339

Catalog compilation error fixed

When compiling a catalog, Puppet sometimes raised the error "Attempt to redefine entity." This issue has been fixed
with an update to the internal logic. PUP-8002

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-3483
https://tickets.puppetlabs.com/browse/PUP-9132
https://tickets.puppetlabs.com/browse/PUP-9344
https://tickets.puppetlabs.com/browse/PUP-9326
https://tickets.puppetlabs.com/browse/PUP-9257
https://tickets.puppetlabs.com/browse/PUP-9240
https://tickets.puppetlabs.com/browse/PUP-9339
https://tickets.puppetlabs.com/browse/PUP-8002

Puppet | Release notes | 77

The exec provider supports empty environment variables

Prior to this release, the exec provider did not support empty environment variables. If an empty environment variable
is set on the system, Puppet temporarily overwrites it during execution.. PUP-1209

Puppet recognizes tmpfs support for SELinux labels

SELinux utilities within the Puppet codebase now recognize that the tmpfs supports extended attributes and
SELinux labels. The query selinux_label_support? returns true for a file mounted on tmpfs. PUP-9330

Fixed recognition of short form Arrays and Hashes

This release fixes a regression in the string formatting rules that caused a short form for an Array or Hash to not
be recognized. For example, String([1,[2,3],4], '%#a") would not format with indentation, but would
format the long form String([1,[2,3],4], {Array => { format => '%#a"}}). Now the short form
works for Array and Hash as intended. PUP-9329

puppet ssl clean now deletes local certificate requests

This release fixes an issue where the puppet ssl clean command did not correctly delete local certificate
requests. PUP-9327

Resolved Timestamp and Timespan data type errors

Prior to this release, the data types Timestamp and Timespan raised errors if time range was specified with
Integer or Float values. These data types now support time ranges specified with these values. PUP-9310

Puppet 6.0.0
Released 18 September 2018

New features

Select types moved to modules

In this release, many types were moved out of the Puppet codebase (stdlib), and into modules on the Forge. This
change enables easier composability and reusability of the Puppet codebase and enables development to proceed more
quickly without risk of destabilizing the rest of Puppet. Some types are now in supported modules and are repackaged
back into the agent. Some are now in modules that are updated, but are not repackaged into the agent. And some are
in modules that are deprecated, not updated, and not repackaged back into the agent.

Note: New functions handle undef values more strictly than their stdlib counterparts. Code that relies on undef
values being implicitly treated as other types will return an evaluation error.

See the Resource Type Reference for the full list and links to the Forge modules for those types that moved.

Resource API

Resource API has been added, providing a new, recommended method to create custom types and providers. The
Resource API is built on top of the Puppet core and is easier, faster, and safer than the old types and providers
method. See the Resource API documentation for more information.

Upgrade to Ruby 2.3 or later

Puppet now requires Ruby 2.3 or later, and reports an error when running older Ruby versions. We removed code
paths for older Ruby support, such as 1.8.7, relaxed our gem dependencies to include gems that require Ruby 2 or up,
and now test Puppet pull requests against JRuby 9k. PUP-6893, PUP-8483, PUP-8484

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-1209
https://tickets.puppetlabs.com/browse/PUP-9330
https://tickets.puppetlabs.com/browse/PUP-9329
https://tickets.puppetlabs.com/browse/PUP-9327
https://tickets.puppetlabs.com/browse/PUP-9310
https://forge.puppet.com/
https://puppet.com/docs/puppet/6/type.html
https://puppet.com/docs/puppet/6/create_types_and_providers_resource_api.html
https://tickets.puppetlabs.com/browse/PUP-6893
https://tickets.puppetlabs.com/browse/PUP-8483
https://tickets.puppetlabs.com/browse/PUP-8484

Puppet | Release notes | 78

puppetserver ca command

The new puppetserver ca command replaces the puppet cert command. Running the puppet cert
command results in an error, with instructions on alternative commands to use. Some actions (fingerprint,
print) have not been directly replaced, because OpenSSL provides good equivalents. For verifying certificates, use
puppet ssl verify. For more usage details, see the intermediate CA documentation. PUP-9022

node clean uses the Puppet Server CA API

The puppet node clean command now goes through the Puppet Server CA API to clean up certificates for a
given node. This avoids issues where multiple entities attempt to revoke certs at once, because all of these updates
are now funneled through the API, which handles concurrent requests correctly. See SERVER-115 and PUP-9108 for
more information.

Agents can use CA and CRL bundles

The agent now correctly saves and loads chained SSL certificates and certificate revocation lists when in an
environment where its certificates are issued by Puppet acting as an intermediate CA. PUP-8652

Load files from pluginsync during catalog application

Use the Deferred data type in a catalog to call functions on the agent before the catalog is applied. It is now
possible to call all functions implemented in Ruby on the agent side. It is not possible to call functions written in the
Puppet language, as they are not available on the agent. PUP-9035

puppet ssl subcommand

There is a new Puppet subcommand for working with SSL certificates. The puppet ssl command supports the
submit_request, download_cert, and verify actions for working with SSL certificates on the agent.
PUP-9028

File requirements included in task infoservice files responses

When requesting task details, the primary server now returns a list of all files from the tasks metadata files and
implementations['files'] keys. PUP-9081

Devuan default service provider

The Devuan service provider now defaults to the Debian init provider. PUP-9048

apply statement in plan language

An apply keyword has been added to the Puppet parser when running with tasks enabled. See Puppet specifications
for details. PUP-8977

Updated default input_method for task object type

The input_method property of tasks now defaults to undef rather than the string both. This allows more
flexibility in defaults and what input_methods we choose to support in the future. PUP-8898

convert_to() function accepts additional arguments

convert_to() function now accepts additional arguments. Previously, it accepted only the data type to convert to.
PUP-8761

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/6/intermediate_ca.html
https://tickets.puppetlabs.com/browse/PUP-9022
https://tickets.puppetlabs.com/browse/SERVER-115
https://tickets.puppetlabs.com/browse/PUP-9108
https://tickets.puppetlabs.com/browse/PUP-8652
https://tickets.puppetlabs.com/browse/PUP-9035
https://tickets.puppetlabs.com/browse/PUP-9028
https://tickets.puppetlabs.com/browse/PUP-9081
https://tickets.puppetlabs.com/browse/PUP-9048
https://tickets.puppetlabs.com/browse/PUP-8977
https://tickets.puppetlabs.com/browse/PUP-8898
https://tickets.puppetlabs.com/browse/PUP-8761

Puppet | Release notes | 79

compare function

A compare(a,b) function has been added. It returns -1, 0, or 1 depending on if a is before b, same as b, or after
b. The function works with the comparable types: String, Numeric, Semver, Timestamp, and Timespan.
For String comparison it is possible to ignore or take case into account. PUP-8693

Deferred data type

A new data type Deferred has been added. It is used to describe a function call that can be invoked at a later point
in time. PUP-8635

Call function resolves Deferred values

It is now possible to resolve a Deferred value by using the call function. It can resolve a deferred function
call, and a deferred variable dereference (with support to dig into a structured value). PUP-8641

Concatenate with + on Binary type

It is now possible to use the plus operator + to concatenate two Binary data type values. (PUP-8605) The sort()
function has been moved from stdlib to Puppet. The function now also accepts a lambda for the purpose of using a
custom compare. PUP-8622

Select string functions moved from stdlib to Puppet

The functions upcase(), downcase(), capitalize(), camelcase(), lstrip(), rstrip(),
strip(), chop(), chomp(), and size() have been updated to the modern function API and the new versions
are in Puppet and no longer require stdlib. The functions are generally backward compatible. PUP-8604

Select math functions moved from stdlib to Puppet

The math functions abs, ceil, floor, round, min, and max are now available in Puppet. The functions are
compatible with the functions with the same name in stdlib with the added feature in min and max of calling
them with a single array and being able to use a lambda with a custom compare. These stdlib math functions used
inconsistent string to numeric conversions that were also unintentionally making the functions compare values in
strange ways. The automatic conversions are now deprecated and will issue a warning. PUP-8603

Agent support for rich data content negotiation

The rich_data setting is now enabled by default. Catalog requests have two new content types, application/
vnd.puppet.rich+json and application/vnd.puppet.rich+msgpack, that are used when both
primary server and agent have this enabled (and depending on whether preferred_serialization_format
is json or msgpack). PUP-8601

vendor_modules added to basemodulepath

The default basemodulepath now includes a vendored modules directory, which enables Puppet to load modules
that are vendored in the puppet-agent package. To prevent Puppet from loading modules from this directory,
change the basemodulepath back to its previous value, for example, on *nix: $codedir/modules:/opt/
puppetlabs/puppet/modules. On Windows: $codedir/modules. PUP-8582

environment.conf modulepath accepts globs

The modulepath as defined in environment.conf can now accept globs in the path name. PUP-8556

Customize default package providers

This change adds a notdefaultfor that prevents a provider from being a default for a given set of facts.
notdefaultfor overrides any defaultfor and should be defined more narrowly. PUP-8552

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-8693
https://tickets.puppetlabs.com/browse/PUP-8635
https://tickets.puppetlabs.com/browse/PUP-8641
https://tickets.puppetlabs.com/browse/PUP-8605
https://tickets.puppetlabs.com/browse/PUP-8622
https://tickets.puppetlabs.com/browse/PUP-8604
https://tickets.puppetlabs.com/browse/PUP-8603
https://tickets.puppetlabs.com/browse/PUP-8601
https://tickets.puppetlabs.com/browse/PUP-8582
https://tickets.puppetlabs.com/browse/PUP-8556
https://tickets.puppetlabs.com/browse/PUP-8552

Puppet | Release notes | 80

Define properties or parameters for types as sensitive

Parameters can now be marked sensitive at the class level rather than just the instance level. PUP-8514

Update default provider for Ubuntu

SystemD is now the default provider for Ubuntu 17.04 and 17.10. PUP-8495

Functions to use dot notation to dig into a hash or array

It is now possible to use dot notation to dig out a value from a structure, like in Hiera lookup and elsewhere in Puppet.
To support this, the getvar() function has moved from stdlib to Puppet, and we have added a new function
get(). You can now for example use getvar('facts.os.family') starting with the variable name. The
get function is the general function which takes a value and a dot-notation string. PUP-7822

Puppet 4.x functions available to all modules

It is no longer required to have a dependency listed in a module’s metadata.json on another module in order to
use functions or data types from the other module. PUP-6964

Updated addressable Ruby gem

Updated the version of the addressable Ruby gem now that JRuby 1.9.3 support has been removed. PUP-6894

Undeprecated certificate authority settings

Settings related to certificate authorities are no longer being deprecated as planned in PUP-9027. Warnings related to
these planned deprecations have been removed. PUP-9116

Resolved issues

Reported events didn't stringify rich data

With rich data turned on for a catalog (now the default), a report could contain rich data in reported events, but
nothing downstream from the agent was prepared to handle rich data. This is now fixed so that data in reported events
are stringified when needed. PUP-9093

Illegal top-level constructs didn't produce an appropriate error

The deprecation for illegal top-level constructs is now an error. PUP-9091

__ptype and __pvalue were allowed as attribute names

Attempt to use the reserved attribute names __ptype and __pvalue in custom Object data types now raises an
error instead of producing a bad result when serializing such objects. PUP-9079

A hash containing the key __ptype couldn't be serialized using human-readable JSON

It was not possible to use a hash key __pcore_type in a hash because that triggered the special handling during
serialization. Now, the special key has changed to __ptype and it is not possible to also use that as a key in a hash
and still be able to serialize it, such as using it in a catalog. PUP-8976

Status endpoint wasn't used to determine if Puppet Server was available

When the agent is configured with a list of servers (using server_list), it now requests server status from the
status endpoint instead of the node endpoint. PUP-8967

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-8514
https://tickets.puppetlabs.com/browse/PUP-8495
https://tickets.puppetlabs.com/browse/PUP-7822
https://tickets.puppetlabs.com/browse/PUP-6964
https://tickets.puppetlabs.com/browse/PUP-6894
https://tickets.puppetlabs.com/browse/PUP-9116
https://tickets.puppetlabs.com/browse/PUP-9093
https://tickets.puppetlabs.com/browse/PUP-9091
https://tickets.puppetlabs.com/browse/PUP-9079
https://tickets.puppetlabs.com/browse/PUP-8976
https://tickets.puppetlabs.com/browse/PUP-8967

Puppet | Release notes | 81

Selmodule thought 'foo' existed if 'myfoo' was loaded

The selmodule type is more strict about checking if a module has already been loaded, and no longer considers
modules such as "bar" and "foobar" to be the same module. PUP-8943

Resource status of failed_to_restart wasn't included in reports

Puppet considers resources that have failed to restart when notified from another resource as failed, and marks them
as such in reports. Reports also now include the failed_to_restart status for individual resources, instead of
only including a total count of failed_to_restart resources in the resource metrics section. This bumps the
report format version to 10. PUP-8908

File type wasn't redefined when required in code

Fixed an issue running in JRuby where we didn’t store autoloaded paths in the same way that the JRuby
implementation did, leading to a bug where a type or provider could get loaded more than once. PUP-8733

Puppet lost track of the current environment

Puppet autoloader methods now require a non-nil environment. This is a breaking API change, but

not affect any user extensions like 3x functions. Puppet sometimes used the configured environment instead
of the current environment to autoload. This mainly affected agents when loading provider features. Calling
Puppet::Parser::Functions.autoloader.load* methods are deprecated, and issue a warning if strict
mode is set to warning or error. Instead use Scope#call_function("myfunction") to call other functions
from within a function. PUP-8696

Comparison of numeric to timestamp or timespan failed

When comparing numeric to timestamp or timespan it did not work to compare with the numeric value first. This is
now fixed. PUP-8694

http_read_timeout and runtimeout defaults were limited

The http_read_timeout default changed from infinite to 10 minutes. This prevents the agent from hanging if
there are network disruptions after the agent has sent an HTTP request and is waiting for a response that might never
arrive. Similarly, the runtimeout default also changed from infinite to 1 hour. PUP-8683

tidy resource was too chatty

The tidy resource type now uses the debug log level for its File does not exist message, instead of the
info level. This means that resources of this type will no longer emit the message by default when the target of the
resource has already been cleaned from disk. PUP-8667

Agents didn't use the CRL bundle to verify primary server revocation status

With this change, if the user has distributed the CRL chain out-of-band, then the agent successfully loads it and uses
it to verify its connection to other Puppet infrastructure (for example, the primary server). It expects the CRL chain to
be one or more PEM-encoded CRLs concatenated together (the same format as a cert bundle). This fixes the "Agent-
side CRL checking is not possible" caveat in Puppet 5. PUP-8656

Puppet 5 and Ruby 2.4 couldn't handle invalid plists

When processing malformed plist files, we used to use /dev/stdout, which can cause Ruby to complain. We now
use - instead which means to use stdout when processing the plist file with plutil. PUP-8545

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-8943
https://tickets.puppetlabs.com/browse/PUP-8908
https://tickets.puppetlabs.com/browse/PUP-8733
https://tickets.puppetlabs.com/browse/PUP-8696
https://tickets.puppetlabs.com/browse/PUP-8694
https://tickets.puppetlabs.com/browse/PUP-8683
https://tickets.puppetlabs.com/browse/PUP-8667
https://tickets.puppetlabs.com/browse/PUP-8656
https://tickets.puppetlabs.com/browse/PUP-8545

Puppet | Release notes | 82

White space surrounding comments in EPP were handled incorrectly

EPP comments <%# Like this %> always trimmed preceding whitespace. This is different from ERB making it
more difficult to migrate ERB templates to EPP. There was also no way of making EPP preserve those spaces. Now,
EPP comment does not trim preceding whitespace by default, and a new left trimming tag <%#- has been added.
This is a backwards incompatibility in that code such as "Before <%# comment %>after" resulted in the string
"Beforeafter", whereas now it will be "Before after". PUP-8476

filter function didn't accept truthy values

The filter function did not accept truthy value returned from the block as indication of values to include in the
result. Only exactly Boolean true was accepted. PUP-8320

Unsafe YAML data could be loaded

Puppet now uses YAML.safe_load consistently to ensure only known classes are loaded. PUP-7834

Gemfile didn't support consuming the Puppet gem via a Git reference

Restructure the Puppet Gemfile so that bundler installs Puppet’s runtime, feature-related, and test dependencies
by default. The development and documentation groups can be installed using: bundle install –with development
documentation. PUP-7433

Puppet didn't use shared gem dependency for semantic_puppet

Puppet now uses the shared gem dependency for semantic_puppet, rather than loading its own vendored version.
PUP-7157

Puppet, the agent, and Puppet Server didn't use a shared gem directory for semantic_puppet

Puppet now loads semantic_puppet from a shared gem directory, so that Puppet, the agent, and Puppet Server all
require and use the same version of the gem. (~>1.0.x) PUP-7115

metrics.time.total didn't correlate to time reported in log

Total time now reports the measured time of the run instead of a sum of other run times. PUP-6344

Features weren't re-evaluated when a block was used

Features defined using a block or a list of libraries now behave the same, so the following are equivalent:

Puppet.features.add(:my_feature) do require 'mylib' end

and

Puppet.features.add(:my_feature, libs: ['my_lib'])

Previously the result of the block was always cached. With this change only true or false return values are cached. To
indicate that the state of the feature is unknown and may become available later, the block returns nil. PUP-5985

Manifests that declared things in the wrong namespace didn't trigger errors

Errors will be reported for module files declarations that have a namespace inconsistent with their directory and file
location. PUP-4242

Invalid .dot files were generated by missing escapes of quoted strings

Generating graphs of catalogs (such as puppet apply --graph) now correctly handles resources with double
quotes in the title. PUP-2838

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-8476
https://tickets.puppetlabs.com/browse/PUP-8320
https://tickets.puppetlabs.com/browse/PUP-7834
https://tickets.puppetlabs.com/browse/PUP-7433
https://tickets.puppetlabs.com/browse/PUP-7157
https://tickets.puppetlabs.com/browse/PUP-7115
https://tickets.puppetlabs.com/browse/PUP-6344
https://tickets.puppetlabs.com/browse/PUP-5985
https://tickets.puppetlabs.com/browse/PUP-4242
https://tickets.puppetlabs.com/browse/PUP-2838

Puppet | Release notes | 83

Outdated vendored semantic_pupet gem

We have updated the vendored semantic_puppet gem in the puppet-agent package to the most recent
version, 1.0.2. PA-1881

Deprecations

Certificate authority subcommands and v1 CA HTTP API

Certificate authority subcommands have been removed from Puppet, including: cert, ca, certificate,
certificate request, and certificate_revocation_list. Use puppetserver ca and puppet
ssl instead. PUP-8998

As a part of the larger CA rework, the v1 CA HTTP API is removed (everything under the ca url /v1). PUP-3650

Ruby certificate authority

Puppet no longer has a Ruby CA. All CA actions now rely entirely on the Clojure implementation in Puppet Server.
It can be interacted with by means of the CA API and the puppetserver ca command, which leverages the API
using subcommands like those provided by puppet cert. PUP-8912

Trusted server facts

Trusted server facts are always enabled and the trusted_server_facts setting has been deprecated since 5.0.
This removes the setting and conditional logic. PUP-8530

write_only_yaml node terminus

The write_only_yaml node terminus was used to “determine the list of nodes that the primary server knows
about” and predated widespread PuppetDB adoption. The write_only_yaml has been deprecated since 4.10.5,
and this commit removes it. Note this results in a Puppet Server speedup as it no longer needs to serialize node data as
YAML to disk during a compile. PUP-8528

LDAP node terminus

The LDAP node terminus has been removed. PUP-7601

computer, macauthorization, and mcx types and providers

The computer, macauthorization, and mcx types and providers have been moved to the
macdslocal_core module. It is not repackaged into puppet-agent in the 6.0 series.

Nagios types

The Nagios types no longer ship with Puppet, and are now available as the puppetlabs/nagios_core module
from the Forge.

Cisco network devices

The Cisco network device types no longer ship with Puppet. These types and providers have been deprecated in favor
of the puppetlabs/cisco_ios module, which is available on the Forge. PUP-8575

:undef in types and providers

In previous versions, values from manifests assigned to resource attributes that contained undef values nested in
arrays and hashes would use the Ruby symbol :undef to represent those values. When using puppet apply
types and providers would see those as :undef or as the string “undef” depending on the implementation of
the type. When using a primary server, the same values were correctly handled. In this version, Ruby nil is used

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PA-1881
https://tickets.puppetlabs.com/browse/PUP-8998
https://tickets.puppetlabs.com/browse/PUP-3650
https://tickets.puppetlabs.com/browse/PUP-8912
https://tickets.puppetlabs.com/browse/PUP-8530
https://tickets.puppetlabs.com/browse/PUP-8528
https://tickets.puppetlabs.com/browse/PUP-7601
https://forge.puppet.com/puppetlabs/macdslocal_core
https://tickets.puppetlabs.com/browse/PUP-8575

Puppet | Release notes | 84

consistently for this. (Top level undef values are still encoded as empty string for backwards compatibility).
PUP-9112

puppet module build command

To reduce the amount of developer tooling installed on all agents, this version of puppet removes the puppet
module build command. To continue building module packages for the Forge and other repositories, install
Puppet Development Kit (PDK). PUP-8763

pcore_type and pcore_value

The earlier experimental -rich_data format used the tags pcore_type and pcore_value, these are now
shortened to __ptype and __pvalue respectively. If you are using this experimental feature and have stored
serializations you need to change them or write them again with the updated version. PUP-8597

Webrick

Webrick support (previously deprecated) has been removed. To run Puppet as a server you must use Puppet Server.
PUP-8591)

puppet server command

The puppet server command and its subcommands have been removed. Instead, use a puppet-config
command. PE-24280

–strict flag in puppet module command

The –strict flag in puppet module has been removed. The default behavior remains intact, but the tool no
longer accepts non-strict versioning (such as release candidates and beta versions). PUP-8558

Select settings

The following settings have been removed:

• The previously deprecated configtimeout setting has been removed in favor of the
http_connect_timeout and http_read_timeout setting. PUP-8534

• The unused ignorecache setting has been removed. PUP-8533
• The previously deprecated pluginsync setting has now been removed. The agent’s pluginsync behavior is

controlled based on whether it is using a cached catalog or not. PUP-8532
• The deprecated app_management setting has now been removed. Previously, this setting was ignored, and

always treated as though it was set to be on. PUP-8531
• The deprecated ordering setting has been removed, and catalogs now always have the ordering previously

provided by the manifest value of this setting. PUP-6165
• Settings related to the rack webserver from Puppet, including binaddress and serverhttplog. PUP-3658

String duplication in 3x runtime converter

Types and provider implementations must not mutate the parameter values of a resource. With this release, it is
more likely that the parameters of a resource have frozen (that is, immutable) string values and any type or provider
that directly mutates a resource parameter might fail. Previously, every resource attribute was copied to not make
application break even if they did mutate. Look for use of gsub! in your modules and replace logic with non-
mutating version, or operate on a copy of the value. All authors of Forge modules having this problem have been
notified. PUP-7141

Puppet.newtype method

The deprecated Puppet.newtype method (deprecated since 2011) has now been removed. (PUP-7078)

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-9112
https://puppet.com/docs/pdk/1.x/pdk_install.html
https://tickets.puppetlabs.com/browse/PUP-8763
https://tickets.puppetlabs.com/browse/PUP-8597
https://tickets.puppetlabs.com/browse/PUP-8591
https://tickets.puppetlabs.com/browse/PE-24280
https://tickets.puppetlabs.com/browse/PUP-8558
https://tickets.puppetlabs.com/browse/PUP-8534
https://tickets.puppetlabs.com/browse/PUP-8533
https://tickets.puppetlabs.com/browse/PUP-8532
https://tickets.puppetlabs.com/browse/PUP-8531
https://tickets.puppetlabs.com/browse/PUP-6165
https://tickets.puppetlabs.com/browse/PUP-3658
https://tickets.puppetlabs.com/browse/PUP-7141
https://tickets.puppetlabs.com/browse/PUP-7078

Puppet | Release notes | 85

Certificate handling commands deprecated but not removed

The following subcommands were deprecated in a previous version and slated for removal in this version. While
these subcommands are still deprecated, they have not yet been removed.

• ca_name

• cadir

• cacert

• cakey

• capub

• cacrl

• caprivatedir

• csrdir

• signeddir

• capass

• serial

• autosign

• allow_duplicate_certs

• ca_ttl

• cert_inventory

Puppet known issues
These are the known issues in this version of Puppet.

Puppet lookup omits parameters when using --environment

If you specify puppet lookup with an explicit environment using the --environment flag, puppet
lookup does not call to the ENC, causing any node parameters set in the ENC to be omitted. PUP-11595

Puppet lookups fail to interpolate topscope variables when an environment is specified

In Puppet 6.26 and 7.14, the lookup command fails to resolve toplevel facts in hiera configs if you're using the
--environment option. For example, if you use a toplevel variable like "nodes/%{fqdn}.yaml", Puppet
interpolates the variable as an empty string. As a workaround, use trusted facts or specify the fact value using the
"facts" hash, such as "%{facts.hostname}" PUP-11437

User and group management on macOS 10.14 requires Full Disk Access

To manage users and groups with Puppet on macOS 10.14, you must grant Puppet Full Disk Access (FDA). You
must also grant FDA to the parent process that triggers your Puppet run. For example:

• To run Puppet in a server-agent infrastructure, you must grant FDA to the pxp-agent.
• To run Puppet from a remote machine with SSH commands, you must grant FDA to sshd.
• To run Puppet commands from the terminal, you must grant FDA to terminal.app.

To give Puppet access on a machine running macOS10.14, go to System Preferences > Security & Privacy >
Privacy > Full Disk Access, and add the path to the Puppet executable, along with any other parent processes you
use to run. For detailed steps, see Add full disk access for Puppet on macOS 10.14 and newer. Alternatively, set up
automatic access using Privacy Preferences Control Profiles and a Mobile Device Management Server. PA-2226,
PA-2227

Hiera knockout_prefix is ineffective in hierarchies more than three levels deep

When specifying a deep merge behaviour in Hiera, the knockout_prefix identifier is effective only against
values in an adjacent array, and not in hierarchies more than three levels deep. HI-223

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/PUP-11595
https://tickets.puppetlabs.com/browse/PUP-11437
https://puppet.com/docs/puppet/6/install_agents.html#mac_os_full_disk_access
https://tickets.puppetlabs.com/browse/PA-2226
https://tickets.puppetlabs.com/browse/PA-2227
https://tickets.puppetlabs.com/browse/HI-223

Puppet | Release notes | 86

Specify the epoch when using version ranges with the yum package provider

When using version ranges with the yum package provider, there is a limitation which requires you to specify the
epoch as part of the version in the range, otherwise it will use the implicit epoch `0`. For more information, see the
RPM packaging guide. PUP-10298

Deferred functions can only use built-in Puppet types

Deferred functions can only use types that are built into Puppet (for example String). They cannot use types from
modules like stdlib because Puppet does not plugin-sync these types to the agent. PUP-8600

The Puppet agent installer fails when systemd is not present on Debian 9
The puppet-agent package does not include sysv init scripts for Debian 9 (Stretch) and newer. If you have
disabled or removed systemd, puppet-agent installation and Puppet agent runs can fail.

Upgrading Windows agent fails with ScriptHalted error

Registry references to nssm.exe were removed in PA-3263. Upgrading from a version without this update to a
version that contains it triggers a Windows SecureRepair sequence that fails if any of the files delivered in the
original *.msi package are missing. This is an issue when upgrading to one of the following Puppet agent versions:
5.5.21, 5.5.22, 6.17.0, 6.18.0, 6.19.0, 6.19.1, 6.20.0, 7.0.0, 7.1.0 or 7.3.0. To work around this issue, put the *.msi
file for the currently installed version in the C:\Windows\Installer folder before you upgrade. Starting with
Puppet agent 6.21.0 and 7.4.0, the nssm.exe registry value will be replaced with an empty string, instead of the
registry key being removed, to avoid triggering Windows SecureRepair. PA-3545

Puppet Server release notes

Puppet Server 6.20.0

Released August 2022 and shipped with Puppet 6.28.0.

Enhancements

puppetserver http client respects include_system_store option. Puppet Server's Ruby HTTP client now
supports loading certificates from the system trust store that is included with Puppet Agent. It also supports loading
certs from a file or Java cert store at an arbitrary location via the ssl_trust_store setting. SERVER-2944

Resolved issues

RPM should create puppet user with UID/GID 52. When the puppet user and group are created on rpm-based
systems, they are now assigned a static UID/GID of 52. SERVER-1381

Puppet Server 6.19.0

Released April 2022 and shipped with Puppet 6.27.0.

Enhancements

Enable sles-15-x86_64 builds and testing for puppetserver. We now support puppetserver on sles-15-
x86_64. SERVER-3156

Bump BouncyCastle to 1.70. Puppet Server now ships with Bouncy Castle 1.70, which has improved TLS 1.3
support. SERVER-3135

JRuby pool lock lifecycle logging. The JRuby lock lifecycle of request, acquire, and release is now logged at the
INFO level, rather than DEBUG. SERVER-3098

© 2024 Puppet, Inc., a Perforce company

https://rpm-packaging-guide.github.io/#epoch
https://tickets.puppetlabs.com/browse/PUP-10298
https://tickets.puppetlabs.com/browse/PUP-8600
https://tickets.puppetlabs.com/browse/PA-3263
https://tickets.puppetlabs.com/browse/PA-3545
https://tickets.puppetlabs.com/browse/SERVER-2944
https://tickets.puppetlabs.com/browse/SERVER-1381
https://tickets.puppetlabs.com/browse/SERVER-3156
https://tickets.puppetlabs.com/browse/SERVER-3135
https://tickets.puppetlabs.com/browse/SERVER-3098

Puppet | Release notes | 87

Resolved issues

Bad exit code for errors in 'puppetserver ca list'. The puppetserver ca list command will now exit 1
when run on a non-CA server. SERVER-2797

Puppet Server CA always creates type 1 authority key identifiers. Previously, Puppet Server would always
compute a type 1 key identifier based on the public key of the certificate authority. This is incompatible in situations
where Puppet Server imports pre-made certificates that use a type 2 key identifier.

Now, Puppet Server will copy the subject key identifier from the ca certificate instead of computing a type 1 key
identifier. This will allow for type 2 identifiers and future key types on the CA. With this change, Puppet Server can
now use an intermediate certificate authority signed by HashiCorp’s Vault or AWS ACM. SERVER-2662

Puppet Server 6.18.0

Released January 2022 and shipped with Puppet 6.26.0.

New features

• Metrics collection with Dropsonde. Users can now enable module metrics collection via Dropsonde. To turn this
on, configure dropsonde: { enabled: true } in puppetserver.conf. By default when enabled,
Dropsonde collects metrics when the service is started and once a week thereafter. SERVER-3079

Resolved issues

• CRL uploading. The CRL update endpoint will now issue a meaningful error message when a CRL without an
authority key identifier is sent in the request body. SERVER-3080

• CA Authority Key Identifier incorrectly filled with issuer instead of keyid. The self-signed CA signing
cert generated by starting puppetserver will now use a keyid for its authority key identifier to match the CA
chain generated by puppetserver ca setup. SERVER-3114

• CA added a Subject Alternative Name extension to CA certs The CA signing cert no longer has subject
alternative names added to it, since they are not meaningful. SERVER-3114

Puppet Server 6.17.1

Released November 2021 and shipped with Puppet 6.25.1.

This release includes security fixes. For the latest features, see the release notes for Server 6.17.0.

Puppet Server 6.17.0

Released October 2021 and shipped with Puppet 6.25.0.

Enhancements

• Retrieve facts from any terminus. The v4 catalog endpoint (used by Impact Analysis) now supports retrieving
facts from any facts terminus, if none are provided with the request.

• TLS 1.3 support. Puppet Server now supports TLS 1.3 and associated cipher suites by default. SERVER-3076
• Improved performance in list command. Puppetserver CA CLI command list utilizes the updated

certificate_status endpoint for a faster performance when listing certificate requests. SERVER-3060
• --force flag in certificate generation. The puppetserver ca generate --ca-client command

can now take a --force flag, which forces the tool to generate the certificate even if it cannot determine
whether Puppet Server is offline. To avoid CA corruption, ensure your server is offline before you use this flag.
SERVER-2842

• Prune duplicate entries from CRL. In this release, the puppetserver ca subcommand now accepts the
prune actions. These actions allow you to prune any duplicate certificates from Puppet’s CRL. SERVER-2740

• CRL query speed. Querying CRLs from puppetserver is now faster, resulting in fewer timeouts.
SERVER-3020

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/SERVER-2797
https://tickets.puppetlabs.com/browse/SERVER-2662
https://tickets.puppetlabs.com/browse/SERVER-3079
https://tickets.puppetlabs.com/browse/SERVER-3080
https://tickets.puppetlabs.com/browse/SERVER-3114
https://tickets.puppetlabs.com/browse/SERVER-3114
https://puppet.com/docs/security-vulnerability-announcements
https://tickets.puppetlabs.com/browse/SERVER-3076
https://tickets.puppetlabs.com/browse/SERVER-3060
https://tickets.puppetlabs.com/browse/SERVER-2842
https://tickets.puppetlabs.com/browse/SERVER-2740
https://tickets.puppetlabs.com/browse/SERVER-3020

Puppet | Release notes | 88

• Scripts as a default mount. Puppet Server has a new default mount named scripts. You can
use the new default mount with API endpoints such as file_content, file_metadata, and
static_file_content to load scripts from the scripts/ directory of a module. SERVER-3058

Resolved issues

• Duplicate entries in CRL. Puppet CA no longer allows adding duplicate certificates to the CRL. SERVER-2509

Puppet Server 6.16.1

Released July 2021 and shipped with Puppet 6.24.0.

Enhancements

• Add --verbose flag. In this release, the puppetserver ca subcommand now accepts the --verbose
flag. If the --verbose flag is passed, it displays additional low-level details about the invoked action (such as
details about HTTP requests created by the tool). SERVER-2251

• Specify certificate output in JSON. In this release, the puppetserver ca list action now accepts a --
format flag that can be used to display certificates in JSON format. The output format is text by default.
SERVER-3006

• Jetty 9.4.42. This release includes a Jetty update to 9.4.42. SERVER-3035

Resolved issues

• CRL update endpoint is not enabled by default. The PUT /puppet-ca/v1/
certificate_revocation_list endpoint is now enabled by default for clients that have a special cert
extension. Previously, you had to manually update the auth.conf file to access this endpoint. SERVER-3033

• Puppet Server cannot use OpenSSL EC files in OpenSSL format. Previously, Puppet Server failed to load
private key PEM files that include separate blocks for EC parameters (such as files output by OpenSSL’s EC key
gen commands). This bug is now fixed. SERVER-3016

• The puppetserver ca generate command errors because of the subject alternative name. The
puppetserver ca generate command no longer errors when allow-subject-alt-names is set to
false. SERVER-3032

Puppet Server 6.16.0

Released June 2021 and shipped with Puppet Platform 6.23.0

New Features

• The CA API accepts CRL updates. You can now update your CRLs using the new API endpoint: PUT /
puppet-ca/v1/certificate_revocation_list. This new endpoint accepts a list of CRL PEMs as a
body, inserting updated copies of the applicable CRLs into the trust chain. The CA updates the matching CRLs
saved on disk if the submitted ones have a higher CRL number than their counterparts. You can use this endpoint
if your CRLs require frequent updates. Do not use the endpoint to update the CRL associated with the Puppet CA
signing certificate (only earlier ones in the certificate chain) SERVER-2550

Enhancements

• JRuby 9.2.17.0. In this release, the JRuby version is updated to 9.2.17.0. SERVER-3007

Resolved issues

• New apache HTTP client broke URL normalization. A security update to the apache HTTP client introduced
an unrelated change to URL normalization. This change affected any use of Puppet’s HTTP client within Puppet
Server. In this release, the double slash in a URL path is no longer silently ignored by the HTTP client in Puppet
Server. Instead, Puppet Server views it as a different URL and returns a 404. Going forward, remove leading
double slashes from URLs. SERVER-3014

• Environment endpoint failed to cache data if given valid etag. Previously, if you used the environment and
transport info endpoints, then you might have seen the cache bypassed—despite receiving a 304 Not Modified

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/SERVER-3058
https://tickets.puppetlabs.com/browse/SERVER-2509
https://tickets.puppetlabs.com/browse/SERVER-2251
https://tickets.puppetlabs.com/browse/SERVER-3006
https://tickets.puppetlabs.com/browse/SERVER-3035
https://tickets.puppetlabs.com/browse/SERVER-3033
https://tickets.puppetlabs.com/browse/SERVER-3016
https://tickets.puppetlabs.com/browse/SERVER-3032
https://tickets.puppetlabs.com/browse/SERVER-2550
https://tickets.puppetlabs.com/browse/SERVER-3007
https://tickets.puppetlabs.com/browse/SERVER-3014

Puppet | Release notes | 89

response. To work around this issue, users must submit a request to the environment_classes endpoint
without the etag. This request triggers the correct caching behavior. Note that the console (the consumer of
the environment_classes endpoint in PE) must always submit an etag for an environment if it has one.
SERVER-3015

Puppet Server 6.15.3

Released 26 April 2021

Enhancements

• Puppet Server now adds an extension for subject-alternative-name (SAN) when it signs incoming certificate
signing requests (CSR). The SAN extension contains the common name (CN) as a dns-name on the certificate.
If the CSR comes with its own SAN extension, Puppet Server signs it and ensures that the SAN extension also
includes the CSR's CN. SERVER-2338

Resolved issues

• The Jetty webserver now uses the local copy of the CRL from Puppet's SSL directory instead of the CA's copy.
This fix makes it easier to set up compilers, which always have a disabled CA service and no CRL at the CA path.
SERVER-2558

• Jetty has been updated to 9.4.40 to resolve security issues.

Puppet Server 6.15.1

Released 9 February 2021

Resolved issues

• Updated various dependencies to pick up security fixes.

Puppet Server 6.15.0

Released 20 January 2021

New features

• The puppetserver CA CLI now provides a migrate command to move the CA directory from the Puppet
confdir to the puppetserver confdir. It leaves behind a symlink on the old CA location, pointing to the new
location at /etc/puppetlabs/puppetserver/ca. The symlink provides backwards compatibility for
tools still expecting the cadir to exist in the old location. In a future release, the cadir setting will be removed
entirely. SERVER-2896

Puppet Server 6.14.1

Released 26 October 2020

Resolved issues

• The puppet-ca/v1/clean endpoint now logs the certname of each certificate it revokes. SERVER-2897

Puppet Server 6.14.0

Released 20 October 2020

New feature

• Added a new CA API endpoint — puppet-ca/v1/clean — that accepts a list of cert names to be revoked
and deleted as a batch. SERVER-2859

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/SERVER-3015
https://tickets.puppetlabs.com/browse/SERVER-2338
https://tickets.puppetlabs.com/browse/SERVER-2558
https://tickets.puppetlabs.com/browse/SERVER-2896
https://tickets.puppetlabs.com/browse/SERVER-2897
https://tickets.puppetlabs.com/browse/SERVER-2859

Puppet | Release notes | 90

Resolved issue

• Puppet Server's JRuby load path can now be used with Dir.glob. Notably, this re-enables installing gems with
docs via puppetserver gem. SERVER-2763

Puppet Server 6.13.0

Released 25 August 2020

New features

• Puppet Server packages are now available for Ubuntu 20.04. SERVER-2828
• Added a new endpoint /puppet-ca/v1/expirations that returns the "not-after" date for each certificate in

the CA bundle, as well as the "next-update" date of each CRL in the chain, keyed by common name. The endpoint
requires authentication. SERVER-2551

Enhancement

• The /puppet-ca/v1/certificate_statuses endpoint now accepts a state parameter that will filter
search results by the given certificate state. Accepted states are 'requested', 'signed', and 'revoked'. SERVER-2233

Resolved issue

• JRuby has been bumped to 9.2.13.0 for a security fix. SERVER-2853
• Re-enabled the ability to delete certificate signing requests via the CA API. SERVER-2795

Puppet Server 6.12.1

Released 14 July 2020

Enhancements

• Jolokia will no longer log at debug level by default, which avoids large stack traces for missing metrics. In order
to re-enable debug output, set debug to true in metrics.conf and configure the logging to debug in
logback.xml. TK-488

• The v2 metrics endpoint can now use trapperkeeper-authorization (tk-auth), which can be controlled from
auth.conf (or from the authorization section of the trapperkeeper config). The v2 metrics endpoint is still
restricted to localhost by default. If tk-auth is used to restrict access, you may override the default behavior in
jolokia-access.xml. TK-489

Puppet Server 6.12.0

Released 3 June 2020

Resolved issue

• JRuby has been bumped to 9.2.11.1 again, with invokedynamic.yield set to false to resolve a stackoverflow
error. SERVER-2793

Deprecation

• The v1 metrics endpoint, which was recently disabled by default, is now deprecated. Instead, use the v2 endpoint.
TK-486

Puppet Server 6.11.1

Released 7 May 2020

Known issue

• JRuby has been rolled back to 9.2.8.0 while we investigate an intermittent problem where some requests that go
through JRuby error repeatedly with StackOverflow exceptions. SERVER-2793.

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/SERVER-2763
https://tickets.puppetlabs.com/browse/SERVER-2858
https://tickets.puppetlabs.com/browse/SERVER-2551
https://tickets.puppetlabs.com/browse/SERVER-2233
https://tickets.puppetlabs.com/browse/SERVER-2853
https://tickets.puppetlabs.com/browse/SERVER-2795
https://tickets.puppetlabs.com/browse/TK-488
https://tickets.puppetlabs.com/browse/TK-489
https://tickets.puppetlabs.com/browse/SERVER-2793
https://tickets.puppetlabs.com/browse/TK-486
https://tickets.puppetlabs.com/browse/SERVER-2793

Puppet | Release notes | 91

• Downgrading JRuby reintroduced the sprintf bug marked fixed in 6.10.0, since its fix was tied to the JRuby
update.

Puppet Server 6.11.0

Released 30 April 2020

New features

• The puppetserver ca CLI tool has been updated to version 1.7.0. It will now show any authorization
extensions that exist when listing certificates or CSRs. SERVER-2591

Puppet Server 6.10.0

Released 14 April 2020

New features

• The GET /certificate_status endpoint now returns certificate or CSR's authorization extensions.
SERVER-2718

• Puppet's ppRegCertExt arc has been extended with OID 1.3.6.1.4.1.34380.1.1.26 and the short
name pp_owner. This OID is meant to help users in cloud environments. The short name will be displayed when
using the puppetserver ca CLI tool.

Resolved issues

• Using a precision number to truncate a string in Puppet's sprintf function no longer interpolates extra
characters. SERVER-2660.

Known issues

• An update to JRuby 9.2.11.1 has caused a change in defaults when installing gems with the puppetserver
gem command. It attempts to install documentation by default, but this will not work. To avoid this bug,
pass --no-document when installing gems. This is caused by an inability to use the classpath:/
puppetserver-lib portion of the $LOAD_PATH as a parameter to Gem.list_files or Dir.glob,
which Rdoc relies on to install documentation. SERVER-2758.

Puppet Server 6.9.2

Released 19 March 2020

Resolved issue

• To prevent information exposure as a result of CVE-2020-7943, the /metrics/v1 endpoints are disabled by
default, and access to the /metrics/v2 endpoints are restricted to localhost.

Puppet Server 6.9.1

Released 10 March 2020

This release contains some minor test fixes.

Puppet Server 6.9.0

Released 18 February 2020

New features

• There is a new JRuby pool architecture that maintains a single a JRuby instance where requests to Puppet Server
will run concurrently. You can toggle this behavior by setting jruby-puppet.multithreaded to true.
In this mode, the server's memory footprint is significantly lighter as it no longer needs to run multiple JRuby
instances. Note that this mode should be treated as an experimental feature. SERVER-2684

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/SERVER-2591
https://tickets.puppetlabs.com/browse/SERVER-2718
https://tickets.puppetlabs.com/browse/SERVER-2660
https://tickets.puppetlabs.com/browse/SERVER-2758
https://puppet.com/security/cve/CVE-2020-7943
https://tickets.puppetlabs.com/browse/SERVER-2684

Puppet | Release notes | 92

Puppet Server 6.8.0

Released 14 January 2020

New features

• When signing or generating certificates, you can now set the certificate time to live, either with a command line
option or by specifying the key directly in the HTTP API. The time unit defaults to seconds, but you can specify a
different time unit with any of time unit markers accepted in Puppet configuration.

The puppetserver ca sign and puppetserver ca generate commands accept a --ttl flag to set
certificate time to live. This setting determines how long the resulting certificate is valid for.

Alternatively, you can set the time in the certificate-status API endpoint in the request body under the
key cert_ttl. SERVER-2678

Resolved issues

• Puppet Server no longer issues HTTP 503 responses to agents older than Puppet 5.3, which can't react to these
responses. This allows the max-queued-requests setting to be used safely with older agents. SERVER-2405

Puppet Server 6.7.2

Released 19 November 2019

This version contains minor security fixes.

Puppet Server 6.7.1

Released 15 October 2019

Resolved issues

• Puppet Server can no longer be configured to accept SSLv3 traffic. SERVER-2654

Puppet Server 6.7.0

Released 1 October 2019

New feature

• Puppet Server packages are now available for Debian 10. These packages require Java 11 to be installed, rather
than Java 8. SERVER-2613

Resolved issues

• Puppet Server now synchronizes write access to the CRL, so that each revoke request updates the CRL in
succession, instead of concurrently. This prevents corruption of the CRL due to competing requests.

Puppet Server 6.6.0

Released 17 September 2019

New features

• Puppet Server no longer hardcodes Java's egd parameter. Users may manage the value via JAVA_ARGS or
JAVA_ARGS_CLI in the defaults file. SERVER-2602

• RedHat 7 FIPS mode packages are now available for puppetserver. SERVER-2555
• Puppet Server now lists plan content from your modules, just as it does task content. SERVER-2543
• You can now enable sending a list of all the Hiera keys looked up during compile to PuppetDB, via the jruby-

puppet.track-lookups setting in puppetserver.conf. This is currently only used by CD4PE.
SERVER-2538

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/6/configuration.html
https://tickets.puppetlabs.com/browse/SERVER-2678
https://tickets.puppetlabs.com/browse/SERVER-2405
https://tickets.puppetlabs.com/browse/SERVER-2654
https://tickets.puppetlabs.com/browse/SERVER-2613
https://tickets.puppetlabs.com/browse/SERVER-2602
https://tickets.puppetlabs.com/browse/SERVER-2555
https://tickets.puppetlabs.com/browse/SERVER-2543
https://tickets.puppetlabs.com/browse/SERVER-2538

Puppet | Release notes | 93

• Added the /puppet-admin-api/v1/jruby-pool/thread-dump endpoint, which returns a thread dump
of running JRuby instances, if jruby.management.enabled has been set to true in the JVM running
Puppet Server. See Admin API: JRuby Pool for details. SERVER-2193

• Puppet Server now runs with JRuby 9.2.8.0. SERVER-2388
• The puppetserver ca import command now initializes an empty CRL for the intermediate CA if one is

not provided in the crl-chain file. SERVER-2522

Resolved issues

• Puppet Server can now be reloaded and run with multiple JRuby instances when running under Java 11. This
change affects the packaging of Puppet Server. If you are running Puppet Server from source, you must add
facter.jar, provided by the puppet-agent package, to the classpath when starting Puppet Server with
Java. SERVER-2423

-Puppet Server's CA can now handle keys in the PKCS#8 format, which is required when running in FIPS mode.
SERVER-2019

Puppet Server 6.5.0

Released 22 July 2019

New features

• The default for the cipher-suites setting in the webserver section of webserver.conf has been updated.
Previously, the defaults included 11 cipher suites, including 4 TLS_RSA_* cipher suites. Now the defaults
include all cipher suites usable on a RHEL 7 FIPS-enabled server, our target platform for FIPS certification,
except for TLS_RSA_* ciphers. Additionally, Puppet Server emits warnings if any TLS_RSA_* ciphers are
explicitly enabled in the cipher-suites setting.

To avoid potentially breaking clients that can use only TLS_RSA_* ciphers, the webserver.conf file now
includes an explicit cipher-suites setting that adds the previously enabled TLS_RSA_* ciphers to the new
implicit cipher-suites setting. This has three effects:

1. Older clients that require the TLS_RSA_* ciphers will continue to work.
2. Puppet Server generates warnings in the logs that the TLS_RSA_* ciphers are enabled.
3. Puppet Server generates warnings in the logs if ciphers enumerated in the cipher-suites setting are not

available on that specific OS. These warnings can be safely silenced by editing the cipher-suites setting and
removing the unavailable ciphers.

A future version of Puppet Server will remove the cipher-suites setting in webserver.conf. This will break
any clients that still require the TLS_RSA_* ciphers.

In advance of this change, update any clients that still require the TLS_RSA_* ciphers to clients that can use more
recent ciphers, and remove the cipher-suites setting in webserver.conf.

This update also removes the so-linger-seconds configuration setting. This setting is now ignored and a
warning is issued if it is set. See Jetty's so-linger-seconds for removal details.

See SERVER-2576 for further details.

• You can now specify a --certname flag with the puppetserver ca list command, which limits the
output to information about the requested cert and logs an error if the requested cert does not exist in any form.
SERVER-2589

• You can now specify a log level for the logs collected by the new catalog compilation endpoint during
compilation. See the catalog endpoint docs for information. SERVER-2520

• In this release, performance in puppetserver commands is improved. Running puppetserver gem,
puppetserver irb, and other Puppet Server CLI commands are 15-30 percent faster to start up. Service
starting and reloading should see similar improvements, along with some marginal improvements to top-end
performance, especially in environments with limited sources of entropy.

• Building Puppet Server outside our network is now slightly easier.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/6/server/admin-api/v1/jruby-pool.html#get-puppet-admin-apiv1jruby-poolthread-dump
https://tickets.puppetlabs.com/browse/SERVER-2193
https://tickets.puppetlabs.com/browse/SERVER-2588
https://tickets.puppetlabs.com/browse/SERVER-2552
https://tickets.puppetlabs.com/browse/SERVER-2423
https://tickets.puppetlabs.com/browse/SERVER-2019
https://github.com/puppetlabs/trapperkeeper-webserver-jetty9/blob/3.0.1/doc/jetty-config.md#so-linger-seconds
https://tickets.puppetlabs.com/browse/SERVER-2576
https://tickets.puppetlabs.com/browse/SERVER-2589
https://puppet.com/docs/puppet/6/server/puppet-api/v4/catalog.htmlhttps://puppet.com/docs/puppet/6/server/puppet-api/v4/catalog.html
https://tickets.puppetlabs.com/browse/SERVER-2520

Puppet | Release notes | 94

• Prior to this release, an unnecessary and deprecated version of Facter was shipped in the puppetserver
package. This has been removed.

• Cert and CRL bundles no longer need to be in any specific order. By default, the leaf instances still come first,
descending to the root, which are last. SERVER-2465

Puppet Server 6.4.0

Released 19 April 2019

New features

• This release adds a new API endpoint to /puppet/v3/environment_transports. This endpoint
lists all of the available network transports from modules and is for use with the Agentless Catalog Executor.
SERVER-2467

Puppet Server 6.3.0

Released 26 March 2019

New features

• Puppet Server has a new endpoint for catalog retrieval, allowing more options than the previous endpoint. This
endpoint is controlled by tk-auth, and by default is not generally accessible. It is an API that integrators can use
to provide functionality similar to puppet server --compile. This endpoint is intended for use by other
Puppet services. SERVER-2434

Enhancements

• The CA's certificate_status endpoint now returns additional information for custom integration.
SERVER-2370

Puppet Server 6.2.1

Released 20 February 2019.

This release contains resolved issues.

Resolved issues

• Updated bouncy-castle to 1.60 to fix security issues. SERVER-2431

Puppet Server 6.2.0

Released 23 January 2019.

This release contains new features and resolved issues.

New features

• The puppetserver ca tool now respects the server_list setting in puppet.conf for those users that
have created their own high availability configuration using that feature. SERVER-2392

• The EZBake configs now allow you to specify JAVA_ARGS_CLI, which is used when using puppetserver
subcommands to configure Java differently from what is needed for the service. This was used by the CLI before,
but as an environment variable only, not as an EZBake config option. SERVER-2399

Resolved issues

• A dependency issue caused puppetserver 6.1.0 to fail with OpenJDK 11. This has been fixed and Puppet Server
packages can now start under Java 11. SERVER-2404

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/SERVER-2465
https://tickets.puppetlabs.com/browse/SERVER-2467
https://tickets.puppetlabs.com/browse/PUP-9055
https://tickets.puppetlabs.com/browse/SERVER-2434
https://tickets.puppetlabs.com/browse/SERVER-2370
https://tickets.puppetlabs.com/browse/SERVER-2431
https://tickets.puppetlabs.com/browse/SERVER-2392
https://tickets.puppetlabs.com/browse/SERVER-2399
https://tickets.puppetlabs.com/browse/SERVER-2404

Puppet | Release notes | 95

Puppet Server 6.1.0

Released 18 December 2018

New features

• The CA service and the CA proxy service (in PE) now have their own entries in the status endpoint output and can
be queried as "ca" and "ca-proxy" respectively. SERVER-2350

• Puppet Server now creates a default ca.conf file when installed, both in open source Puppet and Puppet
Enterprise. CA settings such as allow-subject-alt-names should be configured in the certificate-
authority section of this file. (SERVER-2372)

• The puppetserver ca generate command now has a flag --ca-client that will generate a certificate
offline -- not using the CA API -- that is authorized to talk to that API. This can be used to regenerate the primary
server's host cert, or create certs for distribution to other CA nodes that need administrative access to the CA, such
as the ability to sign and revoke certs. This command should only be used while Puppet Server is offline, to avoid
conflicts with cert serials. (SERVER-2320)

• The Puppet Server CA can now sign certificates with IP alt names in addition to DNS alt names (if signing certs
with alt names is enabled). (SERVER-2267

Enhancements

• Puppet Server 6.1.0 upgrades to JRuby 9.2.0.0. This version implements the Ruby 2.5 interface. It is backwards
compatible, but will issue a warning for Ruby language features that have been deprecated. The major warning
that users will see is warning: constant ::Fixnum is deprecated. Upgrading to this version of
JRuby means that the Ruby interface has the same version as the Puppet agent. This version of JRuby is faster
than previous versions under certain conditions. SERVER-2381

• Puppet Server now has experimental support for Java 11 for users that run from source or build their own
packages. This has been tested with low level tests but does not work when installed from official packages.
Consequently, we consider this support "experimental", with full support coming later in 2019 for the latest long
term supported version of Java. SERVER-2315.

• The puppetserver ca command now provides useful errors on connection issues and returns debugging
information. SERVER-2317

• The puppetserver ca tool now prefers the server_list setting in puppet.conf for users that have
created their own high availability configuration using this feature. SERVER-2392

Resolved issues

• The puppetserver ca command no longer has the wrong default value for the $server setting. Previously
the puppetserver ca tool defaulted to $certname when connecting to the server, while the agent defaulted
to puppet. The puppetserver ca tool now has the same default for $server as the agent. It will also
honor the settings within the agent section of the puppet.conf file. SERVER-2354

• Jetty no longer reports its version. TK-473

Puppet Server 6.0.0

Released 18 September 2018

This Puppet Server release provides a new workflow and API for certificate issuance. By default, the server now
generates a root and intermediate signing CA cert, rather than signing everything off the root. If you have an external
certificate authority, you can generate an intermediate signing CA from it instead, and a new puppetserver ca
subcommand puts everything into its proper place.

New features

• There is now a CLI command for setting up the certificate authority, called puppetserver ca.
(SERVER-2172)

• For fresh installs, the Puppet primary server's cert is now authorized to connect to the certificate_status
endpoint out of the box. This allows the new CA CLI tool to perform CA tasks via Puppet Server's CA API.
(SERVER-2308) Note that upgrades will need to instead allow the primary server's cert for these endpoints.

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/SERVER-2350
https://tickets.puppetlabs.com/browse/SERVER-2327
https://tickets.puppetlabs.com/browse/SERVER-2320
https://tickets.puppetlabs.com/browse/SERVER-2267
https://tickets.puppetlabs.com/browse/SERVER-2381
https://tickets.puppetlabs.com/browse/SERVER-2315
https://tickets.puppetlabs.com/browse/SERVER-2317
https://tickets.puppetlabs.com/browse/SERVER-2392
https://tickets.puppetlabs.com/browse/SERVER-2354
https://tickets.puppetlabs.com/browse/TK-473
https://tickets.puppetlabs.com/browse/SERVER-2172
https://tickets.puppetlabs.com/browse/SERVER-2308

Puppet | Release notes | 96

• Puppet Server now has a setting called allow-authorization-extensions in the certificate-
authority section of its config for enabling signing certs with authorization extensions. It is false by default.
(SERVER-2290)

• Puppet Server now has a setting called allow-subject-alt-names in the certificate-
authority section of its config for enabling signing certs with subject alternative names. It is false by default.
(SERVER-2278)

• The puppetserver ca CLI now has an import subcommand for installing key and certificate files that
you generate, for example, when you have an external root CA that you need Puppet Server's PKI to chain to.
(SERVER-2261)

• We've added an infrastructure-only CRL in addition to the full CRL, that provides a list of certs that, when
revoked, should be added to a separate CRL (useful for specifying special nodes in your infrastructure like
compile servers). You can configure Whether this special CRL or the default CRL are distributed to agents.
(SERVER-2231)

• Puppet Server now bundles its JRuby jar inside the main uberjar. This means the JRUBY_JAR setting is no
longer valid, and a warning will be issued if it is set. (SERVER-2157)

• Puppet Server 6.0 uses JRuby 9K, which implements Ruby language version 2.3 Server-side gems that were
installed manually with the puppetserver gem command or using the puppetserver_gem package
provider might need to be updated to work with JRuby 9K. Additionally, if ReservedCodeCache or
MaxMetaspacesize parameters were set in JAVA_ARGS, they might need to be adjusted for JRuby 9K.

• The version of semantic_puppet has been updated in Puppet Server to ensure backwards compatibility in
preparation for future major releases of Puppet Platform. (SERVER-2132)

• Puppet Server 6.0 now uses JRuby 9k. This implements version 2.3 of the Ruby language. (SERVER-2095)

Resolved issues

• We've made server-side fixes for fully supporting intermediate CA capability. With this, CRL chains will be
persisted when revoking certs. SERVER-2205

Known issues

Ruby’s native methods for spawning processes cause a fork of the JVM on most Linux servers, which in a large
production environment causes Out of Memory errors at the OS level. Puppet Server provides a lighter weight way
of creating sub-processes with its built-in execution helper Puppet::Util::Execution.execute. Use
Puppet::Util::Execution.execute when writing Ruby-based functions, custom report processors, Hiera
backends and faces. When writing custom providers, use the commands helper to determine suitability.

Puppet Server known issues
For a list of all known issues, visit our Issue Tracker.

Access CA endpoint to update CRLs

Puppet Server 7.20 and 6.16.0 include the following new API endpoint: PUT /puppet-ca/v1/
certificate_revocation_list. To access this endpoint, you must edit the configuration file at /etc/
puppetlabs/puppetserver/conf.d/auth.conf and also update the endpoint's rule to be type regex
instead of path.

Cipher updates in Puppet Server 6.5

Puppet Server 6.5 includes an upgrade to the latest release of Jetty's 9.4 series. With this update, you may see "weak
cipher" warnings about ciphers that were previously enabled by default. Puppet Server now defaults to stronger FIPS-
compliant ciphers, but you must first remove the weak ciphers.

The ciphers previously enabled by default have not been changed, but are considered weak by the updated standards.
Remove the weak ciphers by removing the cipher-suite configuration section from the webserver.conf.
After you remove the cipher-suite, Puppet Server uses the FIPS-compliant ciphers instead. This release includes
the weak ciphers for backward compatibility only.

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/SERVER-2290
https://tickets.puppetlabs.com/browse/SERVER-2278
https://tickets.puppetlabs.com/browse/SERVER-2261
https://tickets.puppetlabs.com/browse/SERVER-2231
https://tickets.puppetlabs.com/browse/SERVER-2157
https://tickets.puppetlabs.com/browse/SERVER-2132
https://tickets.puppetlabs.com/browse/SERVER-2095
https://tickets.puppetlabs.com/browse/SERVER-2205
https://tickets.puppet.com/browse/SERVER

Puppet | Release notes | 97

The FIPS-compliant cipher suites, which are not considered weak, will be the default in a future version of Puppet. To
maintain backwards compatibility, Puppet Server explicitly enables all cipher suites that were available as of Puppet
Server 6.0. When you upgrade to Puppet Server 6.5.0, this affects you in in two ways:

1. The 6.5 package updates the webserver.conf file in Puppet Server's conf.d directory.
2. When Puppet Server starts or reloads, Jetty warns about weak cipher suites being enabled.

This update also removes the so-linger-seconds configuration setting. This setting is now ignored and a
warning is issued if it is set. See Jetty's so-linger-seconds for removal details.

Note: On some older operating systems, you might see additional warnings that newer cipher suites are
unavailable. In this case, manage the contents of the webserver.cipher-suites configuration
value to be those strong suites that available to you.

Server-side Ruby gems might need to be updated for upgrading from JRuby 1.7

When upgrading from Puppet Server 5 using JRuby 1.7 (9k was optional in those releases), Server-side gems that
were installed manually with the puppetserver gem command or using the puppetserver_gem package
provider might need to be updated to work with the newer JRuby. In most cases gems do not have APIs that break
when upgrading from the Ruby versions implemented between JRuby 1.7 and JRuby 9k, so there might be no
necessary updates. However, two notable exceptions are that the autosign gem should be 0.1.3 or later and yard-doc
must be 0.9 or later.

Potential JAVA ARGS settings

If you're working outside of lab environment, increase ReservedCodeCache to 512m under normal load. If you're
working with 6-12 JRuby instances (or a max-requests-per-instance value significantly less than 100k), run
with a ReservedCodeCache of 1G. Twelve or more JRuby instances in a single server might require 2G or more.

Similar caveats regarding scaling ReservedCodeCache might apply if users are managing MaxMetaspace.

tmp directory mounted noexec

In some cases (especially for RHEL 7 installations) if the /tmp directory is mounted as noexec, Puppet Server may
fail to run correctly, and you may see an error in the Puppet Server logs similar to the following:

Nov 12 17:46:12 fqdn.com java[56495]: Failed to load feature test for posix:
 can't find user for 0
Nov 12 17:46:12 fqdn.com java[56495]: Cannot run on Microsoft Windows
 without the win32-process, win32-dir and win32-service gems: Win32API only
 supported on win32
Nov 12 17:46:12 fqdn.com java[56495]: Puppet::Error: Cannot determine basic
 system flavour

This is caused by the fact that JRuby contains some embedded files which need to be copied somewhere on the
filesystem before they can be executed (see this JRuby issue). To work around this issue, you can either mount the
/tmp directory without noexec, or you can choose a different directory to use as the temporary directory for the
Puppet Server process.

Either way, you'll need to set the permissions of the directory to 1777. This allows the Puppet Server JRuby process
to write a file to /tmp and then execute it. If permissions are set incorrectly, you'll get a massive stack trace without
much useful information in it.

To use a different temporary directory, you can set the following JVM property:

-Djava.io.tmpdir=/some/other/temporary/directory

When Puppet Server is installed from packages, add this property to the JAVA_ARGS and JAVA_ARGS_CLI
variables defined in either /etc/sysconfig/puppetserver or /etc/default/puppetserver,
depending on your distribution. Invocations of the gem, ruby, and irb subcommands use the updated

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/trapperkeeper-webserver-jetty9/blob/3.0.1/doc/jetty-config.md#so-linger-seconds
https://github.com/jruby/jruby/issues/2186

Puppet | Release notes | 98

JAVA_ARGS_CLI on their next invocation. The service will need to be restarted in order to re-read the JAVA_ARGS
variable.

Puppet Server Primary Server Fails to Connect to Load-Balanced Servers with Different
SSL Certificates

SERVER-207: Intermittent SSL connection failures have been seen when the Puppet Server primary server tries to
make SSL requests to servers via the same virtual ip address. This has been seen when the servers present different
certificates during the SSL handshake.

Facter release notes
These are the new features, resolved issues, and deprecations in this version of Facter.

Facter 3.14.24
Released August 2022 and shipped with Puppet Platform 6.28.0.

No release notes.

Facter 3.14.23
Released April 2022 and shipped with Puppet Platform 6.27.1.

No release notes.

Facter 3.14.22
Released January 2022 and shipped with Puppet Platform 6.26.0.

No release notes.

Facter 3.14.21
Released November 2021 and shipped with Puppet Platform 6.25.1.

Resolved issues

• Puppet 6.25.0 runs take over two minutes on non-EC2 VMs. This release fixes a regression where the AWS
IMDSv2 endpoint was not called with the correct session and request timeouts, resulting in Facter using a default
timeout of 2 minutes. FACT-3082

Facter 3.14.20
Released October 2021 and shipped with Puppet Platform 6.25.0.

New features

• DisplayVersion fact for Windows. This release adds a new fact called
os.windows.display_version. This fact reads the version from the DisplayVersion registry key.
FACT-3058

• AWS IDMSv2. This release ports the AWS Instance Metadata Service Version 2 (IMDSv2) functionality from
Facter 4 to Facter 3. FACT-2904

Resolved issues

• Mismatched processor frequencies found on AIX. Previously, Facter added all the processors found in
the ODM query, without checking their status. Now if the status is not available, Facter skips the processor.
FACT-2955

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppet.com/browse/SERVER-207
https://tickets.puppetlabs.com/browse/FACT-3082
https://tickets.puppetlabs.com/browse/FACT-3058
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
https://tickets.puppetlabs.com/browse/FACT-2904
https://tickets.puppetlabs.com/browse/FACT-2955

Puppet | Release notes | 99

• Windows 2022 detected as Windows 2019. The os.release.full and os.release.major facts now
correctly detect Windows 2022 and output 2022, instead of 2019. FACT-3075

Facter 3.14.19
Released July 2021 and shipped with Puppet Platform 6.24.0.

This release includes minor maintenance changes. For the latest features, see the release notes for Facter 3.14.18.

Facter 3.14.18
Released June 2021 and shipped with Puppet Platform 6.23.0.

Enhancements

• Support for Mac OS X 11. This release adds support for Mac OS X 11 Big Sur. FACT-3017

Facter 3.14.17
Released 26 April 2021 and shipped with Puppet Platform 6.22.1.

Enhancements

• Azure identification fact. This release adds the cloud.provider fact for Azure identification on Linux and
Windows platforms. FACT-1847

• Azure metadata fact. This release adds the az_metadata fact which provides information on Azure virtual
machine instances. For more information, see the Microsoft Azure instance metadata documentation. FACT-1383

• Facter 3 API extended with resolve. This release backports a limited version of the Facter.resolve API to
Facter 3. Note that the following options were not implemented: custom-dir, external-dir, no-block,
no-cache, timing (not supported in Facter 3). FACT-2935

• Facter 3 support for Rocky Linux. This release adds support for the Rocky Linux operating system. Contributed
by Puppet community member StackKorora. FACT-2957

Resolved issues

• The puppet facts diff command logs error when apt module is installed. Previously, each time you
executed require facter, the Facter and Puppet bin directories were added to PATH environment variable,
even if they were already there. This is now fixed and require facter only adds Facter and Puppet bin
directories to PATH if they are not there. FACT-2941

• Fix os.name detection of AlmaLinux. Facter 3 can now detect AlmaLinux. Contributed by Puppet
community member cschug. FACT-2943

Facter 3.14.16
Released 9 February 2021 and shipped with Puppet Platform 6.21.1.

Resolved issues

• FACTER_ environmental facts overrides does not work with external facts. Previously, environment
facts were overwritten by external facts when you ran the puppet fact command. Now the flow is set to
facts -> external facts -> environment facts by default. FACT-2918

Facter 3.14.15
Released 20 January 2020 and shipped with Puppet Platform 6.20.0.

This release includes minor maintenance changes. For the latest features, see the release notes for Facter 3.14.14.

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/FACT-3075
https://tickets.puppetlabs.com/browse/FACT-3017
https://tickets.puppetlabs.com/browse/FACT-1847
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/instance-metadata-service?tabs=windows
https://tickets.puppetlabs.com/browse/FACT-1383
https://tickets.puppetlabs.com/browse/FACT-2935
https://github.com/StackKorora
https://tickets.puppetlabs.com/browse/FACT-2957
https://tickets.puppetlabs.com/browse/FACT-2941
https://github.com/cschug
https://tickets.puppetlabs.com/browse/FACT-2943
https://tickets.puppetlabs.com/browse/FACT-2918

Puppet | Release notes | 100

Facter 3.14.14
Released 20 October 2020 and shipped with Puppet Platform 6.28.0.

Resolved issues

Linux Mint 20 OS version bug. This release fixes an issue where Facter incorrectly reported the OS as Debian on
Linux Mint 20 platforms.FACT-2759

Facter reports wrong Windows build. This release uses ntdll.dll instead of ntoskrnl.exe to get the
Windows build number for the kernelrealese fact. FACT-2751

Facter 3.14.13
Released 25 August 2020 and shipped with Puppet Platform 6.18.0.

Resolved issues

Puppet lookup loads external facts on the initiating node. Previously, some Puppet default settings required
Facter to retrieve data that loaded all external facts and slowed down Puppet. With this release, local external facts are
not evaluated when performing a lookup command on a remote node. FACT-2666

Facter 3.14.12
Released 14 July 2020 and shipped with Puppet Platform 6.28.0.

Resolved issues

The facter -p command returns NUL character on stdout when called from nested ruby on Windows. This
release fixes an issue where Facter executed a system command using back ticks when called from Ruby. FACT-2682

Facter 3.14.11
Released 3 June 2020 and shipped with Puppet Platform 6.16.0.

This release includes minor maintenance changes. For the latest features, see the release notes for Facter 3.14.10 .

Facter 3.14.10
Released 30 April 2020 and shipped with Puppet Platform 6.15.0.

New features

cached-custom-facts has moved to a new section in `facter.conf`. This release moves `cached-custom-facts`
to a new section in the`facter.conf` file, called `fact-groups`. FACT-2544

New ability to cache and block the output of custom facts. This release allows you to cache custom facts based on
the facter.conf file. Custom facts defined in facter.conf under Facts.cached-custom-facts can be
cached, depending on the ttl defined under Facts.ttls. FACT-1575

Resolved issues

AIX kernel resolver redirects stderr to stdout and breaks facts on OS errors. Previously, when the
oslevel -s command is executed on AIX, redirects stderr to /dev/null were shown on stderr and the
kernel fact broke. This is now fixed. FACT-2545

Not compatible with leatherman >= 1.0.0. This release adds a compile guard so that Facter can compile with older
Leatherman versions. FACT-2537

No resolver for external facts file error for os-specific facts. Previously, when os-specific facts were not resolved,
Puppet logged a warning. The release lowers the severity of the logged messages to debug. FACT-2489

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/FACT-2759
https://tickets.puppetlabs.com/browse/FACT-2751
https://tickets.puppetlabs.com/browse/FACT-2666
https://tickets.puppetlabs.com/browse/FACT-2682
https://tickets.puppetlabs.com/browse/FACT-2544
https://tickets.puppetlabs.com/browse/FACT-1575
https://tickets.puppetlabs.com/browse/FACT-2545
https://tickets.puppetlabs.com/browse/FACT-2537
https://tickets.puppetlabs.com/browse/FACT-2489

Puppet | Release notes | 101

Incorrect log format on non-executable external fact scripts. Previously, if an external fact script could not be
executed, the Facter log did not indicate what happened and the error output format was incorrect. This is now fixed.
FACT-2618

Facter 3.14.9
Released 10 March 2020 and shipped with Puppet Platform 6.14.0.

Resolved issues

• Facterno longer crashes if the user has a numeric hostname. (FACT-2346)
• Facter correctly displays the ssh host key fact, in the case the host key file does not contain a comment.

(FACT-1833)

Facter 3.14.8
Released 18 February 2020 and shipped with Puppet Platform 6.13.0.

New features

• The ability to cache external facts using external facts filename as cache group. (FACT-2307)
• A new ssh fact on Windows — available when OpenSSH is present. (FACT-1934)

Resolved issues

• The facter --puppet command no longer throws a deprecation warning. (FACT-2260)

Facter 3.14.7
Released 14 January 2020 and shipped with Puppet Platform 6.12.0.

New features

• Facter command execution now accepts a Boolean parameter, expand. By default, Facter searches the command
and expands it to absolute path. When expand is set to false, Facter verifies whether the command is a shell
command and, if so, passes the command as is. FACT-2054

Resolved issues

• Facter incorrectly reported disabled CPU cores as physical CPU cores. Now, Facter correctly reports physical and
logical CPUs and ignores disabled CPUs. FACT-1824

• In previous versions, Facter could not always determine the primary network interface on Solaris, so it sometimes
failed to return any valid interface. This is now fixed. FACT-2146

• In systems using Windows Remote Desktop Services (RDS), Facter returned an incorrect operating system fact.
This was due to a Windows API deprecation that caused issues in mixed 32- and 64-bit application environments,
such as RDS. FACT-2096

• Facter now takes the root-reserved space into account when reporting mountpoints. Contributed by Valia0906.
FACT-2128

Facter 3.14.6
Released 19 November 2019 and shipped with Puppet Platform 6.11.0.

New features

• This release adds support for the fips_enabled fact on Windows. The check examines the contents of
HKEY_LOCAL_MACHINE/System/CurrentControlSet/Control/Lsa/FipsAlgorithmPolicy/
Enabled. If the returned value is 1, it means that FIPS mode is enabled. FACT-2065

• Facter can now return the new scope6 fact to display IPv6 address scope. FACT-2016

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/FACT-2618
https://tickets.puppetlabs.com/browse/FACT-2346
https://tickets.puppetlabs.com/browse/FACT-1833
https://tickets.puppetlabs.com/browse/FACT-2307
https://tickets.puppetlabs.com/browse/FACT-1934
https://tickets.puppetlabs.com/browse/FACT-2260
https://tickets.puppetlabs.com/browse/FACT-2054
https://tickets.puppetlabs.com/browse/FACT-1824
https://tickets.puppetlabs.com/browse/FACT-2146
https://tickets.puppetlabs.com/browse/FACT-2096
https://github.com/valia0906
https://tickets.puppetlabs.com/browse/FACT-2128
https://tickets.puppetlabs.com/browse/FACT-2065
https://tickets.puppetlabs.com/browse/FACT-2016

Puppet | Release notes | 102

Resolved issues

• In previous releases, Facter did not report the cloud fact on Azure. This issue is now fixed. FACT-2004

Facter 3.14.5
Released 1 October 2019 and shipped with Puppet Platform 6.10.0.

Resolved issues

• Google Compute Engine's internal metadata service is deprecating the v1beta1 endpoint sometime before the
end of 2019. To prepare for this, Facter now uses the v1 endpoint instead. FACT-2018

• When Facter starts a mountpoint to get the size and available space, it causes mountpoints of type autofs to
be automatically mounted, which is not the intended behavior. Automounts are now skipped by Facter when
resolving mountpoints. FACT-1992

Facter 3.14.4
Released 17 September 2019 and shipped with Puppet Platform 6.9.0.

Resolved issues

This release makes the EC2 session timeout, in milliseconds, configurable via the EC2_SESSION_TIMEOUT
environment variable. If the environment variable does not exist or is set to an invalid value, Facter defaults the
variable to 5000 (5 seconds). FACT-1919

Facter 3.14.3
Released 21 August 2019 and shipped with Puppet Platform 6.8.0.

New features

This release adds an new AIX-specific fact, nim_type, which returns the type of the NIM configuration. This fact
returns a value of:

• 'server'
• 'standalone'
• if '/etc/niminfo' is missing, no value is returned.

Resolved issues

• The previous version of Facter could not be compiled on the latest Archlinux version. This release fixes this
issue by unpinning gem dependencies for Ruby spec tests so they work regardless of gem versions. and enabling
detection of the optional UDEV library on Linux, which provides a serial number fact for disks. FACT-1968

• On Linux, if multiple mountpoints are mounted on the same directory, Facter showed only the first one retrieved
from /etc/mtab. Now Facter shows the mountpoint that is a device or is the "tmpfs" type. FACT-1964

• Prior to this release, when you ran facter ipaddress6 on Windows servers, Facter returned the IPv6
with the interface identifier. This was caused by a Windows function that retrieves ipaddress6 together with
the interface identifier. Now it correctly returns only the ipaddress6 without the interface id. This also fixes the
network6 fact, which also returned network6 together with the interface identifier. FACT-1935

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/FACT-2004
https://tickets.puppetlabs.com/browse/FACT-2018
https://tickets.puppetlabs.com/browse/FACT-1992
https://tickets.puppetlabs.com/browse/FACT-1919
https://tickets.puppetlabs.com/browse/FACT-1968
https://tickets.puppetlabs.com/browse/FACT-1964
https://tickets.puppetlabs.com/browse/FACT-1935

Puppet | Release notes | 103

• The dmi fact did not return the chassis type. Facter now resolves the following DMI chassis descriptions for:

• "25" - "Multi-system"
• "26" - "CompactPCI"
• "27" - "AdvancedTCA"
• "28" - "Blade"
• "29" - "Blade Enclosure"
• "30" - "Tablet"
• "31" - "Convertible"
• "32" - "Detachable"

FACT-1933

Facter 3.14.2
Released 23 July 2019 and shipped with Puppet Platform 6.7.0.

Resolved issues

• Prior to this release, Facter returned warnings if ip route show output was not in a key-value format.
Because this format does not apply to all configurations, Facter no longer returns warnings about it. FACT-1916

• Previously, the mountpoint fact showed only temporary file systems and physical mounts. Now Facter returns
mount points for all mounts on the system. FACT-1910

Facter 3.14.1
Released 1 July 2019 and shipped with Puppet Platform 6.6.0.

New features

• Facter now report disk serial numbers on Linux and FreeBSD FACT-1929
• This release adds a primary network interface check for FreeBSD. FACT-1926
• Previously, the mountpoint fact showed only temporary file systems and physical mounts. Now Facter returns

mount points for all mounts on the system. FACT-1910
• This release adds support for Virtuzzo Linux facts. FACT-1888

Facter 3.14.0
Released 19 June 2019 and shipped with Puppet Platform 6.5.0

New features

In this release, Facter adds new facts for Windows version 10/2016+:

• ReleaseID: The four-digit Windows build version, in the form YYMM. On Windows10-1511-x86_64, the
release ID is not displayed, as is not present in the registry.

• InstallationType: Differentiates Server, Server Core, Client (Desktop): Server|Server Core|
Client.

• EditionID: Server or Desktop Edition variant: ServerStandard|Professional|Enterprise.
• ProductName: Textual Product Name.

Facter 3.13.1
Released 26 March 2019 and shipped with Puppet Platform 6.4.0

Resolved issues

• This release fixes an issue where the dhcp fact failed on Red Hat 8 (beta). Because Red Hat 8 is a beta version,
not all functions are verified to work correctly. FACT-1906

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/FACT-1933
https://tickets.puppetlabs.com/browse/FACT-1916
https://tickets.puppetlabs.com/browse/FACT-1910
https://tickets.puppetlabs.com/browse/FACT-1929
https://tickets.puppetlabs.com/browse/FACT-1926
https://tickets.puppetlabs.com/browse/FACT-1910
https://tickets.puppetlabs.com/browse/FACT-1888
https://tickets.puppetlabs.com/browse/FACT-1906

Puppet | Release notes | 104

Facter 3.13.0
Released 20 February 2019 and shipped with Puppet Platform 6.3.0

Resolved issues

• Previously, Facter incorrectly reported operating system facts (such as os.name and os.release) on Ubuntu
systems that did not have the lsb_release executable. Operating system facts are now resolved without
relying on lsb_release . FACT-1899

Facter 3.12.3
Released 24 January 2019 and shipped with Puppet Platform 6.2.0.

Resolved issues

• Facter now returns the correct path to system32 on 64-bit systems where the sysnative folder has been
created manually. FACT-1900

Facter 3.12.2
Released 18 December 2018 and shipped with Puppet Platform 6.1.0.

Resolved issues

• Previously, if you had multiple custom versions of a built-in fact, and only those with a weight of 0 could resolve,
Facter used those zero-weighted values. Now, if only zero-weighted custom facts resolve, Facter uses built-in fact
values instead. (FACT-1873)

Facter 3.12.1
Released 6.1.0 and shipped with Puppet Platform 18 December 2018.

New features

• Facter now correctly distinguishes between Windows Server 2016 and Windows Server 2019. FACT-1889

Facter 3.12.0
Released 18 September 2018 and shipped with Puppet Platform 6.0.0

New features

• Key type is now included as part of the facts for each SSH key. (FACT-1377)

Resolved issues

• Systems relying entirely on systemd-networkd for DHCP management do not use dhclient. This checks
the DHCP leases directory of systemd-networkd (/run/systemd/netif/leases) in addition to the
lease files of dhclient when attempting to identify DHCP servers. (FACT-1851)

• Facter no longer checks for missing dmidecode and does not report a warning when it’s missing on POWER
Linux machines. (FACT-1765 and FACT-1763)

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/FACT-1899
https://tickets.puppetlabs.com/browse/FACT-1900
https://tickets.puppetlabs.com/browse/FACT-1873
https://tickets.puppetlabs.com/browse/FACT-1889
https://tickets.puppetlabs.com/browse/FACT-1377
https://tickets.puppetlabs.com/browse/FACT-1851
https://tickets.puppetlabs.com/browse/FACT-1765
https://tickets.puppetlabs.com/browse/FACT-1763

Puppet | Release notes | 105

Facter known issues
These are the known issues in this version of Facter.

Incorrect network output for VirtualBox or VPN network interfaces

Running the facter networking.interfaces command in Facter 3 returns incorrect network output. This
command currently works in Facter 4. FACT-2951

Incorrect loopback interface output on AIX

Running the facter command in Facter 3 returns incorrect network output for the loopback interface on AIX.
These facts work correctly in Facter 4 and appear differently when running the puppet facts diff command in
Facter 3. FACT-2963

Incorrect mountpoints output on AIX

Running the facter command in Facter 3 returns incorrect mountpoint output on AIX. These facts work
correctly in Facter 4 and appear differently when running the puppet facts diff command in Facter 3.
FACT-2964

Facter 3 sets invalid values NVMe mountponts

An issue with Facter 3 causes invalid values for NVMe mountpoints. FACT-3020

Facter 3 cannot not detect ldom facts

Facter 3 cannot resolve the following facts on Solaris 11-SPARC: ldom.domainchassis,
ldom.domaincontrol, ldom_domainchassis, and ldom_domaincontrol. FACT-3010

Facter 3 cannot detect xvda disks on Amazon 6

Facter 3 does not detect the type for xvda disks on Amazon 6 virtual machines. FACT-3011

Facter 3 cannot resolve lsb facts if the lsb_release package is not installed

Facter 3 cannot resolve the following facts if the lsb_release package is not installed on the
box: lsbdistrelease, lsbmajdistrelease, os.distro.codename, os.distro.id,
os.distro.release.full, os.distro.release.major. This is fixed in Facter 4. FACT-3012

Facter 3 cannot detect scope6 fact

The scope6 fact was implemented in Facter 4, and is currently missing from Facter 3. FACT-3013

Facter 3 cannot detect the VMware version

For boxes running on ESXi, Facter 3 cannot detect the hypervisors.vmware.version fact. FACT-3015

Facter 3 cannot detect IP v6 facts on Solaris

Facter 3 cannot provide information on IP v6 facts on Solaris virtual machines. For a full list of facts, see
FACT-3016.

Facter 3 cannot detect facts on Red Hat 7 AARCH

Facter 3 cannot detect facts that are part of the partitions group. For a full list of facts, see FACT-3019.

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/FACT-2951
https://tickets.puppetlabs.com/browse/FACT-2963
https://tickets.puppetlabs.com/browse/FACT-2964
https://tickets.puppetlabs.com/browse/FACT-3020
https://tickets.puppetlabs.com/browse/FACT-3010
https://tickets.puppetlabs.com/browse/FACT-3011
https://tickets.puppetlabs.com/browse/FACT-3012
https://tickets.puppetlabs.com/browse/FACT-3013
https://tickets.puppetlabs.com/browse/FACT-3015
https://tickets.puppetlabs.com/browse/FACT-3016
https://tickets.puppetlabs.com/browse/FACT-3019

Puppet | Release notes | 106

Facter 3 does not include Core(s) per socket and Thread(s) per core

Facter 3 does not include the Core(s) per socket and Thread(s) per core information in the
processors fact. This information is available in Facter 4 only. FACT-2992

Inconsistencies with the --json flag

Running Facter 3 with the --json flag can produce a different outputs to Facter 4. For example, with facts that
cannot be resolved when querying for fact names:

facter 4
bx facter non_existent --json
{
 "non_existent": null
}

facter 3
cfacter non_existent --json
{
 "non_existent": ""
}

This can also happen with external executable facts that do not produce any output, or have errors, creating entries in
puppet facts diff. For example:

cat /etc/facter/facts.d/bad.sh
#!/bin/sh
echo bad=`abc`

puppet facts diff
Warning: Facter: external fact file "/etc/facter/facts.d/bad.sh" had output
 on stderr: /etc/facter/facts.d/bad.sh: line 2: abc: command not found
Warning: Facter: external fact file "/etc/facter/facts.d/bad.sh" had output
 on stderr: /etc/facter/facts.d/bad.sh: line 2: abc: command not found
{
 "bad": {
 "new_value": null,
 "old_value": ""
 }
}

FACT-3022

The macosx_productversion_major fact returns the wrong value for Big Sur

On macOS 11, the macosx_productversion_major fact incorrectly reports minor releases of Big Sur as major
releases. For example, macOS 11.1 and 11.5 are treated as separate major releases, instead of minor releases of the
macOS 11 series. FACT-3071

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/FACT-2992
https://tickets.puppetlabs.com/browse/FACT-3022
https://tickets.puppetlabs.com/browse/FACT-3071

Puppet | Installing and configuring | 107

Installing and configuring

• Installing and upgrading on page 107
Puppet can be installed and upgraded in various configurations to fit the needs of your environment.
• Configuring Puppet settings on page 125
You can configure Puppet's commands and services extensively, and its settings are specified in a variety of places.

Installing and upgrading
Puppet can be installed and upgraded in various configurations to fit the needs of your environment.

• System requirements on page 107
Puppet system requirements depend on your deployment type and size. Before installing, ensure your systems are
compatible with infrastructure and agent requirements.
• Installing Puppet on page 109
To get started using Puppet, you must first complete the initial installation and setup process.
• Installing and configuring agents on page 111
You can install agents on *nix, Windows, or macOS.
• Manually verify packages on page 120
Puppet signs most of its packages, Ruby gems, and release tarballs with GNU Privacy Guard (GPG). This signature
proves that the packages originate from Puppet and have not been compromised. Security-conscious users can use
GPG to verify package signatures.
• Managing Platform versions on page 122
To receive the most up-to-date software without introducing breaking changes, use the latest platform, pin your
infrastructure to known versions, and update the pinned version manually when you’re ready to update.
• Upgrading on page 122
To upgrade your deployment, you must upgrade both the infrastructure components and agents.

System requirements
Puppet system requirements depend on your deployment type and size. Before installing, ensure your systems are
compatible with infrastructure and agent requirements.

Note: Puppet primary servers must run on some variant of *nix. You can't run primary servers on Windows.

Hardware requirements
The primary server is fairly resource intensive, and must be installed on a robust, dedicated server. The agent service
has few system requirements and can run on nearly anything.

The Puppet agent has been run and tested on a variety of hardware specifications. These are the weakest hardware
specifications we have successfully tested. Both were tested using Intel Xeon processors.

CPUs GHz GiB memory OS

1 2.4 0.5 Amazon Linux 2 AMI

1 2.5 1 Windows Server 2019

The demands on the primary server vary widely between deployments. Resource needs are affected by the number of
agents being served, how frequently agents check in, how many resources are being managed on each agent, and the
complexity of the manifests and modules in use.

These minimum hardware requirements are based on internal testing.

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 108

Node volume Cores Heap ReservedCodeCache

dozens 2 1 GB n/a

1,000 2-4 4 GB 512m

Supported agent platforms
Puppet provides official packages for various operating systems and versions. You aren't necessarily limited to using
official packages, but installation and maintenance is generally easier with official tested packages.

Packaged platforms

puppet-agent packages are available for these platforms.

Packages for tested versions are officially tested. Packages for untested versions might not be automatically tested.

Operating system Tested versions Untested versions

Debian 9, 10, 11

Fedora 34

macOS 10.15 Catalina, 11 Big Sur (64-bit
packages only), 12 Monterey (64-bit
packages only), 12 (M1)

Microsoft Windows 10 Enterprise, 11 Enterprise (x86_64) 7, 8, 10

Microsoft Windows Server 2008R2, 2012R2, 2016, 2019, 2022 2008, 2012

Red Hat Enterprise Linux, including:

• Amazon Linux v1 (using RHEL 6
packages)

• Amazon Linux v2 (using RHEL 7
packages)

6, 7, 8, 9

SUSE Linux Enterprise Server 11, 12, 15 • x86_64
• i386 for version 11
• ppc64le for version 12

AlmaLinux 8 (x86_64)

Rocky Linux 8 (x86_64)

Oracle Linux 6 (x86_64), 6 (i386), 7 (x86_64), 7
(aarch64), 7 (ppc64le), 8 (x86_64), 8
(aarch64), 8 (ppc64le)

Scientific Linux 6 (x86_64), 6 (i386), 7 (x86_64), 7
(aarch64), 7 (ppc64le), 8 (x86_64), 8
(aarch64), 8 (ppc64le)

Ubuntu 18.04, 18.04 (aarch64), 20.04, 20.04
AARCH, 22.04 (x86_64)

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 109

Dependencies

If you install using an official package, your system’s package manager ensures that dependencies are installed. If you
install the agent on a platform without a supported package, you must manually install these packages, libraries, and
gems:

• Ruby 2.5.x
• CFPropertyList 2.2 or later
• Facter 2.0 or later
• The msgpack gem, if you're using msgpack serialization

Timekeeping and name resolution
Before installing , there are network requirements you need to consider and prepare for. The most important
requirements include syncing time and creating a plan for name resolution.

Timekeeping

Use NTP or an equivalent service to ensure that time is in sync between your primary server, which acts as the
certificate authority, and any agent nodes. If time drifts out of sync in your infrastructure, you might encounter issues
such as agents recieving outdated certificates. A service like NTP (available as a supported module) ensures accurate
timekeeping.

Name resolution

Decide on a preferred name or set of names that agent nodes can use to contact the primary server. Ensure that the
primary server can be reached by domain name lookup by all future agent nodes.

You can simplify configuration of agent nodes by using a CNAME record to make the primary server reachable at the
hostname puppet, which is the default primary server hostname that is suggested when installing an agent node.

Firewall configuration
In the agent-server architecture, your primary server must allow incoming connections on port 8140, and agent nodes
must be able to connect to the primary server on that port.

Installing Puppet
To get started using Puppet, you must first complete the initial installation and setup process.

Puppet is distributed in several packages. These include puppetserver, puppet-agent and puppetdb.
Puppet Server controls the configuration information for one or more managed agent nodes. PuppetDB is where the
data generated by Puppet is stored.

This guide walks you through the following steps in installing Puppet:

• Enabling the Puppet platform repository
• Installing Puppet Server
• Installing Puppet agent
• Installing PuppetDB (optional)

You install each of these components separately, operating on a single node. From here, you can scale up to the large
installation as your infrastructure grows, or customize configuration as needed.

Note: The puppetserver component of the Puppet platform is available only for Linux. The puppet-agent
component is available independently for over 30 platforms and architectures, including Windows and macOS. For
more information on Puppet's packages, see Puppet platform lifecycle.

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 110

1. Enable the Puppet platform repository
Enabling the Puppet platform repository makes the components needed for installation available on your system. The
process for enabling the repository depends on your package management system, such as Yum or Apt.

Before you begin

Identify the URL of the package you want to enable based on your operating system and version. *nix platform
packages are located in Puppet.com repositories corresponding to the Yum and Apt package management systems.

Yum is used with Red Hat operating systems, such as Red Hat Enterprise Linux (RHEL) and SUSE Linux Enterprise
Server (SLES). Go to yum.puppet.com for a list of packages and corresponding URLs. The Yum package URL
naming convention is generally:

https://yum.puppet.com/<PLATFORM_NAME>-release-<OS_ABBREVIATION>-
<OS_VERSION>.noarch.rpm

For example: https://yum.puppet.com/puppet6-release-el-7.noarch.rpm.

Apt is used with Debian and Ubuntu. Go to apt.puppet.com for a list of packages and corresponding URLs. The Apt
package URL naming convention is generally:

https://apt.puppet.com/<PLATFORM_VERSION>-release-<VERSION_CODE_NAME>.deb

For example: https://apt.puppet.com/puppet6-release-wheezy.deb. Note that for Ubuntu
releases, the VERSION_CODE_NAME is the adjective, not the animal.

Enable the Puppet platform on Yum

Logged in as root, run the RPM tool in upgrade mode:

sudo rpm -U <PACKAGE_URL>

Note: For Enterprise Linux 5, you must download the package before running RPM:

wget https://yum.puppet.com/puppet6-release-el-5.noarch.rpm
sudo rpm -Uvh puppet6-release-el-5.noarch.rpm

For example, to enable the Enterprise Linux 7 repository:

sudo rpm -Uvh https://yum.puppet.com/puppet6-release-el-7.noarch.rpm

Enable the Puppet platform on Apt

1. Logged in as root, download the package and run the dpkg tool in install mode:

wget <PACKAGE_URL>
sudo dpkg -i <FILE_NAME>.deb

For example, to enable the Ubuntu 18.04 Bionic repository:

wget https://apt.puppetlabs.com/puppet6-release-bionic.deb
sudo dpkg -i puppet6-release-bionic.deb

2. Update the apt package lists:

sudo apt-get update

Certain operating systems and installation methods automatically verify package signatures. In these cases, you don’t
need to do anything to verify the package signature. These methods include:

© 2024 Puppet, Inc., a Perforce company

http://yum.puppet.com/
http://apt.puppet.com/

Puppet | Installing and configuring | 111

• If you install from the Puppet Yum and Apt repositories, the release package that enables the repository also
installs our release signing key. The Yum and Apt tools automatically verify the integrity of packages as you
install them.

• If you install a Windows agent using an .msi package, the Windows installer automatically verifies the signature
before installing the package.

If you need to manually verify packages, see Verify packages.

2. Install Puppet Server
Puppet Server is a required application that runs on the Java Virtual Machine (JVM) on the primary server.

In addition to hosting endpoints for the certificate authority service, Puppet Server also powers the catalog compiler,
which compiles configuration catalogs for agent nodes, using Puppet code and various other data sources.

In this section, you will install the puppetserver package and start the service.

Follow the steps in install Puppet Server

3. Install Puppet agent
Puppet agents translates code into commands and then executes it on the systems you specify.

In this section, you will install agents on your chosen operating system, configure them, and sign their certificates.
Follow the steps in install agents.

4. Install PuppetDB (optional)
All of the data generated by Puppet is stored in Puppet DB.

You can optionally install PuppetDB to enable extra features, including enhanced queries and reports about your
infrastructure. In this section, you will assign PuppetDB module’s classes to your servers. Follow the steps in install
PuppetDB.

Installing and configuring agents
You can install agents on *nix, Windows, or macOS.

After you install an agent, you must complete the steps in Configure agents.

Install agents
Install *nix agents
You can install *nix agents using an install script.

Before you begin
Enable the Puppet platform repository.

1. Install the agent using the command appropriate to your environment.

• Yum:

sudo yum install puppet-agent

• Apt:

sudo apt-get install puppet-agent

Note: The Puppet repository for the APT package management system is: http://apt.puppetlabs.com/

• Zypper:

sudo zypper install puppet-agent

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/latest/install_from_packages.html
https://puppet.com/docs/puppetdb/latest/install_via_module.html
https://puppet.com/docs/puppetdb/latest/install_via_module.html
http://apt.puppetlabs.com/

Puppet | Installing and configuring | 112

2. Start the Puppet service:

sudo /opt/puppetlabs/bin/puppet resource service puppet ensure=running
 enable=true

Install Windows agents
You can install Windows agents graphically or from the command line using an .msi package.
Install Windows agents with the .msi package
Use the Windows .msi package if you need to specify agent configuration details during installation, or if you need to
install Windows agents locally without internet access.

Before you begin

• Install Powershell. The .msi package requires PowerShell 5 or higher.
• Download the .msi package.

Install Windows agents with the installer
Use the MSI installer for a more automated installation process. The installer can configure puppet.conf, create
CSR attributes, and configure the agent to talk to your primary server.

1. Run the installer as administrator.

2. When prompted, provide the hostname of your primary server, for example puppet.

Install Windows agents using msiexec from the command line
Install the MSI manually from the the command line if you need to customize puppet.conf, CSR attributes, or
certain agent properties.

On the command line of the node that you want to install the agent on, run the install command:

msiexec /qn /norestart /i <PACKAGE_NAME>.msi

Tip: You can specify /l*v install.txt to log the progress of the installation to a file.

MSI properties
If you install Windows agents from the command line using the .msi package, you can optionally specify these
properties.

Important: If you set a non-default value for PUPPET_SERVER, PUPPET_CA_SERVER,
PUPPET_AGENT_CERTNAME, or PUPPET_AGENT_ENVIRONMENT, the installer replaces the existing value in
puppet.conf and re-uses the value at upgrade unless you specify a new value. Therefore, if you've customized
these properties, don't change the setting directly in puppet.conf; instead, re-run the installer and set a new value
at installation.

Property Definition Setting in pe.conf Default

INSTALLDIR Location to install Puppet
and its dependencies.

n/a • 32-bit — C:
\Program Files
\Puppet Labs
\Puppet

• 64-bit — C:
\Program Files
\Puppet Labs
\Puppet

© 2024 Puppet, Inc., a Perforce company

https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-windows?view=powershell-7.2
http://downloads.puppetlabs.com/windows/

Puppet | Installing and configuring | 113

Property Definition Setting in pe.conf Default

ENABLE_LONG_PATHS Long filename support.
Set to TRUE and set
HKLM:\SYSTEM
\CurrentControlSet
\Control
\FileSystem
\LongPathsEnabled to
1

n/a No value

PUPPET_SERVER Hostname where the
primary server can be
reached.

server puppet

PUPPET_CA_SERVER Hostname where the CA
server can be reached,
if you're using multiple
servers and only one of
them is acting as the CA.

ca_server Value of
PUPPET_SERVER

PUPPET_AGENT_CERTNAMENode's certificate name,
and the name it uses when
requesting catalogs.

For best compatibility, limit
the value of certname to
lowercase letters, numbers,
periods, underscores, and
dashes.

certname Value of facter fdqn

PUPPET_AGENT_ENVIRONMENTNode's environment.

Note: If a value for
the environment
variable already exists
in puppet.conf,
specifying it during
installation does not
override that value.

environment production

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 114

Property Definition Setting in pe.conf Default

PUPPET_AGENT_STARTUP_MODEWhether and how the agent
service is allowed to run.
Allowed values are:

• Automatic —
Agent starts up when
Windows starts and
remains running in the
background.

• Manual — Agent
can be started in the
services console or with
net start on the
command line.

• Disabled — Agent is
installed but disabled.
You must change
its startup type in
the services console
before you can start the
service.

n/a Automatic

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 115

Property Definition Setting in pe.conf Default

PUPPET_AGENT_ACCOUNT_USERWindows user account
the agent service uses.
This property is useful
if the agent needs to
access files on UNC
shares, because the default
LocalService account
can't access these network
resources.

The user account must
already exist, and can be
either a local or domain
user. The installer allows
domain users even if
they have not accessed
the machine before. The
installer grants Logon as
Service to the user, and
if the user isn't already a
local administrator, the
installer adds it to the
Administrators group.

If you specify
PUPPET_AGENT_ACCOUNT_USER,
you must also specify
PUPPET_AGENT_ACCOUNT_PASSWORD
and
PUPPET_AGENT_ACCOUNT_DOMAIN
unless the node is
under a gMSA. For
gMSAs, you must specify
PUPPET_AGENT_ACCOUNT_USER
(the user for
the gMSA) and
PUPPET_AGENT_ACCOUNT_DOMAIN.
Do not specify
PUPPET_AGENT_ACCOUNT_PASSWORD.

n/a LocalSystem

PUPPET_AGENT_ACCOUNT_PASSWORDPassword for the agent's
user account.

n/a No Value

PUPPET_AGENT_ACCOUNT_DOMAINDomain of the agent's user
account.

n/a .

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 116

Property Definition Setting in pe.conf Default

REINSTALLMODE A default MSI property
used to control the behavior
of file copies during
installation.

Important: If you need
to downgrade agents, use
REINSTALLMODE=amus
when calling
msiexec.exe at the
command line to prevent
removing files that the
application needs.

n/a amus as of puppet-agent
1.10.10 and puppet-agent
5.3.4

omus in prior releases

SKIP_NSSM_REGISTRY_CLEANUPSetting to true skips the
Non-Sucking Service
Manager (NSSM) registry
cleanup. This allows you
to install in a restrictive
User Account Control
(UAC) context, or when the
installer does not have the
necessary permissions to
read certain registry keys.

Note: This might cause a
restart of DHCP Server or
other services.

n/a No value

To install the agent with the primary server at puppet.acme.com:

msiexec /qn /norestart /i puppet.msi PUPPET_SERVER=puppet.acme.com

To install the agent to a domain user ExampleCorp\bob:

msiexec /qn /norestart /i puppet-<VERSION>.msi
 PUPPET_AGENT_ACCOUNT_DOMAIN=ExampleCorp PUPPET_AGENT_ACCOUNT_USER=bob
 PUPPET_AGENT_ACCOUNT_PASSWORD=password

Upgrading or downgrading between 32-bit and 64-bit Puppet on Windows
If necessary, you can upgrade or downgrade between 32-bit and 64-bit Puppet on Windows nodes.

Upgrading to 64-bit

To upgrade from 32-bit to 64-bit Puppet, simply install 64-bit Puppet. You don't need to uninstall the 32-bit version
first.

The installer specifically stores information in different areas of the registry to allow rolling back to the 32-bit agent.

Downgrading to 32-bit

If you need to replace a 64-bit version of Puppet with a 32-bit version, you must uninstall Puppet before installing the
new package.

© 2024 Puppet, Inc., a Perforce company

https://msdn.microsoft.com/en-us/library/windows/desktop/aa371182(v=vs.85).aspx

Puppet | Installing and configuring | 117

You can uninstall Puppet through the Add or Remove Programs interface or from the command line.

To uninstall Puppet from the command line, you must have the original MSI file or know the ProductCode of the
installed MSI:

msiexec /qn /norestart /x puppet-agent-1.3.0-x64.msi
msiexec /qn /norestart /x <PRODUCT CODE>

When you uninstall Puppet, the uninstaller removes the Puppet program directory, agent services, and all related
registry keys. It leaves the $confdir, $codedir, and $vardir intact, including any SSL keys. To completely remove
Puppet from the system, manually delete these directories.

Install macOS agents
You can install macOS agents from Finder, the command line or Homebrew.

Important: For macOS agents, the certname is derived from the name of the machine (such as My-Example-Mac).
To prevent installation issues, make sure the name of the node uses lowercases letters. If you don’t want to change
your computer’s name, you can enter the agent certname in all lowercase letters when prompted by the installer.

Add full disk access for Puppet on macOS 10.14 and newer
Beginning with macOS 10.14, you must add Puppet to the full disk access list, or allowlist, in order to run Puppet
with full permissions and for it to properly manage resources like user and group on your system.

Complete these steps before attempting to install macOS agents.

1. Run the following command to remove the .sh extension from the wrapper.sh file:

mv /opt/puppetlabs/puppet/bin/wrapper.sh /opt/puppetlabs/puppet/bin/
wrapper

2. Run the following commands to relink facter, hiera, and puppet with the newly renamed file:

ln -sf /opt/puppetlabs/puppet/bin/wrapper /opt/puppetlabs/bin/facter

ln -sf /opt/puppetlabs/puppet/bin/wrapper /opt/puppetlabs/bin/hiera

ln -sf /opt/puppetlabs/puppet/bin/wrapper /opt/puppetlabs/bin/puppet

3. In your Mac Preferences, click Security & Privacy, select the Privacy tab, and click Full Disk Access in the left
column.

4. Click the lock icon, enter your password, and click Unlock.

5. Click the + button, then type the # (Command) + Shift + G shortcut key.

6. Enter /opt/puppetlabs/bin, then click Go.

7. Click on the puppet file, then click Open.

Install macOS agents from Finder
You can use Finder to install the agent on your macOS machine.

Before you begin
Download the appropriate agent tarball.

1. Open the agent package .dmg and click the installer .pkg.

2. Follow prompts in the installer dialog.

You must include the primary server hostname and the agent certname.

© 2024 Puppet, Inc., a Perforce company

https://msdn.microsoft.com/en-us/library/windows/desktop/aa370854(v=vs.85).aspx
http://downloads.puppet.com/mac/puppet7/

Puppet | Installing and configuring | 118

Install macOS agents from the command line
You can use the command line to install the agent on a macOS machine.

Before you begin
Download the appropriate agent tarball.

1. SSH into the node as a root or sudo user.

2. Mount the disk image: sudo hdiutil mount <DMGFILE>

A line appears ending with /Volumes/puppet-agent-VERSION. This directory location is the mount point
for the virtual volume created from the disk image.

3. Change to the directory indicated as the mount point in the previous step, for example: cd /Volumes/
puppet-agent-VERSION

4. Install the agent package: sudo installer -pkg puppet-agent-installer.pkg -target /

5. Verify the installation: /opt/puppetlabs/bin/puppet --version

Install macOS agents with Homebrew
You can use Homebrew to install the agent on your macOS machine.

Before you begin
Install Homebrew.

Install the latest version of the Puppet agent:

brew cask install puppetlabs/puppet/puppet-agent

Configure agents
Once you have installed your agents, you must complete the following three configuration steps.

1. Configure your PATH to access Puppet commands
Puppet's command line interface (CLI) consists of a single Puppet command with many subcommands, for example
puppet --help.

Puppet commands are located in the bin directory — /opt/puppetlabs/bin/ on *nix and C:\Program
Files\Puppet Labs\puppet\bin on Windows. The bin directory is not in your PATH environment variable
by default. To have access to the Puppet commands, you must add the bin directory to your PATH.

Choose from the following options.

Linux: source a script for puppet-agent to install

If you are on Linux, you can source a script that puppet-agent installs. Run the following command:

source /etc/profile.d/puppet-agent.sh

*nix: Add the Puppet labs bin directory to your PATH

To add the bin directory to your PATH on *nix, run:

export PATH=/opt/puppetlabs/bin:$PATH

Alternatively, you can add this location wherever you configure your PATH, such as your .profile or .bashrc
configuration files.

© 2024 Puppet, Inc., a Perforce company

http://http://downloads.puppet.com/mac/puppet7//mac/puppet6/
https://brew.sh/
https://puppet.com/docs/puppet/5.5/services_commands.html

Puppet | Installing and configuring | 119

Windows: Add the Puppet labs bin directory to your PATH

To run Puppet commands on Windows, start a command prompt with administrative privileges. You can do so by
right-clicking the Start Command Prompts with Puppet program and clicking Run as administrator. Click Yes if the
system asks for UAC confirmation.

The Puppet agent .msi adds the Puppet bin directory to the system path automatically. If you are not using the
Start Command Prompts, you may need to manually add the bin directory to your PATH using one of the following
commands:

For cmd.exe, run:

set PATH=%PATH%;"C:\Program Files\Puppet Labs\Puppet\bin"

For PowerShell, run:

 $env:PATH += ";C:\Program Files\Puppet Labs\Puppet\bin"

2. Configure the server setting
The server is setting, which allows you to connect the agent to the primary Puppet server, is the only mandatory
setting.

You can add configuration to agents by using the puppet config set sub-command, which edits puppet.conf
automatically, or editing /etc/puppetlabs/puppet/puppet.conf directly.

To configure the server setting, choose from one of the following options:

• On the agent node, run:

puppet config set server puppetserver.example.com --section main

• Manually edit /etc/puppetlabs/puppet/puppet.conf or C:\ProgramData\PuppetLabs
\puppet\etc\puppet.conf.

Note that the location on Windows depends on whether you are running with administrative privileges. If you are
not, it will be in home directory, not system location.

This command adds the setting server = puppetserver.example.com to the [main] section of
puppet.conf.

Note that there are other optional settings, for example, serverport, ca_server, ca_port,
report_server, report_port, which you might need for more complicated Puppet deployments, such as
when using a CA server and multiple compilers.

3. Connect the agent to the primary server and sign the certificate
Once you had added the server, you must connect the Puppet agent to the primary server so that it will check in at
regular intervals to report its state, retrieve its catalog, and update its configuration if needed.

1. To connect the agent to the primary server, run:

puppet ssl bootstrap

Note: For Puppet 5 agents, run puppet agent --test instead.

You will see a message that looks like:

Info: Creating a new RSA SSL key for <agent node>

2. On the primary server node, sign the certificate:

sudo puppetserver ca sign --certname <name>

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 120

3. On the agent node, run the agent again:

puppet ssl bootstrap

Manually verify packages
Puppet signs most of its packages, Ruby gems, and release tarballs with GNU Privacy Guard (GPG). This signature
proves that the packages originate from Puppet and have not been compromised. Security-conscious users can use
GPG to verify package signatures.

Tip:

Certain operating systems and installation methods automatically verify package signatures. In these cases, you don’t
need to do anything to verify the package signature.

• If you install from the Puppet Yum and Apt repositories, the release package that enables the repository also
installs our release signing key. The Yum and Apt tools automatically verify the integrity of packages as you
install them.

• If you install a Windows agent using an .msi package, the Windows installer automatically verifies the signature
before installing the package.

Verify a source tarball or gem
You can manually verify the signature for Puppet source tarballs or Ruby gems.

1. Import the public key: gpg --keyserver hkp://keyserver.ubuntu.com:11371 --recv-key
4528B6CD9E61EF26

The key is also available via HTTP using pool.sks-keyservers.net:11371/pks/lookup?
op=get&search=0x4528B6CD9E61EF26

Tip: If this is your first time running the gpg tool, it might fail to import the key after creating its configuration
file and keyring. You can run the command a second time to import the key into your newly created keyring.

The gpg tool imports the key:

gpg: /home/username/.gnupg/trustdb.gpg: trustdb created
gpg: key 4528B6CD9E61EF26: public key "Puppet, Inc. Release Key (Puppet,
 Inc. Release Key) <release@puppet.com>" imported
gpg: Total number processed: 1
gpg: imported: 1

2. Verify the fingerprint: gpg --list-key --fingerprint 4528B6CD9E61EF26

The fingerprint of the Puppet release signing key is D681 1ED3 ADEE B844 1AF5 AA8F 4528 B6CD
9E61 EF26. Ensure the fingerprint listed matches this value.

3. Download the tarball or gem and its corresponding .asc file from https://downloads.puppet.com/puppet/.

© 2024 Puppet, Inc., a Perforce company

https://downloads.puppetlabs.com/puppet/

Puppet | Installing and configuring | 121

4. Verify the tarball or gem, replacing <VERSION> with the Puppet version number, and <FILE TYPE> with
tar.gz for a tarball or gem for a Ruby gem: gpg --verify puppet-<VERSION>.<FILE TYPE>.asc
puppet-<VERSION>.<FILE TYPE>

The output confirms that the signature matches:

gpg: Signature made Mon 19 Sep 2016 04:58:29 PM UTC using RSA key ID
 EF8D349F
gpg: Good signature from "Puppet, Inc. Release Key (Puppet, Inc. Release
 Key) <release@puppet.com>"

Tip: If you haven't set up a trust path to the key, you receive a warning that the key is not certified. If you’ve
verified the fingerprint of the key, GPG has verified the archive’s integrity; the warning simply means that GPG
can’t automatically prove the key’s ownership.

Verify an RPM package
RPM packages include an embedded signature, which you can verify after importing the Puppet public key.

1. Import the public key: gpg --keyserver hkp://keyserver.ubuntu.com:11371 --recv-key
4528B6CD9E61EF26

The key is also available via HTTP using pool.sks-keyservers.net:11371/pks/lookup?
op=get&search=0x4528B6CD9E61EF26

Tip: If this is your first time running the gpg tool, it might fail to import the key after creating its configuration
file and keyring. You can run the command a second time to import the key into your newly created keyring.

The gpg tool imports the key:

gpg: /home/username/.gnupg/trustdb.gpg: trustdb created
gpg: key 4528B6CD9E61EF26: public key "Puppet, Inc. Release Key (Puppet,
 Inc. Release Key) <release@puppet.com>" imported
gpg: Total number processed: 1
gpg: imported: 1

2. Verify the fingerprint: gpg --list-key --fingerprint 4528B6CD9E61EF26

The fingerprint of the Puppet release signing key is D681 1ED3 ADEE B844 1AF5 AA8F 4528 B6CD
9E61 EF26. Ensure the fingerprint listed matches this value.

3. Retrieve the Puppet public key and place it in a file on your node.

4. Use the RPM tool to import the public key, replacing <PUBLIC KEY FILE> with the path to the file containing
the public key: sudo rpm --import <PUBLIC KEY FILE> .

The RPM tool doesn’t output anything if the command is successful.

5. Use the RPM tool to check the signature of a downloaded RPM package: sudo rpm -vK
<RPM_FILE_NAME>

The embedded signature is verified and displays OK:

 puppet-agent-1.5.1-1.el6.x86_64.rpm:
 Header V4 RSA/SHA512 Signature, key ID ef8d349f: OK
 Header SHA1 digest: OK (95b492a1fff452d029aaeb59598f1c78dbfee0c5)
 V4 RSA/SHA512 Signature, key ID ef8d349f: OK
 MD5 digest: OK (4878909ccdd0af24fa9909790dd63a12)

Verify a macOS puppet-agent package
puppet-agent packages for macOS are signed with a developer ID and certificate. You can verify the package
signature using the pkgutil tool or the installer.

Use one of these methods to verify the package signature:

© 2024 Puppet, Inc., a Perforce company

http://pool.sks-keyservers.net:11371/pks/lookup?op=get&search=0x7F438280EF8D349F

Puppet | Installing and configuring | 122

• Download and mount the puppet-agent disk image, and then use the pkgutil tool to check the package's
signature:

pkgutil --check-signature /Volumes/puppet-agent-<AGENT-
VERSION>-1.osx10.10/puppet-agent-<AGENT-VERSION>-1-installer.pkg

The tool confirms the signature and outputs fingerprints for each certificate in the chain:

Package "puppet-agent-<AGENT-VERSION>-1-installer.pkg":
 Status: signed by a certificate trusted by macOS
 Certificate Chain:
 1. Developer ID Installer: PUPPET LABS, INC. (VKGLGN2B6Y)
 SHA1 fingerprint: AF 91 BF B7 7E CF 87 9F A8 0A 06 C3 03 5A B4 C7
 11 34 0A 6F

 2. Developer ID Certification Authority
 SHA1 fingerprint: 3B 16 6C 3B 7D C4 B7 51 C9 FE 2A FA B9 13 56 41
 E3 88 E1 86

 3. Apple Root CA
 SHA1 fingerprint: 61 1E 5B 66 2C 59 3A 08 FF 58 D1 4A E2 24 52 D1
 98 DF 6C 60

• When you install the package, click the lock icon in the top right corner of the installer.

The installer displays details about the package's certificate.

Managing Platform versions
To receive the most up-to-date software without introducing breaking changes, use the latest platform, pin your
infrastructure to known versions, and update the pinned version manually when you’re ready to update.

For example, if you’re using the puppetlabs/puppet_agent module to manage the installed puppet-agent
package, use this resource to pin it to version 6.0:

class { '::puppet_agent':
 collection => 'latest',
 package_version => '6.0.0',
}

If you’re upgrading from a 1.x version of puppet-agent, simply update the package_version when you’re
ready to upgrade to the 6.x series.

Upgrading
To upgrade your deployment, you must upgrade both the infrastructure components and agents.

The order in which you upgrade components is important. Always upgrade Puppet Server and PuppetDB
simultaneously, including the puppetdb-termini package on Puppet Server nodes, and always upgrade them
before you upgrade agent nodes. Do not run different major versions on your Puppet primary servers (including
Server) and PuppetDB nodes.

Important: Any time the puppet-agent package is updated, make sure to restart the puppetserver service
afterward.

Note: These instructions cover upgrades in the versions 5 and 6 series. For instructions on upgrading from version
3.8.x, see previous versions of the documentation.

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 123

Upgrade Puppet Server
Upgrade Puppet Server to adopt features and functionality of newer versions.

Upgrading the puppetserver package effectively upgrades Puppet Server. The puppetserver package, in
turn, depends on the puppet-agent package, and your node’s package manager automatically upgrades puppet-
agent if the new version of puppetserver requires it.

Important: During an upgrade, Puppet Server doesn't perform its usual functions, including maintaining your site's
infrastructure. If you use a single primary server, plan the timing of your upgrade accordingly and avoid reconfiguring
any managed servers until your primary server is back up. If you use multiple load-balanced servers, upgrade them
individually to avoid downtime or problems synchronizing configurations.

1. On your Puppet Server node, run the command appropriate to your package installer:

Yum:

yum update puppetserver

Apt:

apt-get update
apt-get install --only-upgrade puppetserver

2. If you pinned Puppet packages to a specific version, remove the pins.

For yum packages locked with the versionlock plugin, edit /etc/yum/pluginconf.d/
versionlock.list to remove the lock.

On apt systems, remove .pref files from /etc/apt/preferences.d/ that pin packages, and use the apt-
mark unhold command on each held package.

3. After upgrading the puppet-agent package, make sure to restart the puppetserver service.

Upgrade agents
Regularly upgrade agents to keep your systems running smoothly.

Before you begin

Upgrade Puppet Server.

Upgrade agents using the puppet_agent module
Upgrade your Puppet agents using the puppetlabs/puppet_agent module.

Before you begin
Install the puppetlabs/puppet_agent module. Read about installing modules in the following docs:

• Installing and managing modules from the command line on page 982
• Install modules on nodes without internet on page 985

The puppet_agent module supports upgrading open source Puppet agents on *nix, Windows, and macOS.

1. Add the puppet_agent class to agents you want to upgrade.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/puppet_agent

Puppet | Installing and configuring | 124

2. Specify the desired puppet_agent package version and any other desired parameters described in the Forge.

Note: The collection parameter is required in Open Source Puppet.

For example:

class {'::puppet_agent':
 package_version => '5.5.17',
 service_names => ['puppet'],
 collection => 'puppet5',
}

Upgrade *nix agents
To upgrade *nix nodes, use the update command.

On the agent node, run the command appropriate to your package installer:

Yum:

yum update puppet-agent

Apt:

apt-get update
apt-get install --only-upgrade puppet-agent

Upgrade Windows agents
To upgrade Windows agents, reinstall the agent using the installation instructions. You don't need to uninstall the
agent before reinstalling unless you’re upgrading from 32-bit Puppet to the 64-bit version.
Upgrade macOS agents
Use the puppet resource command to upgrade macOS agents.

Before you begin

Download the appropriate agent tarball.

Use the package resource provider for macOS to install the agent from a disk image:

sudo puppet resource package "<NAME>.dmg" ensure=present source=<FULL PATH
 TO DMG>

Upgrade PuppetDB
Upgrade PuppetDB to get the newest features available.

1. Follow these steps, depending on whether you want to automate upgrade or manually upgrade.

• To automate upgrade, specify the version parameter of the puppetlabs/puppetdb module’s
puppetdb::globals class.

• To manually upgrade, on the PuppetDB node, run the command appropriate to your package installer:

Yum:

yum update puppetdb

Apt:

apt-get update
apt-get install --only-upgrade puppetdb

© 2024 Puppet, Inc., a Perforce company

https://downloads.puppetlabs.com/mac/

Puppet | Installing and configuring | 125

2. On your primary server, upgrade the puppetdb-termini package by running the command appropriate to
your package installer:

Yum:

yum update puppetdb-termini

Apt:

apt-get update
apt-get install --only-upgrade puppetdb-termini

Configuring Puppet settings
You can configure Puppet's commands and services extensively, and its settings are specified in a variety of places.

• Puppet settings on page 125
Customize Puppet settings in the main configuration file, called puppet.conf.
• Key configuration settings on page 128
Puppet has about 200 settings, all of which are listed in the configuration reference. Most of the time, you interact
with only a couple dozen of them. This page lists the most important ones, assuming that you're okay with default
values for things like the port Puppet uses for network traffic. See the configuration reference for more details on
each.
• Puppet's configuration files on page 131
Puppet settings can be configured in the main config file, called puppet.conf. There are several additional
configuration files, for new settings and ones that need to be in separate files with complex data structures.
• Adding file server mount points on page 161
Puppet Server includes a file server for transferring static file content to agents. If you need to serve large files that
you don't want to store in source control or distribute with a module, you can make a custom file server mount point
and let Puppet serve those files from another directory.
• Checking the values of settings on page 163
Puppet settings are highly dynamic, and their values can come from several different places. To see the actual settings
values that a Puppet service uses, run the puppet config print command.
• Editing settings on the command line on page 166
Puppet loads most of its settings from the puppet.conf config file. You can edit this file directly, or you can
change individual settings with the puppet config set command.
• Configuration Reference on page 167
• Differing behavior in puppet.conf on page 195

Puppet settings
Customize Puppet settings in the main configuration file, called puppet.conf.

When Puppet documentation mentions “settings,” it usually means the main settings. These are the settings that are
listed in the configuration reference. They are valid in puppet.conf and available for use on the command line.
These settings configure nearly all of Puppet’s core features.

However, there are also several additional configuration files — such as auth.conf and puppetdb.conf. These
files exist for several reasons:

• The main settings support only a few types of values. Some things just can’t be configured without complex data
structures, so they needed separate files. (Authorization rules and custom CSR attributes are in this category.)

• Puppet doesn’t allow extensions to add new settings to puppet.conf. This means some settings that are
supposed to be main settings (such as the PuppetDB server) can’t be.

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 126

Puppet Server configuration

Puppet Server honors almost all settings in puppet.conf and picks them up automatically. However, for some
tasks, such as configuring the webserver or an external Certificate Authority, there are Puppet Server-specific
configuration files and settings.

For more information, see Puppet Server: Configuration.

Settings are loaded on startup

When a Puppet command or service starts up, it gets values for all of its settings. Any of these settings can change the
way that command or service behaves.

A command or service reads its settings only one time. If you need to reconfigured it, you must restart the service or
run the command again after changing the setting.

Settings on the command line

Settings specified on the command line have top priority and always override settings from the config file. When a
command or service is started, you can specify any setting as a command line option.

Settings require two hyphens and the name of the setting on the command line:

$ sudo puppet agent --test --noop --certname temporary-name.example.com

Basic settings

For most settings, you specify the option and follow it with a value. An equals sign between the two (=) is optional,
and you can optionally put values in quotes.

All three of these are equivalent to setting certname = temporary-name.example.com in puppet.conf.

--certname=temporary-name.example.com

--certname temporary-name.example.com

--certname "temporary-name.example.com"

Boolean settings

Settings whose only valid values are true and false, use a shorter format. Specifying the option alone sets the
setting to true. Prefixing the option with no- sets it to false.

This means:

• --noop is equivalent to setting noop = true in puppet.conf.
• --no-noop is equivalent to setting noop = false in puppet.conf.

Default values

If a setting isn’t specified on the command line or in puppet.conf, it falls back to a default value. Default values
for all settings are listed in the configuration reference.

Some default values are based on other settings — when this is the case, the default is shown using the other setting
as a variable (similar to $ssldir/certs).

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/latest/configuration.html

Puppet | Installing and configuring | 127

Configuring locale settings
Puppet supports locale-specific strings in output, and it detects your locale from your system configuration. This
provides localized strings, report messages, and log messages for the locale’s language when available.

Upon startup, Puppet looks for a set of environment variables on *nix systems, or the code page setting on Windows.
When Puppet finds one that is set, it uses that locale whether it is run from the command line or as a service.

For help setting your operating system locale or adding new locales, consult its documentation. This section covers
setting the locale for Puppet services.

Checking your locale settings on *nix and macOS

To check your current locale settings, run the locale command. This outputs the settings used by your current shell.

$ locale
LANG="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_CTYPE="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_ALL=

To see which locales are supported by your system, run locale -a, which outputs a list of available locales. Note
that Puppet might not have localized strings for every available locale.

To check the current status of environment variables that might conflict with or override your locale settings, use
the set command. For example, this command lists the set environment variables and searches for those containing
LANG or LC_:

sudo set | egrep 'LANG|LC_'

Checking your locale settings on Windows

To check your current locale setting, run the Get-WinSystemLocale command from PowerShell.

PS C:\> Get-WinSystemLocale
LCID Name DisplayName
---- ---- -----------
1033 en-US English (United States)

To check your system’s current code page setting, run the chcp command.

Setting your locale on *nix with an environment variable

You can use environment variables to set your locale for processes started on the command line. For most Linux
distributions, set the LANG variable to your preferred locale, and the LANGUAGE variable to an empty string. On
SLES, also set the LC_ALL variable to an empty string.

For example, to set the locale to Japanese for a terminal session on SLES:

export LANG=ja_JP.UTF-8
export LANGUAGE=''
export LC_ALL=''

To set the locale for the Puppet agent service, you can add these export statements to:

• /etc/sysconfig/puppet on RHEL and its derivatives

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 128

• /etc/default/puppet on Debian, Ubuntu, and their derivatives

After updating the file, restart the Puppet service to apply the change.

Setting your locale for the Puppet agent service on macOS

To set the locale for the Puppet agent service on macOS, update the LANG setting in the /Library/
LaunchDaemons/com.puppetlabs.puppet.plist file.

<dict>
 <key>LANG</key>
 <string>ja_JP.UTF-8</string>
</dict>

After updating the file, restart the Puppet service to apply the change.

Setting your locale on Windows

On Windows, Puppet uses the LANG environment variable if it is set. If not, it uses the configured region, as set in the
Administrator tab of the Region control panel.

On Windows 10, you can use PowerShell to set the system locale:

Set-WinSystemLocale en-US

Disabling internationalized strings

Use the optional Boolean disable_i18n setting to disable the use of internationalized strings. You can configure
this setting in puppet.conf. If set to true, Puppet disables localized strings in log messages, reports, and parts
of the command line interface. This can improve performance when using Puppet modules, especially if environment
caching is disabled, and even if you don’t need localized strings or the modules aren’t localized. This setting is
false by default in open source Puppet.

If you’re experiencing performance issues, configure this setting in the [server] section of the primary Puppet
server's puppet.conf file. To force unlocalized messages, which are in English by default, configure this section
in a node’s [main] or [user] sections of puppet.conf.

Key configuration settings
Puppet has about 200 settings, all of which are listed in the configuration reference. Most of the time, you interact
with only a couple dozen of them. This page lists the most important ones, assuming that you're okay with default
values for things like the port Puppet uses for network traffic. See the configuration reference for more details on
each.

There are a lot of settings that are rarely useful but still make sense, but there are also at least a hundred that are not
configurable at all. This is a Puppet design choice. Because of the way Puppet code is arranged, the settings system is
the easiest way to publish global constants that are dynamically initialized on startup. This means a lot of things have
been introduced to Puppet as configurable settings regardless of whether they needed to be configurable.

For a full list of Puppet settings, see the configuration reference.

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 129

Settings for agents (all nodes)
The following settings for agents are listed approximately in order of importance. Most of these can go in either
[main] or [agent] sections, or be specified on the command line.

Basics

• server — The primary server to request configurations from. Defaults to puppet. Change it if that’s not your
server’s name.

• ca_server and report_server — If you’re using multiple Puppet primary servers, you’ll need to
centralize the CA. One of the ways to do this is by configuring ca_server on all agents. See Scaling Puppet
Server with compile servers for more details. The report_server setting works the same way, although
whether you need to use it depends on how you’re processing reports.

• certname — The node’s certificate name, and the unique identifier it uses when requesting catalogs. Defaults to
the fully qualified domain name.

• For best compatibility, limit the value of certname to only use lowercase letters, numbers, periods,
underscores, and dashes. That is, it matches /\A[a-z0-9._-]+\Z/.

• The special value ca is reserved, and can’t be used as the certname for a normal node.
• environment — The environment to request when contacting the primary server. It’s only a request, though;

the primary server’s ENC can override this if it chooses. Defaults to production.
• sourceaddress — The address on a multihomed host to use for the agent’s communication with the primary

server.

Note: Although it’s possible to set something other than the certname as the node name (using either the
node_name_fact or node_name_value setting), we don’t generally recommend it. It allows you to re-use one
node certificate for many nodes, but it reduces security, makes it harder to reliably identify nodes, and can interfere
with other features. Setting a non-certname node name is not officially supported in Puppet Enterprise.

Run behavior

These settings affect the way Puppet applies catalogs:

• noop — If enabled, the agent won’t make any changes to the node. Instead, it looks for changes that would be
made if the catalog were applied, and report to the primary server about what it would have done. This can be
overridden per-resource with the noop metaparameter.

• priority — Allows you to make the agent share CPU resources so that other applications have access to
processing power while agent is applying a catalog.

• report — Indicates whether to send reports. Defaults to true.
• tags — Lets you limit the Puppet run to include only those resources with certain tags.
• trace, profile, graph, and show_diff — Tools for debugging or learning more about an agent run.

Useful when combined with the --test and --debug command options.
• usecacheonfailure — Indicates whether to fall back to the last known good catalog if the primary server

fails to return a good catalog. The default behavior is usually what you want, but you might have a reason to
disable it.

• ignoreschedules — If you use schedules, this can be useful when doing an initial Puppet run to set up new
nodes.

• prerun_command and postrun_command — Commands to run on either side of a Puppet run.

Service behavior

These settings affect the way Puppet agent acts when running as a long-lived service:

• runinterval — How often to do a Puppet run, when running as a service.
• waitforcert — Whether to keep trying if the agent can’t initially get a certificate. The default behavior is

good, but you might have a reason to disable it.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/latest/scaling_puppet_server.html
https://puppet.com/docs/puppetserver/latest/scaling_puppet_server.html

Puppet | Installing and configuring | 130

Useful when running agent from cron

• splay and splaylimit — Together, these allow you to spread out agent runs. When running the agent as
a daemon, the services usually have been started far enough out of sync to make this a non-issue, but it’s useful
with cron agents. For example, if your agent cron job happens on the hour, you could set splay = true and
splaylimit = 60m to keep the primary server from getting briefly overworked and then left idle for the next
50 minutes.

• daemonize — Whether to daemonize. Set this to false when running the agent from cron.
• onetime — Whether to exit after finishing the current Puppet run. Set this to true when running the agent from

cron.

For more information on these settings, see the configuration reference.

Settings for promary servers
Many of these settings are also important for standalone Puppet apply nodes, because they act as their own primary
server. These settings go in the [server] section, unless you’re using Puppet apply in production, in which case
put them in the [main] section instead.

Basics

• dns_alt_names — A list of hostnames the server is allowed to use when acting as a primary server. The
hostname your agents use in their server setting must be included in either this setting or the primary server’s
certname setting. Note that this setting is only used when initially generating the primary server’s certificate —
if you need to change the DNS names, you must:

1. Run: sudo puppetserver ca clean --certname <SERVER'S CERTNAME>
2. Turn off the Puppet Server service.
3. Run: sudo puppetserver ca generate --certname <SERVER'S CERTNAME> --

subject-alt-names <ALT NAME 1>,<ALT NAME 2>,...

4. Re-start the Puppet Server service.
• environment_timeout — For better performance, you can set this to unlimited and make refreshing the

primary server a part of your standard code deployment process.
• environmentpath — Controls where Puppet finds directory environments. For more information on

environments, see Creating environments.
• basemodulepath — A list of directories containing Puppet modules that can be used in all environments. See

modulepath for details.
• reports — Which report handlers to use. For a list of available report handlers, see the report reference. You

can also write your own report handlers. Note that the report handlers might require settings of their own.

Puppet Server related settings

Puppet Server has its own configuration files; consequently, there are several settings in puppet.conf that Puppet
Server ignores.

• puppet-admin — Settings to control which authorized clients can use the admin interface.
• jruby-puppet — Provides details on tuning JRuby for better performance.
• JAVA_ARGS — Instructions on tuning the Puppet Server memory allocation.

Extensions

These features configure add-ons and optional features:

• node_terminus and external_nodes — The ENC settings. If you’re using an ENC, set these to exec
and the path to your ENC script, respectively.

• storeconfigs and storeconfigs_backend — Used for setting up PuppetDB. See the PuppetDB docs
for details.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/latest/puppet_conf_setting_diffs.html
https://puppet.com/docs/puppetserver/latest/puppet_conf_setting_diffs.html
https://puppet.com/docs/puppetserver/latest/config_file_puppetserver.html
https://puppet.com/docs/puppetserver/latest/tuning_guide.html
https://puppet.com/docs/puppetserver/latest/install_from_packages.html
https://puppet.com/docs/puppetdb/latest/connect_puppet_master.html
https://puppet.com/docs/puppetdb/latest/connect_puppet_master.html

Puppet | Installing and configuring | 131

• catalog_terminus — This can enable the optional static compiler. If you have lots of file resources in
your manifests, the static compiler lets you sacrifice some extra CPU work on your primary server to gain faster
configuration and reduced HTTPS traffic on your agents.

CA settings

• ca_ttl — How long newly signed certificates are valid. Deprecated.
• autosign — Whether and how to autosign certificates. See Autosigning for detailed information.

For more information on these settings, see the configuration reference.

Puppet's configuration files
Puppet settings can be configured in the main config file, called puppet.conf. There are several additional
configuration files, for new settings and ones that need to be in separate files with complex data structures.

• puppet.conf: The main config file on page 131
The puppet.conf file is Puppet’s main config file. It configures all of the Puppet commands and services,
including Puppet agent, the primary Puppet server, Puppet apply, and puppetserver ca. Nearly all of the settings
listed in the configuration reference can be set in puppet.conf.
• environment.conf: Per-environment settings on page 134
Any environment can contain an environment.conf file. This file can override several settings whenever the
primary server is serving nodes assigned to that environment.
• fileserver.conf: Custom fileserver mount points on page 136
The fileserver.conf file configures custom static mount points for Puppet’s file server. If custom mount points
are present, file resources can access them with their source attributes.
• puppetdb.conf: PuppetDB server locations on page 137
The puppetdb.conf file configures how Puppet connects to one or more servers. It is only used if you are using
PuppetDB and have connected your primary server to it.
• hiera.yaml: Data lookup configuration
• autosign.conf: Basic certificate autosigning on page 137
The autosign.conf file can allow certain certificate requests to be automatically signed. It is only valid on the
CA primary Puppet server; a primary server not serving as a CA does not use autosign.conf.
• csr_attributes.yaml: Certificate extensions on page 137
The csr_attributes.yaml file defines custom data for new certificate signing requests (CSRs).
• custom_trusted_oid_mapping.yaml: Short names for cert extension OIDs on page 139
The custom_trusted_oid_mapping.yaml file lets you set your own short names for certificate extension
object identifiers (OIDs), which can make the $trusted variable more useful.
• device.conf: Network hardware access on page 141
The puppet-device subcommand retrieves catalogs from the primary Puppet server and applies them to remote
devices. Devices to be managed by the puppet-device subcommand are configured in device.conf.
• routes.yaml: Advanced plugin routing on page 141
The routes.yaml file overrides configuration settings involving indirector termini, and allows termini to be set in
greater detail than puppet.conf allows.

puppet.conf: The main config file
The puppet.conf file is Puppet’s main config file. It configures all of the Puppet commands and services,
including Puppet agent, the primary Puppet server, Puppet apply, and puppetserver ca. Nearly all of the settings
listed in the configuration reference can be set in puppet.conf.

It resembles a standard INI file, with a few syntax extensions. Settings can go into application-specific sections, or
into a [main] section that affects all applications.

For a complete list of Puppet's settings, see the configuration reference.

Location

The puppet.conf file is always located at $confdir/puppet.conf.

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 132

Although its location is configurable with the config setting, it can be set only on the command line. For example:

puppet agent -t --config ./temporary_config.conf

The location of the confdir depends on your operating system. See the confdir documentation for details.

Examples

Example agent config:

[main]
certname = agent01.example.com
server = puppet
runinterval = 1h

Example server config:

[main]
certname = puppetserver01.example.com
server = puppet
runinterval = 1h
strict_variables = true

[primary server]
dns_alt_names =
 primaryserver01,primaryserver01.example.com,puppet,puppet.example.com
reports = puppetdb
storeconfigs_backend = puppetdb
storeconfigs = true

Format

The puppet.conf file consists of one or more config sections, each of which can contain any number of settings.

The file can also include comment lines at any point.

Config sections

[main]
 certname = primaryserver01.example.com

A config section is a group of settings. It consists of:

• Its name, enclosed in square brackets. The [name] of the config section must be on its own line, with no leading
space.

• Any number of setting lines, which can be indented for readability.
• Any number of empty lines or comment lines

As soon as a new config section [name] appears in the file, the former config section is closed and the new one
begins. A given config section only occurs one time in the file.

Puppet uses four config sections:

• main is the global section used by all commands and services. It can be overridden by the other sections.
• server is used by the primary Puppet server service and the Puppet Server ca command.
• agent is used by the Puppet agent service.
• user is used by the Puppet apply command, as well as many of the less common Puppet subcommands.

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 133

Puppet prefers to use settings from one of the three application-specific sections (server, agent, or user). If it
doesn’t find a setting in the application section, it uses the value from main. (If main doesn’t set one, it falls back to
the default value.)

Note: Puppet Server ignores some config settings. It honors almost all settings in puppet.conf and picks them up
automatically. However, some Puppet Server settings differ from a Ruby primary server's puppet.conf settings.

Comment lines

This is a comment.

Comment lines start with a hash sign (#). They can be indented with any amount of leading space.

Partial-line comments such as report = true # this enables reporting are not allowed, and the
intended comment is treated as part of the value of the setting. To be treated as a comment, the hash sign must be the
first non-space character on the line.

Setting lines

certname = primaryserver01.example.com

A setting line consists of:

• Any amount of leading space (optional).
• The name of a setting.
• An equals sign (=), which can optionally be surrounded by any number of spaces.
• A value for the setting.

Special types of values for settings

Generally, the value of a setting is a single word. However, listed below are a few special types of values.

List of words: Some settings (like reports) can accept multiple values, which are specified as a comma-separated list
(with optional spaces after commas). Example: report = http,puppetdb

Paths: Some settings (like environmentpath) take a list of directories. The directories are separated by the system
path separator character, which is colon (:) on *nix platforms and semicolon (;) on Windows.

*nix version:
environmentpath = $codedir/special_environments:$codedir/environments
Windows version:
environmentpath = $codedir/environments;C:\ProgramData\PuppetLabs\code
\environment

Path lists are ordered;Puppet always checks the first directory first, then moves on to the others if it doesn’t find what
it needs.

Files or directories: Settings that take a single file or directory (like ssldir) can accept an optional hash of
permissions. When starting up, Puppet enforces those permissions on the file or directory.

We do not recommend you do this because the defaults are good for most users. However, if you need to, you can
specify permissions by putting a hash like this after the path:

ssldir = $vardir/ssl {owner = service, mode = 0771}

The allowed keys in the hash areowner, group, and mode. There are only two valid values for the owner and
group keys:

• root — the root or Administrator user or group owns the file.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/latest/puppet_conf_setting_diffs.html

Puppet | Installing and configuring | 134

• service — the user or group that the Puppet service is running as owns the file. The service’s user and group
are specified by the user and group settings. On a primary server running open source Puppet, these default to
puppet; on Puppet Enterprise they default to pe-puppet.

Interpolating variables in settings

The values of settings are available as variables within puppet.conf, and you can insert them into the values of
other settings. To reference a setting as a variable, prefix its name with a dollar sign ($):

ssldir = $vardir/ssl

Not all settings are equally useful; there’s no real point in interpolating$ssldir into basemodulepath, for
example. We recommend that you use only the following variables:

• $codedir

• $confdir

• $vardir

environment.conf: Per-environment settings
Any environment can contain an environment.conf file. This file can override several settings whenever the
primary server is serving nodes assigned to that environment.

Location

Each environment.conf file is stored in an environment. It will be at the top level of its home environment, next
to the manifests and modules directories.

For example, if your environments are in the default directory ($codedir/environments), the test
environment’s config file is located at $codedir/environments/test/environment.conf.

Example

/etc/puppetlabs/code/environments/test/environment.conf

Puppet Enterprise requires $basemodulepath; see note below under
 "modulepath".
modulepath = site:dist:modules:$basemodulepath

Use our custom script to get a git commit for the current state of the
 code:
config_version = get_environment_commit.sh

Format

The environment.conf file uses the same INI-like format as puppet.conf, with one exception: it cannot
contain config sections like [main]. All settings in environment.conf must be outside any config section.

Relative paths in values

Most of the allowed settings accept file paths or lists of paths as their values.

If any of these paths are relative paths — that is, they start without a leading slash or drive letter — they are resolved
relative to that environment’s main directory.

For example, if you set config_version = get_environment_commit.sh in the test
environment, Puppet uses the file at /etc/puppetlabs/code/environments/test/
get_environment_commit.sh.

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 135

Interpolation in values

The settings in environment.conf can use the values of other settings as variables (such as $codedir).
Additionally, the config_version setting can use the special $environment variable, which gets replaced
with the name of the active environment.

The most useful variables to interpolate into environment.conf settings are:

• $basemodulepath — useful for including the default module directories in the modulepath setting. We
recommend Puppet Enterprise (PE) users include this in the value of modulepath, because PE uses modules in
the basemodulepath to configure orchestration and other features.

• $environment — useful as a command line argument to your config_version script. You can interpolate
this variable only in the config_version setting.

• $codedir — useful for locating files.

Allowed settings

The environment.conf file can override these settings:

modulepath

The list of directories Puppet loads modules from.

If this setting isn’t set, the modulepath for the environment is:

<MODULES DIRECTORY FROM ENVIRONMENT>:$basemodulepath

That is, Puppet adds the environment’s modules directory to the value of the basemodulepath setting from
puppet.conf, with the environment’s modules getting priority. If the modules directory is empty of absent,
Puppet only uses modules from directories in the basemodulepath. A directory environment never uses the global
modulepath from puppet.conf.

manifest

The main manifest the primary server uses when compiling catalogs for this environment. This can be one file
or a directory of manifests to be evaluated in alphabetical order. Puppet manages this path as a directory if one
exists or if the path ends with a slash (/) or dot (.).

If this setting isn’t set, Puppet uses the environment’s manifests directory as the main manifest, even if it is
empty or absent. A directory environment never uses the global manifest from puppet.conf.

config_version

A script Puppet can run to determine the configuration version.

Puppet automatically adds a config version to every catalog it compiles, as well as to messages in reports. The
version is an arbitrary piece of data that can be used to identify catalogs and events.

You can specify an executable script that determines an environment’s config version by setting
config_version in its environment.conf file. Puppet runs this script when compiling a catalog for a node in
the environment, and use its output as the config version.

Note: If you’re using a system binary like git rev-parse, make sure to specify the absolute path to it. If
config_version is set to a relative path, Puppet looks for the binary in the environment, not in the system’s
PATH.

If this setting isn’t set, the config version is the time at which the catalog was compiled (as the number of
seconds since January 1, 1970). A directory environment never uses the global config_version from
puppet.conf.

environment_timeout

How long the primary server caches the data it loads from an environment. If present, this overrides the value of
environment_timeout from puppet.conf. Unless you have a specific reason, we recommend only setting

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 136

environment_timeout globally, in puppet.conf. We also don’t recommend using any value other than 0 or
unlimited.

For more information about configuring the environment timeout, see the timeout section of the Creating
Environments page.

fileserver.conf: Custom fileserver mount points
The fileserver.conf file configures custom static mount points for Puppet’s file server. If custom mount points
are present, file resources can access them with their source attributes.

When to use fileserver.conf

This file is necessary only if you are creating custom mount points.

Puppet automatically serves files from the files directory of every module, and most users find this sufficient. For
more information, see Modules fundamentals. However, custom mount points are useful for things that you don’t
store in version control with your modules, like very large files and sensitive credentials.

Location

The fileserver.conf file is located at $confdir/fileserver.conf by default. Its location is
configurable with the fileserverconfig setting.

The location of the confdir depends on your operating system. See the confdir documentation for details.

Example

Files in the /path/to/files directory are served
at puppet:///extra_files/.
[extra_files]
 path /etc/puppetlabs/puppet/extra_files
 allow *

This fileserver.conf file would create a new mount point named extra_files.

CAUTION: Always restrict write access to mounted directories. The file server follows any symlinks in a
file server mount, including links to files that agent nodes shouldn’t access (like SSL keys). When following
symlinks, the file server can access any files readable by Puppet Server’s user account.

Format

fileserver.conf uses a one-off format that resembles an INI file without the equals (=) signs. It is a series of
mount-point stanzas, where each stanza consists of:

• A [mount_point_name] surrounded by square brackets. This becomes the name used in puppet:///
URLs for files in this mount point.

• A path <PATH> directive, where <PATH> is an absolute path on disk. This is where the mount point’s files are
stored.

• An allow * directive.

Deprecated security directives

Before auth.conf existed, fileserver.conf could use allow and deny directives to control which nodes
can access various files. This feature is now deprecated, and will be removed in a future release of Puppet.

Instead, you can use auth.conf to control access to mount points. See setting up mount points for more details and
examples.

The only security directive present in fileserver.conf is an allow * directive for every mount point.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/latest/config_file_auth.html

Puppet | Installing and configuring | 137

puppetdb.conf: PuppetDB server locations
The puppetdb.conf file configures how Puppet connects to one or more servers. It is only used if you are using
PuppetDB and have connected your primary server to it.

This configuration file is documented in the PuppetDB docs. See Configuring a Puppet/PuppetDB connection for
details.

autosign.conf: Basic certificate autosigning
The autosign.conf file can allow certain certificate requests to be automatically signed. It is only valid on the
CA primary Puppet server; a primary server not serving as a CA does not use autosign.conf.

CAUTION: Because any host can provide any certname when requesting a certificate, basic autosigning is
insecure. Use it only when you fully trust any computer capable of connecting to the primary server.

Puppet also provides a policy-based autosigning interface using custom policy executables, which can be more
flexible and secure than the autosign.conf allowlist but more complex to configure.

For more information, see the documentation about certificate autosigning.

Location

Puppet looks for autosign.conf at $confdir/autosign.conf by default. To change this path, configure
the autosign setting in the [primary server] section of puppet.conf.

The default confdir path depends on your operating system. See the confdir documentation for more information.

Note: The autosign.conf file must not be executable by the primary server user account. If the autosign
setting points to an executable file, Puppet instead treats it like a custom policy executable even if it contains a valid
autosign.conf allowlist.

Format

The autosign.conf file is a line-separated list of certnames or domain name globs. Each line represents a node
name or group of node names for which the CA primary server automatically signs certificate requests.

rebuilt.example.com
*.scratch.example.com
*.local

Domain name globs do not function as normal globs: an asterisk can only represent one or more subdomains at the
front of a certname that resembles a fully qualified domain name (FQDN). If your certnames don’t look like FQDNs,
the autosign.conf allowlist might not be effective.

Note: The autosign.conf file can safely be an empty file or not-existent, even if the autosign setting is
enabled. An empty or non-existent autosign.conf file is an empty allowlist, meaning that Puppet does not
autosign any requests. If you create autosign.conf as a non-executable file and add certnames to it, Puppet then
automatically uses the file to allow incoming requests without needing to modify puppet.conf.

To explicitly disable autosigning, set autosign = false in the [primary server] section of the CA
primary server's puppet.conf, which disables CA autosigning even if autosign.conf or a custom policy
executable exists.

csr_attributes.yaml: Certificate extensions
The csr_attributes.yaml file defines custom data for new certificate signing requests (CSRs).

The csr_attributes.yaml file can set:

• CSR attributes (transient data used for pre-validating requests)
• Certificate extension requests (permanent data to be embedded in a signed certificate)

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetdb/latest/puppetdb_connection.html

Puppet | Installing and configuring | 138

This file is only consulted when a new CSR is created, for example when an agent node is first attempting to join a
Puppet deployment. It cannot modify existing certificates.

For information about using this file, see CSR attributes and certificate extensions.

Location

The csr_attributes.yaml file is located at $confdir/csr_attributes.yaml by default. Its location is
configurable with the csr_attributes setting.

The location of the confdir depends on your operating system. See the confdir documentation for details.

Example

custom_attributes:
 1.2.840.113549.1.9.7: 342thbjkt82094y0uthhor289jnqthpc2290
extension_requests:
 pp_uuid: ED803750-E3C7-44F5-BB08-41A04433FE2E
 pp_image_name: my_ami_image
 pp_preshared_key: 342thbjkt82094y0uthhor289jnqthpc2290

Format

The csr_attributes file must be a YAML hash containing one or both of the following keys:

• custom_attributes

• extension_requests

The value of each key must also be a hash, where:

• Each key is a valid object identifier (OID). Note that Puppet-specific OIDs can optionally be referenced by short
name instead of by numeric ID. In the example above, pp_uuid is a short name for a Puppet-specific OID.

• Each value is an object that can be cast to a string. That is, numbers are allowed but arrays are not.

Allowed OIDs for custom attributes

Custom attributes can use any public or site-specific OID, with the exception of the OIDs used for core X.509
functionality. This means you can’t re-use existing OIDs for things like subject alternative names.

One useful OID is the “challengePassword” attribute — 1.2.840.113549.1.9.7. This is a rarely-used corner
of X.509 which can be repurposed to hold a pre-shared key. The benefit of using this instead of an arbitrary OID is
that it appears by name when using OpenSSL to dump the CSR to text; OIDs that openssl req can’t recognize are
displayed as numerical strings.

Also note that the Puppet-specific OIDs listed below can also be used in CSR attributes.

Allowed OIDs for extension requests

Extension request OIDs must be under the “ppRegCertExt” (1.3.6.1.4.1.34380.1.1) or
“ppPrivCertExt” (1.3.6.1.4.1.34380.1.2) OID arcs.

Puppet provides several registered OIDs (under “ppRegCertExt”) for the most common kinds of extension
information, as well as a private OID range (“ppPrivCertExt”) for site-specific extension information. The benefits of
using the registered OIDs are:

• They can be referenced in csr_attributes.yaml using their short names instead of their numeric IDs.
• When using Puppet tools to print certificate info, they appear using their descriptive names instead of their

numeric IDs.

The private range is available for any information you want to embed into a certificate that isn’t already in wide use
elsewhere. It is completely unregulated, and its contents are expected to be different in every Puppet deployment.

© 2024 Puppet, Inc., a Perforce company

http://en.wikipedia.org/wiki/Object_identifier

Puppet | Installing and configuring | 139

The “ppRegCertExt” OID range contains the following OIDs.

Numeric ID Short name Descriptive name

1.3.6.1.4.1.34380.1.1.1 pp_uuid Puppet node UUID

1.3.6.1.4.1.34380.1.1.2 pp_instance_id Puppet node instance ID

1.3.6.1.4.1.34380.1.1.3 pp_image_name Puppet node image name

1.3.6.1.4.1.34380.1.1.4 pp_preshared_key Puppet node preshared key

1.3.6.1.4.1.34380.1.1.5 pp_cost_center Puppet node cost center name

1.3.6.1.4.1.34380.1.1.6 pp_product Puppet node product name

1.3.6.1.4.1.34380.1.1.7 pp_project Puppet node project name

1.3.6.1.4.1.34380.1.1.8 pp_application Puppet node application name

1.3.6.1.4.1.34380.1.1.9 pp_service Puppet node service name

1.3.6.1.4.1.34380.1.1.10 pp_employee Puppet node employee name

1.3.6.1.4.1.34380.1.1.11 pp_created_by Puppet node created_by tag

1.3.6.1.4.1.34380.1.1.12 pp_environment Puppet node environment name

1.3.6.1.4.1.34380.1.1.13 pp_role Puppet node role name

1.3.6.1.4.1.34380.1.1.14 pp_software_version Puppet node software version

1.3.6.1.4.1.34380.1.1.15 pp_department Puppet node department name

1.3.6.1.4.1.34380.1.1.16 pp_cluster Puppet node cluster name

1.3.6.1.4.1.34380.1.1.17 pp_provisioner Puppet node provisioner name

1.3.6.1.4.1.34380.1.1.18 pp_region Puppet node region name

1.3.6.1.4.1.34380.1.1.19 pp_datacenter Puppet node datacenter name

1.3.6.1.4.1.34380.1.1.20 pp_zone Puppet node zone name

1.3.6.1.4.1.34380.1.1.21 pp_network Puppet node network name

1.3.6.1.4.1.34380.1.1.22 pp_securitypolicy Puppet node security policy name

1.3.6.1.4.1.34380.1.1.23 pp_cloudplatform Puppet node cloud platform name

1.3.6.1.4.1.34380.1.1.24 pp_apptier Puppet node application tier

1.3.6.1.4.1.34380.1.1.25 pp_hostname Puppet node hostname

The “ppAuthCertExt” OID range contains the following OIDs:

1.3.6.1.4.1.34380.1.3.1 pp_authorization Certificate extension authorization

1.3.6.1.4.1.34380.1.3.13 pp_auth_role Puppet node role name for
authorization. For PE internal use
only.

custom_trusted_oid_mapping.yaml: Short names for cert extension OIDs
The custom_trusted_oid_mapping.yaml file lets you set your own short names for certificate extension
object identifiers (OIDs), which can make the $trusted variable more useful.

It is only valid on a primary Puppet server. In Puppet apply, the compiler doesn’t add certificate extensions to
$trusted.

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 140

Certificate extensions

When a node requests a certificate, it can ask the CA to include some additional, permanent metadata in that cert.
Puppet agent uses the csr_attributes.yaml file to decide what extensions to request.

If the CA signs a certificate with extensions included, those extensions are available as trusted facts in the top-scope
$trusted variable. Your manifests or node classifier can then use those trusted facts to decide which nodes can
receive which configurations.

By default, the Puppet-specific registered OIDs appear as keys with convenient short names in the
$trusted[extensions] hash, and any other OIDs appear as raw numerical IDs. You can use the
custom_trusted_oid_mapping.yaml file to map other OIDs to short names, which replaces the numerical
OIDs in $trusted[extensions].

Run puppetserver ca print to see changes made in custom_trusted_oid_mapping.yaml
immediately without a restart.

For more information, see CSR attributes and certificate extensions, Trusted facts, The csr_attributes.yaml
file.

Limitations of OID mapping

Mapping OIDs in this file only affects the keys in the $trusted[extensions] hash. It does not affect what an
agent can request in its csr_attributes.yaml file — anything but Puppet-specific registered extensions must
still be numerical OIDs.

After setting custom OID mapping values and restarting puppetserver, you can reference variables using only the
short name.

Location

The OID mapping file is located at $confdir/custom_trusted_oid_mapping.yaml by default. Its
location is configurable with the trusted_oid_mapping_file setting.

The location of the confdir depends on your OS. See the confdir documentation for details.

Example

oid_mapping:
 1.3.6.1.4.1.34380.1.2.1.1:
 shortname: 'myshortname'
 longname: 'My Long Name'
 1.3.6.1.4.1.34380.1.2.1.2:
 shortname: 'myothershortname'
 longname: 'My Other Long Name'

Format

The custom_trusted_oid_mapping.yaml must be a YAML hash containing a single key called
oid_mapping.

The value of the oid_mapping key must be a hash whose keys are numerical OIDs. The value for each OID must
be a hash with two keys:

• shortname for the case-sensitive one-word name that is used in the $trusted[extensions] hash.
• longname for a more descriptive name (not used elsewhere).

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 141

device.conf: Network hardware access
The puppet-device subcommand retrieves catalogs from the primary Puppet server and applies them to remote
devices. Devices to be managed by the puppet-device subcommand are configured in device.conf.

For more information on Puppet device, see the Puppet device documentation.

Location

The device.conf file is located at $confdir/device.conf by default, and its location is configurable with
the deviceconfig setting.

The location of confdir depends on your operating system. See the confdir documentation for details.

Format

The device.conf file is an INI-like file, with one section per device:

[device001.example.com]
type cisco
url ssh://admin:password@device001.example.com
debug

The section name specifies the certname of the device.

The values for the type and url properties are specific to each type of device.

The the optional debug property specifies transport-level debugging, and is limited to telnet and ssh transports.

For Cisco devices, the url is in the following format:

scheme://user:password@hostname/query

With:

• Scheme: either ssh or telnet
• user: optional connection username, depending on the device configuration
• password: connection password
• query: optional ?enable= parameter whose value is the enable password

Note: Reserved non-alphanumeric characters in the url must be percent-encoded.

routes.yaml: Advanced plugin routing
The routes.yaml file overrides configuration settings involving indirector termini, and allows termini to be set in
greater detail than puppet.conf allows.

The routes.yaml file makes it possible to use certain extensions to Puppet, most notably PuppetDB. Usually
you edit this file only to make changes that are explicitly specified by the setup instructions for an extension you are
trying to install.

Location

The routes.yaml file is located at $confdir/routes.yaml by default. Its location is configurable with the
route_file setting.

The location of the confdir depends on your operating system. See the confdir documentation for details.

Example

primary server:
 facts:

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 142

 terminus: puppetdb
 cache: yaml

Format

The routes.yaml file is a YAML hash.

Each top level key is the name of a run mode (server, agent, or user), and its value is another hash.

Each key of the second-level hash is the name of an indirection, and its value is another hash.

The only keys allowed in the third-level hash are terminus and cache. The value of each of these keys is the
name of a valid terminus for the indirection named above.

Configuring Puppet Server

Configuring Puppet Server

Puppet Server uses a combination of Puppet's configuration files along with its own configuration files. You can refer
to a complete list of Puppet’s configuration files in the Config directory.

Puppet Server and puppet.conf settings

Puppet Server uses Puppet's configuration files, including most of the settings in puppet.conf. However, Puppet
Server treats some puppet.conf settings differently. You must be aware of these differences. You can visit
a complete list of these differences at Differing behavior in puppet.conf. Puppet Server automatically loads the
puppet.conf settings in the configuration file’s main and server sections. Puppet Server uses the values in the
server section but if they are not present, it uses the values in the main section.

Puppet Server honors the following puppet.conf settings:

• allow_duplicate_certs
• autosign
• cacert
• cacrl
• cakey
• ca_name
• capub
• ca_ttl
• certdir
• certname
• cert_inventory
• codedir (PE only)
• csrdir
• csr_attributes
• dns_alt_names
• hostcert
• hostcrl
• hostprivkey
• hostpubkey
• keylength
• localcacert
• manage_internal_file_permissions
• privatekeydir
• requestdir
• serial
• signeddir

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/7/dirs_confdir.html

Puppet | Installing and configuring | 143

• ssl_client_header
• ssl_client_verify_header
• trusted_oid_mapping_file

Configuration Files

Most of Puppet Server's configuration files and settings (with the exception of the logging config file) are in the
conf.d directory. The conf.d directory is located at /etc/puppetlabs/puppetserver/conf.d by
default. These configuration files are in the HOCON format, which retains the basic structure of JSON but is more
readable. For more information, visit the HOCON documentation.

At startup, Puppet Server reads all the .conf files in the conf.d directory. You must restart Puppet Server to
implement your changes to these files. The conf.d directory contains the following files and settings:

• global.conf on page 153
• webserver.conf on page 152
• web-routes.conf on page 152
• puppetserver.conf on page 144
• auth.conf on page 148
• ca.conf on page 153

Note: The product.conf file is optional and is not included by default. You can create product.conf in
the conf.d directory to configure product-related settings (such as automatic update checking and analytics data
collection).

Logging

There is a Logback configuration file that controls how Puppet Server logs. Its default location is at /etc/
puppetlabs/puppetserver/logback.xml. If you want to place it elsewhere, visit the documentation on
global.conf.

For additional information on the logback.xml file, visit Logback.xm or Logback documentation. For tips on
configuring Logstash or outputting logs in JSON, visit Advanced logging configuration

HTTP Traffic

Puppet Server logs HTTP traffic in a format similar to Apache and to a separate file that isn’t the main log file.
By default, the access log is located at /var/log/puppetlabs/puppetserver/puppetserver-
access.log.

The following information is logged for each HTTP request by default:

• remote host
• remote log name
• remote user
• date of the logging event
• URL requested
• status code of the request
• response content length
• remote IP address
• local port
• elapsed time to serve the request, in milliseconds

There is a Logback configuration file that controls Puppet Server’s logging behavior. Its default location is at /
etc/puppetlabs/puppetserver/request-logging.xml. If you want to place it elsewhere, visit the
documentation on webserver.conf

Authorization

To enable additional logging related to auth.conf, edit Puppet Server's logback.xml file. By default, only a
single message is logged when a request is denied.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/7/server/configuration.html#logging
https://github.com/lightbend/config/blob/master/HOCON.md
https://puppet.com/docs/puppet/7/server/config_file_logbackxml.html
http://logback.qos.ch/manual/configuration.html
https://puppet.com/docs/puppet/7/server/config_logging_advanced.html

Puppet | Installing and configuring | 144

To enable a one-time logging of the parsed and transformed auth.conf file, add the following to Puppet Server's
logback.xml file:

<logger name="puppetlabs.trapperkeeper.services.authorization.authorization-
service" level="DEBUG"/>

To enable rule-by-rule logging for each request as it's checked for authorization, add the following to Puppet Server's
logback.xml file:

<logger name="puppetlabs.trapperkeeper.authorization.rules" level="TRACE"/>

Service Bootstrapping

Puppet Server is built on top of our open-source Clojure application framework, Trapperkeeper.

One of the features that Trapperkeeper provides is the ability to enable or disable individual services that an
application provides. In Puppet Server, you can use this feature to enable or disable the CA service. The CA service
is enabled by default, but if you're running a multi-server environment or using an external CA, you might want to
disable the CA service on some nodes.

The service bootstrap configuration files are in two locations:

• /etc/puppetlabs/puppetserver/services.d/: For services that users are expected to manually
configure if necessary, such as CA-related services.

• /opt/puppetlabs/server/apps/puppetserver/config/services.d/: For services users
shouldn’t need to configure.

Any files with a .cfg extension in either of these locations are combined to form the final set of services Puppet
Server will use.

The CA-related configuration settings are set in /etc/puppetlabs/puppetserver/services.d/ca.cfg.
If services added in future versions have user-configurable settings, the configuration files will also be in this
directory. When upgrading Puppet Server with a package manager, it should not overwrite files already in this
directory.

In the ca.cfg file, find and modify these lines as directed to enable or disable the service:

To enable the CA service, leave the following line uncommented
puppetlabs.services.ca.certificate-authority-service/certificate-authority-
service
To disable the CA service, comment out the above line and uncomment the
 line below
#puppetlabs.services.ca.certificate-authority-disabled-service/certificate-
authority-disabled-service

Adding Java JARs

Puppet Server can load any provided Java Jars upon its initial startup. When launched, Puppet Server automatically
loads any JARs placed in /opt/puppetlabs/server/data/puppetserver/jars into the classpath.
JARs placed here are not modified or removed when upgrading Puppet Server.

puppetserver.conf

The puppetserver.conf file contains settings for Puppet Server software. For an overview, see Configuring
Puppet Server on page 142.

Settings

Note: Under most conditions, you won't change the default settings for master-conf-dir or
master-code-dir. However, if you do, also change the equivalent Puppet settings (confdir or
codedir) to ensure that commands like puppetserver ca and puppet module use the same
directories as Puppet Server. You must also specify the non-default confdir when running commands,
because that setting must be set before Puppet tries to find its config file.

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/trapperkeeper

Puppet | Installing and configuring | 145

• The jruby-puppet settings configure the interpreter.

Deprecation Note: Puppet Server 5.0 removed the compat-version setting, which is incompatible
with JRuby 1.7.27, and the service won't start if compat-version is set. Puppet Server 6.0 uses
JRuby 9.1 which supports Ruby 2.3.

• ruby-load-path: The location where Puppet Server expects to find Puppet, Facter, and other components.
• gem-home: The location where JRuby looks for gems. It is also used by the puppetserver gem

command line tool. If nothing is specified, JRuby uses the Puppet default /opt/puppetlabs/server/
data/puppetserver/jruby-gems.

• gem-path: The complete "GEM_PATH" for jruby. If set, it should include the gem-home directory, as well
as any other directories that gems can be loaded from (including the vendored gems directory for gems that
ship with puppetserver). The default value is ["/opt/puppetlabs/server/data/puppetserver/
jruby-gems", "/opt/puppetlabs/server/data/puppetserver/vendored-jruby-
gems", "/opt/puppetlabs/puppet/lib/ruby/vendor_gems"].

• environment-vars: Optional. A map of environment variables which are made visible to Ruby code
running within JRuby, for example, via the Ruby ENV class.

By default, the only environment variables whose values are set into JRuby from the shell are HOME and
PATH.

The default value for the GEM_HOME environment variable in JRuby is set from the value provided for the
jruby-puppet.gem-home key.

Any variable set from the map for the environment-vars key overrides these defaults. Avoid overriding
HOME, PATH, or GEM_HOME here because these values are already configurable via the shell or jruby-
puppet.gem-home.

• master-conf-dir: Optional. The path to the Puppet configuration directory. The default is /etc/
puppetlabs/puppet.

• master-code-dir: Optional. The path to the Puppet code directory. The default is /etc/puppetlabs/
code.

• master-var-dir: Optional. The path to the Puppet cache directory. The default is /opt/puppetlabs/
server/data/puppetserver.

• master-run-dir: Optional. The path to the run directory, where the service's PID file is stored. The
default is /var/run/puppetlabs/puppetserver.

• master-log-dir: Optional. The path to the log directory. If nothing is specified, it uses the Puppet default
/var/log/puppetlabs/puppetserver.

• max-active-instances: Optional. The maximum number of JRuby instances allowed. The default is
'num-cpus - 1', with a minimum value of 1 and a maximum value of 4. In multithreaded mode, this controls the
number of threads allowed to run concurrently through the single JRuby instance.

• max-requests-per-instance: Optional. The number of HTTP requests a given JRuby instance will
handle in its lifetime. When a JRuby instance reaches this limit, it is flushed from memory and replaced with a
fresh one. The default is 0, which disables automatic JRuby flushing.

JRuby flushing can be useful for working around buggy module code that would otherwise cause memory
leaks, but it slightly reduces performance whenever a new JRuby instance reloads all of the Puppet Ruby code.
If memory leaks from module code are not an issue in your deployment, the default value of 0 performs best.

• multithreaded: Optional, false by default. Configures Puppet Server to use a single JRuby instance to
process requests that require a JRuby, processing a number of threads up to max-active-instances at a
time. Reduces the memory footprint of the server by only requiring a single JRuby.

• max-queued-requests: Optional. The maximum number of requests that may be queued waiting to
borrow a JRuby from the pool. When this limit is exceeded, a 503 "Service Unavailable" response will be
returned for all new requests until the queue drops below the limit. If max-retry-delay is set to a positive
value, then the 503 responses will include a Retry-After header indicating a random sleep time after
which the client may retry the request. The default is 0, which disables the queue limit.

• max-retry-delay: Optional. Sets the upper limit for the random sleep set as a Retry-After header
on 503 responses returned when max-queued-requests is enabled. A value of 0 will cause the Retry-

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/dirs_confdir.html
https://puppet.com/docs/puppet/latest/dirs_codedir.html
https://puppet.com/docs/puppet/latest/dirs_vardir.html

Puppet | Installing and configuring | 146

After header to be omitted. Default is 1800 seconds which corresponds to the default run interval of the
Puppet daemon.

• borrow-timeout: Optional. The timeout in milliseconds, when attempting to borrow an instance from the
JRuby pool. The default is 1200000.

• use-legacy-auth-conf: Optional. The method to be used for authorizing access to the HTTP endpoints
served by the primary server service. The applicable endpoints are listed in Puppet v3 HTTP API. As of
Puppet Server 5.0, this setting's default value is false.

If this setting is set to true, Puppet uses the Deprecated features on page 201 Ruby puppet-agent
authorization method and auth.conf on page 148 format, which will be removed in a future version of
Puppet Server.

For a value of false or is not specified, Puppet uses the HOCON configuration file format and location.

For more information, see the auth.conf on page 148.
• environment-class-cache-enabled: Optional. Used to control whether the primary server service

maintains a cache in conjunction with the use of the Environment classes on page 316.

If this setting is set to true, Puppet Server maintains the cache. It also returns an Etag header for each GET
request to the API. For subsequent GET requests that use the prior Etag value in an If-None-Match header,
when the class information available for an environment has not changed, Puppet Server returns an HTTP 304
(Not Modified) response with no body.

If this setting is set to false or is not specified, Puppet Server doesn't maintain a cache, an Etag header is
not returned for GET requests, and the If-None-Match header for an incoming request is ignored. It therefore
parses the latest available code for an environment from disk on every incoming request.

For more information, see the Environment classes on page 316.
• compile-mode: The default value depends on JRuby versions, for 1.7 it is off, for 9k it is jit. Used to

control JRuby's "CompileMode", which may improve performance. A value of jit enables JRuby's "just-in-
time" compilation of Ruby code. A value of force causes JRuby to attempt to pre-compile all Ruby code.

• profiling-mode: Optional. Used to enable JRuby's profiler for service startup and set it to one of the
supported modes. The default value is off, but it can be set to one of api, flat, graph, html, json,
off, and service. See ruby-prof for details on what the various modes do.

• profiler-output-file: Optional. Used to set the output file to direct JRuby profiler output. Should be
a fully qualified path writable by the service user. If not set will default to a random name inside the service
working directory.

• The profiler settings configure profiling:

• enabled: If this is set to true, Puppet Server enables profiling for the Puppet Ruby code. The default is
true.

• The puppet-admin section configures Puppet Server's administrative API. (This API is unavailable with Rack
or WEBrick Puppet primary servers.)

Note: The puppet-admin setting and client-allowlist parameter are deprecated in favor of
authorization methods introduced in Puppet Server 2.2. For details, see the auth.conf on page 148.

• authorization-required determines whether a client certificate is required to access the endpoints
in this API. If set to false, all requests will be permitted to access this API. If set to true, only the clients
whose certnames are included in the client-allowlist setting are allowed access to the admin API. If
this setting is not specified but the client-allowlist setting is specified, the default value for this setting
is true.

• client-allowlist contains an array of client certificate names that are allowed to access the admin API.
Puppet Server denies any requests made to this endpoint that do not present a valid client certificate mentioned
in this array.

If neither the authorization-required nor the client-allowlist settings are specified, Puppet
Server uses the new authorization methods and auth.conf on page 148 formats to access the admin API
endpoints.

© 2024 Puppet, Inc., a Perforce company

https://github.com/ruby-prof/ruby-prof/blob/master/README.rdoc#reports

Puppet | Installing and configuring | 147

• The versioned-code settings configure commands required to use static catalogs:

• code-id-command: the path to an executable script that Puppet Server invokes to generate a code_id.
When compiling a static catalog, Puppet Server uses the output of this script as the catalog's code_id. The
code_id associates the catalog with the compile-time version of any file resources that has a source
attribute with a puppet:/// URI value.

• code-content-command contains the path to an executable script that Puppet Server invokes when an
agent makes a Static file content on page 324 API request for the contents of a file resource that has a
source attribute with a puppet:/// URI value.

• The dropsonde settings configure whether and how often Puppet Server submits usage telemetry:

• enabled: If this is set to true, Puppet Server submits public content usage data to Puppet development.
Defaults to false.

• interval: how long, in seconds, Puppet Server waits between telemetry submissions if enabled. Defaults to
604800 (one week).

Note: The Puppet Server process must be able to execute the code-id-command and code-
content-command scripts, and the scripts must return valid content to standard output and an
error code of 0. For more information, see the static catalogs and Static file content on page 324
documentation.

If you're using static catalogs, you must set and use both code-id-command and code-content-
command. If only one of those settings are specified, Puppet Server fails to start. If neither setting is
specified, Puppet Server defaults to generating catalogs without static features even when an agent
requests a static catalog, which the agent will process as a normal catalog.

Examples

Configuration for the JRuby interpreters.

jruby-puppet: {
 ruby-load-path: [/opt/puppetlabs/puppet/lib/ruby/vendor_ruby]
 gem-home: /opt/puppetlabs/server/data/puppetserver/jruby-gems
 gem-path: [/opt/puppetlabs/server/data/puppetserver/jruby-gems, /opt/
puppetlabs/server/data/puppetserver/vendored-jruby-gems]
 environment-vars: { "FOO" : ${FOO}
 "LANG" : "de_DE.UTF-8" }
 master-conf-dir: /etc/puppetlabs/puppet
 master-code-dir: /etc/puppetlabs/code
 master-var-dir: /opt/puppetlabs/server/data/puppetserver
 master-run-dir: /var/run/puppetlabs/puppetserver
 master-log-dir: /var/log/puppetlabs/puppetserver
 max-active-instances: 1
 max-requests-per-instance: 0
}

Settings related to HTTP client requests made by Puppet Server.
These settings only apply to client connections using the
 Puppet::Network::HttpPool
classes. Client connections using net/http or net/https directly will not
 be
configured with these settings automatically.
http-client: {
 # A list of acceptable protocols for making HTTP requests
 #ssl-protocols: [TLSv1, TLSv1.1, TLSv1.2]

 # A list of acceptable cipher suites for making HTTP requests. For more
 info on available cipher suites, see:
 # http://docs.oracle.com/javase/7/docs/technotes/guides/security/
SunProviders.html#SunJSSEProvider
 #cipher-suites: [TLS_RSA_WITH_AES_256_CBC_SHA256,
 # TLS_RSA_WITH_AES_256_CBC_SHA,

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/static_catalogs.html
https://puppet.com/docs/puppet/latest/type.html#file
https://puppet.com/docs/puppet/latest/type.html#file
https://puppet.com/docs/puppet/latest/static_catalogs.html

Puppet | Installing and configuring | 148

 # TLS_RSA_WITH_AES_128_CBC_SHA256,
 # TLS_RSA_WITH_AES_128_CBC_SHA]

 # The amount of time, in milliseconds, that an outbound HTTP connection
 # will wait for data to be available before closing the socket. If not
 # defined, defaults to 20 minutes. If 0, the timeout is infinite and if
 # negative, the value is undefined by the application and governed by
 the
 # system default behavior.
 #idle-timeout-milliseconds: 1200000

 # The amount of time, in milliseconds, that an outbound HTTP connection
 will
 # wait to connect before giving up. Defaults to 2 minutes if not set. If
 0,
 # the timeout is infinite and if negative, the value is undefined in the
 # application and governed by the system default behavior.
 #connect-timeout-milliseconds: 120000

 # Whether to enable http-client metrics; defaults to 'true'.
 #metrics-enabled: true
}

Settings related to profiling the puppet Ruby code.
profiler: {
 enabled: true
}

Settings related to static catalogs. These paths are examples. There are
 no default
scripts provided with Puppet Server, and no default path for the scripts.
 To use static catalog features, you must set
the paths and provide your own scripts.
versioned-code: {
 code-id-command: /opt/puppetlabs/server/apps/puppetserver/code-id-
command_script.sh
 code-content-command: /opt/puppetlabs/server/apps/puppetserver/code-
content-command_script.sh
}

auth.conf

Puppet Server's auth.conf file contains rules for authorizing access to Puppet Server's HTTP API endpoints. For
an overview, see Configuring Puppet Server on page 142.

The new Puppet Server authentication configuration and functionality is similar to the legacy method in that you
define rules in a file named auth.conf, and Puppet Server applies the settings when a request's endpoint matches a
rule.

However, Puppet Server now has its own auth.conf file that uses a new HOCON format with different
parameters, syntax, and functionality.

Note: You can also use the puppetlabs-puppet_authorization module to manage the new
auth.conf file's authorization rules in the new HOCON format, and the puppetlabs-hocon
module to use Puppet to manage HOCON-formatted settings in general.

To configure how Puppet Server authenticates requests, use the supported HOCON auth.conf file and
authorization methods, and see the parameters and rule definitions in the HOCON Parameters section.

You can find the Puppet Server auth.conf file here.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/puppet_authorization
https://forge.puppet.com/puppetlabs/hocon
47e970c5c9b2676bfd964baf79b51dc567748c87.md#hocon-parameters
https://github.com/puppetlabs/puppetserver/blob/master/ezbake/config/conf.d/auth.conf

Puppet | Installing and configuring | 149

HOCON example

Here is an example authorization section using the HOCON configuration format:

authorization: {
 version: 1
 rules: [
 {
 match-request: {
 path: "^/my_path/([^/]+)$"
 type: regex
 method: get
 }
 allow: [node1, node2, node3, {extensions:{ext_shortname1:
 value1, ext_shortname2: value2}}]
 sort-order: 1
 name: "user-specific my_path"
 },
 {
 match-request: {
 path: "/my_other_path"
 type: path
 }
 allow-unauthenticated: true
 sort-order: 2
 name: "my_other_path"
 },
]
}

For a more detailed example of how to use the HOCON configuration format, see Configuring The Authorization
Service.

For descriptions of each setting, see the following sections.

HOCON parameters

Use the following parameters when writing or migrating custom authorization rules using the new HOCON format.

version

The version parameter is required. In this initial release, the only supported value is 1.

allow-header-cert-info

Note: Puppet Server ignores the setting of the same name in server.conf on page 154 in favor of this
setting in the new auth.conf file. If you use the Deprecated features on page 201 authentication
method and Puppet auth.conf rules, you must instead configure this setting in server.conf.

This optional authorization section parameter determines whether to enable External SSL termination on page
246 on all HTTP endpoints that Puppet Server handles, including those served by the "primary server" service, the
certificate authority API, and the Puppet Admin API. It also controls how Puppet Server derives the user's identity for
authorization purposes. The default value is false.

If this setting is true, Puppet Server ignores any presented certificate and relies completely on header data to
authorize requests.

Warning! This is very insecure; do not enable this parameter unless you've secured your network to
prevent any untrusted access to Puppet Server.

You cannot rename any of the X-Client headers when this setting is enabled, and you must specify identity
through the X-Client-Verify, X-Client-DN, and X-Client-Cert headers.

For more information, see Disable HTTPS for Puppet Server on page 246 in the Puppet Server documentation and
Configuring the Authorization Service in the trapperkeeper-authorization documentation.

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/trapperkeeper-authorization/blob/master/doc/authorization-config.md
https://github.com/puppetlabs/trapperkeeper-authorization/blob/master/doc/authorization-config.md
https://puppet.com/docs/puppet/latest/config_file_auth.html
https://github.com/puppetlabs/trapperkeeper-authorization/blob/master/doc/authorization-config.md#allow-header-cert-info

Puppet | Installing and configuring | 150

rules

The required rules array of a Puppet Server's HOCON auth.conf file determines how Puppet Server responds
to a request. Each element is a map of settings pertaining to a rule, and when Puppet Server receives a request, it
evaluates that request against each rule looking for a match.

You define each rule by adding parameters to the rule's match-request section. A rules array can contain as
many rules as you need, each with a single match-request section.

If a request matches a rule in a match-request section, Puppet Server determines whether to allow or deny the
request using the rules parameters that follow the rule's match-request section:

• At least one of:

• allow

• allow-unauthenticated

• deny

• sort-order (required)
• name (required)

If no rule matches, Puppet Server denies the request by default and returns an HTTP 403/Forbidden response.

match-request

A match-request can take the following parameters, some of which are required:

• path and type (required): A match-request rule must have a path parameter, which returns a match
when a request's endpoint URL starts with or contains the path parameter's value. The parameter can be a literal
string or regular expression as defined in the required type parameter.

Regular expression to match a path in a URL.
path: "^/puppet/v3/report/([^/]+)$"
type: regex

Literal string to match the start of a URL's path.
path: "/puppet/v3/report/"
type: path

Note: While the HOCON format doesn't require you to wrap all string values with double quotation
marks, some special characters commonly used in regular expressions --- such as * --- break HOCON
parsing unless the entire value is enclosed in double quotes.

• method: If a rule contains the optional method parameter, Puppet Server applies that rule only to requests that
use its value's listed HTTP methods. This parameter's valid values are get, post, put, delete, and head,
provided either as a single value or array of values.

Use GET and POST.
method: [get, post]

Use PUT.
method: put

Note: While the new HOCON format does not provide a direct equivalent to the Deprecated features
on page 201 method parameter's search indirector, you can create the equivalent rule by passing
GET and POST to method and specifying endpoint paths using the path parameter.

• query-params: Use the optional query-params setting to provide the list of query parameters. Each entry is a
hash of the param name followed by a list of its values.

For example, this rule would match a request URL containing the environment=production or
environment=test query parameters:

``` hocon
query-params: {

© 2024 Puppet, Inc., a Perforce company

47e970c5c9b2676bfd964baf79b51dc567748c87.md#match-request
47e970c5c9b2676bfd964baf79b51dc567748c87.md#allow-allow-unauthenticated-and-deny
47e970c5c9b2676bfd964baf79b51dc567748c87.md#allow-allow-unauthenticated-and-deny
47e970c5c9b2676bfd964baf79b51dc567748c87.md#allow-allow-unauthenticated-and-deny
47e970c5c9b2676bfd964baf79b51dc567748c87.md#sort-order
47e970c5c9b2676bfd964baf79b51dc567748c87.md#name


Puppet | Installing and configuring | 151

    environment: [ production, test ]
}
```

allow, allow-unauthenticated, and deny

After each rule's match-request section, it must also have an allow, allow-unauthenticated, or deny
parameter. (You can set both allow and deny parameters for a rule, though Puppet Server always prioritizes deny
over allow when a request matches both.)

If a request matches the rule, Puppet Server checks the request's authenticated "name" (see allow-header-cert-
info) against these parameters to determine what to do with the request.

• allow-unauthenticated: If this Boolean parameter is set to true, Puppet Server allows the request ---
even if it can't determine an authenticated name. This is a potentially insecure configuration --- be careful when
enabling it. A rule with this parameter set to true can't also contain the allow or deny parameters.

• allow: This parameter can take a single string value, an array of string values, a single map value with either an
extensions or certname key, or an array of string and map values.

The string values can contain:

• An exact domain name, such as www.example.com.
• A glob of names containing a * in the first segment, such as *.example.com or simply *.
• A regular expression surrounded by / characters, such as /example/.
• A backreference to a regular expression's capture group in the path value, if the rule also contains a type

value of regex. For example, if the path for the rule were "^/example/([^/]+)$", you can make a
backreference to the first capture group using a value like $1.domain.org.

The map values can contain:

• An extensions key that specifies an array of matching X.509 extensions. Puppet Server authenticates the
request only if each key in the map appears in the request, and each key's value exactly matches.

• A certname key equivalent to a bare string.

If the request's authenticated name matches the parameter's value, Puppet Server allows it.

Note: If you are using Puppet Server with the CA disabled, you must use OID values for the extensions.
Puppet Server will not be able to resolve short names in this mode.

• deny: This parameter can take the same types of values as the allow parameter, but refuses the request if the
authenticated name matches --- even if the rule contains an allow value that also matches.

Also, in the HOCON Puppet Server authentication method, there is no directly equivalent behavior to the
Deprecated features on page 201 auth parameter's on value.

sort-order

After each rule's match-request section, the required sort-order parameter sets the order in which Puppet
Server evaluates the rule by prioritizing it on a numeric value between 1 and 399 (to be evaluated before default
Puppet rules) or 601 to 998 (to be evaluated after Puppet), with lower-numbered values evaluated first. Puppet Server
secondarily sorts rules lexicographically by the name string value's Unicode code points.

sort-order: 1

name

After each rule's match-request section, this required parameter's unique string value identifies the rule to Puppet
Server. The name value is also written to server logs and error responses returned to unauthorized clients.

name: "my path"

Note: If multiple rules have the same name value, Puppet Server will fail to launch.

© 2024 Puppet, Inc., a Perforce company

47e970c5c9b2676bfd964baf79b51dc567748c87.md#allow-header-cert-info
47e970c5c9b2676bfd964baf79b51dc567748c87.md#allow-header-cert-info
https://puppet.com/docs/puppet/6.17/ssl_attributes_extensions.html#puppet_registered_ids

Puppet | Installing and configuring | 152

webserver.conf

The webserver.conf file configures the Puppet Server webserver service. For an overview, see Configuring
Puppet Server on page 142. To configure the mount points for the Puppet administrative API web applications, see
the web-routes.conf on page 152.

Examples

The webserver.conf file looks something like this:

Configure the webserver.
webserver: {
 # Log webserver access to a specific file.
 access-log-config: /etc/puppetlabs/puppetserver/request-logging.xml
 # Require a valid certificate from the client.
 client-auth: need
 # Listen for HTTPS traffic on all available hostnames.
 ssl-host: 0.0.0.0
 # Listen for HTTPS traffic on port 8140.
 ssl-port: 8140
}

These are the main values for managing a Puppet Server installation. For further documentation, including a complete
list of available settings and values, see Configuring the Webserver Service.

By default, Puppet Server is configured to use the correct Puppet primary server and certificate authority (CA)
certificates. If you're using an external CA and providing your own certificates and keys, make sure the SSL-related
parameters in webserver.conf point to the correct file.

webserver: {
 ...
 ssl-cert : /path/to/server.pem
 ssl-key : /path/to/server.key
 ssl-ca-cert : /path/to/ca_bundle.pem
 ssl-cert-chain : /path/to/ca_bundle.pem
 ssl-crl-path : /etc/puppetlabs/puppet/ssl/crl.pem
}

web-routes.conf

The web-routes.conf file configures the Puppet Server web-router-service, which sets mount points for
Puppet Server's web applications. You should not modify these mount points, because Puppet agents rely on Puppet
Server mounting them to specific URLs.

For an overview, see Configuring Puppet Server on page 142. To configure the webserver service, see the
webserver.conf on page 152.

Example

Here is an example of a web-routes.conf file:

Configure the mount points for the web apps.
web-router-service: {
 # These two should not be modified because the Puppet 4 agent expects
 them to
 # be mounted at these specific paths.
 "puppetlabs.services.ca.certificate-authority-service/certificate-
authority-service": "/puppet-ca"
 "puppetlabs.services.master.master-service/master-service": "/puppet"

 # This controls the mount point for the Puppet administration API.
 "puppetlabs.services.puppet-admin.puppet-admin-service/puppet-admin-
service": "/puppet-admin-api"

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/trapperkeeper-webserver-jetty9/blob/master/doc/jetty-config.md

Puppet | Installing and configuring | 153

 # This controls the mount point for the status API
 "puppetlabs.trapperkeeper.services.status.status-service/status-
service": "/status"

 # This controls the mount point for the metrics API
 "puppetlabs.trapperkeeper.services.metrics.metrics-service/metrics-
webservice": "/metrics"
}

global.conf

The global.conf file contains global configuration settings for Puppet Server. For an overview, see Configuring
Puppet Server on page 142.

You shouldn't typically need to make changes to this file. However, you can change the logging-config path
for the logback logging configuration file if necessary. For more information about the logback file, see http://
logback.qos.ch/manual/configuration.html.

Example

global: {
 logging-config: /etc/puppetlabs/puppetserver/logback.xml
}

ca.conf

The ca.conf file configures settings for the Puppet Server Certificate Authority (CA) service. For an overview, see
Configuring Puppet Server on page 142.

Deprecation Note: The authorization-required and client-allowlist settings are
Deprecated features on page 201 as of Puppet Server 2.2 in favor of authorization that is configured in
the auth.conf on page 148 file.

Signing settings

The allow-subject-alt-names setting in the certificate-authority section enables you to sign
certificates with subject alternative names. It is false by default for security reasons but can be enabled if you need
to sign certificates with subject alternative names. Be aware that enabling the setting could allow agent nodes
to impersonate other nodes (including the nodes that already have signed certificates). Consequently, you must
carefully inspect any CSRs with SANs attached. puppet cert sign previously allowed this via a flag, but
puppetserver ca sign requires it to be configured in the config file.

The allow-authorization-extensions setting in the certificate-authority section also enables
you to sign certs with authorization extensions. It is false by default for security reasons, but can be enabled
if you know you need to sign certificates this way. puppet cert sign used to allow this via a flag, but
puppetserver ca sign requires it to be configued in the config file.

Infrastructure CRL settings

Puppet Server is able to create a separate CRL file containing only revocations of Puppet infrastructure nodes. This
behavior is turned off by default. To enable it, set certificate-authority.enable-infra-crl to true.

Status settings (deprecated)

The certificate-status setting in ca.conf provides Deprecated features on page 201 configuration
options for access to the certificate_status and certificate_statuses HTTP endpoints. These
endpoints allow certificates to be signed, revoked, and deleted through HTTP requests, which provides full control
over Puppet's ability to securely authorize access. Therefore, you should always restrict access to ca.conf.

Puppet Enterprise Note: Puppet Enterprise uses these endpoints to provide a console interface for
certificate signing. For more information, see Certificate Status on page 303.

© 2024 Puppet, Inc., a Perforce company

http://logback.qos.ch/manual/configuration.html
http://logback.qos.ch/manual/configuration.html

Puppet | Installing and configuring | 154

The certificate-status setting takes two parameters: authorization-required and client-
allowlist. If authorization-required is set to true or not set, and client-allowlist is set to an
empty list or not set, Puppet Server uses the authorization methods and auth.conf on page 148 format introduced in
Puppet Server 2.2 to control access to the administration API endpoints.

• authorization-required determines whether a client certificate is required to access certificate status
endpoints. If this parameter is set to false, all requests can access this API. If set to true, only the clients
whose certificate names are included in the client-allowlist setting can access the admin API. If this
parameter is not specified but the client-allowlist parameter is, this parameter's value defaults to true.

• client-allowlist contains a list of client certificate names that are whitelisted for access to the certificate
status endpoints. Puppet Server denies access to requests at these endpoints that do not present a valid client
certificate named in this list.

Example (Deprecated)

If you are using the deprecated authorization methods, follow this structure to configure certificate_status
and certificate_statuses endpoint access in ca.conf, whitelisting a client named host1:

certificate-authority: {
 # deprecated in favor of auth.conf
 certificate-status: {
 authorization-required: true
 client-allowlist: [host1]
 }
}

server.conf

The server.conf file configures how Puppet Server handles Deprecated features on page 201 authorization
methods for primary server endpoints. For an overview, see Configuring Puppet Server on page 142.

Deprecation Note: This file contains only the allow-header-cert-info parameter, and is
deprecated as of Puppet Server 2.2 in favor of authorization settings that are configured in the auth.conf on
page 148 file. Because this setting is deprecated, a default server.conf file is no longer included in
the Puppet Server package.

In server.conf, the allow-header-cert-info setting determines whether Puppet Server should use
authorization info from the X-Client-Verify, X-Client-DN, and X-Client-Cert HTTP headers. Its
default value is false.

The allow-header-cert-info setting is used to enable External SSL termination on page 246. If the
setting's value is set to true, Puppet Server will ignore any certificate presented to the Jetty web server, and will
rely on header data to authorize requests. This is very dangerous unless you've secured your network to prevent any
untrusted access to Puppet Server.

When using the allow-header-cert-info setting in server.conf, you can change Puppet's
ssl_client_verify_header parameter to use another header name instead of X-Client-Verify. The
ssl_client_header parameter can rename X-Client-DN. The X-Client-Cert header can't be renamed.

The allow-header-cert-info parameter in server.conf applies only to HTTP endpoints served by the
"primary server" service. The applicable endpoints include those listed in Puppet V3 HTTP API. It does not apply to
the endpoints listed in CA V1 HTTP API or to any puppetserver.conf on page 144 endpoints.

Supported Authorization Workflow

If you instead enable the auth.conf authorization method introduced in Puppet Server 2.2, the value of
the allow-header-cert-info parameter in auth.conf controls how the user's identity is derived for
authorization purposes. In this case, Puppet Server ignores the value of the allow-header-cert-info
parameter in server.conf.

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/trapperkeeper-authorization

Puppet | Installing and configuring | 155

When using the allow-header-cert-info parameter in auth.conf, none of the X-Client headers can
be renamed. Identity must be specified through the X-Client-Verify, X-Client-DN, and X-Client-Cert
headers.

The allow-header-cert-info parameter in auth.conf, applies to all HTTP endpoints that Puppet Server
handles, including those served by the "primary server" service, the CA API, and the Puppet Admin API.

For additional information on the allow-header-cert-info parameter in auth.conf, see auth.conf on page
148 and Configuring the Authorization Service in the trapperkeeper-authorization documentation.

HOCON auth.conf Example

authorization: {
 version: 1
 # allow-header-cert-info: false
 rules: [
 {
 # Allow nodes to retrieve their own catalog
 match-request: {
 path: "^/puppet/v3/catalog/([^/]+)$"
 type: regex
 method: [get, post]
 }
 allow: "$1"
 sort-order: 500
 name: "puppetlabs catalog"
 },
 ...
]
}

product.conf

The product.conf file contains settings that determine how Puppet Server interacts with Puppet, Inc., such as
automatic update checking and analytics data collection.

Settings

The product.conf file doesn't exist in a default Puppet Server installation; to configure its settings, you must
create it in Puppet Server's conf.d directory (located by default at /etc/puppetlabs/puppetserver/
conf.d). This file is a HOCON-formatted configuration file with the following settings:

• Settings in the product section configure update checking and analytics data collection:

• check-for-updates: If set to false, Puppet Server will not automatically check for updates, and will
not send analytics data to Puppet.

If this setting is unspecified (default) or set to true, Puppet Server checks for updates upon start or restart,
and every 24 hours thereafter, by sending the following data to Puppet:

• Product name
• Puppet Server version
• IP address
• Data collection timestamp

Puppet requests this data as one of the many ways we learn about and work with our community. The more we
know about how you use Puppet, the better we can address your needs. No personally identifiable information
is collected, and the data we collect is never used or shared outside of Puppet.

Example

Disabling automatic update checks and corresponding analytic data
 collection

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/trapperkeeper-authorization/blob/master/doc/authorization-config.md#allow-header-cert-info
https://github.com/typesafehub/config/blob/master/HOCON.md

Puppet | Installing and configuring | 156

product: {
 check-for-updates: false
}

logback.xml

Puppet Server’s logging is routed through the Java Virtual Machine's Logback library and configured in an XML file
typically named logback.xml.

Note: This document covers basic, commonly modified options for Puppet Server logs. Logback is a
powerful library with many options. For detailed information on configuring Logback, see the Logback
Configuration Manual.

For advanced logging configuration tips specific to Puppet Server, such as configuring Logstash or
outputting logs in JSON format, see Advanced logging configuration on page 157.

Puppet Server logging

By default, Puppet Server logs messages and errors to /var/log/puppetlabs/puppetserver/
puppetserver.log. The default log level is ‘INFO’, and Puppet Server sends nothing to syslog. You can
change Puppet Server's logging behavior by editing /etc/puppetlabs/puppetserver/logback.xml, and
you can specify a different Logback config file in global.conf.

You can restart the puppetserver service for changes to take effect, or enable configuration scanning to allow
changes to be recognized at runtime.

Puppet Server also relies on Logback to manage, rotate, and archive Server log files. Logback archives Server logs
when they exceed 10MB, and when the total size of all Server logs exceeds 1GB, it automatically deletes the oldest
logs.

Settings
level

To modify Puppet Server's logging level, change the level attribute of the root element. By default, the logging
level is set to info:

<root level="info">

Supported logging levels, in order from most to least information logged, are trace, debug, info, warn, and
error. For instance, to enable debug logging for Puppet Server, change info to debug:

<root level="debug">

Puppet Server profiling data is included at the debug logging level.

You can also change the logging level for JRuby logging from its defaults of error and info by setting the level
attribute of the jruby element. For example, to enable debug logging for JRuby, set the attribute to debug:

<jruby level="debug">

Logging location

You can change the file to which Puppet Server writes its logs in the appender section named F1. By default, the
location is set to /var/log/puppetlabs/puppetserver/puppetserver.log:

...
 <appender name="F1" class="ch.qos.logback.core.FileAppender">
 <file>/var/log/puppetlabs/puppetserver/puppetserver.log</file>
...

© 2024 Puppet, Inc., a Perforce company

http://logback.qos.ch/
http://logback.qos.ch/manual/configuration.html
http://logback.qos.ch/manual/configuration.html
ef4e3bb846af9cd8dc8cb02dc46469725d403648.md#globalconf
ef4e3bb846af9cd8dc8cb02dc46469725d403648.md#scan-and-scanperiod

Puppet | Installing and configuring | 157

To change this to /var/log/puppetserver.log, modify the contents of the file element:

 <file>/var/log/puppetserver.log</file>

The user account that owns the Puppet Server process must have write permissions to the destination path.

scan and scanPeriod

Logback supports noticing and reloading configuration changes without requiring a restart, a feature Logback
calls scanning. To enable this, set the scan and scanPeriod attributes in the <configuration> element of
logback.xml:

<configuration scan="true" scanPeriod="60 seconds">

Due to a bug in Logback, the scanPeriod must be set to a value; setting only scan="true" will not enable
configuration scanning. Scanning is enabled by default in the logback.xml configuration packaged with Puppet
Server.

Note: The HTTP request log does not currently support the scan feature. Adding the scan or scanPeriod settings
to request-logging.xml will have no effect.

HTTP request logging

Puppet Server logs HTTP traffic separately, and this logging is configured in a different Logback configuration file
located at /etc/puppetlabs/puppetserver/request-logging.xml. To specify a different Logback
configuration file, change the access-log-config setting in Puppet Server's webserver.conf on page 152 file.

The HTTP request log uses the same Logback configuration format and settings as the Puppet Server log. It also lets
you configure what it logs using patterns, which follow Logback's PatternLayout format.

Advanced logging configuration

Puppet Server uses the Logback library to handle all of its logging. Logback configuration settings are stored in the
logback.xml on page 156 file, which is located at /etc/puppetlabs/puppetserver/logback.xml by
default.

You can configure Logback to log messages in JSON format, which makes it easy to send them to other logging
backends, such as Logstash.

Configuring Puppet Server for use with Logstash

There are a few steps necessary to setup your Puppet Server logging for use with Logstash. The first step is to modify
your logging configuration so that Puppet Server is logging in a JSON format. After that, you'll configure an external
tool to monitor these JSON files and send the data to Logstash (or another remote logging system).

Configuring Puppet Server to log to JSON

Before you configure Puppet Server to log to JSON, consider the following:

• Do you want to configure Puppet Server to only log to JSON, instead of the default plain-text logging? Or do you
want to have JSON logging in addition to the default plain-text logging?

• Do you want to set up JSON logging only for the main Puppet Server logs (puppetserver.log), or also for
the HTTP access logs (puppetserver-access.log)?

• What kind of log rotation strategy do you want to use for the new JSON log files?

The following examples show how to configure Logback for:

• logging to both JSON and plain-text
• JSON logging both the main logs and the HTTP access logs
• log rotation on the JSON log files

Adjust the example configuration settings to suit your needs.

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/TK-426
http://logback.qos.ch/manual/layouts.html#AccessPatternLayout
http://logback.qos.ch/

Puppet | Installing and configuring | 158

Note: Puppet Server also relies on Logback to manage, rotate, and archive Server log files. Logback
archives Server logs when they exceed 200MB, and when the total size of all Server logs exceeds 1GB, it
automatically deletes the oldest logs.

Adding a JSON version of the main Puppet Server logs

Logback writes logs using components called appenders. The example code below uses RollingFileAppender
to rotate the log files and avoid consuming all of your storage.

1. To configure Puppet Server to log its main logs to a second log file in JSON format, add an appender section like
the following example to your logback.xml file, at the same level in the XML as existing appenders. The order
of the appenders does not matter.

<appender name="JSON"
 class="ch.qos.logback.core.rolling.RollingFileAppender">
 <file>/var/log/puppetlabs/puppetserver/puppetserver.log.json</file>

 <rollingPolicy
 class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
 <fileNamePattern>/var/log/puppetlabs/puppetserver/
puppetserver.log.json.%d{yyyy-MM-dd}</fileNamePattern>
 <maxHistory>5</maxHistory>
 </rollingPolicy>

 <encoder class="net.logstash.logback.encoder.LogstashEncoder"/>
</appender>

2. Activate the appended by adding an appender-ref entry to the <root> section of logback.xml:

<root level="info">
 <appender-ref ref="FILE"/>
 <appender-ref ref="JSON"/>
</root>

3. If you decide you want to log only the JSON format, comment out the other appender-ref entries.

LogstashEncoder has many configuration options, including the ability to modify the list of fields that you want
to include, or give them different field names. For more information, see the Logstash Logback Encoder Docs.

Adding a JSON version of the Puppet Server HTTP Access logs

To add JSON logging for HTTP requests:

1. Add the following Logback appender section to the request-logging.xml file:

{% raw %}
<appender name="JSON"
 class="ch.qos.logback.core.rolling.RollingFileAppender">
 <file>/var/log/puppetlabs/puppetserver/puppetserver-access.log.json</
file>

 <rollingPolicy
 class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
 <fileNamePattern>/var/log/puppetlabs/puppetserver/puppetserver-
access.log.json.%d{yyyy-MM-dd}</fileNamePattern>
 <maxHistory>30</maxHistory>
 </rollingPolicy>

 <encoder
 class="net.logstash.logback.encoder.AccessEventCompositeJsonEncoder">
 <providers>
 <version/>
 <pattern>
 <pattern>
 {

© 2024 Puppet, Inc., a Perforce company

http://logback.qos.ch/manual/appenders.html
https://github.com/logstash/logstash-logback-encoder/blob/master/README.md#loggingevent-fields

Puppet | Installing and configuring | 159

 "@timestamp":"%date{yyyy-MM-dd'T'HH:mm:ss.SSSXXX}",
 "clientip":"%remoteIP",
 "auth":"%user",
 "verb":"%requestMethod",
 "requestprotocol":"%protocol",
 "rawrequest":"%requestURL",
 "response":"#asLong{%statusCode}",
 "bytes":"#asLong{%bytesSent}",
 "total_service_time":"#asLong{%elapsedTime}",
 "request":"http://%header{Host}%requestURI",
 "referrer":"%header{Referer}",
 "agent":"%header{User-agent}",

 "request.host":"%header{Host}",
 "request.accept":"%header{Accept}",
 "request.accept-encoding":"%header{Accept-
Encoding}",
 "request.connection":"%header{Connection}",

 "puppet.client-verify":"%header{X-Client-Verify}",
 "puppet.client-dn":"%header{X-Client-DN}",
 "puppet.client-cert":"%header{X-Client-Cert}",

 "response.content-type":"%responseHeader{Content-
Type}",
 "response.content-length":"%responseHeader{Content-
Length}",
 "response.server":"%responseHeader{Server}",
 "response.connection":"%responseHeader{Connection}"
 }
 </pattern>
 </pattern>
 </providers>
 </encoder>
</appender>
{% endraw %}

2. Add a corresponding appender-ref in the configuration section:

<appender-ref ref="JSON"/>

For more information about options available for the pattern section, see the Logback Logstash Encoder Docs.

Sending the JSON data to Logstash

After configuring Puppet Server to log messages in JSON format, you must also configure it to send the logs to
Logstash (or another external logging system). There are several different ways to approach this:

• Configure Logback to send the data to Logstash directly, from within Puppet Server. See the Logstash-Logback
encoder docs on how to send the logs by TCP or UDP. Note that TCP comes with the risk of bottlenecking Puppet
Server if your Logstash system is busy, and UDP might silently drop log messages.

• Filebeat is a tool from Elastic for shipping log data to Logstash.
• Logstash Forwarder is an earlier tool from Elastic with similar capabilities.

Bootstrap upgrade notes
Potential upgrade issues

Potential breaking issues when upgrading with a modified bootstrap.cfg

If you disabled the certificate authority (CA) on Puppet Server by editing the bootstrap.cfg file file on older
versions of Puppet Server --- for instance, because you have a multi-server configuration with the default CA disabled
on some primary servers, or use an external CA --- be aware that Puppet Server as of version 2.5.0 no longer uses the
bootstrap.cfg file.

© 2024 Puppet, Inc., a Perforce company

https://github.com/logstash/logstash-logback-encoder/blob/master/README.md#accessevent-fields
https://github.com/logstash/logstash-logback-encoder/blob/master/README.md#tcp
https://github.com/logstash/logstash-logback-encoder/blob/master/README.md#udp
https://www.elastic.co/products/beats/filebeat
https://github.com/elastic/logstash-forwarder
https://docs.puppet.com/puppetserver/2.4/external_ca_configuration.html#disabling-the-internal-puppet-ca-service

Puppet | Installing and configuring | 160

Puppet Server 2.5.0 and newer instead create a new configuration file, /etc/puppetlabs/puppetserver/
services.d/ca.cfg, if it doesn't already exist, and this new file enables CA services by default.

To ensure that CA services remain disabled after upgrading, create the /etc/puppetlabs/puppetserver/
services.d/ca.cfg file with contents that disable the CA services before you upgrade to Server 2.5.0. The
puppetserver service restarts after the upgrade if the service is running before the upgrade, and the service restart
also reloads the new ca.cfg file.

Also, back up your primary servers' ssldir (or at least your crl.pem file) before you upgrade to ensure that you
can restore your previous certificates and certificate revocation list, so you can restore them in case any mistakes or
failures to disable the CA services in ca.cfg lead to a server unexpectedly enabling CA services and overwriting
them.

Potential service failures when upgrading with a modified init configuration

If you modified the init configuration file --- for instance, to configure Puppet Server's JVM memory allocation or
Tuning guide on page 257 --- and upgrade Puppet Server 2.5.0 or newer with a package manager, you might see a
warning during the upgrade that the updated package will overwrite the file (/etc/sysconfig/puppetserver
in Red Hat and derivatives, or /etc/default/puppetserver in Debian-based systems).

The changes to the file support the new service bootstrapping behaviors. If you don't accept changes to the file during
the upgrade, the puppetserver service fails and you might see a Service ':PoolManagerService' not
found or similar warning. To resolve the issue, set the BOOTSTRAP_CONFIG setting in the init configuration file
to:

BOOTSTRAP_CONFIG="/etc/puppetlabs/puppetserver/services.d/,/opt/puppetlabs/
server/apps/puppetserver/config/services.d/"

If you modified other settings in the file before upgrading, and then overwrite the file during the upgrade, you might
need to reapply those modifications after the upgrade.

Users of Puppet Server 2.4.x and earlier could modify their bootstrap.cfg file in order to disable the CA on
compile servers and support a multi-server configuration. Upgrades between these older versions have been painful,
however, due to package managers attempting to overwrite this file during upgrades.

This could cause two problems:

1. If users disabled CA services and chose the packaged version during the upgrade, CA services would be re-
enabled on the server after the upgrade, which could break their multi-server setup.

2. If users disabled CA services and chose their version of bootstrap.cfg, and the new version contained
settings for new services that were added to the packaged version of bootstrap.cfg, and in that case, the
server will fail to start.

Puppet Server 2.5.0 takes the first steps toward resolving this problem while maintaining configurability by changing
how service bootstrap configuration works. However, users of Puppet Server 2.4.x and older who disabled the
CA service in bootstrap.cfg must take special precautions when upgrading to 2.5.0 or newer to prevent
the upgrade process from re-enabling the CA service or potentially overwriting files in the ssldir. (Subsequent
releases should no longer be subject to this issue.)

Upgrading to 2.5.0 or newer

Puppet Server 2.5.0 and newer no longer use the bootstrap.cfg file to configure service bootstrapping. Instead,
it reads files within the /etc/puppetlabs/puppetserver/services.d/ directory, which can contain
multiple files --- some designed to be edited by users --- that configure service bootstrapping.

If you edited or manage your bootstrap.cfg file, do the following:

Before you upgrade: ca.cfg

Warning: Back up your primary servers' ssldir (or at least your crl.pem file) before the upgrade.
If a server unexpectedly enables CA services or an emergency rollback overwrites your certificates and
certificate revocation list, you'll need to restore them from backups.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/dirs_ssldir.html
https://docs.puppet.com/puppetserver/2.4/external_ca_configuration.html#disabling-the-internal-puppet-ca-service
https://docs.puppet.com/puppetserver/2.4/external_ca_configuration.html#disabling-the-internal-puppet-ca-service
https://puppet.com/docs/puppet/latest/dirs_ssldir.html

Puppet | Installing and configuring | 161

Puppet Server 2.5 and newer create a new configuration file, /etc/puppetlabs/puppetserver/
services.d/ca.cfg, if it doesn't already exist, and this new file enables CA services by default.

To ensure that CA services remain disabled after upgrading, create the /etc/puppetlabs/puppetserver/
services.d/ca.cfg file with contents that disable the CA services before you upgrade to Server 2.5.0 or newer.
Unlike the bootstrap.cfg file, package managers do not overwrite the new ca.cfg file, allowing future
upgrades to respect settings without attempting to overwrite them.

This example ca.cfg file disables the CA services:

To enable the CA service, leave the following line uncommented
#puppetlabs.services.ca.certificate-authority-service/certificate-authority-
service
To disable the CA service, comment out the above line and uncomment the
 line below
puppetlabs.services.ca.certificate-authority-disabled-service/certificate-
authority-disabled-service

After you upgrade: New bootstrap configuration files

Starting in Puppet Server 2.5.0, the bootstrap.cfg file has been split into multiple configuration files in two
locations:

• /etc/puppetlabs/puppetserver/services.d/: For services that users are expected to edit.
• /opt/puppetlabs/server/apps/puppetserver/config/services.d/: For services users

shouldn't edit.

Any files with a .cfg extension in either of these locations are combined to form the final set of services Puppet
Server will use.

The CA-related configuration settings previously in bootstrap.cfg are set in /etc/puppetlabs/
puppetserver/services.d/ca.cfg. If services added in future versions have user-configurable settings, the
configuration files will be in this directory. When upgrading Puppet Server 2.5.0 and newer with a package manager,
it should not overwrite files already in this directory.

The remaining services are configured in /opt/puppetlabs/server/apps/puppetserver/config/
services.d/bootstrap.cfg. This allows us to create and enforce default configuration files for other services
across upgrades.

Adding file server mount points
Puppet Server includes a file server for transferring static file content to agents. If you need to serve large files that
you don't want to store in source control or distribute with a module, you can make a custom file server mount point
and let Puppet serve those files from another directory.

In Puppet code, you can tell the file server is being used when you see a file resource that has a source =>
puppet:///... attribute specified.

To set up a mount point:

1. Choose a directory on disk for the mount point, make sure Puppet Server can access it, and add your files to the
directory.

2. Edit fileserver.conf on your Puppet Server node, so Puppet knows which directory to associate with the
new mount point.

3. (Optional) If you want to restrict which nodes can access this mount point, adjust access settings in the
auth.conf file.

After the mount point is set up, Puppet cod can reference the files you added to the directory at puppet:///
<MOUNT POINT>/<PATH>.

Mount points in the Puppet URI

Puppet URIs look like this: puppet://<SERVER>/<MOUNT POINT>/<PATH>.

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 162

The <SERVER> is optional, so it common practice to use puppet:/// URIs with three slashes. Usually, there is
no reason to specify the server. For Puppet agent, <SERVER> defaults to the value of the server setting. For Puppet
apply, <SERVER> defaults to a special mock server with a modules mount point.

<MOUNT POINT> is a unique identifier for some collection of files. There are different kinds of mount points:

• Custom mount points correspond to a directory that you specify.
• The task mount point works in a similar way to the modules mount point but for files that live under the

modules tasks directory, rather than the files directory.
• The special modules mount point serves files from the files directory of every module. It behaves as if

someone had copied the files directory from every module into one big directory, renaming each of them
with the name of their module. For example, the files in apache/files/... are available at puppet:///
modules/apache/....

• The special plugins mount point serves files from the lib directory of every module. It behaves as if someone
had copied the contents of every lib directory into one big directory, with no additional namespacing. Puppet
agent uses this mount point when syncing plugins before a run, but there’s no reason to use it in a file resource.

• The special pluginfacts mount point serves files from the facts.d directory of every module to support
external facts. It behaves like the plugins mount point, but with a different source directory.

• The special locales mount point serves files from the locales directory of every module to support
automatic downloading of module translations to agents. It also behaves like the plugins mount point, and also
has a different source directory.

<PATH> is the remainder of the path to the file, starting from the directory (or imaginary directory) that corresponds
to the mount point.

Creating a new mount point in fileserver.conf

The fileserver.conf file uses the following syntax to define mount points:

[<NAME OF MOUNT POINT>]
 path <PATH TO DIRECTORY>
 allow *

In the following example, a file at /etc/puppetlabs/puppet/installer_files/oracle.pkg would be
available in manifests as puppet:///installer_files/oracle.pkg:

[installer_files]
 path /etc/puppetlabs/puppet/installer_files
 allow

Make sure that the puppet user has the right permissions to access that directory and its contents.

Always include the allow * line, because the default behavior is to deny all access. To change access to
a custom mount point, update the rules in auth.conf, as described below. Putting authorization rules in
fileserver.conf is deprecated.

CAUTION: Always restrict write access to mounted directories. The file server follows any symlinks in a
file server mount, including links to files that agent nodes cannot access (such as SSL keys). When following
symlinks, the file server can access any files readable by Puppet Server’s user account.

Controlling access to a custom mount point in auth.conf

By default, any node with a valid certificate can access the files in your new mount point. If a node can fetch a
catalog, it can fetch files. If the node can’t fetch a catalog, it can’t fetch files. This is the same behavior as the
special modules and plugins mount points. If necessary, you can restrict access to a custom mount point in
auth.conf.

Both the location of auth.conf, and the process for editing auth.conf differ depending on whether you're using
the new Puppet Server authentication configuration, or the legacy configuration.

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 163

If you’re using the new configuration, and you've disabled the legacy auth.conf file by setting jruby-
puppet.use-legacy-auth-conf: false, you can add a rule to Puppet Server’s HOCON-format
auth.conf file, located at /etc/puppetlabs/puppetserver/conf.d/auth.conf.

Your new auth rule must meet the following requirements:

• It must match requests to all four of these prefixes:

• /puppet/v3/file_metadata/<MOUNT POINT>

• /puppet/v3/file_metadatas/<MOUNT POINT>

• /puppet/v3/file_content/<MOUNT POINT>

• /puppet/v3/file_contents/<MOUNT POINT>

• Its sort-order must be lower than 500, so that it overrides the default rule for the file server.

For example:

{
 # Allow limited access to files in /etc/puppetlabs/puppet/
installer_files:
 match-request: {
 path: "^/puppet/v3/file_(content|metadata)s?/installer_files"
 type: regex
 }
 allow: "*.dev.example.com"
 sort-order: 400
 name: "dev.example.com large installer files"
},

If you haven’t disabled the legacy auth.conf file, add a rule to /etc/puppetlabs/puppet/auth.conf.

Your new auth rule must meet the following requirements:

• It must match requests to all four of these prefixes:

• /puppet/v3/file_metadata/<MOUNT POINT>

• /puppet/v3/file_metadatas/<MOUNT POINT>

• /puppet/v3/file_content/<MOUNT POINT>

• /puppet/v3/file_contents/<MOUNT POINT>

• It must be located earlier in the auth.conf file than the default /puppet/v3/file rule.

For example:

Allow limited access to files in /etc/puppetlabs/puppet/installer_files:
path ~ ^/file_(metadata|content)s?/installer_files/
auth yes
allow *.dev.example.com
 allow_ip 192.168.100.0/24

Related topics: Module fundamentals, fileserver.conf: Custom fileserver mount points, Puppet Server configuration
files: puppetserver.conf, Puppet Server configuration files: auth.conf.

Checking the values of settings
Puppet settings are highly dynamic, and their values can come from several different places. To see the actual settings
values that a Puppet service uses, run the puppet config print command.

General usage

The puppet config print command loads and evaluates settings, and can imitate any of Puppet’s other
commands and services when doing so. The --section and --environment options let you control how
settings are loaded; for details, see the sections below on imitating different services.

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 164

Note: To ensure that you’re seeing the values Puppet use when running as a service, be sure to use sudo or run the
command as root or Administrator. If you run puppet config print as some other user, Puppet might
not use the system config file.

To see the value of one setting:

sudo puppet config print <SETTING NAME> [--section <CONFIG SECTION>] [--
environment <ENVIRONMENT>]

This displays just the value of <SETTING NAME>.

To see the value of multiple settings:

sudo puppet config print <SETTING 1> <SETTING 2> [...] [--section <CONFIG
 SECTION>] [--environment <ENVIRONMENT>]

This displays name = value pairs for all requested settings.

To see the value of all settings:

sudo puppet config print [--section <CONFIG SECTION>] [--environment
 <ENVIRONMENT>]

This displays name = value pairs for all settings.

Config sections

The --section option specifies which section of puppet.conf to use when finding settings. It is optional, and
defaults to main. Valid sections are:

• main (default) — used by all commands and services
• server — used by the primary Puppet server service and the puppetserver ca command
• agent — used by the Puppet agent service
• user — used by the Puppet apply command and most other commands

As usual, the other sections override the main section if they contain a setting; if they don’t, the value from main is
used, or a default value if the setting isn’t present there.

Environments

The --environment option specifies which environment to use when finding settings. It is optional and defaults
to the value of the environment setting in the user section (usually production, because it’s rare to specify an
environment in user).

You can only specify environments that exist.

This option is primarily useful when looking up settings used by the primary server service, because it’s rare to use
environment config sections for Puppet apply and Puppet agent.

Imitating Puppet server and puppetserver ca

To see the settings the Puppet server service and the puppetserver ca command would use:

• Specify --section server.
• Use the --environment option to specify the environment you want settings for, or let it default to

production.
• Remember to use sudo.
• If your primary Puppet server is managed as a Rack application (for example, with Passenger), check the

config.ru file to make sure it’s using the confdir and vardir that you expect. If it’s using non-standard ones,

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 165

you need to specify them on the command line with the --confdir and --vardir options; otherwise you
might not see the correct values for settings.

To see the effective modulepath used in the dev environment:

sudo puppet config print modulepath --section server --environment dev

This returns something like:

/etc/puppetlabs/code/environments/dev/modules:/etc/puppetlabs/code/modules:/
opt/puppetlabs/puppet/modules

To see whether PuppetDB is configured for exported resources:

sudo puppet config print storeconfigs storeconfigs_backend --section server

This returns something like:

storeconfigs = true
storeconfigs_backend = puppetdb

Imitating Puppet agent

To see the settings the Puppet agent service would use:

• Specify --section agent.
• Remember to use sudo.
• If you are seeing something unexpected, check your Puppet agent init script or cron job to make sure it is using the

standard confdir and vardir, is running as root, and isn’t overriding other settings with command line options. If
it’s doing anything unusual, you might have to set more options for the config print command.

To see whether the agent is configured to use manifest ordering when applying the catalog:

sudo puppet config print ordering --section agent

This returns something like:

manifest

Imitating puppet apply

To see the settings the Puppet apply command would use:

• Specify --section user.
• Remember to use sudo.
• If you are seeing something unexpected, check the cron job or script that is responsible for configuring the

machine with Puppet apply. Make sure it is using the standard confdir and vardir, is running as root, and isn’t
overriding other settings with command line options. If it’s doing anything unusual, you might have to set more
options for the config print command.

To see whether Puppet apply is configured to use reports:

sudo puppet config print report reports --section user

This returns something like:

report = true
reports = store,http

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 166

Editing settings on the command line
Puppet loads most of its settings from the puppet.conf config file. You can edit this file directly, or you can
change individual settings with the puppet config set command.

Use puppet config set for:

• Fast one-off config changes,
• Scriptable config changes in provisioning tools,

If you find yourself changing many settings, edit the puppet.conf file instead, or manage it with a template.

Usage

To assign a new value to a setting, run:

sudo puppet config set <SETTING NAME> <VALUE> --section <CONFIG SECTION>

This declaratively sets the value of <SETTING NAME> to <VALUE> in the specified config section, regardless of
whether the setting already had a value.

Config sections

The --section option specifies which section of puppet.conf to modify. It is optional, and defaults to main.
Valid sections are:

• main (default) — used by all commands and services
• server — used by the primary Puppet server service and the puppetserver ca command
• agent — used by the Puppet agent service
• user — used by the puppet apply command and most other commands

When modifying the system config file, use sudo or run the command as root or Administrator.

Example

Consider the following puppet.conf file:

[main]
certname = agent01.example.com
server = server.example.com
vardir = /var/opt/lib/pe-puppet

[agent]
report = true
graph = true
pluginsync = true

[server]
dns_alt_names = server,server.example.com,puppet,puppet.example.com

If you run the following commands:

sudo puppet config set reports puppetdb --section server
sudo puppet config set ordering manifest

The puppet.conf file now looks like this:

[main]
certname = agent01.example.com
server = server.example.com
vardir = /var/opt/lib/pe-puppet
ordering = manifest

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 167

[agent]
report = true
graph = true
pluginsync = true

[server]
dns_alt_names = server,server.example.com,server,server.example.com
reports = puppetdb

Configuration Reference

NOTE: This page was generated from the Puppet source code on 2022-02-07 10:11:18 -0800

This page is autogenerated; any changes will get overwritten

Configuration settings

• Each of these settings can be specified in puppet.conf or on the command line.
• Puppet Enterprise (PE) and open source Puppet share the configuration settings documented here. However,

PE defaults differ from open source defaults for some settings, such as node_terminus, storeconfigs,
always_retry_plugins, disable18n, environment_timeout (when Code Manager is enabled),
and the Puppet Server JRuby max-active-instances setting. To verify PE configuration defaults, check the
puppet.conf or pe-puppet-server.conf file after installation.

• When using boolean settings on the command line, use --setting and --no-setting instead of --
setting (true|false). (Using --setting false results in "Error: Could not parse application
options: needless argument".)

• Settings can be interpolated as $variables in other settings; $environment is special, in that puppet master
will interpolate each agent node's environment instead of its own.

• Multiple values should be specified as comma-separated lists; multiple directories should be separated with the
system path separator (usually a colon).

• Settings that represent time intervals should be specified in duration format: an integer immediately followed
by one of the units 'y' (years of 365 days), 'd' (days), 'h' (hours), 'm' (minutes), or 's' (seconds). The unit cannot
be combined with other units, and defaults to seconds when omitted. Examples are '3600' which is equivalent to
'1h' (one hour), and '1825d' which is equivalent to '5y' (5 years).

• If you use the splay setting, note that the period that it waits changes each time the Puppet agent is restarted.
• Settings that take a single file or directory can optionally set the owner, group, and mode for their value: rundir

= $vardir/run { owner = puppet, group = puppet, mode = 644 }

• The Puppet executables ignores any setting that isn't relevant to their function.

See the configuration guide for more details.

agent_catalog_run_lockfile

A lock file to indicate that a puppet agent catalog run is currently in progress. The file contains the pid of the process
that holds the lock on the catalog run.

• Default: $statedir/agent_catalog_run.lock

agent_disabled_lockfile

A lock file to indicate that puppet agent runs have been administratively disabled. File contains a JSON object with
state information.

• Default: $statedir/agent_disabled.lock

allow_duplicate_certs

Whether to allow a new certificate request to overwrite an existing certificate request. If true, then the old certificate
must be cleaned using puppetserver ca clean, and the new request signed using puppetserver ca
sign.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/config_about_settings.html

Puppet | Installing and configuring | 168

• Default: false

always_retry_plugins

Affects how we cache attempts to load Puppet resource types and features. If true, then calls to
Puppet.type.<type>? Puppet.feature.<feature>? will always attempt to load the type or feature
(which can be an expensive operation) unless it has already been loaded successfully. This makes it possible for a
single agent run to, e.g., install a package that provides the underlying capabilities for a type or feature, and then
later load that type or feature during the same run (even if the type or feature had been tested earlier and had not been
available).

If this setting is set to false, then types and features will only be checked once, and if they are not available, the
negative result is cached and returned for all subsequent attempts to load the type or feature. This behavior is almost
always appropriate for the server, and can result in a significant performance improvement for types and features that
are checked frequently.

• Default: true

autoflush

Whether log files should always flush to disk.

• Default: true

autosign

Whether (and how) to autosign certificate requests. This setting is only relevant on a Puppet Server acting as a
certificate authority (CA).

Valid values are true (autosigns all certificate requests; not recommended), false (disables autosigning certificates), or
the absolute path to a file.

The file specified in this setting may be either a configuration file or a custom policy executable. Puppet will
automatically determine what it is: If the Puppet user (see the user setting) can execute the file, it will be treated as a
policy executable; otherwise, it will be treated as a config file.

If a custom policy executable is configured, the CA Puppet Server will run it every time it receives a CSR. The
executable will be passed the subject CN of the request as a command line argument, and the contents of the CSR in
PEM format on stdin. It should exit with a status of 0 if the cert should be autosigned and non-zero if the cert should
not be autosigned.

If a certificate request is not autosigned, it will persist for review. An admin user can use the puppetserver ca
sign command to manually sign it, or can delete the request.

For info on autosign configuration files, see the guide to Puppet's config files.

• Default: $confdir/autosign.conf

basemodulepath

The search path for global modules. Should be specified as a list of directories separated by the system path separator
character. (The POSIX path separator is ':', and the Windows path separator is ';'.)

These are the modules that will be used by all environments. Note that the modules directory of the active
environment will have priority over any global directories. For more info, see https://puppet.com/docs/puppet/latest/
environments_about.html

• Default: $codedir/modules:/opt/puppetlabs/puppet/modules

binder_config

The binder configuration file. Puppet reads this file on each request to configure the bindings system. If set to nil (the
default), a $confdir/binder_config.yaml is optionally loaded. If it does not exists, a default configuration is used. If the
setting :binding_config is specified, it must reference a valid and existing yaml file.

• Default: ``

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/config_file_autosign.html
https://puppet.com/docs/puppet/latest/environments_about.html
https://puppet.com/docs/puppet/latest/environments_about.html

Puppet | Installing and configuring | 169

bucketdir

Where FileBucket files are stored.

• Default: $vardir/bucket

ca_fingerprint

The expected fingerprint of the CA certificate. If specified, the agent will compare the CA certificate fingerprint that
it downloads against this value and reject the CA certificate if the values do not match. This only applies during the
first download of the CA certificate.

• Default: ``

ca_name

The name to use the Certificate Authority certificate.

• Default: Puppet CA: $certname

ca_port

The port to use for the certificate authority.

• Default: $serverport

ca_server

The server to use for certificate authority requests. It's a separate server because it cannot and does not need to
horizontally scale.

• Default: $server

ca_ttl

The default TTL for new certificates. This setting can be a time interval in seconds (30 or 30s), minutes (30m), hours
(6h), days (2d), or years (5y).

• Default: 5y

cacert

The CA certificate.

• Default: $cadir/ca_crt.pem

cacrl

The certificate revocation list (CRL) for the CA.

• Default: $cadir/ca_crl.pem

cadir

The root directory for the certificate authority.

• Default: /Users/heston.hoffman/.puppetlabs/etc/puppet/ssl/ca

cakey

The CA private key.

• Default: $cadir/ca_key.pem

capub

The CA public key.

• Default: $cadir/ca_pub.pem

catalog_cache_terminus

How to store cached catalogs. Valid values are 'json', 'msgpack' and 'yaml'. The agent application defaults to 'json'.

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 170

• Default: ``

catalog_terminus

Where to get node catalogs. This is useful to change if, for instance, you'd like to pre-compile catalogs and store them
in memcached or some other easily-accessed store.

• Default: compiler

cert_inventory

The inventory file. This is a text file to which the CA writes a complete listing of all certificates.

• Default: $cadir/inventory.txt

certdir

The certificate directory.

• Default: $ssldir/certs

certificate_revocation

Whether certificate revocation checking should be enabled, and what level of checking should be performed.

When certificate revocation is enabled, Puppet expects the contents of its CRL to be one or more PEM-encoded CRLs
concatenated together. When using a cert bundle, CRLs for all CAs in the chain of trust must be included in the crl
file. The chain should be ordered from least to most authoritative, with the first CRL listed being for the root of the
chain and the last being for the leaf CA.

When certificate_revocation is set to 'true' or 'chain', Puppet ensures that each CA in the chain of trust has not been
revoked by its issuing CA.

When certificate_revocation is set to 'leaf', Puppet verifies certs against the issuing CA's revocation list, but it does
not verify the revocation status of the issuing CA or any CA above it within the chain of trust.

When certificate_revocation is set to 'false', Puppet disables all certificate revocation checking and does not attempt to
download the CRL.

• Default: chain

certname

The name to use when handling certificates. When a node requests a certificate from the CA Puppet Server, it uses the
value of the certname setting as its requested Subject CN.

This is the name used when managing a node's permissions in auth.conf. In most cases, it is also used as the
node's name when matching node definitions and requesting data from an ENC. (This can be changed with the
node_name_value and node_name_fact settings, although you should only do so if you have a compelling
reason.)

A node's certname is available in Puppet manifests as $trusted['certname']. (See Facts and Built-In
Variables for more details.)

• For best compatibility, you should limit the value of certname to only use lowercase letters, numbers, periods,
underscores, and dashes. (That is, it should match /A[a-z0-9._-]+Z/.)

• The special value ca is reserved, and can't be used as the certname for a normal node.

Note: You must set the certname in the main section of the puppet.conf file. Setting it in a different section causes
errors.

Defaults to the node's fully qualified domain name.

• Default: the Host's fully qualified domain name, as determined by Facter

ciphers

The list of ciphersuites for TLS connections initiated by puppet. The default value is chosen to support TLS 1.0 and
up, but can be made more restrictive if needed. The ciphersuites must be specified in OpenSSL format, not IANA.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/config_file_auth.html
https://puppet.com/docs/puppet/latest/lang_node_definitions.html
https://puppet.com/docs/puppet/latest/lang_facts_and_builtin_vars.html
https://puppet.com/docs/puppet/latest/lang_facts_and_builtin_vars.html

Puppet | Installing and configuring | 171

• Default: ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-
ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-
POLY1305:ECDHE-RSA-CHACHA20-POLY1305:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-
AES256-GCM-SHA384:DHE-RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES128-SHA256:ECDHE-
RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES128-SHA:ECDHE-
ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA:ECDHE-
RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:AES128-GCM-
SHA256:AES256-GCM-SHA384:AES128-SHA256:AES256-SHA256

classfile

The file in which puppet agent stores a list of the classes associated with the retrieved configuration. Can be loaded in
the separate puppet executable using the --loadclasses option.

• Default: $statedir/classes.txt

client_datadir

The directory in which serialized data is stored on the client.

• Default: $vardir/client_data

clientbucketdir

Where FileBucket files are stored locally.

• Default: $vardir/clientbucket

clientyamldir

The directory in which client-side YAML data is stored.

• Default: $vardir/client_yaml

code

Code to parse directly. This is essentially only used by puppet, and should only be set if you're writing your own
Puppet executable.

codedir

The main Puppet code directory. The default for this setting is calculated based on the user. If the process is running
as root or the user that Puppet is supposed to run as, it defaults to a system directory, but if it's running as any other
user, it defaults to being in the user's home directory.

• Default: Unix/Linux: /etc/puppetlabs/code -- Windows: C:\ProgramData\PuppetLabs
\code -- Non-root user: ~/.puppetlabs/etc/code

color

Whether to use colors when logging to the console. Valid values are ansi (equivalent to true), html, and false,
which produces no color.

• Default: ansi

confdir

The main Puppet configuration directory. The default for this setting is calculated based on the user. If the process is
running as root or the user that Puppet is supposed to run as, it defaults to a system directory, but if it's running as any
other user, it defaults to being in the user's home directory.

• Default: Unix/Linux: /etc/puppetlabs/puppet -- Windows: C:\ProgramData
\PuppetLabs\puppet\etc -- Non-root user: ~/.puppetlabs/etc/puppet

config

The configuration file for the current puppet application.

• Default: $confdir/${config_file_name}

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 172

config_file_name

The name of the puppet config file.

• Default: puppet.conf

config_version

How to determine the configuration version. By default, it will be the time that the configuration is parsed, but you
can provide a shell script to override how the version is determined. The output of this script will be added to every
log message in the reports, allowing you to correlate changes on your hosts to the source version on the server.

Setting a global value for config_version in puppet.conf is not allowed (but it can be overridden from the
commandline). Please set a per-environment value in environment.conf instead. For more info, see https://
puppet.com/docs/puppet/latest/environments_about.html

configprint

Prints the value of a specific configuration setting. If the name of a setting is provided for this, then the value is
printed and puppet exits. Comma-separate multiple values. For a list of all values, specify 'all'. This setting is
deprecated, the 'puppet config' command replaces this functionality.

crl_refresh_interval

How often the Puppet agent refreshes its local CRL. By default the CRL is only downloaded once, and never
refreshed. If a duration is specified, then the agent will refresh its CRL whenever it next runs and the elapsed time
since the CRL was last refreshed exceeds the duration.

In general, the duration should be greater than the runinterval. Setting it to an equal or lesser value will cause the
CRL to be refreshed on every run.

If the agent downloads a new CRL, the agent will use it for subsequent network requests. If the refresh request fails or
if the CRL is unchanged on the server, then the agent run will continue using the local CRL it already has.This setting
can be a time interval in seconds (30 or 30s), minutes (30m), hours (6h), days (2d), or years (5y).

• Default: ``

csr_attributes

An optional file containing custom attributes to add to certificate signing requests (CSRs). You should ensure that
this file does not exist on your CA Puppet Server; if it does, unwanted certificate extensions may leak into certificates
created with the puppetserver ca generate command.

If present, this file must be a YAML hash containing a custom_attributes key and/or an
extension_requests key. The value of each key must be a hash, where each key is a valid OID and each value
is an object that can be cast to a string.

Custom attributes can be used by the CA when deciding whether to sign the certificate, but are then discarded.
Attribute OIDs can be any OID value except the standard CSR attributes (i.e. attributes described in RFC 2985
section 5.4). This is useful for embedding a pre-shared key for autosigning policy executables (see the autosign
setting), often by using the 1.2.840.113549.1.9.7 ("challenge password") OID.

Extension requests will be permanently embedded in the final certificate. Extension OIDs must be in the
"ppRegCertExt" (1.3.6.1.4.1.34380.1.1), "ppPrivCertExt" (1.3.6.1.4.1.34380.1.2), or
"ppAuthCertExt" (1.3.6.1.4.1.34380.1.3) OID arcs. The ppRegCertExt arc is reserved for four of the
most common pieces of data to embed: pp_uuid (.1), pp_instance_id (.2), pp_image_name (.3), and
pp_preshared_key (.4) --- in the YAML file, these can be referred to by their short descriptive names instead
of their full OID. The ppPrivCertExt arc is unregulated, and can be used for site-specific extensions. The ppAuthCert
arc is reserved for two pieces of data to embed: pp_authorization (.1) and pp_auth_role (.13). As with
ppRegCertExt, in the YAML file, these can be referred to by their short descriptive name instead of their full OID.

• Default: $confdir/csr_attributes.yaml

csrdir

Where the CA stores certificate requests.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/environments_about.html
https://puppet.com/docs/puppet/latest/environments_about.html

Puppet | Installing and configuring | 173

• Default: $cadir/requests

daemonize

Whether to send the process into the background. This defaults to true on POSIX systems, and to false on Windows
(where Puppet currently cannot daemonize).

• Default: true

data_binding_terminus

This setting has been deprecated. Use of any value other than 'hiera' should instead be configured in a version 5
hiera.yaml. Until this setting is removed, it controls which data binding terminus to use for global automatic data
binding (across all environments). By default this value is 'hiera'. A value of 'none' turns off the global binding.

• Default: hiera

default_file_terminus

The default source for files if no server is given in a uri, e.g. puppet:///file. The default of rest causes the file to be
retrieved using the server setting. When running apply the default is file_server, causing requests to be
filled locally.

• Default: rest

default_manifest

The default main manifest for directory environments. Any environment that doesn't set the manifest setting in its
environment.conf file will use this manifest.

This setting's value can be an absolute or relative path. An absolute path will make all environments default to the
same main manifest; a relative path will allow each environment to use its own manifest, and Puppet will resolve the
path relative to each environment's main directory.

In either case, the path can point to a single file or to a directory of manifests to be evaluated in alphabetical order.

• Default: ./manifests

default_schedules

Boolean; whether to generate the default schedule resources. Setting this to false is useful for keeping external report
processors clean of skipped schedule resources.

• Default: true

deviceconfdir

The root directory of devices' $confdir.

• Default: $confdir/devices

deviceconfig

Path to the device config file for puppet device.

• Default: $confdir/device.conf

devicedir

The root directory of devices' $vardir.

• Default: $vardir/devices

diff

Which diff command to use when printing differences between files. This setting has no default value on Windows,
as standard diff is not available, but Puppet can use many third-party diff tools.

• Default: diff

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 174

diff_args

Which arguments to pass to the diff command when printing differences between files. The command to use can be
chosen with the diff setting.

• Default: -u

digest_algorithm

Which digest algorithm to use for file resources and the filebucket. Valid values are md5, sha256, sha384, sha512,
sha224. Default is md5.

• Default: md5

disable_i18n

If true, turns off all translations of Puppet and module log messages, which affects error, warning, and info log
messages, as well as any translations in the report and CLI.

• Default: false

disable_per_environment_manifest

Whether to disallow an environment-specific main manifest. When set to true, Puppet will use the manifest
specified in the default_manifest setting for all environments. If an environment specifies a different main
manifest in its environment.conf file, catalog requests for that environment will fail with an error.

This setting requires default_manifest to be set to an absolute path.

• Default: false

disable_warnings

A comma-separated list of warning types to suppress. If large numbers of warnings are making Puppet's logs too large
or difficult to use, you can temporarily silence them with this setting.

If you are preparing to upgrade Puppet to a new major version, you should re-enable all warnings for a while.

Valid values for this setting are:

• deprecations --- disables deprecation warnings.
• undefined_variables --- disables warnings about non existing variables.
• undefined_resources --- disables warnings about non existing resources.

• Default: []

dns_alt_names

A comma-separated list of alternate DNS names for Puppet Server. These are extra hostnames (in addition to its
certname) that the server is allowed to use when serving agents. Puppet checks this setting when automatically
creating a certificate for Puppet agent or Puppet Server. These can be either IP or DNS, and the type should be
specified and followed with a colon. Untyped inputs will default to DNS.

In order to handle agent requests at a given hostname (like "puppet.example.com"), Puppet Server needs a certificate
that proves it's allowed to use that name; if a server shows a certificate that doesn't include its hostname, Puppet
agents will refuse to trust it. If you use a single hostname for Puppet traffic but load-balance it to multiple Puppet
Servers, each of those servers needs to include the official hostname in its list of extra names.

Note: The list of alternate names is locked in when the server's certificate is signed. If you need to change the list
later, you can't just change this setting; you also need to regenerate the certificate. For more information on that
process, see the cert regen docs.

To see all the alternate names your servers are using, log into your CA server and run puppetserver ca list
--all, then check the output for (alt names: ...). Most agent nodes should NOT have alternate names; the
only certs that should have them are Puppet Server nodes that you want other agents to trust.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/ssl_regenerate_certificates.html

Puppet | Installing and configuring | 175

document_all

Whether to document all resources when using puppet doc to generate manifest documentation.

• Default: false

environment

The environment in which Puppet is running. For clients, such as puppet agent, this determines the environment
itself, which Puppet uses to find modules and much more. For servers, such as puppet server, this provides the
default environment for nodes that Puppet knows nothing about.

When defining an environment in the [agent] section, this refers to the environment that the agent requests from
the primary server. The environment doesn't have to exist on the local filesystem because the agent fetches it from the
primary server. This definition is used when running puppet agent.

When defined in the [user] section, the environment refers to the path that Puppet uses to search for code and
modules related to its execution. This requires the environment to exist locally on the filesystem where puppet is
being executed. Puppet subcommands, including puppet module and puppet apply, use this definition.

Given that the context and effects vary depending on the config section in which the environment setting is
defined, do not set it globally.

• Default: production

environment_data_provider

The name of a registered environment data provider used when obtaining environment specific data. The three built
in and registered providers are 'none' (no data), 'function' (data obtained by calling the function 'environment::data()')
and 'hiera' (data obtained using a data provider configured using a hiera.yaml file in root of the environment). Other
environment data providers may be registered in modules on the module path. For such custom data providers see the
respective module documentation. This setting is deprecated.

• Default: ``

environment_timeout

How long the Puppet server should cache data it loads from an environment.

A value of 0 will disable caching. This setting can also be set to unlimited, which will cache environments
until the server is restarted or told to refresh the cache. All other values will result in Puppet server evicting expired
environments. The expiration time is computed based on either when the environment was created or last accessed,
see environment_timeout_mode.

You should change this setting once your Puppet deployment is doing non-trivial work. We chose the default value
of 0 because it lets new users update their code without any extra steps, but it lowers the performance of your Puppet
server. We recommend either:

• Setting this to unlimited and explicitly refreshing your Puppet server as part of your code deployment process.
• Setting this to a number that will keep your most actively used environments cached, but allow testing

environments to fall out of the cache and reduce memory usage. A value of 3 minutes (3m) is a reasonable value.
This option requires setting environment_timeout_mode to from_last_used.

Once you set environment_timeout to a non-zero value, you need to tell Puppet server to read new code from
disk using the environment-cache API endpoint after you deploy new code. See the docs for the Puppet Server
administrative API.

• Default: 0

environment_timeout_mode

How Puppet interprets the environment_timeout setting when environment_timeout is neither 0
nor unlimited. If set to from_created, then the environment will be evicted environment_timeout
seconds from when it was created. If set to from_last_used then the environment will be evicted
environment_timeout seconds from when it was last used.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/config_file_main.html#config-sections
https://puppet.com/docs/puppetserver/latest/admin-api/v1/environment-cache.html

Puppet | Installing and configuring | 176

• Default: from_created

environmentpath

A search path for directory environments, as a list of directories separated by the system path separator character.
(The POSIX path separator is ':', and the Windows path separator is ';'.)

This setting must have a value set to enable directory environments. The recommended value is $codedir/
environments. For more details, see https://puppet.com/docs/puppet/latest/environments_about.html

• Default: $codedir/environments

evaltrace

Whether each resource should log when it is being evaluated. This allows you to interactively see exactly what is
being done.

• Default: false

external_nodes

The external node classifier (ENC) script to use for node data. Puppet combines this data with the main manifest to
produce node catalogs.

To enable this setting, set the node_terminus setting to exec.

This setting's value must be the path to an executable command that can produce node information. The command
must:

• Take the name of a node as a command-line argument.
• Return a YAML hash with up to three keys:

• classes --- A list of classes, as an array or hash.
• environment --- A string.
• parameters --- A list of top-scope variables to set, as a hash.

• For unknown nodes, exit with a non-zero exit code.

Generally, an ENC script makes requests to an external data source.

For more info, see the ENC documentation.

• Default: none

facterng

Whether to enable a pre-Facter 4.0 release of Facter (distributed as the "facter-ng" gem). This is not necessary if
Facter 3.x or later is installed. This setting is still experimental.

• Default: false

factpath

Where Puppet should look for facts. Multiple directories should be separated by the system path separator character.
(The POSIX path separator is ':', and the Windows path separator is ';'.)

• Default: $vardir/lib/facter:$vardir/facts

facts_terminus

The node facts terminus.

• Default: facter

fileserverconfig

Where the fileserver configuration is stored.

• Default: $confdir/fileserver.conf

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/environments_about.html
https://puppet.com/docs/puppet/latest/nodes_external.html

Puppet | Installing and configuring | 177

filetimeout

The minimum time to wait between checking for updates in configuration files. This timeout determines how
quickly Puppet checks whether a file (such as manifests or puppet.conf) has changed on disk. The default will
change in a future release to be 'unlimited', requiring a reload of the Puppet service to pick up changes to its internal
configuration. Currently we do not accept a value of 'unlimited'. To reparse files within an environment in Puppet
Server please use the environment_cache endpoint

• Default: 15s

forge_authorization

The authorization key to connect to the Puppet Forge. Leave blank for unauthorized or license based connections

• Default: ``

freeze_main

Freezes the 'main' class, disallowing any code to be added to it. This essentially means that you can't have any code
outside of a node, class, or definition other than in the site manifest.

• Default: false

func3x_check

Causes validation of loaded legacy Ruby functions (3x API) to raise errors about illegal constructs that could cause
harm or that simply does not work. This flag is on by default. This flag is made available so that the validation can be
turned off in case the method of validation is faulty - if encountered, please file a bug report.

• Default: true

future_features

Whether or not to enable all features currently being developed for future major releases of Puppet. Should be used
with caution, as in development features are experimental and can have unexpected effects.

• Default: false

genconfig

When true, causes Puppet applications to print an example config file to stdout and exit. The example will include
descriptions of each setting, and the current (or default) value of each setting, incorporating any settings overridden
on the CLI (with the exception of genconfig itself). This setting only makes sense when specified on the command
line as --genconfig.

• Default: false

genmanifest

Whether to just print a manifest to stdout and exit. Only makes sense when specified on the command line as --
genmanifest. Takes into account arguments specified on the CLI.

• Default: false

graph

Whether to create .dot graph files, which let you visualize the dependency and containment relationships in Puppet's
catalog. You can load and view these files with tools like OmniGraffle (OS X) or graphviz (multi-platform).

Graph files are created when applying a catalog, so this setting should be used on nodes running puppet agent or
puppet apply.

The graphdir setting determines where Puppet will save graphs. Note that we don't save graphs for historical runs;
Puppet will replace the previous .dot files with new ones every time it applies a catalog.

See your graphing software's documentation for details on opening .dot files. If you're using GraphViz's dot
command, you can do a quick PNG render with dot -Tpng <DOT FILE> -o <OUTPUT FILE>.

• Default: false

© 2024 Puppet, Inc., a Perforce company

http://www.omnigroup.com/applications/omnigraffle/
http://www.graphviz.org/

Puppet | Installing and configuring | 178

graphdir

Where to save .dot-format graphs (when the graph setting is enabled).

• Default: $statedir/graphs

group

The group Puppet Server will run as. Used to ensure the agent side processes (agent, apply, etc) create files and
directories readable by Puppet Server when necessary.

• Default: puppet

hiera_config

The hiera configuration file. Puppet only reads this file on startup, so you must restart the puppet server every time
you edit it.

• Default: $confdir/hiera.yaml. However, for backwards compatibility, if a file
exists at $codedir/hiera.yaml, Puppet uses that instead.

hostcert

Where individual hosts store and look for their certificates.

• Default: $certdir/$certname.pem

hostcrl

Where the host's certificate revocation list can be found. This is distinct from the certificate authority's CRL.

• Default: $ssldir/crl.pem

hostcsr

This setting is deprecated.

• Default: $ssldir/csr_$certname.pem

hostprivkey

Where individual hosts store and look for their private key.

• Default: $privatekeydir/$certname.pem

hostpubkey

Where individual hosts store and look for their public key.

• Default: $publickeydir/$certname.pem

http_connect_timeout

The maximum amount of time to wait when establishing an HTTP connection. The default value is 2 minutes. This
setting can be a time interval in seconds (30 or 30s), minutes (30m), hours (6h), days (2d), or years (5y).

• Default: 2m

http_debug

Whether to write HTTP request and responses to stderr. This should never be used in a production environment.

• Default: false

http_extra_headers

The list of extra headers that will be sent with http requests to the primary server. The header definition consists of a
name and a value separated by a colon.

• Default: []

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 179

http_keepalive_timeout

The maximum amount of time a persistent HTTP connection can remain idle in the connection pool, before
it is closed. This timeout should be shorter than the keepalive timeout used on the HTTP server, e.g. Apache
KeepAliveTimeout directive. This setting can be a time interval in seconds (30 or 30s), minutes (30m), hours (6h),
days (2d), or years (5y).

• Default: 4s

http_proxy_host

The HTTP proxy host to use for outgoing connections. The proxy will be bypassed if the server's hostname matches
the NO_PROXY environment variable or no_proxy setting. Note: You may need to use a FQDN for the server
hostname when using a proxy. Environment variable http_proxy or HTTP_PROXY will override this value.

• Default: none

http_proxy_password

The password for the user of an authenticated HTTP proxy. Requires the http_proxy_user setting.

Note that passwords must be valid when used as part of a URL. If a password contains any characters with special
meanings in URLs (as specified by RFC 3986 section 2.2), they must be URL-encoded. (For example, # would
become %23.)

• Default: none

http_proxy_port

The HTTP proxy port to use for outgoing connections

• Default: 3128

http_proxy_user

The user name for an authenticated HTTP proxy. Requires the http_proxy_host setting.

• Default: none

http_read_timeout

The time to wait for data to be read from an HTTP connection. If nothing is read after the elapsed interval then the
connection will be closed. The default value is 10 minutes. This setting can be a time interval in seconds (30 or 30s),
minutes (30m), hours (6h), days (2d), or years (5y).

• Default: 10m

http_user_agent

The HTTP User-Agent string to send when making network requests.

• Default: Puppet/6.26.0 Ruby/2.6.3-p62 (x86_64-darwin19)

ignore_plugin_errors

Whether the puppet run should ignore errors during pluginsync. If the setting is false and there are errors during
pluginsync, then the agent will abort the run and submit a report containing information about the failed run.

• Default: true

ignoremissingtypes

Skip searching for classes and definitions that were missing during a prior compilation. The list of missing objects is
maintained per-environment and persists until the environment is cleared or the primary server is restarted.

• Default: false

ignoreschedules

Boolean; whether puppet agent should ignore schedules. This is useful for initial puppet agent runs.

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 180

• Default: false

key_type

The type of private key. Valid values are rsa and ec. Default is rsa.

• Default: rsa

keylength

The bit length of keys.

• Default: 4096

lastrunfile

Where puppet agent stores the last run report summary in yaml format.

• Default: $statedir/last_run_summary.yaml

lastrunreport

Where Puppet Agent stores the last run report, by default, in yaml format. The format of the report can be changed
by setting the cache key of the report terminus in the routes.yaml file. To avoid mismatches between content and
file extension, this setting needs to be manually updated to reflect the terminus changes.

• Default: $statedir/last_run_report.yaml

ldapattrs

The LDAP attributes to include when querying LDAP for nodes. All returned attributes are set as variables in the top-
level scope. Multiple values should be comma-separated. The value 'all' returns all attributes.

• Default: all

ldapbase

The search base for LDAP searches. It's impossible to provide a meaningful default here, although the LDAP libraries
might have one already set. Generally, it should be the 'ou=Hosts' branch under your main directory.

ldapclassattrs

The LDAP attributes to use to define Puppet classes. Values should be comma-separated.

• Default: puppetclass

ldapparentattr

The attribute to use to define the parent node.

• Default: parentnode

ldappassword

The password to use to connect to LDAP.

ldapport

The LDAP port.

• Default: 389

ldapserver

The LDAP server.

• Default: ldap

ldapssl

Whether SSL should be used when searching for nodes. Defaults to false because SSL usually requires certificates to
be set up on the client side.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/config_file_routes.html

Puppet | Installing and configuring | 181

• Default: false

ldapstackedattrs

The LDAP attributes that should be stacked to arrays by adding the values in all hierarchy elements of the tree.
Values should be comma-separated.

• Default: puppetvar

ldapstring

The search string used to find an LDAP node.

• Default: (&(objectclass=puppetClient)(cn=%s))

ldaptls

Whether TLS should be used when searching for nodes. Defaults to false because TLS usually requires certificates to
be set up on the client side.

• Default: false

ldapuser

The user to use to connect to LDAP. Must be specified as a full DN.

libdir

An extra search path for Puppet. This is only useful for those files that Puppet will load on demand, and is only
guaranteed to work for those cases. In fact, the autoload mechanism is responsible for making sure this directory is in
Ruby's search path

• Default: $vardir/lib

localcacert

Where each client stores the CA certificate.

• Default: $certdir/ca.pem

localedest

Where Puppet should store translation files that it pulls down from the central server.

• Default: $vardir/locales

localesource

From where to retrieve translation files. The standard Puppet file type is used for retrieval, so anything that is a
valid file source can be used here.

• Default: puppet:///locales

location_trusted

This will allow sending the name + password and the cookie header to all hosts that puppet may redirect to. This may
or may not introduce a security breach if puppet redirects you to a site to which you'll send your authentication info
and cookies.

• Default: false

log_level

Default logging level for messages from Puppet. Allowed values are:

• debug
• info
• notice
• warning
• err

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 182

• alert
• emerg
• crit

• Default: notice

logdest

Where to send log messages. Choose between 'syslog' (the POSIX syslog service), 'eventlog' (the Windows Event
Log), 'console', or the path to a log file. Multiple destinations can be set using a comma separated list (eg: /path/
file1,console,/path/file2)

• Default: ``

logdir

The directory in which to store log files

• Default: Unix/Linux: /var/log/puppetlabs/puppet -- Windows: C:\ProgramData
\PuppetLabs\puppet\var\log -- Non-root user: ~/.puppetlabs/var/log

manage_internal_file_permissions

Whether Puppet should manage the owner, group, and mode of files it uses internally. Note: For Windows agents, the
default is false for versions 4.10.13 and greater, versions 5.5.6 and greater, and versions 6.0 and greater.

• Default: true

manifest

The entry-point manifest for the primary server. This can be one file or a directory of manifests to be evaluated in
alphabetical order. Puppet manages this path as a directory if one exists or if the path ends with a / or .

Setting a global value for manifest in puppet.conf is not allowed (but it can be overridden from the commandline).
Please use directory environments instead. If you need to use something other than the environment's manifests
directory as the main manifest, you can set manifest in environment.conf. For more info, see https://puppet.com/
docs/puppet/latest/environments_about.html

• Default: ``

masterport

The default port puppet subcommands use to communicate with Puppet Server. (eg puppet facts upload,
puppet agent). May be overridden by more specific settings (see ca_port, report_port).

• Default: 8140

max_deprecations

Sets the max number of logged/displayed parser validation deprecation warnings in case multiple deprecation
warnings have been detected. A value of 0 blocks the logging of deprecation warnings. The count is per manifest.

• Default: 10

max_errors

Sets the max number of logged/displayed parser validation errors in case multiple errors have been detected. A value
of 0 is the same as a value of 1; a minimum of one error is always raised. The count is per manifest.

• Default: 10

max_warnings

Sets the max number of logged/displayed parser validation warnings in case multiple warnings have been detected. A
value of 0 blocks logging of warnings. The count is per manifest.

• Default: 10

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/environments_about.html
https://puppet.com/docs/puppet/latest/environments_about.html

Puppet | Installing and configuring | 183

maximum_uid

The maximum allowed UID. Some platforms use negative UIDs but then ship with tools that do not know how to
handle signed ints, so the UIDs show up as huge numbers that can then not be fed back into the system. This is a
hackish way to fail in a slightly more useful way when that happens.

• Default: 4294967290

maxwaitforcert

The maximum amount of time the Puppet agent should wait for its certificate request to be signed. A value of
unlimited will cause puppet agent to ask for a signed certificate indefinitely. This setting can be a time interval in
seconds (30 or 30s), minutes (30m), hours (6h), days (2d), or years (5y).

• Default: unlimited

maxwaitforlock

The maximum amount of time the puppet agent should wait for an already running puppet agent to finish before
starting a new one. This is set by default to 1 minute. A value of unlimited will cause puppet agent to wait
indefinitely. This setting can be a time interval in seconds (30 or 30s), minutes (30m), hours (6h), days (2d), or years
(5y).

• Default: 1m

merge_dependency_warnings

Whether to merge class-level dependency failure warnings.

When a class has a failed dependency, every resource in the class generates a notice level message about the
dependency failure, and a warning level message about skipping the resource.

If true, all messages caused by a class dependency failure are merged into one message associated with the class.

• Default: false

mkusers

Whether to create the necessary user and group that puppet agent will run as.

• Default: false

module_groups

Extra module groups to request from the Puppet Forge. This is an internal setting, and users should never change it.

• Default: ``

module_repository

The module repository

• Default: https://forgeapi.puppet.com

module_working_dir

The directory into which module tool data is stored

• Default: $vardir/puppet-module

modulepath

The search path for modules, as a list of directories separated by the system path separator character. (The POSIX
path separator is ':', and the Windows path separator is ';'.)

Setting a global value for modulepath in puppet.conf is not allowed (but it can be overridden from the
commandline). Please use directory environments instead. If you need to use something other than the default
modulepath of <ACTIVE ENVIRONMENT'S MODULES DIR>:$basemodulepath, you can set modulepath
in environment.conf. For more info, see https://puppet.com/docs/puppet/latest/environments_about.html

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/environments_about.html

Puppet | Installing and configuring | 184

name

The name of the application, if we are running as one. The default is essentially $0 without the path or .rb.

• Default: ``

named_curve

The short name for the EC curve used to generate the EC private key. Valid values must be one of the curves in
OpenSSL::PKey::EC.builtin_curves. Default is prime256v1.

• Default: prime256v1

no_proxy

List of host or domain names that should not go through http_proxy_host. Environment variable no_proxy
or NO_PROXY will override this value. Names can be specified as an FQDN host.example.com, wildcard
*.example.com, dotted domain .example.com, or suffix example.com.

• Default: localhost, 127.0.0.1

node_cache_terminus

How to store cached nodes. Valid values are (none), 'json', 'msgpack', or 'yaml'.

• Default: ``

node_name

How the puppet master determines the client's identity and sets the 'hostname', 'fqdn' and 'domain' facts for use in the
manifest, in particular for determining which 'node' statement applies to the client. Possible values are 'cert' (use the
subject's CN in the client's certificate) and 'facter' (use the hostname that the client reported in its facts).

This setting is deprecated, please use explicit fact matching for classification.

• Default: cert

node_name_fact

The fact name used to determine the node name used for all requests the agent makes to the primary server.
WARNING: This setting is mutually exclusive with node_name_value. Changing this setting also requires changes
to the default auth.conf configuration on the Puppet Master. Please see http://links.puppet.com/node_name_fact for
more information.

node_name_value

The explicit value used for the node name for all requests the agent makes to the primary server. WARNING:
This setting is mutually exclusive with node_name_fact. Changing this setting also requires changes to the default
auth.conf configuration on the Puppet Master. Please see http://links.puppet.com/node_name_value for more
information.

• Default: $certname

node_terminus

Which node data plugin to use when compiling node catalogs.

When Puppet compiles a catalog, it combines two primary sources of info: the main manifest, and a node data plugin
(often called a "node terminus," for historical reasons). Node data plugins provide three things for a given node name:

1. A list of classes to add to that node's catalog (and, optionally, values for their parameters).
2. Which Puppet environment the node should use.
3. A list of additional top-scope variables to set.

The three main node data plugins are:

• plain --- Returns no data, so that the main manifest controls all node configuration.

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 185

• exec --- Uses an external node classifier (ENC), configured by the external_nodes setting. This lets you
pull a list of Puppet classes from any external system, using a small glue script to perform the request and format
the result as YAML.

• classifier (formerly console) --- Specific to Puppet Enterprise. Uses the PE console for node data."

• Default: plain

noop

Whether to apply catalogs in noop mode, which allows Puppet to partially simulate a normal run. This setting affects
puppet agent and puppet apply.

When running in noop mode, Puppet will check whether each resource is in sync, like it does when running normally.
However, if a resource attribute is not in the desired state (as declared in the catalog), Puppet will take no action,
and will instead report the changes it would have made. These simulated changes will appear in the report sent to the
primary Puppet server, or be shown on the console if running puppet agent or puppet apply in the foreground. The
simulated changes will not send refresh events to any subscribing or notified resources, although Puppet will log that
a refresh event would have been sent.

Important note: The noop metaparameter allows you to apply individual resources in noop mode, and will override
the global value of the noop setting. This means a resource with noop => false will be changed if necessary,
even when running puppet agent with noop = true or --noop. (Conversely, a resource with noop => true
will only be simulated, even when noop mode is globally disabled.)

• Default: false

onetime

Perform one configuration run and exit, rather than spawning a long-running daemon. This is useful for interactively
running puppet agent, or running puppet agent from cron.

• Default: false

passfile

Where puppet agent stores the password for its private key. Generally unused.

• Default: $privatedir/password

path

The shell search path. Defaults to whatever is inherited from the parent process.

This setting can only be set in the [main] section of puppet.conf; it cannot be set in [server], [agent], or an
environment config section.

• Default: none

pidfile

The file containing the PID of a running process. This file is intended to be used by service management frameworks
and monitoring systems to determine if a puppet process is still in the process table.

• Default: $rundir/${run_mode}.pid

plugindest

Where Puppet should store plugins that it pulls down from the central server.

• Default: $libdir

pluginfactdest

Where Puppet should store external facts that are being handled by pluginsync

• Default: $vardir/facts.d

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/nodes_external.html
https://puppet.com/docs/puppet/latest/metaparameter.html#noop

Puppet | Installing and configuring | 186

pluginfactsource

Where to retrieve external facts for pluginsync

• Default: puppet:///pluginfacts

pluginsignore

What files to ignore when pulling down plugins.

• Default: .svn CVS .git .hg

pluginsource

From where to retrieve plugins. The standard Puppet file type is used for retrieval, so anything that is a valid file
source can be used here.

• Default: puppet:///plugins

pluginsync

Whether plugins should be synced with the central server. This setting is deprecated.

• Default: true

postrun_command

A command to run after every agent run. If this command returns a non-zero return code, the entire Puppet run will be
considered to have failed, even though it might have performed work during the normal run.

preferred_serialization_format

The preferred means of serializing ruby instances for passing over the wire. This won't guarantee that all instances
will be serialized using this method, since not all classes can be guaranteed to support this format, but it will be used
for all classes that support it.

• Default: json

prerun_command

A command to run before every agent run. If this command returns a non-zero return code, the entire Puppet run will
fail.

preview_outputdir

The directory where catalog previews per node are generated.

• Default: $vardir/preview

priority

The scheduling priority of the process. Valid values are 'high', 'normal', 'low', or 'idle', which are mapped to platform-
specific values. The priority can also be specified as an integer value and will be passed as is, e.g. -5. Puppet must be
running as a privileged user in order to increase scheduling priority.

• Default: ``

privatedir

Where the client stores private certificate information.

• Default: $ssldir/private

privatekeydir

The private key directory.

• Default: $ssldir/private_keys

profile

Whether to enable experimental performance profiling

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 187

• Default: false

publickeydir

The public key directory.

• Default: $ssldir/public_keys

puppet_trace

Whether to print the Puppet stack trace on some errors. This is a noop if trace is also set.

• Default: false

puppetdlog

The fallback log file. This is only used when the --logdest option is not specified AND Puppet is running on an
operating system where both the POSIX syslog service and the Windows Event Log are unavailable. (Currently, no
supported operating systems match that description.)

Despite the name, both puppet agent and puppet server will use this file as the fallback logging destination.

For control over logging destinations, see the --logdest command line option in the manual pages for puppet
server, puppet agent, and puppet apply. You can see man pages by running puppet <SUBCOMMAND> --help, or
read them online at https://puppet.com/docs/puppet/latest/man/.

• Default: $logdir/puppetd.log

report

Whether to send reports after every transaction.

• Default: true

report_include_system_store

Whether the 'http' report processor should include the system certificate store when submitting reports to HTTPS
URLs. If false, then the 'http' processor will only trust HTTPS report servers whose certificates are issued by the
puppet CA or one of its intermediate CAs. If true, the processor will additionally trust CA certificates in the system's
certificate store.

• Default: false

report_port

The port to communicate with the report_server.

• Default: $serverport

report_server

The server to send transaction reports to.

• Default: $server

reportdir

The directory in which to store reports. Each node gets a separate subdirectory in this directory. This setting is only
used when the store report processor is enabled (see the reports setting).

• Default: $vardir/reports

reports

The list of report handlers to use. When using multiple report handlers, their names should be comma-separated, with
whitespace allowed. (For example, reports = http, store.)

This setting is relevant to puppet server and puppet apply. The primary Puppet server will call these report handlers
with the reports it receives from agent nodes, and puppet apply will call them with its own report. (In all cases, the
node applying the catalog must have report = true.)

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 188

See the report reference for information on the built-in report handlers; custom report handlers can also be loaded
from modules. (Report handlers are loaded from the lib directory, at puppet/reports/NAME.rb.)

To turn off reports entirely, set this to none

• Default: store

reporturl

The URL that reports should be forwarded to. This setting is only used when the http report processor is enabled
(see the reports setting).

• Default: http://localhost:3000/reports/upload

requestdir

Where host certificate requests are stored.

• Default: $ssldir/certificate_requests

resourcefile

The file in which puppet agent stores a list of the resources associated with the retrieved configuration.

• Default: $statedir/resources.txt

rest_authconfig

The configuration file that defines the rights to the different rest indirections. This can be used as a fine-grained
authorization system for puppet master. The puppet master command is deprecated and Puppet Server uses
its own auth.conf that must be placed within its configuration directory.

• Default: $confdir/auth.conf

resubmit_facts

Whether to send updated facts after every transaction. By default puppet only submits facts at the beginning of the
transaction before applying a catalog. Since puppet can modify the state of the system, the value of the facts may
change after puppet finishes. Therefore, any facts stored in puppetdb may not be consistent until the agent next runs,
typically in 30 minutes. If this feature is enabled, puppet will resubmit facts after applying its catalog, ensuring facts
for the node stored in puppetdb are current. However, this will double the fact submission load on puppetdb, so it is
disabled by default.

• Default: false

rich_data

Enables having extended data in the catalog by storing them as a hash with the special key __ptype. When enabled,
resource containing values of the data types Binary, Regexp, SemVer, SemVerRange, Timespan and
Timestamp, as well as instances of types derived from Object retain their data type.

• Default: true

route_file

The YAML file containing indirector route configuration.

• Default: $confdir/routes.yaml

rundir

Where Puppet PID files are kept.

• Default: Unix/Linux: /var/run/puppetlabs -- Windows: C:\ProgramData\PuppetLabs
\puppet\var\run -- Non-root user: ~/.puppetlabs/var/run

runinterval

How often puppet agent applies the catalog. Note that a runinterval of 0 means "run continuously" rather than "never
run." This setting can be a time interval in seconds (30 or 30s), minutes (30m), hours (6h), days (2d), or years (5y).

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 189

• Default: 30m

runtimeout

The maximum amount of time an agent run is allowed to take. A Puppet agent run that exceeds this timeout will be
aborted. A value of 0 disables the timeout. Defaults to 1 hour. This setting can be a time interval in seconds (30 or
30s), minutes (30m), hours (6h), days (2d), or years (5y).

• Default: 1h

serial

Where the serial number for certificates is stored.

• Default: $cadir/serial

server

The primary Puppet server to which the Puppet agent should connect.

• Default: puppet

server_datadir

The directory in which serialized data is stored, usually in a subdirectory.

• Default: $vardir/server_data

server_list

The list of primary Puppet servers to which the Puppet agent should connect, in the order that they will be tried.

• Default: []

serverport

The default port puppet subcommands use to communicate with Puppet Server. (eg puppet facts upload,
puppet agent). May be overridden by more specific settings (see ca_port, report_port).

• Default: 8140

show_diff

Whether to log and report a contextual diff when files are being replaced. This causes partial file contents to pass
through Puppet's normal logging and reporting system, so this setting should be used with caution if you are sending
Puppet's reports to an insecure destination. This feature currently requires the diff/lcs Ruby library.

• Default: false

signeddir

Where the CA stores signed certificates.

• Default: $cadir/signed

skip_tags

Tags to use to filter resources. If this is set, then only resources not tagged with the specified tags will be applied.
Values must be comma-separated.

sourceaddress

The address the agent should use to initiate requests.

• Default: ``

splay

Whether to sleep for a random amount of time, ranging from immediately up to its $splaylimit, before
performing its first agent run after a service restart. After this period, the agent runs periodically on its
$runinterval.

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 190

For example, assume a default 30-minute $runinterval, splay set to its default of false, and an agent starting
at :00 past the hour. The agent would check in every 30 minutes at :01 and :31 past the hour.

With splay enabled, it waits any amount of time up to its $splaylimit before its first run. For example, it might
randomly wait 8 minutes, then start its first run at :08 past the hour. With the $runinterval at its default 30
minutes, its next run will be at :38 past the hour.

If you restart an agent's puppet service with splay enabled, it recalculates its splay period and delays its first agent
run after restarting for this new period. If you simultaneously restart a group of puppet agents with splay enabled,
their checkins to your primary servers can be distributed more evenly.

• Default: false

splaylimit

The maximum time to delay before an agent's first run when splay is enabled. Defaults to the agent's
$runinterval. The splay interval is random and recalculated each time the agent is started or restarted. This
setting can be a time interval in seconds (30 or 30s), minutes (30m), hours (6h), days (2d), or years (5y).

• Default: $runinterval

srv_domain

The domain which will be queried to find the SRV records of servers to use.

• Default: hoffman-C02Q72LKFVH6

ssl_client_ca_auth

Certificate authorities who issue server certificates. SSL servers will not be considered authentic unless they possess a
certificate issued by an authority listed in this file. If this setting has no value then the Puppet master's CA certificate
(localcacert) will be used.

• Default: ``

ssl_client_header

The header containing an authenticated client's SSL DN. This header must be set by the proxy to the authenticated
client's SSL DN (e.g., /CN=puppet.puppetlabs.com). Puppet will parse out the Common Name (CN) from the
Distinguished Name (DN) and use the value of the CN field for authorization.

Note that the name of the HTTP header gets munged by the web server common gateway interface: an HTTP_ prefix
is added, dashes are converted to underscores, and all letters are uppercased. Thus, to use the X-Client-DN header,
this setting should be HTTP_X_CLIENT_DN.

• Default: HTTP_X_CLIENT_DN

ssl_client_verify_header

The header containing the status message of the client verification. This header must be set by the proxy to
'SUCCESS' if the client successfully authenticated, and anything else otherwise.

Note that the name of the HTTP header gets munged by the web server common gateway interface: an HTTP_ prefix
is added, dashes are converted to underscores, and all letters are uppercased. Thus, to use the X-Client-Verify
header, this setting should be HTTP_X_CLIENT_VERIFY.

• Default: HTTP_X_CLIENT_VERIFY

ssl_lockfile

A lock file to indicate that the ssl bootstrap process is currently in progress.

• Default: $ssldir/ssl.lock

ssl_server_ca_auth

The setting is deprecated and has no effect. Ensure all root and intermediate certificate authorities used to issue client
certificates are contained in the server's cacert file on the server.

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 191

• Default: ``

ssl_trust_store

A file containing CA certificates in PEM format that puppet should trust when making HTTPS requests. This only
applies to https requests to non-puppet infrastructure, such as retrieving file metadata and content from https file
sources, puppet module tool and the 'http' report processor. This setting is ignored when making requests to puppet://
URLs such as catalog and report requests.

• Default: ``

ssldir

Where SSL certificates are kept.

• Default: $confdir/ssl

statedir

The directory where Puppet state is stored. Generally, this directory can be removed without causing harm (although
it might result in spurious service restarts).

• Default: $vardir/state

statefile

Where Puppet agent and Puppet Server store state associated with the running configuration. In the case of Puppet
Server, this file reflects the state discovered through interacting with clients.

• Default: $statedir/state.yaml

statettl

How long the Puppet agent should cache when a resource was last checked or synced. This setting can be a time
interval in seconds (30 or 30s), minutes (30m), hours (6h), days (2d), or years (5y). A value of 0 or unlimited will
disable cache pruning.

This setting affects the usage of schedule resources, as the information about when a resource was last checked
(and therefore when it needs to be checked again) is stored in the statefile. The statettl needs to be large
enough to ensure that a resource will not trigger multiple times during a schedule due to its entry expiring from the
cache.

• Default: 32d

static_catalogs

Whether to compile a static catalog, which occurs only on Puppet Server when the code-id-command and code-
content-command settings are configured in its puppetserver.conf file.

• Default: true

storeconfigs

Whether to store each client's configuration, including catalogs, facts, and related data. This also enables the import
and export of resources in the Puppet language - a mechanism for exchange resources between nodes.

By default this uses the 'puppetdb' backend.

You can adjust the backend using the storeconfigs_backend setting.

• Default: false

storeconfigs_backend

Configure the backend terminus used for StoreConfigs. By default, this uses the PuppetDB store, which must be
installed and configured before turning on StoreConfigs.

• Default: puppetdb

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/static_catalogs.html#enabling-or-disabling-static-catalogs

Puppet | Installing and configuring | 192

strict

The strictness level of puppet. Allowed values are:

• off - do not perform extra validation, do not report
• warning - perform extra validation, report as warning (default)
• error - perform extra validation, fail with error

The strictness level is for both language semantics and runtime evaluation validation. In addition to controlling the
behavior with this primary server switch some individual warnings may also be controlled by the disable_warnings
setting.

No new validations will be added to a micro (x.y.z) release, but may be added in minor releases (x.y.0). In major
releases it expected that most (if not all) strictness validation become standard behavior.

• Default: warning

strict_environment_mode

Whether the agent specified environment should be considered authoritative, causing the run to fail if the retrieved
catalog does not match it.

• Default: false

strict_hostname_checking

Whether to only search for the complete hostname as it is in the certificate when searching for node information in the
catalogs or to match dot delimited segments of the cert's certname and the hostname, fqdn, and/or domain facts.

This setting is deprecated and will be removed in a future release.

• Default: true

strict_variables

Causes an evaluation error when referencing unknown variables. (This does not affect referencing variables that are
explicitly set to undef).

• Default: false

summarize

Whether to print a transaction summary.

• Default: false

supported_checksum_types

Checksum types supported by this agent for use in file resources of a static catalog. Values must be comma-separated.
Valid types are md5, md5lite, sha256, sha256lite, sha384, sha512, sha224, sha1, sha1lite, mtime, ctime. Default is
md5, sha256, sha384, sha512, sha224.

• Default: ["md5", "sha256", "sha384", "sha512", "sha224"]

syslogfacility

What syslog facility to use when logging to syslog. Syslog has a fixed list of valid facilities, and you must choose one
of those; you cannot just make one up.

• Default: daemon

tags

Tags to use to find resources. If this is set, then only resources tagged with the specified tags will be applied. Values
must be comma-separated.

tasks

Turns on experimental support for tasks and plans in the puppet language. This is for internal API use only. Do not
change this setting.

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 193

• Default: false

trace

Whether to print stack traces on some errors. Will print internal Ruby stack trace interleaved with Puppet function
frames.

• Default: false

transactionstorefile

Transactional storage file for persisting data between transactions for the purposes of infering information (such as
corrective_change) on new data received.

• Default: $statedir/transactionstore.yaml

trusted_external_command

The external trusted facts script or directory to use. This setting's value can be set to the path to an executable
command that can produce external trusted facts or to a directory containing those executable commands. The
command(s) must:

• Take the name of a node as a command-line argument.
• Return a JSON hash with the external trusted facts for this node.
• For unknown or invalid nodes, exit with a non-zero exit code.

If the setting points to an executable command, then the external trusted facts will be stored in the 'external' key of
the trusted facts hash. Otherwise for each executable file in the directory, the external trusted facts will be stored in
the <basename> key of the trusted['external'] hash. For example, if the files foo.rb and bar.sh are in the
directory, then trusted['external'] will be the hash { 'foo' => <foo.rb output>, 'bar' =>
<bar.sh output> }.

• Default: ``

trusted_oid_mapping_file

File that provides mapping between custom SSL oids and user-friendly names

• Default: $confdir/custom_trusted_oid_mapping.yaml

use_cached_catalog

Whether to only use the cached catalog rather than compiling a new catalog on every run. Puppet can be run with this
enabled by default and then selectively disabled when a recompile is desired. Because a Puppet agent using cached
catalogs does not contact the primary server for a new catalog, it also does not upload facts at the beginning of the
Puppet run.

• Default: false

use_last_environment

Puppet saves both the initial and converged environment in the last_run_summary file. If they differ, and this setting
is set to true, we will use the last converged environment and skip the node request.

When set to false, we will do the node request and ignore the environment data from the last_run_summary file.

• Default: true

use_srv_records

Whether the server will search for SRV records in DNS for the current domain.

• Default: false

usecacheonfailure

Whether to use the cached configuration when the remote configuration will not compile. This option is useful for
testing new configurations, where you want to fix the broken configuration rather than reverting to a known-good
one.

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 194

• Default: true

user

The user Puppet Server will run as. Used to ensure the agent side processes (agent, apply, etc) create files and
directories readable by Puppet Server when necessary.

• Default: puppet

vardir

Where Puppet stores dynamic and growing data. The default for this setting is calculated specially, like confdir_.

• Default: Unix/Linux: /opt/puppetlabs/puppet/cache -- Windows: C:\ProgramData
\PuppetLabs\puppet\cache -- Non-root user: ~/.puppetlabs/opt/puppet/cache

vendormoduledir

The directory containing vendored modules. These modules will be used by all environments like those in the
basemodulepath. The only difference is that modules in the basemodulepath are pluginsynced, while
vendored modules are not

• Default: /opt/puppetlabs/puppet/vendor_modules

versioned_environment_dirs

Whether or not to look for versioned environment directories, symlinked from $environmentpath/
<environment>. This is an experimental feature and should be used with caution.

• Default: false

waitforcert

How frequently puppet agent should ask for a signed certificate.

When starting for the first time, puppet agent will submit a certificate signing request (CSR) to the server named in
the ca_server setting (usually the primary Puppet server); this may be autosigned, or may need to be approved by
a human, depending on the CA server's configuration.

Puppet agent cannot apply configurations until its approved certificate is available. Since the certificate may or may
not be available immediately, puppet agent will repeatedly try to fetch it at this interval. You can turn off waiting
for certificates by specifying a time of 0, or a maximum amount of time to wait in the maxwaitforcert setting,
in which case puppet agent will exit if it cannot get a cert. This setting can be a time interval in seconds (30 or 30s),
minutes (30m), hours (6h), days (2d), or years (5y).

• Default: 2m

waitforlock

How frequently puppet agent should try running when there is an already ongoing puppet agent instance.

This argument is by default disabled (value set to 0). In this case puppet agent will immediately exit if it cannot run
at that moment. When a value other than 0 is set, this can also be used in combination with the maxwaitforlock
argument. This setting can be a time interval in seconds (30 or 30s), minutes (30m), hours (6h), days (2d), or years
(5y).

• Default: 0

write_catalog_summary

Whether to write the classfile and resourcefile after applying the catalog. It is enabled by default, except
when running puppet apply.

• Default: true

yamldir

The directory in which YAML data is stored, usually in a subdirectory.

• Default: $vardir/yaml

© 2024 Puppet, Inc., a Perforce company

Puppet | Installing and configuring | 195

Differing behavior in puppet.conf

Puppet Server honors almost all settings in puppet.conf and should pick them up automatically. For more complete
information on puppet.conf settings, see our Configuration Reference page.

Settings that differ
autoflush

Puppet Server does not use this setting. For more information on the primary server logging implementation for
Puppet Server, see the Logging on page 143.

bindaddress

Puppet Server does not use this setting. To set the address on which the primary server listens, use either host
(unencrypted) or ssl-host (SSL encrypted) in the webserver.conf file.

ca

Puppet Server does not use this setting. Instead, Puppet Server acts as a certificate authority based on the certificate
authority service configuration in the ca.cfg file. See Service Bootstrapping on page 144 for more details.

ca_ttl

Puppet Server enforces a max ttl of 50 standard years (up to 1576800000 seconds).

cacert

If you enable Puppet Server's certificate authority service, it uses the cacert setting in puppet.conf to determine the
location of the CA certificate for such tasks as generating the CA certificate or using the CA to sign client certificates.
This is true regardless of the configuration of the ssl- settings in webserver.conf.

cacrl

If you define ssl-cert, ssl-key, ssl-ca-cert, or ssl-crl-path in webserver.conf, Puppet Server uses
the file at ssl-crl-path as the CRL for authenticating clients via SSL. If at least one of the ssl- settings in
webserver.conf is set but ssl-crl-path is not set, Puppet Server will not use a CRL to validate clients via SSL.

If none of the ssl- settings in webserver.conf are set, Puppet Server uses the CRL file defined for the hostcrl
setting---and not the file defined for the cacrl setting--in puppet.conf. At start time, Puppet Server copies the file for
the cacrl setting, if one exists, over to the location in the hostcrl setting.

Any CRL file updates from the Puppet Server certificate authority---such as revocations performed via the
certificate_status HTTP endpoint---use the cacrl setting in puppet.conf to determine the location of the
CRL. This is true regardless of the ssl- settings in webserver.conf.

capass

Puppet Server does not use this setting. Puppet Server's certificate authority does not create a capass password file
when the CA certificate and key are generated.

caprivatedir

Puppet Server does not use this setting. Puppet Server's certificate authority does not create this directory.

daemonize

Puppet Server does not use this setting.

hostcert

If you define ssl-cert, ssl-key, ssl-ca-cert, or ssl-crl-path in webserver.conf, Puppet Server
presents the file at ssl-cert to clients as the server certificate via SSL.

If at least one of the ssl- settings in webserver.conf is set but ssl-cert is not set, Puppet Server gives an error
and shuts down at startup. If none of the ssl- settings in webserver.conf are set, Puppet Server uses the file for the
hostcert setting in puppet.conf as the server certificate during SSL negotiation.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/configuration.html
https://puppet.com/docs/puppet/latest/configuration.html#autoflush
https://puppet.com/docs/puppet/latest/configuration.htmlmaster#bindaddress
https://puppet.com/docs/puppet/latest/configuration.html#ca
https://puppet.com/docs/puppet/latest/configuration.html#cattl
https://puppet.com/docs/puppet/latest/configuration.html#cacert
https://puppet.com/docs/puppet/latest/configuration.html#cacrl
https://puppet.com/docs/puppet/latest/configuration.html#capass
https://puppet.com/docs/puppet/latest/configuration.html#caprivatedir
https://puppet.com/docs/puppet/latest/configuration.html#daemonize
https://puppet.com/docs/puppet/latest/configuration.html#hostcert

Puppet | Installing and configuring | 196

Regardless of the configuration of the ssl- "webserver.conf" settings, Puppet Server's certificate authority service, if
enabled, uses the hostcert "puppet.conf" setting, and not the ssl-cert setting, to determine the location of the
server host certificate to generate.

hostcrl

If you define ssl-cert, ssl-key, ssl-ca-cert, or ssl-crl-path in webserver.conf, Puppet Server uses
the file at ssl-crl-path as the CRL for authenticating clients via SSL. If at least one of the ssl- settings in
webserver.conf is set but ssl-crl-path is not set, Puppet Server will not use a CRL to validate clients via SSL.

If none of the ssl- settings in webserver.conf are set, Puppet Server uses the CRL file defined for the hostcrl
setting---and not the file defined for the cacrl setting--in puppet.conf. At start time, Puppet Server copies the file for
the cacrl setting, if one exists, over to the location in the hostcrl setting.

Any CRL file updates from the Puppet Server certificate authority---such as revocations performed via the
certificate_status HTTP endpoint---use the cacrl setting in puppet.conf to determine the location of the
CRL. This is true regardless of the ssl- settings in webserver.conf.

hostprivkey

If you define ssl-cert, ssl-key, ssl-ca-cert, or ssl-crl-path in webserver.conf, Puppet Server uses
the file at ssl-key as the server private key during SSL transactions.

If at least one of the ssl- settings in webserver.conf is set but ssl-key is not, Puppet Server gives an error and
shuts down at startup. If none of the ssl- settings in webserver.conf are set, Puppet Server uses the file for the
hostprivkey setting in puppet.conf as the server private key during SSL negotiation.

If you enable the Puppet Server certificate authority service, Puppet Server uses the hostprivkey setting in
puppet.conf to determine the location of the server host private key to generate. This is true regardless of the
configuration of the ssl- settings in webserver.conf.

http_debug

Puppet Server does not use this setting. Debugging for HTTP client code in the Puppet Server primary server is
controlled through Puppet Server's common logging mechanism. For more information on the primary server logging
implementation for Puppet Server, see the Logging on page 143.

keylength

Puppet Server does not currently use this setting. Puppet Server's certificate authority generates 4096-bit keys in
conjunction with any SSL certificates that it generates.

localcacert

If you define ssl-cert, ssl-key, ssl-ca-cert, and/or ssl-crl-path in webserver.conf, Puppet Server
uses the file at ssl-ca-cert as the CA cert store for authenticating clients via SSL.

If at least one of the ssl- settings in webserver.conf is set but ssl-ca-cert is not set, Puppet Server gives an
error and shuts down at startup. If none of the ssl- settings in webserver.conf is set, Puppet Server uses the CA file
defined for the localcacert setting in puppet.conf for SSL authentication.

logdir

Puppet Server does not use this setting. For more information on the primary server logging implementation for
Puppet Server, see the Logging on page 143.

masterhttplog

Puppet Server does not use this setting. You can configure a web server access log via the access-log-config
setting in the webserver.conf file.

masterlog

Puppet Server does not use this setting. For more information on the primary server logging implementation for
Puppet Server, see the Logging on page 143.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/configuration.html#hostcrl
https://puppet.com/docs/puppet/latest/configuration.html#hostprivkey
https://puppet.com/docs/puppet/latest/configuration.html#httpdebug
https://puppet.com/docs/puppet/latest/configuration.html#keylength
https://puppet.com/docs/puppet/latest/configuration.html#localcacert
https://puppet.com/docs/puppet/latest/configuration.html#logdir
https://puppet.com/docs/puppet/latest/configuration.html#masterhttplog
https://puppet.com/docs/puppet/latest/configuration.html#masterlog

Puppet | Installing and configuring | 197

masterport

Puppet Server does not use this setting. To set the port on which the primary server listens, set the port
(unencrypted) or ssl-port (SSL encrypted) setting in the webserver.conf file.

puppetdlog

Puppet Server does not use this setting. For more information on the primary server logging implementation for
Puppet Server, see the Logging on page 143.

rails_loglevel

Puppet Server does not use this setting.

railslog

Puppet Server does not use this setting.

ssl_client_header

Puppet Server honors this setting only if the allow-header-cert-info setting in the server.conf file is set
to 'true'. For more information on this setting, see the documentation on External SSL termination on page 246.

ssl_client_verify_header

Puppet Server honors this setting only if the allow-header-cert-info setting in the server.conf file is set
to true. For more information on this setting, see the documentation on External SSL termination on page 246.

ssl_server_ca_auth

Puppet Server does not use this setting. It only considers the ssl-ca-cert setting from the webserver.conf file and
the cacert setting from the puppet.conf file. See cacert for more information.

syslogfacility

Puppet Server does not use this setting.

user

Puppet Server does not use this setting.

HttpPool-Related Server Settings
configtimeout

Puppet Server does not currently consider this setting for any code running on the primary server and using the
Puppet::Network::HttpPool module to create an HTTP client connection. This pertains, for example, to any
requests that the primary server would make to the reporturl for the http report processor. Note that Puppet
agents do still honor this setting.

http_proxy_host

Puppet Server does not currently consider this setting for any code running on the primary server and using the
Puppet::Network::HttpPool module to create an HTTP client connection. This pertains, for example, to any
requests that the primary server would make to the reporturl for the http report processor. Note that Puppet
agents do still honor this setting.

http_proxy_port

Puppet Server does not currently consider this setting for any code running on the primary server and using the
Puppet::Network::HttpPool module to create an HTTP client connection. This pertains, for example, to any
requests that the primary server would make to the reporturl for the http report processor. Note that Puppet
agents do still honor this setting.

Overriding Puppet settings in Puppet Server

Currently, the jruby-puppet section of your puppetserver.conf file contains five settings (master-
conf-dir, master-code-dir, master-var-dir, master-run-dir, and master-log-dir) that allow

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/configuration.html#masterport
https://puppet.com/docs/puppet/latest/configuration.html#puppetdlog
https://puppet.com/docs/puppet/latest/configuration.html#railsloglevel
https://puppet.com/docs/puppet/latest/configuration.html#railslog
https://puppet.com/docs/puppet/latest/configuration.html#sslclientheader
https://puppet.com/docs/puppet/latest/configuration.html#sslclientverifyheader
https://puppet.com/docs/puppet/latest/configuration.html#sslservercaauth
31c468c77f37a8648824a917dd32c32d35ca4498.md#cacert
https://puppet.com/docs/puppet/latest/configuration.html#syslogfacility
https://puppet.com/docs/puppet/latest/configuration.html#user
https://puppet.com/docs/puppet/latest/configuration.html#configtimeout
https://puppet.com/docs/puppet/latest/configuration.html#httpproxyhost
https://puppet.com/docs/puppet/latest/configuration.html#httpproxyport

Puppet | The Puppet platform | 198

you to override settings set in your puppet.conf file. On installation, these five settings will be set to the proper
default values.

While you are free to change these settings at will, please note that any changes made to the master-conf-dir
and master-code-dir settings absolutely MUST be made to the corresponding Puppet settings (confdir and
codedir) as well to ensure that Puppet Server and the Puppet cli tools (such as puppetserver ca and puppet
module) use the same directories. The master-conf-dir and master-code-dir settings apply to Puppet
Server only, and will be ignored by the ruby code that runs when the Puppet CLI tools are run.

For example, say you have the codedir setting left unset in your puppet.conf file, and you change the
master-code-dir setting to /etc/my-puppet-code-dir. In this case, Puppet Server will read code from
/etc/my-puppet-code-dir, but the puppet module tool will think that your code is stored in /etc/
puppetlabs/code.

While it is not as critical to keep master-var-dir, master-run-dir, and master-log-dir in sync with
the vardir, rundir, and logdir Puppet settings, please note that this applies to these settings as well.

Also, please note that these configuration differences also apply to the interpolation of the confdir, codedir,
vardir, rundir, and logdir settings in your puppet.conf file. So, take the above example, wherein you
set master-code-dir to /etc/my-puppet-code-dir. Because the basemodulepath setting is by
default $codedir/modules:/opt/puppetlabs/puppet/modules, then Puppet Server would use /
etc/my-puppet-code-dir/modules:/opt/puppetlabs/puppet/modules for the value of the
basemodulepath setting, whereas the puppet module tool would use /etc/puppetlabs/code/
modules:/opt/puppetlabs/puppet/modules for the value of the basemodulepath setting.

The Puppet platform

Puppet is made up of several packages. Together these are called the Puppet platform, which is what you use to
manage, store and run your Puppet code. These packages include puppetserver, puppetdb, and puppet-
agent — which includes Facter and Hiera.

To install these packages, see the Installing Puppet on page 109 page. To understand what versions are maintained
and go together when upgrading and troubleshooting, view the Puppet platform lifecycle on page 15 page.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 199

• PuppetDB on page 349
All of the data generated by Puppet (for example facts, catalogs, reports) is stored in PuppetDB.
• Facter on page 350
Facter is Puppet’s cross-platform system profiling library. It discovers and reports per-node facts, which are available
in your Puppet manifests as variables.
• Hiera on page 409
Hiera is a built-in key-value configuration data lookup system, used for separating data from Puppet code.
• Environments on page 458
Environments are isolated groups of agent nodes.
• Important directories and files on page 465
Puppet consists of a number of directories and files, and each one has an important role ranging from Puppet code
storage and configuration files to manifests and module paths.
• Puppet services and tools on page 474
Puppet provides a number of core services and administrative tools to manage systems with or without a primary
Puppet server, and to compile configurations for Puppet agents.
• Custom functions on page 498
Use the Puppet language, or the Ruby API to create custom functions.
• Classifying nodes on page 519
You can classify nodes using an external node classifier (ENC), which is a script or application that tells Puppet
which classes a node must have. It can replace or work in concert with the node definitions in the main site manifest
(site.pp).
• Puppet reports on page 522
Puppet creates a report about its actions and your infrastructure each time it applies a catalog during a Puppet run.
You can create and use report processors to generate insightful information or alerts from those reports.
• Built-in report processors
• Puppet's internals on page 531
Learn the details of Puppet's internals, including how primary servers and agents communicate via host-verified
HTTPS, and about the process of catalog compilation.

Puppet Server

About Puppet Server

Puppet is configured in an agent-server architecture, in which a primary server node manages the configuration
information for a fleet of agent nodes. Puppet Server acts as the primary server node. Puppet Server is a Ruby and
Clojure application that runs on the Java Virtual Machine (JVM). Puppet Server runs Ruby code for compiling Puppet
catalogs and for serving files in several JRuby interpreters. It also provides a certificate authority through Clojure.

This page describes the general requirements and the run environment for Puppet Server.

Puppet Server releases

Puppet Server and Puppet share the same major release (Puppet Server 6.x and Puppet 6.x). However, they are
versioned separately and might have different minor or patch versions (Puppet Server 6.5 versus Puppet 6.8). For a
list of the maintained versions of Puppet and Puppet Server, visit Puppet releases and lifecycles.

Controlling the Service

The Puppet Server service name is puppetserver. To start and stop the service, use commands such as service
puppetserver restart, service puppetserver status for your OS.

Puppet Server's Run Environment

Puppet Server consists of several related services. These services share state and route requests among themselves.
The services run inside a single JVM process, using the Trapperkeeper service framework.

© 2024 Puppet, Inc., a Perforce company

report.html
https://puppet.com/docs/puppet/latest/platform_lifecycle.html

Puppet | The Puppet platform | 200

Embedded Web Server

Puppet Server uses a Jetty-based web server embedded in the service's JVM process. No additional or unique actions
are required to configure and enable the web server. You can modify the web server's settings in webserver.conf on
page 152. You might need to edit this file if you use an external CA or run Puppet on a non-standard port.

Puppet API Service

Puppet Server provides APIs that are used by the Puppet agent to manage the configuration of your nodes. Visit
Puppet V3 HTTP API on page 275 for more information on the basic APIs.

Certificate Authority Service

Puppet Server includes a certificate authority (CA) service that:

• Accepts certificate signing requests (CSRs) from nodes.
• Serves certificates and a certificate revocation list (CRL) to nodes.
• Optionally accepts commands to sign or revoke certificates.

Signing and revoking certificates over the network is disabled by default. You can use the auth.conf file to allow
specific certificate owners the ability to issue commands.

The CA service uses .pem files to stores credentials. You can use the puppetserver ca command to interact
with these credentials, including listing, signing, and revoking certificates. See CA V1 HTTP API on page 277 for
more information on these APIs.

Admin API Service

Puppet Server includes an administrative API for triggering maintenance tasks. The most common task refreshes
Puppet’s environment cache, which causes all of your Puppet code to reload without the requirement to restart the
service. Consequently, you can deploy new code to long-timeout environments without executing a full restart of the
service. g For API docs, visit:

• Environment cache on page 326.
• JRuby pool on page 326.

For details about environment caching, visit:

• About environments.

JRuby Interpreters

Most of Puppet Server's work is done by Ruby code running in JRuby. JRuby is an implementation of the Ruby
interpreter that runs on the JVM. Note that you can’t use the system gem command to install Ruby Gems for the
Puppet primary server. Instead, Puppet Server includes a separate puppetserver gem command for installing any
libraries your Puppet extensions might require. Visit Using Ruby gems on page 241 for details.

If you want to test or debug code to be used by the Puppet Server, you can use the puppetserver ruby and
puppetserver irb commands to execute Ruby code in a JRuby environment.

To handle parallel requests from agent nodes, Puppet Server maintains separate JRuby interpreters. These JRuby
interpreters individually run Puppet's application code, and distribute agent requests among them. You can configure
the JRuby interpreters in the jruby-puppet section of puppetserver.conf on page 144.

Tuning Guide

You can maximize Puppet Server's performance by tuning your JRuby configuration. To learn more, visit the Puppet
Server Tuning guide on page 257.

User

If you are running Puppet Enterprise:

• Puppet Server user runs as pe-puppet.
• You must specify the user in /etc/sysconfig/pe-puppetserver.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/environments_about.html#environments-limitations

Puppet | The Puppet platform | 201

If you are running open source Puppet:

• Puppet Server needs to run as the user puppet.
• You must specify the user in /etc/sysconfig/puppetserver.

All of the Puppet Server's files and directories must be readable and writable by this user. Note that Puppet Server
ignores the user and group settings from puppet.conf.

Ports

By default, Puppet's HTTPS traffic uses port 8140. The OS and firewall must allow Puppet Server's JVM process to
accept incoming connections on port 8140. If necessary, you can change the port in webserver.conf. See the
webserver.conf on page 152 page for details.

Logging

All of Puppet Server's logging is routed through the JVM Logback library. By default, it logs to /var/log/
puppetlabs/puppetserver/puppetserver.log. The default log level is 'INFO'. By default, Puppet
Server sends nothing to syslog. All log messages follow the same path, including HTTP traffic, catalog
compilation, certificate processing, and all other parts of Puppet Server's work.

Puppet Server also relies on Logback to manage, rotate, and archive Server log files. Logback archives Server logs
when they exceed 200MB. Also, when the total size of all Server logs exceeds 1GB, Logback automatically deletes
the oldest logs. Logback is heavily configurable. If you need something more specialized than a unified log file, it
may be possible to obtain. Visit Logging on page 143 for more details.

Finally, any errors that cause the logging system to die or occur before logging is set up, display in journalctl.

SSL Termination

By default, Puppet Server handles SSL termination automatically. For network configurations that require external
SSL termination (e.g. with a hardware load balancer), additional configuration is required. See the External SSL
termination on page 246 page for details. In summary, you must:

• Configure Puppet Server to use HTTP instead of HTTPS.
• Configure Puppet Server to accept SSL information via insecure HTTP headers.
• Secure your network so that Puppet Server cannot be directly reached by any untrusted clients.
• Configure your SSL terminating proxy to set the following HTTP headers:

• X-Client-Verify (mandatory).
• X-Client-DN (mandatory for client-verified requests).
• X-Client-Cert (optional; required for trusted facts).

Configuring Puppet Server

Puppet Server uses a combination of Puppet's configuration files along with its own separate configuration files,
which are located in the conf.d directory. Refer to the Config directory for a list of Puppet's configuration files. For
detailed information about Puppet Server settings and the conf.d directory, refer to the Configuring Puppet Server
on page 142 page.

Deprecated features

The following features / configuration settings are deprecated and will be removed in a future major release of Puppet
Server.

Use of Core Puppet "auth.conf" for Authorizing Primary Server Service Routes
Now

The value of the jruby-puppet.use-legacy-auth-conf setting in the puppetserver.conf file determines
which mechanism Puppet Server uses to authorize requests to the following endpoints:

• Puppet's HTTPS API (current)

© 2024 Puppet, Inc., a Perforce company

http://logback.qos.ch/
https://puppet.com/docs/puppet/latest/lang_facts_and_builtin_vars.html
https://puppet.com/docs/puppet/latest/dirs_confdir.html

Puppet | The Puppet platform | 202

• Puppet's HTTPS API (3.x)

For a value of true, the core Puppet auth.conf file (/etc/puppetlabs/puppet/auth.conf), is used when
authorizing client requests.

For a value of false (also the default if not specified), Puppet Server uses the authorization settings in its own
"auth.conf" file, evaluated by the trapperkeeper-authorization service. This "auth.conf" file is installed at
/etc/puppetlabs/puppetserver/conf.d/auth.conf. See the auth.conf on page 148 page for more
information.

In a Future Major Release

The jruby-puppet.use-legacy-auth-conf setting will be removed from Puppet Server configuration, and
Puppet Server will instead always use the new trapperkeeper-authorization "auth.conf" when authorizing
client requests.

Detecting and Updating

Look at the value of the use-legacy-auth-conf setting in the jruby-puppet section of the
"puppetserver.conf" file. If the setting is not specified or is set to true, you are using the deprecated core Puppet
"auth.conf" for authorization.

If you have not customized any of the rules in the core Puppet "auth.conf" settings, you should just be able to set the
use-legacy-auth-conf setting to false and restart your puppetserver service in order for Puppet Server to
start using the trapperkeeper-authorization "auth.conf" file.

If you have customized rules in the core Puppet "auth.conf" file, you will need to migrate your Puppet rule settings
over to the trapperkeeper-authorization "auth.conf" file. See the auth.conf on page 148 page for more
information. You would then also need to set the use-legacy-auth-conf setting to false and restart the
puppetserver service.

Context

In previous Puppet Server releases, there was no unified mechanism for controlling access to the various endpoints
that Puppet Server hosts. Puppet Server used core Puppet "auth.conf" to authorize requests handled by the primary
server service and custom client whitelists for the CA and Admin endpoints.

trapperkeeper-authorization unifies authorization configuration across all of these endpoints into a single
file. The newer "auth.conf" file also uses the more flexible HOCON file format for compatibility with how Puppet
Server configuration files are handled by the Trapperkeeper framework.

certificate-status settings
Now

If the certificate-authority.certificate-status.authorization-required setting is
false, all requests that are successfully validated by SSL (if applicable for the port settings on the server) are
permitted to use the Certificate Status HTTP API endpoints. This includes requests which do not provide an SSL
client certificate.

If the certificate-authority.certificate-status.authorization-required setting is true
or not specified and the puppet-admin.client-allowlist setting has one or more entries, only the requests
whose Common Name in the SSL client certificate subject matches one of the client-allowlist entries are
permitted to use the certificate status HTTP API endpoints.

For any other configuration, requests are only permitted to access the certificate status HTTP API endpoints if
allowed per the rule definitions in the trapperkeeper-authorization "auth.conf" file. See the auth.conf on
page 148 page for more information.

In a Future Major Release

The certificate-status settings will be ignored completely by Puppet Server. Requests made to the
certificate-status HTTP API will only be allowed per the trapperkeeper-authorization
"auth.conf" configuration.

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppet/blob/3.8.0/api/docs/http_api_index.md
https://puppet.com/docs/puppet/latest/config_file_auth.html
https://github.com/puppetlabs/puppet/blob/master/api/docs/http_certificate_status.md

Puppet | The Puppet platform | 203

Detecting and Updating

Look at the certificate-status settings in your configuration. If authorization-required is set to
false or client-allowlist has one or more entries, these settings would be used to authorize access to the
certificate status HTTP API instead of trapperkeeper-authorization.

If authorization-required is set to true or is not specified and if the client-allowlist was empty,
you could just remove the certificate-authority section from your configuration. The only behavior that
would change in Puppet Server from doing this would be that a warning message would no longer be written to the
"puppetserver.log" file at startup.

If authorization-required is set to false, you would need to create a corresponding rule in the
trapperkeeper-authorization file which would allow unauthenticated client access to the certificate status
API.

For example:

authorization: {
 version: 1
 rules: [
 {
 match-request: {
 path: "/certificate_status/"
 type: path
 method: [get, put, delete]
 }
 allow-unauthenticated: true
 sort-order: 200
 name: "certificate_status"
 },
 {
 match-request: {
 path: "/certificate_statuses/"
 type: path
 method: get
 }
 allow-unauthenticated: true
 sort-order: 200
 name: "certificate_statuses"
 },
 ...
]
}

If authorization-required is set to true or not set but the client-allowlist has one or more custom
entries in it, you would need to create a corresponding rule in the trapperkeeper-authorization "auth.conf"
file which would allow only specific clients access to the certificate status API.

For example, the current certificate status configuration could have:

certificate-authority:
 certificate-status: {
 client-allowlist: [admin1, admin2]
 }
}

Corresponding trapperkeeper-authorization rules could have:

authorization: {
 version: 1
 rules: [
 {
 match-request: {

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 204

 path: "/certificate_status/"
 type: path
 method: [get, put, delete]
 }
 allow: [admin1, admin2]
 sort-order: 200
 name: "certificate_status"
 },
 {
 match-request: {
 path: "/certificate_statuses/"
 type: path
 method: get
 }
 allow: [admin1, admin2]
 sort-order: 200
 name: "certificate_statuses"
 },
 ...
]
}

After adding the desired rules to the trapperkeeper-authorization "auth.conf" file, remove the
certificate-authority section from the "puppetserver.conf" file and restart the puppetserver service.

Context

In previous Puppet Server releases, there was no unified mechanism for controlling access to the various endpoints
that Puppet Server hosts. Puppet Server used core Puppet "auth.conf" to authorize requests handled by the primary
server service and custom client whitelists for the CA and Admin endpoints. The custom client whitelists do not
provide granular enough control to meet some use cases.

trapperkeeper-authorization unifies authorization configuration across all of these endpoints into a single
file and provides more granular control.

puppet-admin Settings
Now

If the puppet-admin.authorization-required setting is false, all requests that are successfully
validated by SSL (if applicable for the port settings on the server) are permitted to use the puppet-admin HTTP
API endpoints. This includes requests which do not provide an SSL client certificate.

If the puppet-admin.authorization-required setting is true or not specified and the puppet-
admin.client-allowlist setting has one or more entries, only the requests whose Common Name in the SSL
client certificate subject matches one of the client-allowlist entries are permitted to use the puppet-admin
HTTP API endpoints.

For any other configuration, requests are only permitted to access the puppet-admin HTTP API endpoints if
allowed per the rule definitions in the trapperkeeper-authorization "auth.conf" file. See the auth.conf on
page 148 page for more information.

In a Future Major Release

The puppet-admin settings will be ignored completely by Puppet Server. Requests made to the puppet-admin
HTTP API will only be allowed per the trapperkeeper-authorization "auth.conf" configuration.

Detecting and Updating

Look at the puppet-admin settings in your configuration. If authorization-required is set to false or
client-allowlist has one or more entries, these settings would be used to authorize access to the puppet-
admin HTTP API instead of trapperkeeper-authorization.

If authorization-required is set to true or is not specified and if the client-allowlist was empty,
you could just remove the puppet-admin section from your configuration and restart your puppetserver service in

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 205

order for Puppet Server to start using the trapperkeeper-authorization "auth.conf" file. The only behavior
that would change in Puppet Server from doing this would be that a warning message would no longer be written to
the puppetserver.log file.

If authorization-required is set to false, you would need to create corresponding rules in the
trapperkeeper-authorization file which would allow unauthenticated client access to the "puppet-admin"
API endpoints.

For example:

authorization: {
 version: 1
 rules: [
 {
 match-request: {
 path: "/puppet-admin-api/v1/environment-cache"
 type: path
 method: delete
 }
 allow-unauthenticated: true
 sort-order: 200
 name: "environment-cache"
 },
 {
 match-request: {
 path: "/puppet-admin-api/v1/jruby-pool"
 type: path
 method: delete
 }
 allow-unauthenticated: true
 sort-order: 200
 name: "jruby-pool"
 },
 ...
]
}

If authorization-required is set to true or not set but the client-allowlist has one or more custom
entries in it, you would need to create corresponding rules in the trapperkeeper-authorization "auth.conf"
file which would allow only specific clients access to the "puppet-admin" API endpoints.

For example, the current "puppet-admin" configuration could have:

puppet-admin: {
 client-allowlist: [admin1, admin2]
}

Corresponding trapperkeeper-authorization rules could have:

authorization: {
 version: 1
 rules: [
 {
 match-request: {
 path: "/puppet-admin-api/v1/environment-cache"
 type: path
 method: delete
 }
 allow: [admin1, admin2]
 sort-order: 200
 name: "environment-cache"
 },
 {

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 206

 match-request: {
 path: "/puppet-admin-api/v1/jruby-pool"
 type: path
 method: delete
 }
 allow: [admin1, admin2]
 sort-order: 200
 name: "jruby-pool"
 },
 ...
]
}

After adding the desired rules to the trapperkeeper-authorization "auth.conf" file, remove the puppet-
admin section from the "puppetserver.conf" file and restart the puppetserver service.

Context

In previous Puppet Server releases, there was no unified mechanism for controlling access to the various endpoints
that Puppet Server hosts. Puppet Server used core Puppet "auth.conf" to authorize requests handled by the primary
server service and custom client whitelists for the CA and Admin endpoints. The custom client whitelists do not
provide granular enough control to meet some use cases.

trapperkeeper-authorization unifies authorization configuration across all of these endpoints into a single
file and provides more granular control.

Puppet's "resource_types" API endpoint
Now

The resource_type and resource_types HTTP APIs were removed in Puppet Server 5.0.

Previously

The resource_type and resource_types Puppet HTTP API endpoints return information about classes,
defined types, and node definitions.

The Environment classes on page 316 serves as a replacement for the Puppet resource type API for classes.

Detecting and Updating

If your application calls the resource_type or resource_types HTTP API endpoints for information about
classes, point those calls to the environment_classes endpoint. The environment_classes endpoint has
different features and returns different values than resource_type; see the Environment classes on page 316
for details.

The environment_classes endpoint ignores Puppet's Ruby-based authorization methods and configuration in
favor of Puppet Server's Trapperkeeper authorization. For more information, see the Environment classes on page
316 of the environment classes API documentation.

Context

Users often rely on the resource_types endpoint for lists of classes and associated parameters in an
environment. For such requests, the resource_types endpoint is inefficient and can trigger problematic events,
such as manifests being parsed during a catalog request.

To fulfill these requests more efficiently and safely, Puppet Server 2.3.0 introduced the narrowly defined
environment_classes endpoint.

Puppet's node cache terminus
Now

Puppet 5.0 (and by extension, Puppet Server 5.0) no longer writes node YAML files to its cache by default.

Previously

Puppet wrote YAML to its node cache.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/4.6/http_api/http_resource_type.html
https://tickets.puppetlabs.com/browse/SERVER-1200

Puppet | The Puppet platform | 207

Detecting and Updating

To retain the Puppet 4.x behavior, add the Configuring Puppet Server on page 142 setting
node_cache_terminus = write_only_yaml. The write_only_yaml option is deprecated.

Context

This cache was used in workflows where external tooling needs a list of nodes. PuppetDB is the preferred source of
node information.

JRuby's "compat-version" setting
Now

Puppet Server 5.0 removes the jruby-puppet.compat-version setting in puppetserver.conf on page 144,
and exits the puppetserver service with an error if you start the service with that setting.

Previously

Puppet Server 2.7.x allowed you to set compat-version to 1.9 or 2.0 to choose a preferred Ruby interpreter
version.

Detecting and Updating

Launching the puppetserver service with this setting enabled will cause it to exit with an error message. The
error includes information on Configuring Puppet Server on page 142.

For Ruby language 2.x support in Puppet Server, configure Puppet Server to use JRuby 9k instead of JRuby 1.7.27.
See the "Configuring the JRuby Version" section of Configuring Puppet Server on page 142 for details.

Context

Puppet Server 5.0 updated JRuby v1.7 to v1.7.27, which in turn updated the jruby-openssl gem to v0.9.19 and
bouncycastle libraries to v1.55. JRuby 1.7.27 breaks setting jruby-puppet.compat-version to 2.0.

Server 5.0 also added optional, experimental support for JRuby 9k, which includes Ruby 2.x language support.

Primary server and agent compatibility
Use this table to verify that you're using a compatible version of the agent for your PE or Puppet server.

Server

Agent PE 2017.3 through
2018.1

Puppet 5.x

PE 2019.1 through 2019.8

Puppet 6.x

PE 2021.0 and later

Puppet 7.x

5.x # #

6.x # #

7.x #

Note: Puppet 5.x has reached end of life and is not actively developed or tested. We retain agent 5.x compatibility
with later versions of the server only to enable upgrades.

Installing Puppet Server

Puppet Server is a required application that runs on the Java Virtual Machine (JVM). It controls the configuration
information for one or more managed agent nodes.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 208

Before you begin

Review the supported operating systems and make sure you have a supported version of Java. Note that, unlike
Puppet Agent, Puppet Server is not supported on MacOS. If you encounter any issues with the steps below, submit
them to our Bug Tracker.

Supported operating systems

Puppet provides official packages that install Puppet Server and all of its prerequisites for the following platforms:

Operating Systems Version

Red Hat Enterprise Linux 6, 7, 8

Debian 9 (Stretch), 10 (Buster)

Ubuntu 16.04 (Xenial, amd64 only), 18.04 (Bionic), 20.04
(Focal)

SLES 12 SP1 (x86_64)

If we don't provide a package for your system, you can run Puppet Server from source on any x86_64 Linux server
with JDK 1.8 or 11. For more details, visit Running from source on page 268.

Note: For help with non-supported operating systems, architectures, or JRE versions, join our Community
Slack.

Java support

Puppet Server versions are tested against the following versions of Java:

Puppet Server Java

6.y and later 8, 11

7.y and later 8,11

Some Java versions may work with other Puppet Server versions, but we do not test or support those cases.
Community submitted patches for support greater than Java 11 are welcome. Both Java 8 and 11 are considered long-
term support versions and are planned to be supported by upstream maintainers until 2022 or later.

Note: Java 8 runtime packages do not exist in the standard repositories for Ubuntu 18.04 (Bionic). To
install Puppet Server on Bionic, enable the universe repository.

Install Puppet Server

Puppet Server is configured to use 2 GB of RAM by default. If you're simply testing an installation on a Virtual
Machine, this amount of memory is not necessary. To change the memory allocation, see Running Puppet Server on a
VM.

Important: If you're upgrading, stop any existing puppetserver service by running service
<service_name> stop or systemctl stop <service_name>.

1. Enable the Puppet package repositories, if you haven't already done so.
2. Install the Puppet Server package by running one of the following commands:

• Red Hat operating systems: yum install puppetserver
• Debian and Ubuntu operating systems: apt-get install puppetserver

3. Start the Puppet Server service: sudo systemctl start puppetserver
4. Open a new shell, or use exec bash to update your PATH.

Tip: If you're installing Puppet Server on Ubuntu, use bash -l instead of exec bash.
5. To check if you installed the Puppet Server correctly, run: puppetserver -v

Step Result: If you correctly installed Puppet Server, the command displays the correct version.

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppet.com/browse/SERVER
https://slack.puppet.com/
https://slack.puppet.com/
https://help.ubuntu.com/community/Repositories/Ubuntu
64992f35bd85a846b1142e3b001c1c92fb073090.md#Running-Puppet-Server-on-a-VM
64992f35bd85a846b1142e3b001c1c92fb073090.md#Running-Puppet-Server-on-a-VM
https://puppet.com/docs/puppet/7/install_puppet.html#enable_the_puppet_platform_repository

Puppet | The Puppet platform | 209

Install a Puppet Agent

After you successfully install Puppet Server, next install the following:

1. Install a Puppet agent
2. (Optional) Install PuppetDB, if you want to enable extra features, including enhanced queries and reports about

your infrastructure.

Running Puppet Server on a VM

By default, Puppet Server is configured to use 2GB of RAM. However, if you want to experiment with Puppet Server
on a VM, you can safely allocate as little as 512MB of memory. To change the Puppet Server memory allocation, you
can edit the init config file.

1. Open the applicable file:

• For RHEL or CentOS, open /etc/sysconfig/puppetserver
• For Debian or Ubuntu, open /etc/default/puppetserver

2. Update the following line to display the amount of memory you want to allocate to Puppet Server:

 # Modify this if you'd like to change the memory allocation, enable JMX,
 etc
 JAVA_ARGS="-Xms2g -Xmx2g"

For example, to allocate 1GB of memory, use JAVA_ARGS="-Xms1g -Xmx1g"; for 512MB, use
JAVA_ARGS="-Xms512m -Xmx512m".

3. Restart the puppetserver service.

Note: For more information about the recommended settings for the JVM, visit Oracle's docs on JVM Tuning.

Configuring Puppet Server

Configuring Puppet Server

Puppet Server uses a combination of Puppet's configuration files along with its own configuration files. You can refer
to a complete list of Puppet’s configuration files in the Config directory.

Puppet Server and puppet.conf settings

Puppet Server uses Puppet's configuration files, including most of the settings in puppet.conf. However, Puppet
Server treats some puppet.conf settings differently. You must be aware of these differences. You can visit
a complete list of these differences at Differing behavior in puppet.conf. Puppet Server automatically loads the
puppet.conf settings in the configuration file’s main and server sections. Puppet Server uses the values in the
server section but if they are not present, it uses the values in the main section.

Puppet Server honors the following puppet.conf settings:

• allow_duplicate_certs
• autosign
• cacert
• cacrl
• cakey
• ca_name
• capub
• ca_ttl
• certdir
• certname
• cert_inventory
• codedir (PE only)
• csrdir

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/7/install_agents.html
https://puppet.com/docs/puppetdb/latest/install_via_module.html
http://docs.oracle.com/cd/E15523_01/web.1111/e13814/jvm_tuning.htm
https://puppet.com/docs/puppet/7/dirs_confdir.html

Puppet | The Puppet platform | 210

• csr_attributes
• dns_alt_names
• hostcert
• hostcrl
• hostprivkey
• hostpubkey
• keylength
• localcacert
• manage_internal_file_permissions
• privatekeydir
• requestdir
• serial
• signeddir
• ssl_client_header
• ssl_client_verify_header
• trusted_oid_mapping_file

Configuration Files

Most of Puppet Server's configuration files and settings (with the exception of the logging config file) are in the
conf.d directory. The conf.d directory is located at /etc/puppetlabs/puppetserver/conf.d by
default. These configuration files are in the HOCON format, which retains the basic structure of JSON but is more
readable. For more information, visit the HOCON documentation.

At startup, Puppet Server reads all the .conf files in the conf.d directory. You must restart Puppet Server to
implement your changes to these files. The conf.d directory contains the following files and settings:

• global.conf on page 153
• webserver.conf on page 152
• web-routes.conf on page 152
• puppetserver.conf on page 144
• auth.conf on page 148
• ca.conf on page 153

Note: The product.conf file is optional and is not included by default. You can create product.conf in
the conf.d directory to configure product-related settings (such as automatic update checking and analytics data
collection).

Logging

There is a Logback configuration file that controls how Puppet Server logs. Its default location is at /etc/
puppetlabs/puppetserver/logback.xml. If you want to place it elsewhere, visit the documentation on
global.conf.

For additional information on the logback.xml file, visit Logback.xm or Logback documentation. For tips on
configuring Logstash or outputting logs in JSON, visit Advanced logging configuration

HTTP Traffic

Puppet Server logs HTTP traffic in a format similar to Apache and to a separate file that isn’t the main log file.
By default, the access log is located at /var/log/puppetlabs/puppetserver/puppetserver-
access.log.

The following information is logged for each HTTP request by default:

• remote host
• remote log name
• remote user
• date of the logging event

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/7/server/configuration.html#logging
https://github.com/lightbend/config/blob/master/HOCON.md
https://puppet.com/docs/puppet/7/server/config_file_logbackxml.html
http://logback.qos.ch/manual/configuration.html
https://puppet.com/docs/puppet/7/server/config_logging_advanced.html

Puppet | The Puppet platform | 211

• URL requested
• status code of the request
• response content length
• remote IP address
• local port
• elapsed time to serve the request, in milliseconds

There is a Logback configuration file that controls Puppet Server’s logging behavior. Its default location is at /
etc/puppetlabs/puppetserver/request-logging.xml. If you want to place it elsewhere, visit the
documentation on webserver.conf

Authorization

To enable additional logging related to auth.conf, edit Puppet Server's logback.xml file. By default, only a
single message is logged when a request is denied.

To enable a one-time logging of the parsed and transformed auth.conf file, add the following to Puppet Server's
logback.xml file:

<logger name="puppetlabs.trapperkeeper.services.authorization.authorization-
service" level="DEBUG"/>

To enable rule-by-rule logging for each request as it's checked for authorization, add the following to Puppet Server's
logback.xml file:

<logger name="puppetlabs.trapperkeeper.authorization.rules" level="TRACE"/>

Service Bootstrapping

Puppet Server is built on top of our open-source Clojure application framework, Trapperkeeper.

One of the features that Trapperkeeper provides is the ability to enable or disable individual services that an
application provides. In Puppet Server, you can use this feature to enable or disable the CA service. The CA service
is enabled by default, but if you're running a multi-server environment or using an external CA, you might want to
disable the CA service on some nodes.

The service bootstrap configuration files are in two locations:

• /etc/puppetlabs/puppetserver/services.d/: For services that users are expected to manually
configure if necessary, such as CA-related services.

• /opt/puppetlabs/server/apps/puppetserver/config/services.d/: For services users
shouldn’t need to configure.

Any files with a .cfg extension in either of these locations are combined to form the final set of services Puppet
Server will use.

The CA-related configuration settings are set in /etc/puppetlabs/puppetserver/services.d/ca.cfg.
If services added in future versions have user-configurable settings, the configuration files will also be in this
directory. When upgrading Puppet Server with a package manager, it should not overwrite files already in this
directory.

In the ca.cfg file, find and modify these lines as directed to enable or disable the service:

To enable the CA service, leave the following line uncommented
puppetlabs.services.ca.certificate-authority-service/certificate-authority-
service
To disable the CA service, comment out the above line and uncomment the
 line below
#puppetlabs.services.ca.certificate-authority-disabled-service/certificate-
authority-disabled-service

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/trapperkeeper

Puppet | The Puppet platform | 212

Adding Java JARs

Puppet Server can load any provided Java Jars upon its initial startup. When launched, Puppet Server automatically
loads any JARs placed in /opt/puppetlabs/server/data/puppetserver/jars into the classpath.
JARs placed here are not modified or removed when upgrading Puppet Server.

Puppet Server configuration files
auth.conf

Puppet Server's auth.conf file contains rules for authorizing access to Puppet Server's HTTP API endpoints. For
an overview, see Configuring Puppet Server on page 142.

The new Puppet Server authentication configuration and functionality is similar to the legacy method in that you
define rules in a file named auth.conf, and Puppet Server applies the settings when a request's endpoint matches a
rule.

However, Puppet Server now has its own auth.conf file that uses a new HOCON format with different
parameters, syntax, and functionality.

Note: You can also use the puppetlabs-puppet_authorization module to manage the new
auth.conf file's authorization rules in the new HOCON format, and the puppetlabs-hocon
module to use Puppet to manage HOCON-formatted settings in general.

To configure how Puppet Server authenticates requests, use the supported HOCON auth.conf file and
authorization methods, and see the parameters and rule definitions in the HOCON Parameters section.

You can find the Puppet Server auth.conf file here.

HOCON example

Here is an example authorization section using the HOCON configuration format:

authorization: {
 version: 1
 rules: [
 {
 match-request: {
 path: "^/my_path/([^/]+)$"
 type: regex
 method: get
 }
 allow: [node1, node2, node3, {extensions:{ext_shortname1:
 value1, ext_shortname2: value2}}]
 sort-order: 1
 name: "user-specific my_path"
 },
 {
 match-request: {
 path: "/my_other_path"
 type: path
 }
 allow-unauthenticated: true
 sort-order: 2
 name: "my_other_path"
 },
]
}

For a more detailed example of how to use the HOCON configuration format, see Configuring The Authorization
Service.

For descriptions of each setting, see the following sections.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/puppet_authorization
https://forge.puppet.com/puppetlabs/hocon
47e970c5c9b2676bfd964baf79b51dc567748c87.md#hocon-parameters
https://github.com/puppetlabs/puppetserver/blob/master/ezbake/config/conf.d/auth.conf
https://github.com/puppetlabs/trapperkeeper-authorization/blob/master/doc/authorization-config.md
https://github.com/puppetlabs/trapperkeeper-authorization/blob/master/doc/authorization-config.md

Puppet | The Puppet platform | 213

HOCON parameters

Use the following parameters when writing or migrating custom authorization rules using the new HOCON format.

version

The version parameter is required. In this initial release, the only supported value is 1.

allow-header-cert-info

Note: Puppet Server ignores the setting of the same name in server.conf on page 154 in favor of this
setting in the new auth.conf file. If you use the Deprecated features on page 201 authentication
method and Puppet auth.conf rules, you must instead configure this setting in server.conf.

This optional authorization section parameter determines whether to enable External SSL termination on page
246 on all HTTP endpoints that Puppet Server handles, including those served by the "primary server" service, the
certificate authority API, and the Puppet Admin API. It also controls how Puppet Server derives the user's identity for
authorization purposes. The default value is false.

If this setting is true, Puppet Server ignores any presented certificate and relies completely on header data to
authorize requests.

Warning! This is very insecure; do not enable this parameter unless you've secured your network to
prevent any untrusted access to Puppet Server.

You cannot rename any of the X-Client headers when this setting is enabled, and you must specify identity
through the X-Client-Verify, X-Client-DN, and X-Client-Cert headers.

For more information, see Disable HTTPS for Puppet Server on page 246 in the Puppet Server documentation and
Configuring the Authorization Service in the trapperkeeper-authorization documentation.

rules

The required rules array of a Puppet Server's HOCON auth.conf file determines how Puppet Server responds
to a request. Each element is a map of settings pertaining to a rule, and when Puppet Server receives a request, it
evaluates that request against each rule looking for a match.

You define each rule by adding parameters to the rule's match-request section. A rules array can contain as
many rules as you need, each with a single match-request section.

If a request matches a rule in a match-request section, Puppet Server determines whether to allow or deny the
request using the rules parameters that follow the rule's match-request section:

• At least one of:

• allow

• allow-unauthenticated

• deny

• sort-order (required)
• name (required)

If no rule matches, Puppet Server denies the request by default and returns an HTTP 403/Forbidden response.

match-request

A match-request can take the following parameters, some of which are required:

• path and type (required): A match-request rule must have a path parameter, which returns a match
when a request's endpoint URL starts with or contains the path parameter's value. The parameter can be a literal
string or regular expression as defined in the required type parameter.

Regular expression to match a path in a URL.
path: "^/puppet/v3/report/([^/]+)$"
type: regex

Literal string to match the start of a URL's path.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/config_file_auth.html
https://github.com/puppetlabs/trapperkeeper-authorization/blob/master/doc/authorization-config.md#allow-header-cert-info
47e970c5c9b2676bfd964baf79b51dc567748c87.md#match-request
47e970c5c9b2676bfd964baf79b51dc567748c87.md#allow-allow-unauthenticated-and-deny
47e970c5c9b2676bfd964baf79b51dc567748c87.md#allow-allow-unauthenticated-and-deny
47e970c5c9b2676bfd964baf79b51dc567748c87.md#allow-allow-unauthenticated-and-deny
47e970c5c9b2676bfd964baf79b51dc567748c87.md#sort-order
47e970c5c9b2676bfd964baf79b51dc567748c87.md#name

Puppet | The Puppet platform | 214

path: "/puppet/v3/report/"
type: path

Note: While the HOCON format doesn't require you to wrap all string values with double quotation
marks, some special characters commonly used in regular expressions --- such as * --- break HOCON
parsing unless the entire value is enclosed in double quotes.

• method: If a rule contains the optional method parameter, Puppet Server applies that rule only to requests that
use its value's listed HTTP methods. This parameter's valid values are get, post, put, delete, and head,
provided either as a single value or array of values.

Use GET and POST.
method: [get, post]

Use PUT.
method: put

Note: While the new HOCON format does not provide a direct equivalent to the Deprecated features
on page 201 method parameter's search indirector, you can create the equivalent rule by passing
GET and POST to method and specifying endpoint paths using the path parameter.

• query-params: Use the optional query-params setting to provide the list of query parameters. Each entry is a
hash of the param name followed by a list of its values.

For example, this rule would match a request URL containing the environment=production or
environment=test query parameters:

``` hocon
query-params: {
    environment: [ production, test ]
}
```

allow, allow-unauthenticated, and deny

After each rule's match-request section, it must also have an allow, allow-unauthenticated, or deny
parameter. (You can set both allow and deny parameters for a rule, though Puppet Server always prioritizes deny
over allow when a request matches both.)

If a request matches the rule, Puppet Server checks the request's authenticated "name" (see allow-header-cert-
info) against these parameters to determine what to do with the request.

• allow-unauthenticated: If this Boolean parameter is set to true, Puppet Server allows the request ---
even if it can't determine an authenticated name. This is a potentially insecure configuration --- be careful when
enabling it. A rule with this parameter set to true can't also contain the allow or deny parameters.

© 2024 Puppet, Inc., a Perforce company

47e970c5c9b2676bfd964baf79b51dc567748c87.md#allow-header-cert-info
47e970c5c9b2676bfd964baf79b51dc567748c87.md#allow-header-cert-info

Puppet | The Puppet platform | 215

• allow: This parameter can take a single string value, an array of string values, a single map value with either an
extensions or certname key, or an array of string and map values.

The string values can contain:

• An exact domain name, such as www.example.com.
• A glob of names containing a * in the first segment, such as *.example.com or simply *.
• A regular expression surrounded by / characters, such as /example/.
• A backreference to a regular expression's capture group in the path value, if the rule also contains a type

value of regex. For example, if the path for the rule were "^/example/([^/]+)$", you can make a
backreference to the first capture group using a value like $1.domain.org.

The map values can contain:

• An extensions key that specifies an array of matching X.509 extensions. Puppet Server authenticates the
request only if each key in the map appears in the request, and each key's value exactly matches.

• A certname key equivalent to a bare string.

If the request's authenticated name matches the parameter's value, Puppet Server allows it.

Note: If you are using Puppet Server with the CA disabled, you must use OID values for the extensions.
Puppet Server will not be able to resolve short names in this mode.

• deny: This parameter can take the same types of values as the allow parameter, but refuses the request if the
authenticated name matches --- even if the rule contains an allow value that also matches.

Also, in the HOCON Puppet Server authentication method, there is no directly equivalent behavior to the
Deprecated features on page 201 auth parameter's on value.

sort-order

After each rule's match-request section, the required sort-order parameter sets the order in which Puppet
Server evaluates the rule by prioritizing it on a numeric value between 1 and 399 (to be evaluated before default
Puppet rules) or 601 to 998 (to be evaluated after Puppet), with lower-numbered values evaluated first. Puppet Server
secondarily sorts rules lexicographically by the name string value's Unicode code points.

sort-order: 1

name

After each rule's match-request section, this required parameter's unique string value identifies the rule to Puppet
Server. The name value is also written to server logs and error responses returned to unauthorized clients.

name: "my path"

Note: If multiple rules have the same name value, Puppet Server will fail to launch.

ca.conf

The ca.conf file configures settings for the Puppet Server Certificate Authority (CA) service. For an overview, see
Configuring Puppet Server on page 142.

Deprecation Note: The authorization-required and client-allowlist settings are
Deprecated features on page 201 as of Puppet Server 2.2 in favor of authorization that is configured in
the auth.conf on page 148 file.

Signing settings

The allow-subject-alt-names setting in the certificate-authority section enables you to sign
certificates with subject alternative names. It is false by default for security reasons but can be enabled if you need
to sign certificates with subject alternative names. Be aware that enabling the setting could allow agent nodes
to impersonate other nodes (including the nodes that already have signed certificates). Consequently, you must
carefully inspect any CSRs with SANs attached. puppet cert sign previously allowed this via a flag, but
puppetserver ca sign requires it to be configured in the config file.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/6.17/ssl_attributes_extensions.html#puppet_registered_ids

Puppet | The Puppet platform | 216

The allow-authorization-extensions setting in the certificate-authority section also enables
you to sign certs with authorization extensions. It is false by default for security reasons, but can be enabled
if you know you need to sign certificates this way. puppet cert sign used to allow this via a flag, but
puppetserver ca sign requires it to be configued in the config file.

Infrastructure CRL settings

Puppet Server is able to create a separate CRL file containing only revocations of Puppet infrastructure nodes. This
behavior is turned off by default. To enable it, set certificate-authority.enable-infra-crl to true.

Status settings (deprecated)

The certificate-status setting in ca.conf provides Deprecated features on page 201 configuration
options for access to the certificate_status and certificate_statuses HTTP endpoints. These
endpoints allow certificates to be signed, revoked, and deleted through HTTP requests, which provides full control
over Puppet's ability to securely authorize access. Therefore, you should always restrict access to ca.conf.

Puppet Enterprise Note: Puppet Enterprise uses these endpoints to provide a console interface for
certificate signing. For more information, see Certificate Status on page 303.

The certificate-status setting takes two parameters: authorization-required and client-
allowlist. If authorization-required is set to true or not set, and client-allowlist is set to an
empty list or not set, Puppet Server uses the authorization methods and auth.conf on page 148 format introduced in
Puppet Server 2.2 to control access to the administration API endpoints.

• authorization-required determines whether a client certificate is required to access certificate status
endpoints. If this parameter is set to false, all requests can access this API. If set to true, only the clients
whose certificate names are included in the client-allowlist setting can access the admin API. If this
parameter is not specified but the client-allowlist parameter is, this parameter's value defaults to true.

• client-allowlist contains a list of client certificate names that are whitelisted for access to the certificate
status endpoints. Puppet Server denies access to requests at these endpoints that do not present a valid client
certificate named in this list.

Example (Deprecated)

If you are using the deprecated authorization methods, follow this structure to configure certificate_status
and certificate_statuses endpoint access in ca.conf, whitelisting a client named host1:

certificate-authority: {
 # deprecated in favor of auth.conf
 certificate-status: {
 authorization-required: true
 client-allowlist: [host1]
 }
}

global.conf

The global.conf file contains global configuration settings for Puppet Server. For an overview, see Configuring
Puppet Server on page 142.

You shouldn't typically need to make changes to this file. However, you can change the logging-config path
for the logback logging configuration file if necessary. For more information about the logback file, see http://
logback.qos.ch/manual/configuration.html.

Example

global: {
 logging-config: /etc/puppetlabs/puppetserver/logback.xml
}

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/trapperkeeper-authorization
http://logback.qos.ch/manual/configuration.html
http://logback.qos.ch/manual/configuration.html

Puppet | The Puppet platform | 217

logback.xml

Puppet Server’s logging is routed through the Java Virtual Machine's Logback library and configured in an XML file
typically named logback.xml.

Note: This document covers basic, commonly modified options for Puppet Server logs. Logback is a
powerful library with many options. For detailed information on configuring Logback, see the Logback
Configuration Manual.

For advanced logging configuration tips specific to Puppet Server, such as configuring Logstash or
outputting logs in JSON format, see Advanced logging configuration on page 157.

Puppet Server logging

By default, Puppet Server logs messages and errors to /var/log/puppetlabs/puppetserver/
puppetserver.log. The default log level is ‘INFO’, and Puppet Server sends nothing to syslog. You can
change Puppet Server's logging behavior by editing /etc/puppetlabs/puppetserver/logback.xml, and
you can specify a different Logback config file in global.conf.

You can restart the puppetserver service for changes to take effect, or enable configuration scanning to allow
changes to be recognized at runtime.

Puppet Server also relies on Logback to manage, rotate, and archive Server log files. Logback archives Server logs
when they exceed 10MB, and when the total size of all Server logs exceeds 1GB, it automatically deletes the oldest
logs.

Settings
level

To modify Puppet Server's logging level, change the level attribute of the root element. By default, the logging
level is set to info:

<root level="info">

Supported logging levels, in order from most to least information logged, are trace, debug, info, warn, and
error. For instance, to enable debug logging for Puppet Server, change info to debug:

<root level="debug">

Puppet Server profiling data is included at the debug logging level.

You can also change the logging level for JRuby logging from its defaults of error and info by setting the level
attribute of the jruby element. For example, to enable debug logging for JRuby, set the attribute to debug:

<jruby level="debug">

Logging location

You can change the file to which Puppet Server writes its logs in the appender section named F1. By default, the
location is set to /var/log/puppetlabs/puppetserver/puppetserver.log:

...
 <appender name="F1" class="ch.qos.logback.core.FileAppender">
 <file>/var/log/puppetlabs/puppetserver/puppetserver.log</file>
...

To change this to /var/log/puppetserver.log, modify the contents of the file element:

 <file>/var/log/puppetserver.log</file>

The user account that owns the Puppet Server process must have write permissions to the destination path.

scan and scanPeriod

© 2024 Puppet, Inc., a Perforce company

http://logback.qos.ch/
http://logback.qos.ch/manual/configuration.html
http://logback.qos.ch/manual/configuration.html
ef4e3bb846af9cd8dc8cb02dc46469725d403648.md#globalconf
ef4e3bb846af9cd8dc8cb02dc46469725d403648.md#scan-and-scanperiod

Puppet | The Puppet platform | 218

Logback supports noticing and reloading configuration changes without requiring a restart, a feature Logback
calls scanning. To enable this, set the scan and scanPeriod attributes in the <configuration> element of
logback.xml:

<configuration scan="true" scanPeriod="60 seconds">

Due to a bug in Logback, the scanPeriod must be set to a value; setting only scan="true" will not enable
configuration scanning. Scanning is enabled by default in the logback.xml configuration packaged with Puppet
Server.

Note: The HTTP request log does not currently support the scan feature. Adding the scan or scanPeriod settings
to request-logging.xml will have no effect.

HTTP request logging

Puppet Server logs HTTP traffic separately, and this logging is configured in a different Logback configuration file
located at /etc/puppetlabs/puppetserver/request-logging.xml. To specify a different Logback
configuration file, change the access-log-config setting in Puppet Server's webserver.conf on page 152 file.

The HTTP request log uses the same Logback configuration format and settings as the Puppet Server log. It also lets
you configure what it logs using patterns, which follow Logback's PatternLayout format.

server.conf

The server.conf file configures how Puppet Server handles Deprecated features on page 201 authorization
methods for primary server endpoints. For an overview, see Configuring Puppet Server on page 142.

Deprecation Note: This file contains only the allow-header-cert-info parameter, and is
deprecated as of Puppet Server 2.2 in favor of authorization settings that are configured in the auth.conf on
page 148 file. Because this setting is deprecated, a default server.conf file is no longer included in
the Puppet Server package.

In server.conf, the allow-header-cert-info setting determines whether Puppet Server should use
authorization info from the X-Client-Verify, X-Client-DN, and X-Client-Cert HTTP headers. Its
default value is false.

The allow-header-cert-info setting is used to enable External SSL termination on page 246. If the
setting's value is set to true, Puppet Server will ignore any certificate presented to the Jetty web server, and will
rely on header data to authorize requests. This is very dangerous unless you've secured your network to prevent any
untrusted access to Puppet Server.

When using the allow-header-cert-info setting in server.conf, you can change Puppet's
ssl_client_verify_header parameter to use another header name instead of X-Client-Verify. The
ssl_client_header parameter can rename X-Client-DN. The X-Client-Cert header can't be renamed.

The allow-header-cert-info parameter in server.conf applies only to HTTP endpoints served by the
"primary server" service. The applicable endpoints include those listed in Puppet V3 HTTP API. It does not apply to
the endpoints listed in CA V1 HTTP API or to any puppetserver.conf on page 144 endpoints.

Supported Authorization Workflow

If you instead enable the auth.conf authorization method introduced in Puppet Server 2.2, the value of
the allow-header-cert-info parameter in auth.conf controls how the user's identity is derived for
authorization purposes. In this case, Puppet Server ignores the value of the allow-header-cert-info
parameter in server.conf.

When using the allow-header-cert-info parameter in auth.conf, none of the X-Client headers can
be renamed. Identity must be specified through the X-Client-Verify, X-Client-DN, and X-Client-Cert
headers.

The allow-header-cert-info parameter in auth.conf, applies to all HTTP endpoints that Puppet Server
handles, including those served by the "primary server" service, the CA API, and the Puppet Admin API.

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/browse/TK-426
http://logback.qos.ch/manual/layouts.html#AccessPatternLayout

Puppet | The Puppet platform | 219

For additional information on the allow-header-cert-info parameter in auth.conf, see auth.conf on page
148 and Configuring the Authorization Service in the trapperkeeper-authorization documentation.

HOCON auth.conf Example

authorization: {
 version: 1
 # allow-header-cert-info: false
 rules: [
 {
 # Allow nodes to retrieve their own catalog
 match-request: {
 path: "^/puppet/v3/catalog/([^/]+)$"
 type: regex
 method: [get, post]
 }
 allow: "$1"
 sort-order: 500
 name: "puppetlabs catalog"
 },
 ...
]
}

metrics.conf

The metrics.conf file configures Puppet Server's Monitoring Puppet Server metrics on page 247 and v2
(Jolokia) metrics on page 311.

Settings

All settings in the file are contained in a HOCON metrics section.

• server-id: A unique identifier to be used as part of the namespace for metrics that this server produces.
• registries: A section that contains settings to control which metrics are reported, and how they're reported.

• <REGISTRY NAME>: A section named for a registry that contains its settings. In Puppet Server's case, this
section should be puppetserver.

• metrics-allowed: An array of metrics to report. See the Monitoring Puppet Server metrics on page
247 for details about individual metrics.

• reporters: Can contain jmx and graphite sections with a single Boolean enabled setting to
enable or disable each reporter type.

• reporters: Configures reporters that distribute metrics to external services or viewers.

• graphite: Contains settings for the Graphite reporter.

• host: A string containing the Graphite server's hostname or IP address.
• port: Contains the Graphite service's port number.
• update-interval-seconds: Sets the interval on which Puppet Server will send metrics to the

Graphite server.

Example

Puppet Server ships with a default metrics.conf file in Puppet Server's conf.d directory, similar to the below
example with additional comments.

metrics: {
 server-id: localhost
 registries: {
 puppetserver: {
 # specify metrics to allow in addition to those in the default
 list
 #metrics-allowed: ["compiler.compile.production"]

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/trapperkeeper-authorization/blob/master/doc/authorization-config.md#allow-header-cert-info

Puppet | The Puppet platform | 220

 reporters: {
 jmx: {
 enabled: true
 }
 # enable or disable Graphite metrics reporter
 #graphite: {
 # enabled: true
 #}
 }

 }
 }

 reporters: {
 #graphite: {
 # # graphite host
 # host: "127.0.0.1"
 # # graphite metrics port
 # port: 2003
 # # how often to send metrics to graphite
 # update-interval-seconds: 5
 #}
 }
}

product.conf

The product.conf file contains settings that determine how Puppet Server interacts with Puppet, Inc., such as
automatic update checking and analytics data collection.

Settings

The product.conf file doesn't exist in a default Puppet Server installation; to configure its settings, you must
create it in Puppet Server's conf.d directory (located by default at /etc/puppetlabs/puppetserver/
conf.d). This file is a HOCON-formatted configuration file with the following settings:

• Settings in the product section configure update checking and analytics data collection:

• check-for-updates: If set to false, Puppet Server will not automatically check for updates, and will
not send analytics data to Puppet.

If this setting is unspecified (default) or set to true, Puppet Server checks for updates upon start or restart,
and every 24 hours thereafter, by sending the following data to Puppet:

• Product name
• Puppet Server version
• IP address
• Data collection timestamp

Puppet requests this data as one of the many ways we learn about and work with our community. The more we
know about how you use Puppet, the better we can address your needs. No personally identifiable information
is collected, and the data we collect is never used or shared outside of Puppet.

Example

Disabling automatic update checks and corresponding analytic data
 collection

product: {
 check-for-updates: false
}

© 2024 Puppet, Inc., a Perforce company

https://github.com/typesafehub/config/blob/master/HOCON.md

Puppet | The Puppet platform | 221

puppetserver.conf

The puppetserver.conf file contains settings for Puppet Server software. For an overview, see Configuring
Puppet Server on page 142.

Settings

Note: Under most conditions, you won't change the default settings for master-conf-dir or
master-code-dir. However, if you do, also change the equivalent Puppet settings (confdir or
codedir) to ensure that commands like puppetserver ca and puppet module use the same
directories as Puppet Server. You must also specify the non-default confdir when running commands,
because that setting must be set before Puppet tries to find its config file.

• The jruby-puppet settings configure the interpreter.

Deprecation Note: Puppet Server 5.0 removed the compat-version setting, which is incompatible
with JRuby 1.7.27, and the service won't start if compat-version is set. Puppet Server 6.0 uses
JRuby 9.1 which supports Ruby 2.3.

• ruby-load-path: The location where Puppet Server expects to find Puppet, Facter, and other components.
• gem-home: The location where JRuby looks for gems. It is also used by the puppetserver gem

command line tool. If nothing is specified, JRuby uses the Puppet default /opt/puppetlabs/server/
data/puppetserver/jruby-gems.

• gem-path: The complete "GEM_PATH" for jruby. If set, it should include the gem-home directory, as well
as any other directories that gems can be loaded from (including the vendored gems directory for gems that
ship with puppetserver). The default value is ["/opt/puppetlabs/server/data/puppetserver/

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 222

jruby-gems", "/opt/puppetlabs/server/data/puppetserver/vendored-jruby-
gems", "/opt/puppetlabs/puppet/lib/ruby/vendor_gems"].

• environment-vars: Optional. A map of environment variables which are made visible to Ruby code
running within JRuby, for example, via the Ruby ENV class.

By default, the only environment variables whose values are set into JRuby from the shell are HOME and
PATH.

The default value for the GEM_HOME environment variable in JRuby is set from the value provided for the
jruby-puppet.gem-home key.

Any variable set from the map for the environment-vars key overrides these defaults. Avoid overriding
HOME, PATH, or GEM_HOME here because these values are already configurable via the shell or jruby-
puppet.gem-home.

• master-conf-dir: Optional. The path to the Puppet configuration directory. The default is /etc/
puppetlabs/puppet.

• master-code-dir: Optional. The path to the Puppet code directory. The default is /etc/puppetlabs/
code.

• master-var-dir: Optional. The path to the Puppet cache directory. The default is /opt/puppetlabs/
server/data/puppetserver.

• master-run-dir: Optional. The path to the run directory, where the service's PID file is stored. The
default is /var/run/puppetlabs/puppetserver.

• master-log-dir: Optional. The path to the log directory. If nothing is specified, it uses the Puppet default
/var/log/puppetlabs/puppetserver.

• max-active-instances: Optional. The maximum number of JRuby instances allowed. The default is
'num-cpus - 1', with a minimum value of 1 and a maximum value of 4. In multithreaded mode, this controls the
number of threads allowed to run concurrently through the single JRuby instance.

• max-requests-per-instance: Optional. The number of HTTP requests a given JRuby instance will
handle in its lifetime. When a JRuby instance reaches this limit, it is flushed from memory and replaced with a
fresh one. The default is 0, which disables automatic JRuby flushing.

JRuby flushing can be useful for working around buggy module code that would otherwise cause memory
leaks, but it slightly reduces performance whenever a new JRuby instance reloads all of the Puppet Ruby code.
If memory leaks from module code are not an issue in your deployment, the default value of 0 performs best.

• multithreaded: Optional, false by default. Configures Puppet Server to use a single JRuby instance to
process requests that require a JRuby, processing a number of threads up to max-active-instances at a
time. Reduces the memory footprint of the server by only requiring a single JRuby.

• max-queued-requests: Optional. The maximum number of requests that may be queued waiting to
borrow a JRuby from the pool. When this limit is exceeded, a 503 "Service Unavailable" response will be
returned for all new requests until the queue drops below the limit. If max-retry-delay is set to a positive
value, then the 503 responses will include a Retry-After header indicating a random sleep time after
which the client may retry the request. The default is 0, which disables the queue limit.

• max-retry-delay: Optional. Sets the upper limit for the random sleep set as a Retry-After header
on 503 responses returned when max-queued-requests is enabled. A value of 0 will cause the Retry-

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/dirs_confdir.html
https://puppet.com/docs/puppet/latest/dirs_codedir.html
https://puppet.com/docs/puppet/latest/dirs_vardir.html

Puppet | The Puppet platform | 223

After header to be omitted. Default is 1800 seconds which corresponds to the default run interval of the
Puppet daemon.

• borrow-timeout: Optional. The timeout in milliseconds, when attempting to borrow an instance from the
JRuby pool. The default is 1200000.

• use-legacy-auth-conf: Optional. The method to be used for authorizing access to the HTTP endpoints
served by the primary server service. The applicable endpoints are listed in Puppet v3 HTTP API. As of
Puppet Server 5.0, this setting's default value is false.

If this setting is set to true, Puppet uses the Deprecated features on page 201 Ruby puppet-agent
authorization method and auth.conf on page 148 format, which will be removed in a future version of
Puppet Server.

For a value of false or is not specified, Puppet uses the HOCON configuration file format and location.

For more information, see the auth.conf on page 148.
• environment-class-cache-enabled: Optional. Used to control whether the primary server service

maintains a cache in conjunction with the use of the Environment classes on page 316.

If this setting is set to true, Puppet Server maintains the cache. It also returns an Etag header for each GET
request to the API. For subsequent GET requests that use the prior Etag value in an If-None-Match header,
when the class information available for an environment has not changed, Puppet Server returns an HTTP 304
(Not Modified) response with no body.

If this setting is set to false or is not specified, Puppet Server doesn't maintain a cache, an Etag header is
not returned for GET requests, and the If-None-Match header for an incoming request is ignored. It therefore
parses the latest available code for an environment from disk on every incoming request.

For more information, see the Environment classes on page 316.
• compile-mode: The default value depends on JRuby versions, for 1.7 it is off, for 9k it is jit. Used to

control JRuby's "CompileMode", which may improve performance. A value of jit enables JRuby's "just-in-
time" compilation of Ruby code. A value of force causes JRuby to attempt to pre-compile all Ruby code.

• profiling-mode: Optional. Used to enable JRuby's profiler for service startup and set it to one of the
supported modes. The default value is off, but it can be set to one of api, flat, graph, html, json,
off, and service. See ruby-prof for details on what the various modes do.

• profiler-output-file: Optional. Used to set the output file to direct JRuby profiler output. Should be
a fully qualified path writable by the service user. If not set will default to a random name inside the service
working directory.

• The profiler settings configure profiling:

• enabled: If this is set to true, Puppet Server enables profiling for the Puppet Ruby code. The default is
true.

• The puppet-admin section configures Puppet Server's administrative API. (This API is unavailable with Rack
or WEBrick Puppet primary servers.)

Note: The puppet-admin setting and client-allowlist parameter are deprecated in favor of
authorization methods introduced in Puppet Server 2.2. For details, see the auth.conf on page 148.

• authorization-required determines whether a client certificate is required to access the endpoints
in this API. If set to false, all requests will be permitted to access this API. If set to true, only the clients
whose certnames are included in the client-allowlist setting are allowed access to the admin API. If
this setting is not specified but the client-allowlist setting is specified, the default value for this setting
is true.

• client-allowlist contains an array of client certificate names that are allowed to access the admin API.
Puppet Server denies any requests made to this endpoint that do not present a valid client certificate mentioned
in this array.

If neither the authorization-required nor the client-allowlist settings are specified, Puppet
Server uses the new authorization methods and auth.conf on page 148 formats to access the admin API
endpoints.

© 2024 Puppet, Inc., a Perforce company

https://github.com/ruby-prof/ruby-prof/blob/master/README.rdoc#reports

Puppet | The Puppet platform | 224

• The versioned-code settings configure commands required to use static catalogs:

• code-id-command: the path to an executable script that Puppet Server invokes to generate a code_id.
When compiling a static catalog, Puppet Server uses the output of this script as the catalog's code_id. The
code_id associates the catalog with the compile-time version of any file resources that has a source
attribute with a puppet:/// URI value.

• code-content-command contains the path to an executable script that Puppet Server invokes when an
agent makes a Static file content on page 324 API request for the contents of a file resource that has a
source attribute with a puppet:/// URI value.

• The dropsonde settings configure whether and how often Puppet Server submits usage telemetry:

• enabled: If this is set to true, Puppet Server submits public content usage data to Puppet development.
Defaults to false.

• interval: how long, in seconds, Puppet Server waits between telemetry submissions if enabled. Defaults to
604800 (one week).

Note: The Puppet Server process must be able to execute the code-id-command and code-
content-command scripts, and the scripts must return valid content to standard output and an
error code of 0. For more information, see the static catalogs and Static file content on page 324
documentation.

If you're using static catalogs, you must set and use both code-id-command and code-content-
command. If only one of those settings are specified, Puppet Server fails to start. If neither setting is
specified, Puppet Server defaults to generating catalogs without static features even when an agent
requests a static catalog, which the agent will process as a normal catalog.

Examples

Configuration for the JRuby interpreters.

jruby-puppet: {
 ruby-load-path: [/opt/puppetlabs/puppet/lib/ruby/vendor_ruby]
 gem-home: /opt/puppetlabs/server/data/puppetserver/jruby-gems
 gem-path: [/opt/puppetlabs/server/data/puppetserver/jruby-gems, /opt/
puppetlabs/server/data/puppetserver/vendored-jruby-gems]
 environment-vars: { "FOO" : ${FOO}
 "LANG" : "de_DE.UTF-8" }
 master-conf-dir: /etc/puppetlabs/puppet
 master-code-dir: /etc/puppetlabs/code
 master-var-dir: /opt/puppetlabs/server/data/puppetserver
 master-run-dir: /var/run/puppetlabs/puppetserver
 master-log-dir: /var/log/puppetlabs/puppetserver
 max-active-instances: 1
 max-requests-per-instance: 0
}

Settings related to HTTP client requests made by Puppet Server.
These settings only apply to client connections using the
 Puppet::Network::HttpPool
classes. Client connections using net/http or net/https directly will not
 be
configured with these settings automatically.
http-client: {
 # A list of acceptable protocols for making HTTP requests
 #ssl-protocols: [TLSv1, TLSv1.1, TLSv1.2]

 # A list of acceptable cipher suites for making HTTP requests. For more
 info on available cipher suites, see:
 # http://docs.oracle.com/javase/7/docs/technotes/guides/security/
SunProviders.html#SunJSSEProvider
 #cipher-suites: [TLS_RSA_WITH_AES_256_CBC_SHA256,
 # TLS_RSA_WITH_AES_256_CBC_SHA,

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/static_catalogs.html
https://puppet.com/docs/puppet/latest/type.html#file
https://puppet.com/docs/puppet/latest/type.html#file
https://puppet.com/docs/puppet/latest/static_catalogs.html

Puppet | The Puppet platform | 225

 # TLS_RSA_WITH_AES_128_CBC_SHA256,
 # TLS_RSA_WITH_AES_128_CBC_SHA]

 # The amount of time, in milliseconds, that an outbound HTTP connection
 # will wait for data to be available before closing the socket. If not
 # defined, defaults to 20 minutes. If 0, the timeout is infinite and if
 # negative, the value is undefined by the application and governed by
 the
 # system default behavior.
 #idle-timeout-milliseconds: 1200000

 # The amount of time, in milliseconds, that an outbound HTTP connection
 will
 # wait to connect before giving up. Defaults to 2 minutes if not set. If
 0,
 # the timeout is infinite and if negative, the value is undefined in the
 # application and governed by the system default behavior.
 #connect-timeout-milliseconds: 120000

 # Whether to enable http-client metrics; defaults to 'true'.
 #metrics-enabled: true
}

Settings related to profiling the puppet Ruby code.
profiler: {
 enabled: true
}

Settings related to static catalogs. These paths are examples. There are
 no default
scripts provided with Puppet Server, and no default path for the scripts.
 To use static catalog features, you must set
the paths and provide your own scripts.
versioned-code: {
 code-id-command: /opt/puppetlabs/server/apps/puppetserver/code-id-
command_script.sh
 code-content-command: /opt/puppetlabs/server/apps/puppetserver/code-
content-command_script.sh
}

web-routes.conf

The web-routes.conf file configures the Puppet Server web-router-service, which sets mount points for
Puppet Server's web applications. You should not modify these mount points, because Puppet agents rely on Puppet
Server mounting them to specific URLs.

For an overview, see Configuring Puppet Server on page 142. To configure the webserver service, see the
webserver.conf on page 152.

Example

Here is an example of a web-routes.conf file:

Configure the mount points for the web apps.
web-router-service: {
 # These two should not be modified because the Puppet 4 agent expects
 them to
 # be mounted at these specific paths.
 "puppetlabs.services.ca.certificate-authority-service/certificate-
authority-service": "/puppet-ca"
 "puppetlabs.services.master.master-service/master-service": "/puppet"

 # This controls the mount point for the Puppet administration API.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 226

 "puppetlabs.services.puppet-admin.puppet-admin-service/puppet-admin-
service": "/puppet-admin-api"

 # This controls the mount point for the status API
 "puppetlabs.trapperkeeper.services.status.status-service/status-
service": "/status"

 # This controls the mount point for the metrics API
 "puppetlabs.trapperkeeper.services.metrics.metrics-service/metrics-
webservice": "/metrics"
}

webserver.conf

The webserver.conf file configures the Puppet Server webserver service. For an overview, see Configuring
Puppet Server on page 142. To configure the mount points for the Puppet administrative API web applications, see
the web-routes.conf on page 152.

Examples

The webserver.conf file looks something like this:

Configure the webserver.
webserver: {
 # Log webserver access to a specific file.
 access-log-config: /etc/puppetlabs/puppetserver/request-logging.xml
 # Require a valid certificate from the client.
 client-auth: need
 # Listen for HTTPS traffic on all available hostnames.
 ssl-host: 0.0.0.0
 # Listen for HTTPS traffic on port 8140.
 ssl-port: 8140
}

These are the main values for managing a Puppet Server installation. For further documentation, including a complete
list of available settings and values, see Configuring the Webserver Service.

By default, Puppet Server is configured to use the correct Puppet primary server and certificate authority (CA)
certificates. If you're using an external CA and providing your own certificates and keys, make sure the SSL-related
parameters in webserver.conf point to the correct file.

webserver: {
 ...
 ssl-cert : /path/to/server.pem
 ssl-key : /path/to/server.key
 ssl-ca-cert : /path/to/ca_bundle.pem
 ssl-cert-chain : /path/to/ca_bundle.pem
 ssl-crl-path : /etc/puppetlabs/puppet/ssl/crl.pem
}

Migrating to the HOCON auth.conf format

Puppet Server 2.2.0 introduced a significant change in how it manages authentication to API endpoints. The older
Puppet auth.conf file and allowlist-based authorization method are Deprecated features on page 201. Puppet
Server's new auth.conf file, illustrated below in examples, also uses a different format for authorization rules.

Use the following examples and methods to convert your authorization rules when upgrading to Puppet Server 2.2.0
and newer. For detailed information about using the new or deprecated auth.conf rules with Puppet Server, see
the auth.conf on page 148.

Note: To continue using the deprecated Puppet auth.conf file and authorization rule format, see the
Deprecated Ruby Parameters section of the auth.conf documentation. To support both Puppet 3 and
Puppet 4 agents connecting to Puppet Server, see Backward Compatibility with Puppet 3 Agents.

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/trapperkeeper-webserver-jetty9/blob/master/doc/jetty-config.md
https://puppet.com/docs/puppet/latest/config_file_auth.md
https://puppet.com/docs/puppet/latest/config_file_auth.md
https://puppet.com/docs/puppet/latest/config_file_auth.md#deprecated-ruby-parameters

Puppet | The Puppet platform | 227

Managing rules with Puppet modules

You can reimplement and manage your authorization rules in the new HOCON format and auth.conf file by using
the puppetlabs-puppet_authorization Puppet module. See the module's documentation for details.

Converting rules directly

Most of the deprecated authorization rules and settings are available in the new format.

Unavailable rules, settings, or values

The following rules, settings, and values have no direct equivalent in the new HOCON format. If you require them,
you must reimplement them differently in the new format.

• on value of auth: The deprecated auth parameter's on value results in a match only when a request provides a
client certificate. There is no equivalent behavior in the HOCON format.

• allow_ip or deny_ip parameters
• method parameter's search indirector: While there is no direct equivalent to the deprecated search indirector,

you can create an equivalent HOCON rule. See below for an example.

Note: Puppet Server considers the state of a request's authentication differently depending on whether
the authorization rules use the older Puppet auth.conf or newer HOCON formats. An authorization
rule that uses the deprecated format evaluates the auth parameter as part of rule-matching process.
A HOCON authorization rule first determines whether the request matches other parameters of the
rule, and then considers the request's authentication state (using the rule's allow, deny, or allow-
authenticated values) after a successful match only.

Basic HOCON structure

The HOCON auth.conf file has some fundamental structural requirements:

• An authorization section, which contains:

• A version on page 149 setting.
• A rules on page 150 array of map values, each representing an authorization rule. Each rule must contain:

• A match-request on page 150 section.

• Each match-request section must contain at least one path and type.
• A numeric sort-order on page 151 value.

• If the value is between 1 and 399, the rule supersedes Puppet Server's default authorization rules.
• If the value is between 601 and 998, the rule can be overridden by Puppet Server's default authorization

rules.
• A string name on page 151 value.
• At least one of the following:

• An allow, allow-unauthenticated, and deny on page 151. The allow or deny values can contain:

• A single string, representing the request's "name" derived from the Common Name (CN) attribute
within an X.509 certificate's Subject Distinguished Name (DN). This string can be an exact name, a
glob, or a regular expression.

• A single map value containing an extension key.
• A single map value containing a certname key.
• An array of values, including string and map values.

• An allow, allow-unauthenticated, and deny on page 151 value, but if present, there cannot also be an
allow value.

For an full example of a HOCON auth.conf file, see the HOCON example on page 149.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/puppet_authorization
b7ac0707f28f47535129ccd05ea609f5ec1578f9.md#search-indirector-for-method

Puppet | The Puppet platform | 228

Converting a simple rule

Let's convert this simple deprecated auth.conf authorization rule:

path /puppet/v3/environments
method find
allow *

We'll start with a skeletal, incomplete HOCON auth.conf file:

authorization: {
 version: 1
 rules: [
 {
 match-request: {
 path:
 type:
 }
 allow:
 sort-order: 1
 name:
 },
]
}

Next, let's convert each component of the deprecated rule to the new HOCON format.

1. Add the path to the new rule's match-request on page 150 setting in its match-request section.

...
 match-request: {
 path: /puppet/v3/environments
 type:
 }
 allow:
 sort-order: 1
 name:
 },
...

2. Next, add its type to the section's match-request on page 150 setting. Because this is a literal string path, the
type is path.

...
 match-request: {
 path: /puppet/v3/environments
 type: path
 }
 allow:
 sort-order: 1
 name:
 },
...

3. The legacy rule has a method setting, with an indirector value of find that's equivalent to the GET and POST
HTTP methods. We can implement these by adding an optional HOCON match-request on page 150 setting in
the rule's match-request section and specifying GET and POST as an array.

...
 match-request: {
 path: /puppet/v3/environments
 type: path
 method: [get, post]

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 229

 }
 allow:
 sort-order: 1
 name:
 },
...

4. Next, set the allow setting. The legacy rule used a * glob, which is also supported in HOCON.

...
 match-request: {
 path: /puppet/v3/environments
 type: path
 method: [get, post]
 }
 allow: "*"
 sort-order: 1
 name:
 },
...

5. Finally, give the rule a unique name value. Remember that the rule will appear in logs and in the body of error
responses to unauthorized clients.

...
 match-request: {
 path: /puppet/v3/environments
 type: path
 method: [get, post]
 }
 allow: "*"
 sort-order: 1
 name: "environments"
 },
...

Our HOCON auth.conf file should now allow all authenticated clients to make GET and POST requests to the /
puppet/v3/environments endpoint, and should look like this:

authorization: {
 version: 1
 rules: [
 {
 match-request: {
 path: /puppet/v3/environments
 type: path
 method: [get, post]
 }
 allow: "*"
 sort-order: 1
 name: "environments"
 },
]
}

Converting more complex rules
Paths set by regular expressions

To convert a regular expression path, enclose it in double quotation marks and slash characters (/), and set the type
to regex.

© 2024 Puppet, Inc., a Perforce company

b7ac0707f28f47535129ccd05ea609f5ec1578f9.md#allow-allow-unauthenticated-and-deny
b7ac0707f28f47535129ccd05ea609f5ec1578f9.md#name

Puppet | The Puppet platform | 230

Note: You must escape regular expressions to conform to HOCON standards, which are the same as
JSON's and differ from the deprecated format's regular expressions. For instance, the digit-matching
regular expression \d must be escaped with a second backslash, as \d.

Deprecated:

path ~ ^/puppet/v3/catalog/([^/]+)$

HOCON:

authorization: {
 version: 1
 rules: [
 {
 match-request: {
 path: "^/puppet/v3/catalog/([^/]+)$"
 type: regex
...

Note: You must escape regular expressions to conform to HOCON standards, which are the same as
JSON's and differ from the deprecated format's regular expressions. For instance, the digit-matching
regular expression \d must be escaped with a second backslash, as \d.

Backreferencing works the same way it does in the deprecated format.

Deprecated:

path ~ ^/puppet/v3/catalog/([^/]+)$
allow $1

HOCON:

authorization: {
 version: 1
 rules: [
 {
 match-request: {
 path: "^/puppet/v3/catalog/([^/]+)$"
 type: regex
 }
 allow: "$1"
...

Allowing unauthenticated requests

To have a rule match any request regardless of its authentication state, including unauthenticated requests,
a deprecated rule would assign the any value to the auth parameter. In a HOCON rule, set the allow-
unauthenticated parameter to true. This overrides the allow and deny parameters and is an insecure
configuration that should be used with caution.

Deprecated:

auth: any

HOCON:

authorization: {
 version: 1
 rules: [
 {
 match-request: {
 ...

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 231

 }
 allow-unauthenticated: true
...

Multiple method indirectors

If a deprecated rule has multiple method indirectors, combine all of the related HTTP methods to the HOCON
method array.

Deprecated:

method find, save

The deprecated find indirector corresponds to the GET and POST methods, and the save indirector corresponds to the
PUT method. In the HOCON format, simply combine these methods in an array.

HOCON:

authorization: {
 version: 1
 rules: [
 {
 match-request: {
 ...
 method: [get, post, put]
 }
...

Environment URL parameters

In deprecated rules, the environment parameter adds a comma-separated list of query parameters as a suffix to
the base URL. HOCON rules allow you to pass them as an array environment value inside the query-params
setting. Rules in both the deprecated and HOCON formats match any environment value.

Deprecated:

environment: production,test

HOCON:

authorization: {
 version: 1
 rules: [
 {
 match-request: {
 ...
 query-params: {
 environment: [production, test]
 }
 }
...

Note: The query-params approach above replaces environment-specific rules for both Puppet 3 and
Puppet 4. If you're supporting agents running both Puppet 3 and Puppet 4, see Backward Compatibility
with Puppet 3 Agents for more information.

Search indirector for method

There's no direct equivalent to the search indirector for the deprecated method setting. Create the equivalent rule by
passing GET and POST to method and specifying endpoint paths using the path parameter.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 232

Deprecated:

path ~ ^/puppet/v3/file_metadata/user_files/
method search

HOCON:

authorization: {
 version: 1
 rules: [
 {
 match-request: {
 path: "^/puppet/v3/file_metadatas?/user_files/"
 type: regex
 method: [get, post]
 }
...

Advanced logging configuration

Puppet Server uses the Logback library to handle all of its logging. Logback configuration settings are stored in the
logback.xml on page 156 file, which is located at /etc/puppetlabs/puppetserver/logback.xml by
default.

You can configure Logback to log messages in JSON format, which makes it easy to send them to other logging
backends, such as Logstash.

Configuring Puppet Server for use with Logstash

There are a few steps necessary to setup your Puppet Server logging for use with Logstash. The first step is to modify
your logging configuration so that Puppet Server is logging in a JSON format. After that, you'll configure an external
tool to monitor these JSON files and send the data to Logstash (or another remote logging system).

Configuring Puppet Server to log to JSON

Before you configure Puppet Server to log to JSON, consider the following:

• Do you want to configure Puppet Server to only log to JSON, instead of the default plain-text logging? Or do you
want to have JSON logging in addition to the default plain-text logging?

• Do you want to set up JSON logging only for the main Puppet Server logs (puppetserver.log), or also for
the HTTP access logs (puppetserver-access.log)?

• What kind of log rotation strategy do you want to use for the new JSON log files?

The following examples show how to configure Logback for:

• logging to both JSON and plain-text
• JSON logging both the main logs and the HTTP access logs
• log rotation on the JSON log files

Adjust the example configuration settings to suit your needs.

Note: Puppet Server also relies on Logback to manage, rotate, and archive Server log files. Logback
archives Server logs when they exceed 200MB, and when the total size of all Server logs exceeds 1GB, it
automatically deletes the oldest logs.

Adding a JSON version of the main Puppet Server logs

Logback writes logs using components called appenders. The example code below uses RollingFileAppender
to rotate the log files and avoid consuming all of your storage.

© 2024 Puppet, Inc., a Perforce company

http://logback.qos.ch/
http://logback.qos.ch/manual/appenders.html

Puppet | The Puppet platform | 233

1. To configure Puppet Server to log its main logs to a second log file in JSON format, add an appender section like
the following example to your logback.xml file, at the same level in the XML as existing appenders. The order
of the appenders does not matter.

<appender name="JSON"
 class="ch.qos.logback.core.rolling.RollingFileAppender">
 <file>/var/log/puppetlabs/puppetserver/puppetserver.log.json</file>

 <rollingPolicy
 class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
 <fileNamePattern>/var/log/puppetlabs/puppetserver/
puppetserver.log.json.%d{yyyy-MM-dd}</fileNamePattern>
 <maxHistory>5</maxHistory>
 </rollingPolicy>

 <encoder class="net.logstash.logback.encoder.LogstashEncoder"/>
</appender>

2. Activate the appended by adding an appender-ref entry to the <root> section of logback.xml:

<root level="info">
 <appender-ref ref="FILE"/>
 <appender-ref ref="JSON"/>
</root>

3. If you decide you want to log only the JSON format, comment out the other appender-ref entries.

LogstashEncoder has many configuration options, including the ability to modify the list of fields that you want
to include, or give them different field names. For more information, see the Logstash Logback Encoder Docs.

Adding a JSON version of the Puppet Server HTTP Access logs

To add JSON logging for HTTP requests:

1. Add the following Logback appender section to the request-logging.xml file:

{% raw %}
<appender name="JSON"
 class="ch.qos.logback.core.rolling.RollingFileAppender">
 <file>/var/log/puppetlabs/puppetserver/puppetserver-access.log.json</
file>

 <rollingPolicy
 class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
 <fileNamePattern>/var/log/puppetlabs/puppetserver/puppetserver-
access.log.json.%d{yyyy-MM-dd}</fileNamePattern>
 <maxHistory>30</maxHistory>
 </rollingPolicy>

 <encoder
 class="net.logstash.logback.encoder.AccessEventCompositeJsonEncoder">
 <providers>
 <version/>
 <pattern>
 <pattern>
 {
 "@timestamp":"%date{yyyy-MM-dd'T'HH:mm:ss.SSSXXX}",
 "clientip":"%remoteIP",
 "auth":"%user",
 "verb":"%requestMethod",
 "requestprotocol":"%protocol",
 "rawrequest":"%requestURL",
 "response":"#asLong{%statusCode}",
 "bytes":"#asLong{%bytesSent}",

© 2024 Puppet, Inc., a Perforce company

https://github.com/logstash/logstash-logback-encoder/blob/master/README.md#loggingevent-fields

Puppet | The Puppet platform | 234

 "total_service_time":"#asLong{%elapsedTime}",
 "request":"http://%header{Host}%requestURI",
 "referrer":"%header{Referer}",
 "agent":"%header{User-agent}",

 "request.host":"%header{Host}",
 "request.accept":"%header{Accept}",
 "request.accept-encoding":"%header{Accept-
Encoding}",
 "request.connection":"%header{Connection}",

 "puppet.client-verify":"%header{X-Client-Verify}",
 "puppet.client-dn":"%header{X-Client-DN}",
 "puppet.client-cert":"%header{X-Client-Cert}",

 "response.content-type":"%responseHeader{Content-
Type}",
 "response.content-length":"%responseHeader{Content-
Length}",
 "response.server":"%responseHeader{Server}",
 "response.connection":"%responseHeader{Connection}"
 }
 </pattern>
 </pattern>
 </providers>
 </encoder>
</appender>
{% endraw %}

2. Add a corresponding appender-ref in the configuration section:

<appender-ref ref="JSON"/>

For more information about options available for the pattern section, see the Logback Logstash Encoder Docs.

Sending the JSON data to Logstash

After configuring Puppet Server to log messages in JSON format, you must also configure it to send the logs to
Logstash (or another external logging system). There are several different ways to approach this:

• Configure Logback to send the data to Logstash directly, from within Puppet Server. See the Logstash-Logback
encoder docs on how to send the logs by TCP or UDP. Note that TCP comes with the risk of bottlenecking Puppet
Server if your Logstash system is busy, and UDP might silently drop log messages.

• Filebeat is a tool from Elastic for shipping log data to Logstash.
• Logstash Forwarder is an earlier tool from Elastic with similar capabilities.

Differing behavior in puppet.conf

Puppet Server honors almost all settings in puppet.conf and should pick them up automatically. For more complete
information on puppet.conf settings, see our Configuration Reference page.

Settings that differ
autoflush

Puppet Server does not use this setting. For more information on the primary server logging implementation for
Puppet Server, see the Logging on page 143.

bindaddress

Puppet Server does not use this setting. To set the address on which the primary server listens, use either host
(unencrypted) or ssl-host (SSL encrypted) in the webserver.conf file.

© 2024 Puppet, Inc., a Perforce company

https://github.com/logstash/logstash-logback-encoder/blob/master/README.md#accessevent-fields
https://github.com/logstash/logstash-logback-encoder/blob/master/README.md#tcp
https://github.com/logstash/logstash-logback-encoder/blob/master/README.md#udp
https://www.elastic.co/products/beats/filebeat
https://github.com/elastic/logstash-forwarder
https://puppet.com/docs/puppet/latest/configuration.html
https://puppet.com/docs/puppet/latest/configuration.html#autoflush
https://puppet.com/docs/puppet/latest/configuration.htmlmaster#bindaddress

Puppet | The Puppet platform | 235

ca

Puppet Server does not use this setting. Instead, Puppet Server acts as a certificate authority based on the certificate
authority service configuration in the ca.cfg file. See Service Bootstrapping on page 144 for more details.

ca_ttl

Puppet Server enforces a max ttl of 50 standard years (up to 1576800000 seconds).

cacert

If you enable Puppet Server's certificate authority service, it uses the cacert setting in puppet.conf to determine the
location of the CA certificate for such tasks as generating the CA certificate or using the CA to sign client certificates.
This is true regardless of the configuration of the ssl- settings in webserver.conf.

cacrl

If you define ssl-cert, ssl-key, ssl-ca-cert, or ssl-crl-path in webserver.conf, Puppet Server uses
the file at ssl-crl-path as the CRL for authenticating clients via SSL. If at least one of the ssl- settings in
webserver.conf is set but ssl-crl-path is not set, Puppet Server will not use a CRL to validate clients via SSL.

If none of the ssl- settings in webserver.conf are set, Puppet Server uses the CRL file defined for the hostcrl
setting---and not the file defined for the cacrl setting--in puppet.conf. At start time, Puppet Server copies the file for
the cacrl setting, if one exists, over to the location in the hostcrl setting.

Any CRL file updates from the Puppet Server certificate authority---such as revocations performed via the
certificate_status HTTP endpoint---use the cacrl setting in puppet.conf to determine the location of the
CRL. This is true regardless of the ssl- settings in webserver.conf.

capass

Puppet Server does not use this setting. Puppet Server's certificate authority does not create a capass password file
when the CA certificate and key are generated.

caprivatedir

Puppet Server does not use this setting. Puppet Server's certificate authority does not create this directory.

daemonize

Puppet Server does not use this setting.

hostcert

If you define ssl-cert, ssl-key, ssl-ca-cert, or ssl-crl-path in webserver.conf, Puppet Server
presents the file at ssl-cert to clients as the server certificate via SSL.

If at least one of the ssl- settings in webserver.conf is set but ssl-cert is not set, Puppet Server gives an error
and shuts down at startup. If none of the ssl- settings in webserver.conf are set, Puppet Server uses the file for the
hostcert setting in puppet.conf as the server certificate during SSL negotiation.

Regardless of the configuration of the ssl- "webserver.conf" settings, Puppet Server's certificate authority service, if
enabled, uses the hostcert "puppet.conf" setting, and not the ssl-cert setting, to determine the location of the
server host certificate to generate.

hostcrl

If you define ssl-cert, ssl-key, ssl-ca-cert, or ssl-crl-path in webserver.conf, Puppet Server uses
the file at ssl-crl-path as the CRL for authenticating clients via SSL. If at least one of the ssl- settings in
webserver.conf is set but ssl-crl-path is not set, Puppet Server will not use a CRL to validate clients via SSL.

If none of the ssl- settings in webserver.conf are set, Puppet Server uses the CRL file defined for the hostcrl
setting---and not the file defined for the cacrl setting--in puppet.conf. At start time, Puppet Server copies the file for
the cacrl setting, if one exists, over to the location in the hostcrl setting.

Any CRL file updates from the Puppet Server certificate authority---such as revocations performed via the
certificate_status HTTP endpoint---use the cacrl setting in puppet.conf to determine the location of the
CRL. This is true regardless of the ssl- settings in webserver.conf.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/configuration.html#ca
https://puppet.com/docs/puppet/latest/configuration.html#cattl
https://puppet.com/docs/puppet/latest/configuration.html#cacert
https://puppet.com/docs/puppet/latest/configuration.html#cacrl
https://puppet.com/docs/puppet/latest/configuration.html#capass
https://puppet.com/docs/puppet/latest/configuration.html#caprivatedir
https://puppet.com/docs/puppet/latest/configuration.html#daemonize
https://puppet.com/docs/puppet/latest/configuration.html#hostcert
https://puppet.com/docs/puppet/latest/configuration.html#hostcrl

Puppet | The Puppet platform | 236

hostprivkey

If you define ssl-cert, ssl-key, ssl-ca-cert, or ssl-crl-path in webserver.conf, Puppet Server uses
the file at ssl-key as the server private key during SSL transactions.

If at least one of the ssl- settings in webserver.conf is set but ssl-key is not, Puppet Server gives an error and
shuts down at startup. If none of the ssl- settings in webserver.conf are set, Puppet Server uses the file for the
hostprivkey setting in puppet.conf as the server private key during SSL negotiation.

If you enable the Puppet Server certificate authority service, Puppet Server uses the hostprivkey setting in
puppet.conf to determine the location of the server host private key to generate. This is true regardless of the
configuration of the ssl- settings in webserver.conf.

http_debug

Puppet Server does not use this setting. Debugging for HTTP client code in the Puppet Server primary server is
controlled through Puppet Server's common logging mechanism. For more information on the primary server logging
implementation for Puppet Server, see the Logging on page 143.

keylength

Puppet Server does not currently use this setting. Puppet Server's certificate authority generates 4096-bit keys in
conjunction with any SSL certificates that it generates.

localcacert

If you define ssl-cert, ssl-key, ssl-ca-cert, and/or ssl-crl-path in webserver.conf, Puppet Server
uses the file at ssl-ca-cert as the CA cert store for authenticating clients via SSL.

If at least one of the ssl- settings in webserver.conf is set but ssl-ca-cert is not set, Puppet Server gives an
error and shuts down at startup. If none of the ssl- settings in webserver.conf is set, Puppet Server uses the CA file
defined for the localcacert setting in puppet.conf for SSL authentication.

logdir

Puppet Server does not use this setting. For more information on the primary server logging implementation for
Puppet Server, see the Logging on page 143.

masterhttplog

Puppet Server does not use this setting. You can configure a web server access log via the access-log-config
setting in the webserver.conf file.

masterlog

Puppet Server does not use this setting. For more information on the primary server logging implementation for
Puppet Server, see the Logging on page 143.

masterport

Puppet Server does not use this setting. To set the port on which the primary server listens, set the port
(unencrypted) or ssl-port (SSL encrypted) setting in the webserver.conf file.

puppetdlog

Puppet Server does not use this setting. For more information on the primary server logging implementation for
Puppet Server, see the Logging on page 143.

rails_loglevel

Puppet Server does not use this setting.

railslog

Puppet Server does not use this setting.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/configuration.html#hostprivkey
https://puppet.com/docs/puppet/latest/configuration.html#httpdebug
https://puppet.com/docs/puppet/latest/configuration.html#keylength
https://puppet.com/docs/puppet/latest/configuration.html#localcacert
https://puppet.com/docs/puppet/latest/configuration.html#logdir
https://puppet.com/docs/puppet/latest/configuration.html#masterhttplog
https://puppet.com/docs/puppet/latest/configuration.html#masterlog
https://puppet.com/docs/puppet/latest/configuration.html#masterport
https://puppet.com/docs/puppet/latest/configuration.html#puppetdlog
https://puppet.com/docs/puppet/latest/configuration.html#railsloglevel
https://puppet.com/docs/puppet/latest/configuration.html#railslog

Puppet | The Puppet platform | 237

ssl_client_header

Puppet Server honors this setting only if the allow-header-cert-info setting in the server.conf file is set
to 'true'. For more information on this setting, see the documentation on External SSL termination on page 246.

ssl_client_verify_header

Puppet Server honors this setting only if the allow-header-cert-info setting in the server.conf file is set
to true. For more information on this setting, see the documentation on External SSL termination on page 246.

ssl_server_ca_auth

Puppet Server does not use this setting. It only considers the ssl-ca-cert setting from the webserver.conf file and
the cacert setting from the puppet.conf file. See cacert for more information.

syslogfacility

Puppet Server does not use this setting.

user

Puppet Server does not use this setting.

HttpPool-Related Server Settings
configtimeout

Puppet Server does not currently consider this setting for any code running on the primary server and using the
Puppet::Network::HttpPool module to create an HTTP client connection. This pertains, for example, to any
requests that the primary server would make to the reporturl for the http report processor. Note that Puppet
agents do still honor this setting.

http_proxy_host

Puppet Server does not currently consider this setting for any code running on the primary server and using the
Puppet::Network::HttpPool module to create an HTTP client connection. This pertains, for example, to any
requests that the primary server would make to the reporturl for the http report processor. Note that Puppet
agents do still honor this setting.

http_proxy_port

Puppet Server does not currently consider this setting for any code running on the primary server and using the
Puppet::Network::HttpPool module to create an HTTP client connection. This pertains, for example, to any
requests that the primary server would make to the reporturl for the http report processor. Note that Puppet
agents do still honor this setting.

Overriding Puppet settings in Puppet Server

Currently, the jruby-puppet section of your puppetserver.conf file contains five settings (master-
conf-dir, master-code-dir, master-var-dir, master-run-dir, and master-log-dir) that allow
you to override settings set in your puppet.conf file. On installation, these five settings will be set to the proper
default values.

While you are free to change these settings at will, please note that any changes made to the master-conf-dir
and master-code-dir settings absolutely MUST be made to the corresponding Puppet settings (confdir and
codedir) as well to ensure that Puppet Server and the Puppet cli tools (such as puppetserver ca and puppet
module) use the same directories. The master-conf-dir and master-code-dir settings apply to Puppet
Server only, and will be ignored by the ruby code that runs when the Puppet CLI tools are run.

For example, say you have the codedir setting left unset in your puppet.conf file, and you change the
master-code-dir setting to /etc/my-puppet-code-dir. In this case, Puppet Server will read code from
/etc/my-puppet-code-dir, but the puppet module tool will think that your code is stored in /etc/
puppetlabs/code.

While it is not as critical to keep master-var-dir, master-run-dir, and master-log-dir in sync with
the vardir, rundir, and logdir Puppet settings, please note that this applies to these settings as well.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/configuration.html#sslclientheader
https://puppet.com/docs/puppet/latest/configuration.html#sslclientverifyheader
https://puppet.com/docs/puppet/latest/configuration.html#sslservercaauth
31c468c77f37a8648824a917dd32c32d35ca4498.md#cacert
https://puppet.com/docs/puppet/latest/configuration.html#syslogfacility
https://puppet.com/docs/puppet/latest/configuration.html#user
https://puppet.com/docs/puppet/latest/configuration.html#configtimeout
https://puppet.com/docs/puppet/latest/configuration.html#httpproxyhost
https://puppet.com/docs/puppet/latest/configuration.html#httpproxyport

Puppet | The Puppet platform | 238

Also, please note that these configuration differences also apply to the interpolation of the confdir, codedir,
vardir, rundir, and logdir settings in your puppet.conf file. So, take the above example, wherein you
set master-code-dir to /etc/my-puppet-code-dir. Because the basemodulepath setting is by
default $codedir/modules:/opt/puppetlabs/puppet/modules, then Puppet Server would use /
etc/my-puppet-code-dir/modules:/opt/puppetlabs/puppet/modules for the value of the
basemodulepath setting, whereas the puppet module tool would use /etc/puppetlabs/code/
modules:/opt/puppetlabs/puppet/modules for the value of the basemodulepath setting.

Using and extending Puppet Server

Subcommands

We've provided several CLI commands to help with debugging and exploring Puppet Server. Most of the commands
are the same ones you would use in a Ruby environment --- such as gem, ruby, and irb --- except they run against
Puppet Server's JRuby installation and gems instead of your system Ruby.

The following subcommands are provided:

• ca
• gem
• ruby
• irb
• foreground

The format for each subcommand is:

puppetserver <subcommand> [<args>]

When running from source, the format is:

lein <subcommand> -c /path/to/puppetserver.conf [--] [<args>]

Note that if you are running from source, you need to separate flag arguments (such as --version or -e) with
--, as shown above. Otherwise, those arguments will be applied to Leiningen instead of to Puppet Server. This isn't
necessary when running from packages (i.e., puppetserver <subcommand>).

ca
Available actions

CA subcommand usage: puppetserver ca <action> [options].

The available actions:

• clean: clean files from the CA for certificates
• generate: create a new certificate signed by the CA
• setup: generate a root and intermediate signing CA for Puppet Server
• import: import the CA's key, certs, and CRLs
• list: list all certificate requests
• migrate: migrate the contents of the CA directory from its current location to /etc/puppetlabs/

puppetserver/ca. Adds a symlink at the old location for backwards compatibility.
• revoke: revoke a given certificate
• sign: sign a given certificate

• Use the --ttl flag with sign subcommand to send the ttl to the CA. The signed certificate's notAfter
value is the current time plus the ttl. The values are valid puppet.conf ttl values, for example, 1y = 1
year, 31d = 31 days.

• purge: remove duplicate entries from the CA CRL

Important: Most of these actions only work if the puppetserver service is running. Exceptions to this
requirement are:

© 2024 Puppet, Inc., a Perforce company

c1168964bf2ca3df50c5fe0d129f88535ab6ee12.md#ca
c1168964bf2ca3df50c5fe0d129f88535ab6ee12.md#gem
c1168964bf2ca3df50c5fe0d129f88535ab6ee12.md#ruby
c1168964bf2ca3df50c5fe0d129f88535ab6ee12.md#irb
c1168964bf2ca3df50c5fe0d129f88535ab6ee12.md#foreground

Puppet | The Puppet platform | 239

• migrate and purge, which require you to stop the puppetserver service.
• setup and import, which require you to run the actions only once before you start your puppetserver

service, for the very first time.

Syntax

puppetserver ca <action> [options]

Most commands require a target to be specified with the --certname flag. For example:

puppetserver ca sign --certname cert.example.com

The target is a comma separated list of names that act on multiple certificates at one time.

You can supply a custom configuration file to all subcommands using the --config option. This allows you to
point the command at a custom puppet.conf, instead of the default one.

Note: These commands are available in Puppet 5, but in order to use them, you must update Puppet Server’s
auth.conf to include a rule allowing the primary server’s certname to access the certificate_status and
certificate_statuses endpoints. The same applies to upgrading in open source Puppet: if you're upgrading
from Puppet 5 to Puppet 6 and are not regenerating your CA, you must allow the primary server’s certname. See
auth.conf on page 148 for details on how to use auth.conf.

Example:

{
 # Allow the CA CLI to access the certificate_status endpoint
 match-request: {
 path: "/puppet-ca/v1/certificate_status"
 type: path
 method: [get, put, delete]
 }
 allow: server.example.com
 sort-order: 500
 name: "puppetlabs cert status"
},

Signing certs with SANs or auth extensions

With the removal of puppet cert sign, it's possible for Puppet Server’s CA API to sign certificates with subject
alternative names or auth extensions, which was previously completely disallowed. This is disabled by default for
security reasons, but you can turn it on by setting allow-subject-alt-names or allow-authorization-
extensions to true in the certificate-authority section of Puppet Server’s config (usually located in
ca.conf). After these have been configured, you can use puppetserver ca sign --certname <name>
to sign certificates with these additions.

gem

Installs and manages gems that are isolated from system Ruby and are accessible only to Puppet Server. This is a
simple wrapper around the standard Ruby gem, so all of the usual arguments and flags should work as expected.

Examples:

$ puppetserver gem install pry --no-ri --no-rdoc

$ lein gem -c /path/to/puppetserver.conf -- install pry --no-ri --no-rdoc

If needed, you also can use the JAVA_ARGS_CLI environment variable to pass along custom arguments to the Java
process that the gem command is run within.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 240

Example:

$ JAVA_ARGS_CLI=-Xmx8g puppetserver gem install pry --no-ri --no-rdoc

If you prefer to have the JAVA_ARGS_CLI option persist for multiple command executions, you could set the value
in the /etc/sysconfig/puppetserver or /etc/default/puppetserver file, depending upon your OS
distribution:

JAVA_ARGS_CLI=-Xmx8g

With the value specified in the sysconfig or defaults file, subsequent commands would use the JAVA_ARGS_CLI
variable automatically:

$ puppetserver gem install pry --no-ri --no-rdoc
// Would run 'gem' with a maximum Java heap of 8g

For more information, see Using Ruby gems on page 241.

ruby

Runs code in Puppet Server's JRuby interpreter. This is a simple wrapper around the standard Ruby ruby, so all of
the usual arguments and flags should work as expected.

Useful when experimenting with gems installed via puppetserver gem and the Puppet and Puppet Server Ruby
source code.

Examples:

$ puppetserver ruby -e "require 'puppet'; puts Puppet[:certname]"

$ lein ruby -c /path/to/puppetserver.conf -- -e "require 'puppet'; puts
 Puppet[:certname]"

If needed, you also can use the JAVA_ARGS_CLI environment variable to pass along custom arguments to the Java
process that the ruby command is run within.

Example:

$ JAVA_ARGS_CLI=-Xmx8g puppetserver ruby -e "require 'puppet'; puts
 Puppet[:certname]"

If you prefer to have the JAVA_ARGS_CLI option persist for multiple command executions, you could set the value
in the /etc/sysconfig/puppetserver or /etc/default/puppetserver file, depending upon your OS
distribution:

JAVA_ARGS_CLI=-Xmx8g

With the value specified in the sysconfig or defaults file, subsequent commands would use the JAVA_ARGS_CLI
variable automatically:

$ puppetserver ruby -e "require 'puppet'; puts Puppet[:certname]"
// Would run 'ruby' with a maximum Java heap of 8g

irb

Starts an interactive REPL for the JRuby that Puppet Server uses. This is a simple wrapper around the standard Ruby
irb, so all of the usual arguments and flags should work as expected.

Like the ruby subcommand, this is useful for experimenting in an interactive environment with any installed gems
(via puppetserver gem) and the Puppet and Puppet Server Ruby source code.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 241

Examples:

$ puppetserver irb
irb(main):001:0> require 'puppet'
=> true
irb(main):002:0> puts Puppet[:certname]
centos6-64.localdomain
=> nil

$ lein irb -c /path/to/puppetserver.conf -- --version
irb 0.9.6(09/06/30)

If needed, you also can use the JAVA_ARGS_CLI environment variable to pass along custom arguments to the Java
process that the irb command is run within.

Example:

$ JAVA_ARGS_CLI=-Xmx8g puppetserver irb

If you prefer to have the JAVA_ARGS_CLI option persist for multiple command executions, you could set the value
in the /etc/sysconfig/puppetserver or /etc/default/puppetserver file, depending upon your OS
distribution:

JAVA_ARGS_CLI=-Xmx8g

With the value specified in the sysconfig or defaults file, subsequent commands would use the JAVA_ARGS_CLI
variable automatically:

$ puppetserver irb
// Would run 'irb' with a maximum Java heap of 8g

foreground

Starts the Puppet Server, but doesn't background it; similar to starting the service and then tailing the log.

Accepts an optional --debug argument to raise the logging level to DEBUG.

Examples:

$ puppetserver foreground --debug
2014-10-25 18:04:22,158 DEBUG [main] [p.t.logging] Debug logging enabled
2014-10-25 18:04:22,160 DEBUG [main] [p.t.bootstrap] Loading bootstrap
 config from specified path: '/etc/puppetserver/bootstrap.cfg'
2014-10-25 18:04:26,097 INFO [main] [p.s.j.jruby-puppet-service]
 Initializing the JRuby service
2014-10-25 18:04:26,101 INFO [main] [p.t.s.w.jetty9-service] Initializing
 web server(s).
2014-10-25 18:04:26,149 DEBUG [clojure-agent-send-pool-0] [p.s.j.jruby-
puppet-agents] Initializing JRubyPuppet instances with the following
 settings:

Using Ruby gems

If you have server-side Ruby code in your modules, Puppet Server will run it via JRuby. Generally speaking, this only
affects custom parser functions, types, and report processors. For the vast majority of cases this shouldn't pose any
problems because JRuby is highly compatible with vanilla Ruby.

Puppet Server will not load gems from user specified GEM_HOME and GEM_PATH environment variables because
puppetserver unsets GEM_PATH and manages GEM_HOME.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 242

Note: Starting with Puppet Server 2.7.1, you can set custom Java arguments for the puppetserver
gem command via the JAVA_ARGS_CLI environment variable, either temporarily on the command line
or persistently by adding it to the sysconfig/default file. The JAVA_ARGS_CLI environment variable
also controls the arguments used when running the puppetserver ruby and puppetserver irb
Subcommands on page 238. See the Server 2.7.1 release notes for details.

GEM_HOME values
Gems with packaged versions of Puppet Server

The value of GEM_HOME when starting the puppetserver process as root using a packaged version of
puppetserver is:

/opt/puppetlabs/puppet/cache/jruby-gems

This directory does not exist by default.

Gems when running Puppet Server from source

The value of GEM_HOME when starting the puppetserver process from the project root is:

./target/jruby-gems

Gems when running Puppet Server spec tests

The value of GEM_HOME when starting the puppetserver JRuby spec tests using rake spec from the project root is:

./vendor/test_gems

This directory is automatically populated by the rake spec task if it does not already exist. The directory may be
safely removed and it will be re-populated the next time rake spec is run in your working copy.

Installing and removing gems

We isolate the Ruby load paths that are accessible to Puppet Server's JRuby interpreter, so that it doesn't load any
gems or other code that you have installed on your system Ruby. If you want Puppet Server to load additional gems,
use the Puppet Server-specific gem command to install them. For example, to install the foobar gem, use:

$ sudo puppetserver gem install foobar --no-ri --no-rdoc

The puppetserver gem command is simply a wrapper around the usual Ruby gem command, so all of the usual
arguments and flags should work as expected. For example, to show your locally installed gems, run:

$ puppetserver gem list

Or, if you're running from source:

$ lein gem -c ~/.puppetserver/puppetserver.conf list

The puppetserver gem command also respects the running user's ~/.gemrc file, which you can use to
configure upstream sources or proxy settings. For example, consider a .gemrc file containing:

:sources: ['https://rubygems-mirror.megacorp.com', 'https://rubygems.org']
http_proxy: "http://proxy.megacorp.com:8888"

This configures the listed :sources as the puppetserver gem command's upstream sources, and uses the listed
http_proxy, which you can confirm:

$ puppetserver gem environment | grep proxy
 - "http_proxy" => "http://proxy.megacorp.com:8888"

© 2024 Puppet, Inc., a Perforce company

https://docs.puppet.com/puppetserver/2.7/release_notes.html

Puppet | The Puppet platform | 243

As with the rest of Puppet Server's configuration, we recommend managing these settings with Puppet.
You can manage Puppet Server's gem dependencies with the package provider shipped in puppetlabs-
puppetserver_gem module.

Note: If you try to load a gem before it's been installed, the agent run will fail with a LoadError. If this
happens, reload the server after installing the gem to resolve the issue.

Installing gems for use with development:

When running from source, JRuby uses a GEM_HOME of ./target/jruby-gems relative to the current working
directory of the process. lein gem should be used to install gems into this location using jruby.

NOTE: ./target/jruby-gems is not used when running the JRuby spec tests, gems are instead automatically
installed into and loaded from ./vendor/test_gems. If you need to install a gem for use both during
development and testing make sure the gem is available in both directories.

As an example, the following command installs pry locally in the project. Note the use of -- to pass the following
command line arguments to the gem script.

$ lein gem --config ~/.puppetserver/puppetserver.conf -- install pry \
 --no-ri --no-rdoc
Fetching: coderay-1.1.0.gem (100%)
Successfully installed coderay-1.1.0
Fetching: slop-3.6.0.gem (100%)
Successfully installed slop-3.6.0
Fetching: method_source-0.8.2.gem (100%)
Successfully installed method_source-0.8.2
Fetching: spoon-0.0.4.gem (100%)
Successfully installed spoon-0.0.4
Fetching: pry-0.10.1-java.gem (100%)
Successfully installed pry-0.10.1-java
5 gems installed

With the gem installed into the project tree pry can be invoked from inside Ruby code. For more detailed
information on pry see pry on page 268.

Gems with Native (C) Extensions

If, in your custom parser functions or report processors, you're using Ruby gems that require native (C) extensions,
you won't be able to install these gems under JRuby. In many cases, however, there are drop-in replacements
implemented in Java. For example, the popular Nokogiri gem for processing XML provides a completely compatible
Java implementation that's automatically installed if you run gem install via JRuby or Puppet Server, so you
shouldn't need to change your code at all.

In other cases, there may be a replacement gem available with a slightly different name; e.g., jdbc-mysql instead
of mysql. The JRuby wiki C Extension Alternatives page discusses this issue further.

If you're using a gem that won't run on JRuby and you can't find a suitable replacement, please open a ticket on our
Issue Tracker; we're definitely interested in helping provide solutions if there are common gems that are causing
trouble for users!

Intermediate CA

Puppet Server supports both a simple CA architecture, with a self-signed root cert that is also used as the CA signing
cert; and an intermediate CA architecture, with a self-signed root that issues an intermediate CA cert used for signing
incoming certificate requests. The intermediate CA architecture is preferred, because it is more secure and makes
regenerating certs easier. To generate a default intermediate CA for Puppet Server, run the puppetserver ca
setup command before starting your server for the first time.

The following diagram shows the configuration of Puppet's basic certificate infrastructure.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/puppetserver_gem
https://forge.puppet.com/puppetlabs/puppetserver_gem
http://www.nokogiri.org/
https://github.com/jruby/jruby/wiki/C-Extension-Alternatives
https://tickets.puppet.com/browse/SERVER

Puppet | The Puppet platform | 244

If you have an external certificate authority, you can create a cert chain from it, and use the puppetserver ca
import subcommand to install the chain on your server. Puppet agents starting with Puppet 6 handle an intermediate
CA setup out of the box. No need to copy files around by hand or configure CRL checking. Like setup, import
needs to be run before starting your server for the first time.

Note: The PE installer uses the puppetserver ca setup command to create a root cert and an intermediate
signing cert for Puppet Server. This means that in PE, the default CA is always an intermediate CA as of PE 2019.0.

Note: If for some reason you cannot use an intermediate CA, in Puppet Server 6 starting the server will generate
a non-intermediate CA the same as it always did before the introduction of these commands. However, we don't
recommend this, as using an intermediate CA provides more security and easier paths for CA regeneration. It is also
the default in PE, and some recommended workflows may rely on it.

Where to set CA configuration

All CA configuration takes place in Puppet’s config file. See the Puppet Configuration Reference for details.

Set up Puppet as an intermediate CA with an external root

Puppet Server needs to present the full certificate chain to clients so the client can authenticate the server. You
construct the certificate chain by concatenating the CA certificates, starting with the new intermediate CA certificate
and descending to the root CA certificate.

The following diagram shows the configuration of Puppet's certificate infrastructure with an external root.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 245

To set up Puppet as an intermediate CA with an external root:

1. Collect the PEM-encoded certificates and CRLs for your organization's chain of trust, including the root
certificate, any intermediate certificates, and the signing certificate. (The signing certificate might be the root or
intermediate certificate.)

2. Create a private RSA key, with no passphrase, for the Puppet CA.
3. Create a PEM-encoded Puppet CA certificate.

a. Create a CSR for the Puppet CA.
b. Generate the Puppet CA certificate by signing the CSR using your external CA.

Ensure the CA constraint is set to true and the keyIdentifier is composed of the 160-bit SHA-1 hash of the
value of the bit string subjectPublicKeyfield. See RFC 5280 section 4.2.1.2 for details.

4. Concatenate all of the certificates into a PEM-encoded certificate bundle, starting with the Puppet CA cert and
ending with your root certificate.

-----BEGIN CERTIFICATE-----
<Puppet’s CA cert>
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
<Org’s intermediate CA signing cert>
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
<Org’s root CA cert>
-----END CERTIFICATE-----

5. Concatenate all of the CRLs into a PEM-encoded CRL chain, starting with any optional intermediate CA CRLs
and ending with your root certificate CRL.

-----BEGIN X509 CRL-----
<Puppet’s CA CRL>

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 246

-----END X509 CRL-----
-----BEGIN X509 CRL-----
<Org’s intermediate CA CRL>
-----END X509 CRL-----
-----BEGIN X509 CRL-----
<Org’s root CA CRL>
-----END X509 CRL-----

6. Use the puppetserver ca import command to trigger the rest of the CA setup:

puppetserver ca import --cert-bundle ca-bundle.pem --crl-chain crls.pem --
private-key puppet_ca_key.pem

7. optional.

openssl x509 -in /etc/puppetlabs/puppet/ssl/ca/signed/<HOSTNAME>.crt
-text -noout
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 1 (0x1)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: CN=intermediate-ca

Note: Puppet 5 agents still do not support intermediate CAs. If you must use a Puppet 5 agent with a new (or
regenerated) Puppet 6 CA, follow the instructions for setting up Puppet 5 agents for intermediate CAs.

Infrastructure certificate revocation list (CRL)

The Puppet Server CA can create a CRL that contains only revocations of those nodes that agents are expected to talk
to during normal operations, for example, compile primary servers or hosts that agents connect to as part of agent-
side functions. Puppet Server CA can distribute that CRL to agents, rather than the CRL it maintains with all node
revocations.

To create a smaller CRL, manage the content of the file at $cadir/infra_inventory.txt. Provide a
newline-separated list of the certnames. When revoked, they are added to the Infra CRL. The certnames must
match existing certificates issued and maintained by the Puppet Server CA. Setting the value certificate-
authority.enable-infra-crl to true causes Puppet Server to update both its Full CRL and its Infra CRL
with the certs that match those certnames when revoked. When agents first check in, they receive a CRL that includes
only the revocations of certnames listed in the infra_inventory.txt.

The infrastructure certificate revocation list is disabled by default in open source Puppet. To toggle it, update
enable-infra-crl in the certificate-authority section of puppetserver.conf.

This feature is disabled by default because the definition of what constitutes an "infrastructure" node is site-specific
and sites with a standard, single primary server configuration have no need for the additional work. After having
enabled the feature, if you want to go back, remove the explicit setting and reload Puppet Server to turn the default
off; then, when agents first check, they receive the Full CRL as before (including any infrastructure nodes that were
revoked while the feature was enabled).

External SSL termination

Use the following steps to configure external SSL termination.

Disable HTTPS for Puppet Server

You'll need to turn off SSL and have Puppet Server use the HTTP protocol instead: remove the ssl-port and
ssl-host settings from the conf.d/webserver.conf file and replace them with port and host settings.
See Configuring the Webserver Service for more information on configuring the web server service.

Allow Client Cert Data From HTTP Headers

When using external SSL termination, Puppet Server expects to receive client certificate information via some HTTP
headers.

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/trapperkeeper-webserver-jetty9/blob/master/doc/jetty-config.md

Puppet | The Puppet platform | 247

By default, reading this data from headers is disabled. To allow Puppet Server to recognize it, you'll need to set
allow-header-cert-info: true in the authorization config section of the /etc/puppetlabs/
puppetserver/conf.d/auth.conf file.

See Configuring Puppet Server on page 142 for more information on the puppetserver.conf and
auth.conf files.

Note: This assumes the default behavior of Puppet 5 and greater of using Puppet Server's hocon auth.conf rather
Puppet's older ini-style auth.conf.

WARNING: Setting allow-header-cert-info to 'true' puts Puppet Server in an incredibly
vulnerable state. Take extra caution to ensure it is absolutely not reachable by an untrusted network.

With allow-header-cert-info set to 'true', authorization code will use only the client HTTP
header values---not an SSL-layer client certificate---to determine the client subject name, authentication
status, and trusted facts. This is true even if the web server is hosting an HTTPS connection. This applies
to validation of the client via rules in the auth.conf file and any trusted facts extracted from certificate
extensions.

If the client-auth setting in the webserver config block is set to need or want, the Jetty web
server will still validate the client certificate against a certificate authority store, but it will only verify the
SSL-layer client certificate---not a certificate in an X-Client-Cert header.

Reload Puppet Server

You'll need to reload Puppet Server for the configuration changes to take effect.

Configure SSL Terminating Proxy to Set HTTP Headers

The device that terminates SSL for Puppet Server must extract information from the client's certificate and insert that
information into three HTTP headers. See the documentation for your SSL terminator for details.

The headers you'll need to set are X-Client-Verify, X-Client-DN, and X-Client-Cert.

X-Client-Verify

Mandatory. Must be either SUCCESS if the certificate was validated, or something else if not. (The convention
seems to be to use NONE for when a certificate wasn't presented, and FAILED:reason for other validation
failures.) Puppet Server uses this to authorize requests; only requests with a value of SUCCESS will be considered
authenticated.

X-Client-DN

Mandatory. Must be the Subject DN of the agent's certificate, if a certificate was presented. Puppet Server uses this to
authorize requests.

X-Client-Cert

Optional. Should contain the client's PEM-formatted (Base-64) certificate (if a certificate was presented) in a single
URI-encoded string. Note that URL encoding is not sufficient; all space characters must be encoded as %20 and not +
characters.

Note: Puppet Server only uses the value of this header to extract trusted facts from extensions in the client
certificate. If you aren't using trusted facts, you can choose to reduce the size of the request payload by
omitting the X-Client-Cert header.

Note: Apache's mod_proxy converts line breaks in PEM documents to spaces for some reason, and
Puppet Server can't decode the result. We're tracking this issue as SERVER-217.

Server metrics
Monitoring Puppet Server metrics

Puppet Server tracks several advanced performance and health metrics, all of which take advantage of the v1 metrics
on page 309. You can track these metrics using:

• Customizable, networked Graphite and Grafana instances

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/config_file_auth.html
https://puppet.com/docs/puppet/latest/lang_facts_and_builtin_vars.html#trusted-facts
https://docs.puppet.com/background/ssl/cert_anatomy.html#the-subject-dn-cn-certname-etc
https://docs.puppet.com/background/ssl/cert_anatomy.html#pem-file
https://puppet.com/docs/puppet/latest/lang_facts_and_builtin_vars.html#trusted-facts
https://tickets.puppetlabs.com/browse/SERVER-217
794229927704362ae0170e4c1f59c1e4ae8b5384.md#getting-started-with-graphite

Puppet | The Puppet platform | 248

• HTTP Client Metrics on page 255
• v1 metrics on page 309 endpoints

To visualize Puppet Server metrics, either:

• Use the puppet-operational-dashboards module.
• Export them to a Graphite installation. The grafanadash module helps you set up a Graphite instance, configure

Puppet Server for exporting to it, and visualize the output with Grafana. You can later integrate this with your
Graphite installation. For more information, see Getting started with Graphite below.

The puppet-operational-dashboards module is recommended for FOSS users, because it is an easier way
to save and visualize Puppet Server metrics. The grafanadash module is still useful for users exporting to their
existing Graphite installation.

Note: The grafanadash and puppet-graphite modules referenced in this document are not
Puppet-supported modules. They are provided as testing and demonstration purposes only.

Getting started with Graphite

Graphite is a third-party monitoring application that stores real-time metrics and provides customizable ways to view
them. Puppet Server can export many metrics to Graphite, and exports a set of metrics by default that is designed to
be immediately useful to Puppet administrators.

Note: A Graphite setup is deeply customizable and can report many Puppet Server metrics on demand.
However, it requires considerable configuration and additional server resources. To retrieve metrics
through HTTP requests, see the metrics API.

To start using Graphite with Puppet Server, you must:

• Install and configure a Graphite server.
• Enable Puppet Server's Graphite support.

Grafana provides a web-based customizable dashboard that's compatible with Graphite, and the grafanadash
module installs and configures it by default.

Using the grafanadash module to quickly set up a Graphite demo server

The grafanadash Puppet module quickly installs and configures a basic test instance of Graphite with the Grafana
extension. When installed on a dedicated Puppet agent, this module provides a quick demonstration of how Graphite
and Grafana can consume and display Puppet Server metrics.

WARNING: The grafanadash module is not a Puppet-supported module. It is designed for testing and
demonstration purposes only, and tested against CentOS 6 only.

Also, install this module on a dedicated agent only. Do not install it on the node running Puppet Server,
because the module makes security policy changes that are inappropriate for a Puppet primary server:

• SELinux can cause issues with Graphite and Grafana, so the module temporarily disables SELinux. If
you reboot the machine after using the module to install Graphite, you must disable SELinux again and
restart the Apache service to use Graphite and Grafana.

• The module disables the iptables firewall and enables cross-origin resource sharing on Apache,
which are potential security risks.

Installing the grafanadash Puppet module

Install the grafanadash Puppet module on a *nix agent. The module's grafanadash::dev class installs and
configures a Graphite server, the Grafana extension, and a default dashboard.

1. Install a *nix Puppet agent to serve as the Graphite server.
2. As root on the Puppet agent node, run puppet module install puppetlabs-grafanadash.
3. As root on the Puppet agent node, run puppet apply -e 'include grafanadash::dev'.

Running Grafana

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/modules/puppetlabs/puppet_operational_dashboards
https://forge.puppet.com/puppetlabs/grafanadash
https://graphiteapp.org
https://graphite.readthedocs.io/en/latest/install.html
794229927704362ae0170e4c1f59c1e4ae8b5384.md#enabling-puppet-servers-graphite-support
http://grafana.org
https://forge.puppet.com/cprice404/grafanadash
https://forge.puppet.com/cprice404/grafanadash
https://graphiteapp.org
http://grafana.org
https://puppet.com/docs/puppet/latest/install_linux.html

Puppet | The Puppet platform | 249

Grafana runs as a web dashboard, and the grafanadash module configures it to use port 10000 by default. To view
Puppet metrics in Grafana, you must create a metrics dashboard, or edit and import a JSON-based dashboard that
includes Puppet metrics, such as the sample Grafana dashboard that we provide.

1. In a web browser on a computer that can reach the Puppet agent node running Grafana, navigate to http://
<AGENT'S HOSTNAME>:10000.

There, you'll see a test screen that indicates whether Grafana can successfully connect to your Graphite server.

If Grafana is configured to use a hostname that the computer on which the browser is running cannot resolve,
click view details and then the Requests tab to determine the hostname Grafana is trying to use. Next, add
the IP address and hostname to the computer's /etc/hosts file on Linux or OS X, or C:\Windows
\system32\drivers\etc\hosts file on Windows.

2. Download and edit our sample Grafana dashboard, sample_metrics_dashboard.json.

a. Open the sample_metrics_dashboard.json file in a text editor on the same computer you're using to
access Grafana.

b. Throughout the file, replace our sample hostname of server.example.com with your Puppet Server's
hostname. (Note: This value must be used as the metrics_server_id setting, as configured below.)

c. Save the file.
3. In the Grafana UI, click search (the folder icon), then Import, then Browse.
4. Navigate to and select the edited JSON file.

This loads a dashboard with nine graphs that display various metrics exported from the Puppet Server to the Graphite
server. (For details, see Using the Grafana dashboard.) However, these graphs will remain empty until you enable
Puppet Server's Graphite metrics.

Note: If you want to integrate Puppet Server's Grafana exporting with your own infrastructure,
use the grafanadash module. If you want visualization of metrics, use the puppetlabs-
puppet_operational_dashboards module.

Enabling Puppet Server's Graphite support

Configure Puppet Server's metrics.conf on page 219 file to enable and use the Graphite server.

1. Set the enabled parameter to true in metrics.registries.puppetserver.reporters.graphite:

 metrics: {
 server-id: localhost
 registries: {
 puppetserver: {
 ...
 reporters: {
 ...
 # enable or disable Graphite metrics reporter
 graphite: {
 enabled: true
 }
 }
 }
 }
}

2. Configure the Graphite host settings in metrics.reporters.graphite:

• host: The Graphite host's IP address as a string.
• port: The Graphite host's port number.
• update-interval-seconds: How frequently Puppet Server should send metrics to Graphite.

3. Verify that metrics.registries.puppetserver.reporters.jmx.enabled is not set to false. Its
default setting is true.

Tip: In the Grafana UI, choose an appropriate time window from the drop-down menu.

© 2024 Puppet, Inc., a Perforce company

b74e971ac102f31eed275f961c2a56cadebb95ae.json
b74e971ac102f31eed275f961c2a56cadebb95ae.json
794229927704362ae0170e4c1f59c1e4ae8b5384.md#using-the-sample-grafana-dashboard

Puppet | The Puppet platform | 250

Using the sample Grafana dashboard

The sample Grafana dashboard provides what we think is an interesting starting point. You can click on the title of
any graph, and then click edit to tweak the graphs as you see fit.

• Active requests: This graph serves as a "health check" for the Puppet Server. It shows a flat line that represents
the number of CPUs you have in your system, a metric that indicates the total number of HTTP requests actively
being processed by the server at any moment in time, and a rolling average of the number of active requests. If the
number of requests being processed exceeds the number of CPUs for any significant length of time, your server
might be receiving more requests than it can efficiently process.

• Request durations: This graph breaks down the average response times for different types of requests made
by Puppet agents. This indicates how expensive catalog and report requests are compared to the other types
of requests. It also provides a way to see changes in catalog compilation times when you modify your Puppet
code. A sharp curve upward for all of the types of requests indicates an overloaded server, and they should trend
downward after reducing the load on the server.

• Request ratios: This graph shows how many requests of each type that Puppet Server has handled. Under normal
circumstances, you should see about the same number of catalog, node, or report requests, because these all
happen one time per agent run. The number of file and file metadata requests correlate to how many remote file
resources are in the agents' catalogs.

• Communications with PuppetDB: This graph tracks the amount of time it takes Puppet Server to send data and
requests for common operations to, and receive responses from, PuppetDB.

• JRubies: This graph tracks how many JRubies are in use, how many are free, the mean number of free JRubies,
and the mean number of requested JRubies.

If the number of free JRubies is often less than one, or the mean number of free JRubies is less than one, Puppet
Server is requesting and consuming more JRubies than are available. This overload reduces Puppet Server's
performance. While this might simply be a symptom of an under-resourced server, it can also be caused by poorly
optimized Puppet code or bottlenecks in the server's communications with PuppetDB if it is in use.

If catalog compilation times have increased but PuppetDB performance remains the same, examine your Puppet
code for potentially unoptimized code. If PuppetDB communication times have increased, tune PuppetDB for
better performance or allocate more resources to it.

If neither catalog compilation nor PuppetDB communication times are degraded, the Puppet Server process might
be under-resourced on your server. If you have available CPU time and memory, Tuning guide on page 257 to
allow it to allocate more JRubies. Otherwise, consider adding additional compile servers to distribute the catalog
compilation load.

• JRuby Timers: This graph tracks several JRuby pool metrics.

• The borrow time represents the mean amount of time that Puppet Server uses ("borrows") each JRuby from the
pool.

• The wait time represents the total amount of time that Puppet Server waits for a free JRuby instance.
• The lock held time represents the amount of time that Puppet Server holds a lock on the pool, during which

JRubies cannot be borrowed.
• The lock wait time represents the amount of time that Puppet Server waits to acquire a lock on the pool.

These metrics help identify sources of potential JRuby allocation bottlenecks.
• Memory Usage: This graph tracks how much heap and non-heap memory that Puppet Server uses.
• Compilation: This graph breaks catalog compilation down into various phases to show how expensive each phase

is on the primary server.

Example Grafana dashboard excerpt

The following example shows only the targets parameter of a dashboard to demonstrate the full names of Puppet's
exported Graphite metrics (assuming the Puppet Server instance has a domain of server.example.com) and a
way to add targets directly to an exported Grafana dashboard's JSON content.

"panels": [
 {
 "span": 4,

© 2024 Puppet, Inc., a Perforce company

b74e971ac102f31eed275f961c2a56cadebb95ae.json

Puppet | The Puppet platform | 251

 "editable": true,
 "type": "graphite",

...

 "targets": [
 {
 "target": "alias(puppetlabs.server.example.com.num-cpus,'num
 cpus')"
 },
 {
 "target": "alias(puppetlabs.server.example.com.http.active-
requests.count,'active requests')"
 },
 {
 "target": "alias(puppetlabs.server.example.com.http.active-
histo.mean,'average')"
 }
],
 "aliasColors": {},
 "aliasYAxis": {},
 "title": "Active Requests"
 }
]

See the sample Grafana dashboard for a detailed example of how a Grafana dashboard accesses these exported
Graphite metrics.

Available Graphite metrics

The following HTTP and Puppet profiler metrics are available from the Puppet Server and can be added to your
metrics reporting. Each metric is prefixed with puppetlabs.<SERVER-HOSTNAME>; for instance, the Grafana
dashboard file refers to the num-cpus metric as puppetlabs.<SERVER-HOSTNAME>.num-cpus.

Additionally, metrics might be suffixed by fields, such as count or mean, that return more specific data points. For
instance, the puppetlabs.<SERVER-HOSTNAME>.compiler.mean metric returns only the mean length of
time it takes Puppet Server to compile a catalog.

To aid with reference, metrics in the list below are segmented into three groups:

• Statistical metrics: Metrics that have all eight of these statistical analysis fields, in addition to the top-level
metric:

• max: Its maximum measured value.
• min: Its minimum measured value.
• mean: Its mean, or average, value.
• stddev: Its standard deviation from the mean.
• count: An incremental counter.
• p50: The value of its 50th percentile, or median.
• p75: The value of its 75th percentile.
• p95: The value of its 95th percentile.

• Counters only: Metrics that only count a value, or only have a count field.
• Other: Metrics that have unique sets of available fields.

Note: Puppet Server can export many, many metrics -- so many that enabling all of them at large
installations can overwhelm Grafana servers. To avoid this, Puppet Server exports only a subset of
its available metrics by default. This default set is designed to report the most relevant metrics for
administrators monitoring performance and stability.

To add to the default list of exported metrics, see Modifying Puppet Server's exported metrics.

Puppet Server exports each metric in the lists below by default.

© 2024 Puppet, Inc., a Perforce company

b74e971ac102f31eed275f961c2a56cadebb95ae.json
794229927704362ae0170e4c1f59c1e4ae8b5384.md#modifying-puppet-servers-exported-metrics

Puppet | The Puppet platform | 252

Statistical metrics
Compiler metrics

• puppetlabs.<SERVER-HOSTNAME>.compiler: The time spent compiling catalogs. This metric represents
the sum of the compiler.compile, static_compile, find_facts, and find_node fields.

• puppetlabs.<SERVER-HOSTNAME>.compiler.compile: The total time spent compiling dynamic
(non-static) catalogs.

To measure specific nodes and environments, see Modifying Puppet Server's exported metrics.
• puppetlabs.<SERVER-HOSTNAME>.compiler.find_facts: The time spent parsing facts.
• puppetlabs.<SERVER-HOSTNAME>.compiler.find_node: The time spent retrieving node data. If

the Node Classifier (or another ENC) is configured, this includes the time spent communicating with it.
• puppetlabs.<SERVER-HOSTNAME>.compiler.static_compile: The time spent compiling static

catalogs.
• puppetlabs.<SERVER-HOSTNAME>.compiler.static_compile_inlining: The time spent

inlining metadata for static catalogs.
• puppetlabs.<SERVER-HOSTNAME>.compiler.static_compile_postprocessing: The time

spent post-processing static catalogs.

Function metrics

• puppetlabs.<SERVER-HOSTNAME>.functions: The amount of time during catalog compilation spent in
function calls. The functions metric can also report any of the statistical metrics fields for a single function by
specifying the function name as a field.

For example, to report the mean time spent in a function call during catalog compilation, use
puppetlabs.<SERVER-HOSTNAME>.functions.<FUNCTION-NAME>.mean.

HTTP metrics

• puppetlabs.<SERVER-HOSTNAME>.http.active-histo: A histogram of active HTTP requests over
time.

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-catalog-/*/-requests: The time Puppet
Server has spent handling catalog requests, including time spent waiting for an available JRuby instance.

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-environment-/*/-requests: The time
Puppet Server has spent handling environment requests, including time spent waiting for an available JRuby
instance.

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-environment_classes-/*/-requests:
The time spent handling requests to the Environment classes on page 316, which the Node Classifier uses to
refresh classes.

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-environments-requests: The time spent
handling requests to the Environments on page 297 requests.

• The following metrics measure the time spent handling file-related API endpoints:

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-file_bucket_file-/*/-requests

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-file_content-/*/-requests

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-file_metadata-/*/-requests

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-file_metadatas-/*/-requests

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-node-/*/-requests: The time spent
handling node requests, which are sent to the Node Classifier. A bottleneck here might indicate an issue with the
Node Classifier or PuppetDB.

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-report-/*/-requests: The time spent
handling report requests. A bottleneck here might indicate an issue with PuppetDB.

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-static_file_content-/*/-requests:
The time spent handling requests to the Static file content on page 324 used by Direct Puppet with file sync.

JRuby metrics

© 2024 Puppet, Inc., a Perforce company

794229927704362ae0170e4c1f59c1e4ae8b5384.md#modifying-puppet-servers-exported-metrics
https://puppet.com/docs/puppet/latest/static_catalogs.html
https://puppet.com/docs/puppet/latest/static_catalogs.html
794229927704362ae0170e4c1f59c1e4ae8b5384.md#available-graphite-metrics

Puppet | The Puppet platform | 253

Puppet Server uses an embedded JRuby interpreter to execute Ruby code. By default, JRuby spawns parallel
instances known as JRubies to execute Ruby code, which occurs during most Puppet Server activities. When
multithreaded is set to true, a single JRuby is used instead to process a limited number of threads in parallel.
For each of these metrics, they refer to JRuby instances by default and JRuby threads in multithreaded mode.

See Tuning guide on page 257 for details on adjusting JRuby settings.

• puppetlabs.<SERVER-HOSTNAME>.jruby.borrow-timer: The time spent with a borrowed JRuby.
• puppetlabs.<SERVER-HOSTNAME>.jruby.free-jrubies-histo: A histogram of free JRubies over

time. This metric's average value should greater than 1; if it isn't, Tuning guide on page 257 or another compile
primary server might be needed to keep up with requests.

• puppetlabs.<SERVER-HOSTNAME>.jruby.lock-held-timer: The time spent holding the JRuby
lock.

• puppetlabs.<SERVER-HOSTNAME>.jruby.lock-wait-timer: The time spent waiting to acquire the
JRuby lock.

• puppetlabs.<SERVER-HOSTNAME>.jruby.requested-jrubies-histo: A histogram of requested
JRubies over time. This increases as the number of free JRubies, or the free-jrubies-histo metric,
decreases, which can suggest that the server's capacity is being depleted.

• puppetlabs.<SERVER-HOSTNAME>.jruby.wait-timer: The time spent waiting to borrow a JRuby.

PuppetDB metrics

The following metrics measure the time that Puppet Server spends sending or receiving data from PuppetDB.

• puppetlabs.<SERVER-HOSTNAME>.puppetdb.catalog.save

• puppetlabs.<SERVER-HOSTNAME>.puppetdb.command.submit

• puppetlabs.<SERVER-HOSTNAME>.puppetdb.facts.find

• puppetlabs.<SERVER-HOSTNAME>.puppetdb.facts.search

• puppetlabs.<SERVER-HOSTNAME>.puppetdb.report.process

• puppetlabs.<SERVER-HOSTNAME>.puppetdb.resource.search

Counters only
HTTP metrics

• puppetlabs.<SERVER-HOSTNAME>.http.active-requests: The number of active HTTP requests.
• The following counter metrics report the percentage of each HTTP API endpoint's share of total handled HTTP

requests.

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-catalog-/*/-percentage

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-environment-/*/-percentage

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-environment_classes-/*/-
percentage

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-environments-percentage

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-file_bucket_file-/*/-
percentage

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-file_content-/*/-percentage

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-file_metadata-/*/-percentage

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-file_metadatas-/*/-percentage

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-node-/*/-percentage

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-report-/*/-percentage

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-resource_type-/*/-percentage

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-resource_types-/*/-percentage

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-static_file_content-/*/-
percentage

• puppetlabs.<SERVER-HOSTNAME>.http.puppet-v3-status-/*/-percentage

• puppetlabs.<SERVER-HOSTNAME>.http.total-requests: The total requests handled by Puppet
Server.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 254

JRuby metrics

Note: In multithreaded mode, each of these refers to JRuby threads instead of separate JRuby instances.

• puppetlabs.<SERVER-HOSTNAME>.jruby.borrow-count: The number of successfully borrowed
JRubies.

• puppetlabs.<SERVER-HOSTNAME>.jruby.borrow-retry-count: The number of attempts to
borrow a JRuby that must be retried.

• puppetlabs.<SERVER-HOSTNAME>.jruby.borrow-timeout-count: The number of attempts to
borrow a JRuby that resulted in a timeout.

• puppetlabs.<SERVER-HOSTNAME>.jruby.request-count: The number of requested JRubies.
• puppetlabs.<SERVER-HOSTNAME>.jruby.return-count: The number of JRubies successfully

returned to the pool.
• puppetlabs.<SERVER-HOSTNAME>.jruby.num-free-jrubies: The number of free JRuby instances.

If this number is often 0, more requests are coming in than the server has available JRuby instances. To alleviate
this, increase the number of JRuby instances on the Server or add additional compile servers.

• puppetlabs.<SERVER-HOSTNAME>.jruby.num-jrubies: The total number of JRuby instances on the
server, governed by the max-active-instances setting. See Tuning guide on page 257 for details.

Other metrics

These metrics measure raw resource availability and capacity.

• puppetlabs.<SERVER-HOSTNAME>.num-cpus: The number of available CPUs on the server.
• `puppetlabs.<SERV+
• ER-HOSTNAME>.uptime`: The Puppet Server process's uptime.
• Total, heap, and non-heap memory that's committed (committed), initialized (init), and used (used), and the

maximum amount of memory that can be used (max).

• puppetlabs.<SERVER-HOSTNAME>.memory.total.committed

• puppetlabs.<SERVER-HOSTNAME>.memory.total.init

• puppetlabs.<SERVER-HOSTNAME>.memory.total.used

• puppetlabs.<SERVER-HOSTNAME>.memory.total.max

• puppetlabs.<SERVER-HOSTNAME>.memory.heap.committed

• puppetlabs.<SERVER-HOSTNAME>.memory.heap.init

• puppetlabs.<SERVER-HOSTNAME>.memory.heap.used

• puppetlabs.<SERVER-HOSTNAME>.memory.heap.max

• puppetlabs.<SERVER-HOSTNAME>.memory.non-heap.committed

• puppetlabs.<SERVER-HOSTNAME>.memory.non-heap.init

• puppetlabs.<SERVER-HOSTNAME>.memory.non-heap.used

• puppetlabs.<SERVER-HOSTNAME>.memory.non-heap.max

For details about HTTP client metrics, which measure performance of Puppet Server's requests to other services, see
HTTP Client Metrics on page 255.

Modifying Puppet Server's exported metrics

In addition to the above default metrics, you can also export metrics measuring specific environments and nodes.

The metrics.registries.puppetserver.metrics-allowed parameter in metrics.conf on page 219
takes an array of strings representing the metrics you want to enable.

Omit the puppetlabs.<SERVER-HOSTNAME> prefix and field suffixes (such as .count or .mean) from
metrics when adding them to this class. Instead, suffix the environment or node name as a field to the metric.

For example, to track the compilation time for the production environment, add
compiler.compile.production to the metrics-allowed list. To track
only the my.node.localdomain node in the production environment, add
compiler.compile.production.my.node.localdomain to the metrics-allowed list.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 255

Optional metrics include:

• compiler.compile.<ENVIRONMENT> and compiler.compile.<ENVIRONMENT>.<NODE-NAME>,
and all statistical fields suffixed to these (such as compiler.compile.<ENVIRONMENT>.mean).

• compiler.compile.evaluate_resources.<RESOURCE>: Time spent evaluating a specific resource
during catalog compilation.

HTTP Client Metrics

HTTP client metrics available in Puppet Server 5 allows users to measure how long it takes for Puppet Server to make
requests to and receive responses from other services, such as PuppetDB.

Determining metrics IDs

All of these metrics are of the form puppetlabs.<SERVER ID>.http-client.experimental.with-
metric-id.<METRIC ID>.full-response.

Note: The <METRIC ID> describes what the metric measures. A metric ID is represented
in the Services endpoint on page 313 as an array of strings, and in the metric itself
the strings are joined together with periods. For instance, the metric ID of [puppetdb
resource search] is puppetdb.resource.search, so the full metric name would
be puppetlabs.<server-id>.http-client.experimental.with-metric-
id.puppetdb.resource.search.full-response.

You can configure PuppetDB to be a backend for configuration files (through the storeconfigs setting), and
you can configure Puppet Server to send reports to an external report processing service. If you configure either of
these, then during the course of handling a Puppet agent run, Puppet Server makes several calls to external services to
retrieve or store information.

• During handling of a /puppet/v3/node request, Puppet Server issues:

• a facts find request to PuppetDB for facts about the node, if they aren't yet cached (typically the first time
it requests facts for the node). Metric ID: [puppetdb facts find].

• During handling of a /puppet/v3/catalog request, Puppet Server issues several requests:

• a PuppetDB replace facts request, to replace the facts for the agent in PuppetDB with the facts it
received from the agent. Metric ID: [puppetdb, command, replace_facts].

• a PuppetDB resource search request, to search for resources if exported resources are used. Metric ID:
[puppetdb, resource, search].

• a PuppetDB query request, if the puppetdb_query function is used in Puppet code. Metric ID:
[puppetdb, query].

• a PuppetDB replace catalog request, to replace the catalog for the agent in PuppetDB with the newly
compiled catalog. Metric ID: [puppetdb, command, replace_catalog].

• During handling of a /puppet/v3/report request, Puppet Server issues:

• a PuppetDB store report request, to store the submitted report. Metric ID: [puppetdb command
store_report].

• a request to the configured reports_url to store the report, if the HTTP report processor is enabled.
Metric ID: [puppetdb report http].

Configuring

HTTP client metrics are enabled by default, but can be disabled by setting metrics-enabled to false in the
http-client section of puppetserver.conf on page 144.

These metrics also depend on the server-id setting in the metrics section of puppetserver.conf. This
defaults to localhost, and while localhost can collect metrics, change this setting to something unique to
avoid metric naming collisions when exporting metrics to an external tool, such as Graphite.

This data is all available via the Services endpoint on page 313 endpoint, at https://<SERVER
HOSTNAME>:8140/status/v1/services/server?level=debug. Puppet Server 5.0 adds a http-
client-metrics keyword in the map. If metrics are not enabled, or if Puppet Server has not issued any requests
yet, then this array will be empty, like so: "http-client-metrics": [].

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetdb/latest/connect_puppet_master.html#step-2-edit-configuration-files

Puppet | The Puppet platform | 256

In the sample Grafana dashboard, the External HTTP Communications graph visualizes all of these metrics,
and the tooltip describes each of them.

Example metrics output

"http-client-metrics": [
 {
 "aggregate": 407,
 "count": 1,
 "mean": 407,
 "metric-id": [
 "puppetdb",
 "facts",
 "find"
],
 "metric-name": "puppetlabs.localhost.http-client.experimental.with-
metric-id.puppetdb.facts.find.full-response"
 },
 {
 "aggregate": 66,
 "count": 1,
 "mean": 66,
 "metric-id": [
 "puppetdb",
 "command",
 "replace_facts"
],
 "metric-name": "puppetlabs.localhost.http-client.experimental.with-
metric-id.puppetdb.command.replace_facts.full-response"
 },
 {
 "aggregate": 60,
 "count": 2,
 "mean": 30,
 "metric-id": [
 "puppetdb",
 "resource",
 "search"
],
 "metric-name": "puppetlabs.localhost.http-client.experimental.with-
metric-id.puppetdb.resource.search.full-response"
 },
 {
 "aggregate": 53,
 "count": 1,
 "mean": 53,
 "metric-id": [
 "puppetdb",
 "query"
],
 "metric-name": "puppetlabs.localhost.http-client.experimental.with-
metric-id.puppetdb.query.full-response"
 },
 {
 "aggregate": 22,
 "count": 1,
 "mean": 22,
 "metric-id": [
 "puppetdb",
 "command",
 "store_report"
],

© 2024 Puppet, Inc., a Perforce company

b74e971ac102f31eed275f961c2a56cadebb95ae.json

Puppet | The Puppet platform | 257

 "metric-name": "puppetlabs.localhost.http-client.experimental.with-
metric-id.puppetdb.command.store_report.full-response"
 },
 {
 "aggregate": 16,
 "count": 1,
 "mean": 16,
 "metric-id": [
 "puppetdb",
 "command",
 "replace_catalog"
],
 "metric-name": "puppetlabs.localhost.http-client.experimental.with-
metric-id.puppetdb.command.replace_catalog.full-response"
 },
 {
 "aggregate": 2,
 "count": 1,
 "mean": 2,
 "metric-id": [
 "puppet",
 "report",
 "http"
],
 "metric-name": "puppetlabs.localhost.http-client.experimental.with-
metric-id.puppet.report.http.full-response"
 }
],

Tuning guide

Puppet Server provides many configuration options that can be used to tune the server for maximum performance and
hardware resource utilization. In this guide, we'll highlight some of the most important settings that you can use to get
the best performance in your environment.

Puppet Server and JRuby

Before you begin tuning your configuration, it's helpful to have a little bit of context on how Puppet Server uses
JRuby to handle incoming HTTP requests from your Puppet agents.

When Puppet Server starts up, it creates a pool of JRuby interpreters to use as workers when it needs need to
execute some of the Puppet Ruby code. You can think of these almost as individual Ruby "virtual machines" that are
controlled by Puppet Server; it's not entirely dissimilar to the way that Passenger spawns several Ruby processes to
hand off work to.

Puppet Server isolates these JRuby instances so that they will only be allowed to handle one request at a time. This
ensures that we don't encounter any concurrency issues, because the Ruby code is not thread-safe. When an HTTP
request comes in to Puppet Server, and it determines that some Ruby code will need to be executed in order to handle
the request, Puppet Server "borrows" a JRuby instance from the pool, uses it to do the work, and then "returns" it to
the pool. If there are no JRuby instances available in the pool at the time a request comes in (presumably because
all of the JRuby instances are already in use handling other requests), Puppet Server will block the request until one
becomes available.

(In the future, this approach will allow us to do some really powerful things such as creating multiple pools of
JRubies and isolating each of your Puppet environments to a single pool, to ensure that there is no pollution from one
Puppet environment to the next.)

This brings us to the two most important settings that you can use to tune your Puppet Server.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 258

Number of JRubies

The most important setting that you can use to improve the throughput of your Puppet Server installation is the max-
active-instances setting. The value of this setting is used by Puppet Server to determine how many JRuby
instances to create when the server starts up.

From a practical perspective, this setting basically controls how many Puppet agent runs Puppet Server can handle
concurrently. The minimum value you can get away with here is 1, and if your installation is small enough that you're
unlikely to ever have more than one Puppet agent checking in with the server at exactly the same time, this is totally
sufficient.

However, if you specify a value of 1 for this setting, and then you have two Puppet agent runs hitting the server at
the same time, the requests being made by the second agent will be effectively blocked until the server has finished
handling all of the requests from the first agent. In other words, one of Puppet Server's threads will have "borrowed"
the single JRuby instance from the pool to handle the requests from the first agent, and only when those requests are
completed will it return the JRuby instance to the pool. At that point, the next thread can "borrow" the JRuby instance
to use to handle the requests from the second agent.

Assuming you have more than one CPU core in your machine, this situation means that you won't be getting
the maximum possible throughput from your Puppet Server installation. Increasing the value from 1 to 2 would
mean that Puppet Server could now use a second CPU core to handle the requests from a second Puppet agent
simultaneously.

It follows, then, that the maximum sensible value to use for this setting will be roughly the number of CPU cores you
have in your server. Setting the value to something much higher than that won't improve performance, because even
if there are extra JRuby instances available in the pool to do work, they won't be able to actually do any work if all of
the CPU cores are already busy using JRuby instances to handle incoming agent requests.

(There are some exceptions to this rule. For example, if you have report processors that make a network connection
as part of the processing of a report, and if there is a chance that the network operation is slow and will block on I/
O for some period of time, then it might make sense to have more JRuby instances than the number of cores. The
JVM is smart enough to suspend the thread that is handling those kinds of requests and use the CPUs for other
work, assuming there are still JRuby instances available in the pool. In a case like this you might want to set max-
active-instances to a value higher than the number of CPUs.)

At this point you may be wondering, "What's the downside to just setting max-active-instances to a really
high value?" The answer to this question, in a nutshell, is "memory usage". This brings us to the other extremely
important setting to consider for Puppet Server.

JVM Heap Size

The JVM's "max heap size" controls the maximum amount of (heap memory that the JVM process is allowed to
request from the operating system. You can set this value via the -Xmx command-line argument at JVM startup.
(In the case of Puppet Server, you'll find this setting in the "defaults" file for Puppet Server for your operating
system; this will generally be something like /etc/sysconfig/puppetserver or /etc/defaults/
puppetserver.)

Note: The vast majority of the memory footprint of a JVM process can usually be accounted for by the heap size.
However, there is some amount of non-heap memory that will always be used, and for programs that call out to native
code at all, there may be a bit more. Generally speaking, the resident memory usage of a JVM process shouldn't
exceed the max heap size by more than 256MB or so, but exceeding the max heap size by some amount is normal.

Upgrade note: If you modified the defaults file in Puppet Server 2.4.x or earlier, then lost those
modifications or see Service ':PoolManagerService' not found warnings after upgrading
to Puppet Server 2.5, be aware that the package might have attempted to overwrite the file during the
upgrade. See the Puppet Server 2.5 release notes for details.

If your application's memory usage approaches this value, the JVM will try to get more aggressive with garbage
collection to free up memory. In certain situations, you may see increased CPU activity related to this garbage
collection. If the JVM is unable to recover enough memory to keep the application running smoothly, you will
eventually encounter an OutOfMemoryError, and the process will shut down.

© 2024 Puppet, Inc., a Perforce company

https://docs.puppet.com/puppetserver/2.5/release_notes.html

Puppet | The Puppet platform | 259

For Puppet Server, we also use a JVM argument, -XX:HeapDumpOnOutOfMemoryError, to cause the JVM to
dump an .hprof file to disk. This is basically a memory snapshot at the point in time where the error occurred; it
can be loaded into various profiling tools to get a better understanding of where the memory was being used.

(Note that there is another setting, "min heap size", that is controlled via the -Xms setting; Oracle recommends setting
this value to the same value that you use for -Xmx.)

The most important factor when determining the max heap size for Puppet Server is the value of max-active-
instances. Each JRuby instance needs to load up a copy of the Puppet Ruby code, and then needs some amount
of memory overhead for all of the garbage that gets generated during a Puppet catalog compilation. Also, the memory
requirements will vary based on how many Puppet modules you have in your module path, how much Hiera data you
have, etc. At this time we estimate that a reasonable ballpark figure is about 512MB of RAM per JRuby instance,
but that can vary depending on some characteristics of your Puppet codebase. For example, if you have a really high
number of modules or a great deal of Hiera data, you might find that you need more than 512MB per JRuby instance.

You'll also want to allocate a little extra heap to be used by the rest of the things going on in Puppet Server: the web
server, etc. So, a good rule of thumb might be 512MB + (max-active-instances * 512MB).

We're working on some optimizations for really small installations (for testing, demos, etc.). Puppet Server should run
fine with a value of 1 for max-active-instances and a heap size of 512MB, and we might be able to improve
that further in the future.

Tying Together max-active-instances and Heap Size

We're still gathering data on what the best default settings are, to try to provide an out-of-the-box configuration that
works well in most environments. In versions prior to 1.0.8 in the 1.x series (compatible with Puppet 3.x), and prior to
2.1.0 in the 2.x series (compatible with Puppet 4.x), the default value is num-cpus + 2. This value will be far too
high if you're running on a system with a large number of CPU cores.

As of Puppet Server 1.0.8 and 2.1.0, if you don't provide an explicit value for this setting, we'll default to num-
cpus - 1, with a minimum value of 1 and a maximum value of 4. The maximum value of 4 is probably too low
for production environments with beefy hardware and a high number of Puppet agents checking in, but our current
thinking is that it's better to ship with a default setting that is too low and allow you to tune up, than to ship with a
default setting that is too high and causes you to run into OutOfMemory errors. In general, it's recommended that
you explicitly set this value to something that you think is reasonable in your environment. To encourage this, we log
a warning message at startup if you haven't provided an explicit value.

Potential JAVA ARGS settings

If you’re working outside of lab environment, increase ReservedCodeCacheSize to 512m under normal load.
If you’re working with 6-12 JRuby instances (or a max-requests-per-instance value significantly less than
100k), run with a ReservedCodeCache of 1G. Twelve or more JRuby instances in a single server might require
2G or more.

Similar caveats regarding scaling ReservedCodeCacheSize might apply if users are managing
MaxMetaspace.

Applying metrics to improve performance

Puppet Server produces Monitoring Puppet Server metrics on page 247 that administrators can use to identify
performance bottlenecks or capacity issues. Interpreting this data is largely up to you and depends on many factors
unique to your installation and usage, but there are some common trends in metrics that you can use to make Puppet
Server function better.

Note: This document assumes that you are already familiar with Puppet Server's Monitoring Puppet
Server metrics on page 247, which report on relevant information, and its Tuning guide on page 257,
which provides instructions for modifying relevant settings. To put it another way, this guide attempts
to explain questions about "why" Puppet Server performs the way it does for you, while your servers
are the "who", Server Monitoring Puppet Server metrics on page 247 help you track down exactly
"what" is affecting performance, and the Tuning guide on page 257 explains "how" you can improve
performance.

© 2024 Puppet, Inc., a Perforce company

https://www.oracle.com/java/technologies/tuning-garbage-collection-v50-java-virtual-machine.html#0.0.0.-Total-Heap-Coutline

Puppet | The Puppet platform | 260

If you're using Puppet Enterprise (PE), consult its documentation instead of this guide for PE-specific
requirements, settings, and instructions:

• Large environment installations (LEI)
• Compile masters
• Load balancing
• High availability

Measuring capacity with JRubies

Puppet Server uses JRuby, which rations server resources in the form of JRuby instances in default mode, and JRuby
threads in multithreaded mode. Puppet Server consumes these as it handles requests. A simple way of explaining
Puppet Server performance is to remember that your Server infrastructure must be capable of providing enough
JRuby instances or threads for the amount of activity it handles. Anything that reduces or limits your server's capacity
to produce JRubies also degrades Puppet Server's performance.

Several factors can limit your Server infrastructure's ability to produce JRubies.

Request-handling capacity

Note: These guidelines for interpreting metrics generally apply to both default and multithreaded mode.
However, threads are much cheaper in terms of system resources, since they do not need to duplicate all of
Puppet's runtime, so you may have more vertical scalability in multithreaded mode.

If your free JRubies are 0 or fewer, your server is receiving more requests for JRubies than it can provide, which
means it must queue those requests to wait until resources are available. Puppet Server performs best when the
average number of free JRubies is above 1, which means Server always has enough resources to immediately handle
incoming requests.

There are two indicators in Puppet Server's metrics that can help you identify a request-handling capacity issue:

• Average JRuby Wait Time: This refers to the amount of time Puppet Server has to wait for an available JRuby
to become available, and increases when each JRuby is held for a longer period of time, which reduces the overall
number of free JRubies and forces new requests to wait longer for available resources.

• Average JRuby Borrow Time: This refers to the amount of time that Puppet Server "holds" a JRuby as a
resource for a request, and increases because of other factors on the server.

If wait time increases but borrow time stays the same, your Server infrastructure might be serving too many agents.
This indicates that Server can easily handle requests but is receiving too many at one time to keep up.

If both wait and borrow times are increasing, something else on your server is causing requests to take longer to
process. The longer borrow times suggest that Puppet Server is struggling more than before to process requests, which
has a cascading effect on wait times. Correlate borrow time increases with other events whenever possible to isolate
what activities might cause them, such as a Puppet code change.

If you are setting up Puppet Server for the first time, start by increasing your Server infrastructure's capacity through
additional JRubies (if your server has spare CPU and memory resources) or compile servers until you have more
than 0 free JRubies, and your average number of free JRubies are at least 1. After your system can handle its request
volume, you can start looking into more specific performance improvements.

Adding more JRubies

If you must add JRubies, remember that Puppet Server is tuned by default to use one fewer than your total number
of CPUs, with a maximum of 4 CPUs, for the number of available JRubies. You can change this by setting max-
active-instances in puppetserver.conf on page 144, under the jruby-puppet section. In the default
mode, increasing max-active-instances creates whole independent JRuby instances. In multithreaded mode,
this setting instead controls the number of threads that the single JRuby instance will process concurrently, and
therefore has different scaling characteristics. Tuning recommendations for this mode are under development, see
SERVER-2823.

When running in the default mode, follow these guidelines for allocating resources when adding JRubies:

Each JRuby also has a certain amount of persistent memory overhead required in order to load both Puppet's Ruby
code and your Puppet code. In other words, your available memory sets a baseline limit to how much Puppet code

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pe/latest/installing/hardware_requirements.html#large-environment-hardware-requirements
https://puppet.com/docs/pe/latest/installing/installing_compile_masters.html
https://puppet.com/docs/pe/latest/installing/installing_compile_masters.html#using-load-balancers-with-compile-masters
https://puppet.com/docs/pe/latest/high_availability/high_availability_overview.html
https://tickets.puppetlabs.com/browse/SERVER-2823

Puppet | The Puppet platform | 261

you can process. Catalog compilation can consume more memory, and Puppet Server's total memory usage depends
on the number of agents being served, how frequently those agents check in, how many resources are being managed
on each agent, and the complexity of the manifests and modules in use.

With the jruby-puppet.compile-mode setting in puppetserver.conf on page 144 set to off, a JRuby
requires at least 40MB of memory under JRuby 1.7 and at least 60MB under JRuby9k in order to compile a nearly
empty catalog. This includes memory for the scripting container, Puppet's Ruby code and additional memory
overhead.

For real-world catalogs, you can generally add an absolute minimum of 15MB for each additional JRuby. We
calculated this amount by comparing a minimal catalog compilation to compiling a catalog for a basic role that
installs Tomcat and Postgres servers.

Your Puppet-managed infrastructure is probably larger and more complex than that test scenario, and every
complication adds more to each additional JRuby's memory requirements. (For instance, we recommend assuming
that Puppet Server will use at least 512MB per JRuby while under load.) You can calculate a similar value unique to
your infrastructure by measuring puppetserver memory usage during your infrastructure's catalog compilations
and comparing it to compiling a minimal catalog for a similar number of nodes.

The jruby-metrics section of the Services endpoint on page 313 endpoint also lists the requested-
instances, which shows what requests have come in that are waiting to borrow a JRuby instance. This part of the
status endpoint lists the lock's status, how many times it has been requested, and how long it has been held for. If it is
currently being held and has been held for a while, you might see requests starting to stack up in the requested-
instances section.

Adding compile servers

If you don't have the additional capacity on your primary server to add more JRubies, you'll want to add another
compile server to your Server infrastructure. See Scaling Puppet Server on page 263.

HTTP request delays

If JRuby metrics appear to be stable, performance issues might originate from lag in server requests, which also have
a cascading effect on other metrics. HTTP metrics in the Services endpoint on page 313, and the requests graph in
the Monitoring Puppet Server metrics on page 247, can help you determine when and where request times have
increased.

HTTP metrics include the total time for the server to handle the request, including waiting for a JRuby instance to
become available. When JRuby borrow time increases, wait time also increases, so when borrow time for one type of
request increases, wait times for all requests increases.

Catalog compilation, which is graphed on the sample Grafana dashboard, most commonly increases request times,
because there are many points of potential failure or delay in a catalog compilation. Several things could cause
catalog compilation lengthen JRuby borrow times.

• A Puppet code change, such as a faulty or complex new function. The Grafana dashboard should show if functions
start taking significantly longer, and the experimental dashboard and Services endpoint on page 313 endpoint
also list the lengthiest function calls (showing the top 10 and top 40, respectively) based on aggregate execution
times.

• Adding many file resources at one time.

In cases like these, there might be more efficient ways to author your Puppet code, you might be extending Puppet to
the point where you need to add JRubies or compile servers even if you aren't adding more agents.

Slowdowns in PuppetDB can also cause catalog compilations to take more time: if you use exported resources or the
puppetdb_query function and PuppetDB has a problem, catalog compilation times will increase.

Puppet Server also sends agents' facts and the compiled catalog to PuppetDB during catalog compilation. The
Services endpoint on page 313 for the primary server service reports metrics for these operations under HTTP
Client Metrics on page 255, and in the Grafana dashboard in the "External HTTP Communications" graph.

Puppet Server also requests facts as HTTP requests while handling a node request, and submits reports via HTTP
requests while handling of a report request. If you have an HTTP report processor set up, the Grafana dashboard

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppetlabs-puppetserver_perf_control/blob/production/site/role/manifests/by_size/small.pp
https://puppet.com/docs/pe/latest/configuring/config_puppetserver.html
b74e971ac102f31eed275f961c2a56cadebb95ae.json

Puppet | The Puppet platform | 262

shows metrics for Http report processor, as does the Services endpoint on page 313 endpoint under
http-client-metrics in the primary server service, for metric ID ['puppet', 'report', 'http'].
Delays in the report processor are passed on to Puppet Server.

Memory leaks and usage

A memory leak or increased memory pressure can stress Puppet Server's available resources. In this case, the Java
VM will spend more time doing garbage collection, causing the GC time and GC CPU % metrics to increase. These
metrics are available from the Services endpoint on page 313 endpoint, as well as in the mbeans metrics available
from both the v1 metrics on page 309 or v2 (Jolokia) metrics on page 311 endpoints.

If you can't identify the source of a memory leak, setting the max-requests-per-instance setting in
puppetserver.conf on page 144 to something other than the default of 0 limits the number of requests a JRuby
handles during its lifetime and enables automatic JRuby flushing. Enabling this setting reduces overall performance,
but if you enable it and no longer see signs of persistent memory leaks, check your module code for inefficiencies or
memory-consuming bugs.

Note: In multithreaded mode, the max-requests-per-instance setting refers to the sum total
number of requests processed by the single JRuby instance, across all of its threads. While that single
JRuby is being flushed, all requests will suspend until the instance becomes available again.

Submitting usage telemetry

If enabled, Puppet Server's dropsonde tool collects usage data for public Forge content and submits collected
information to Puppet development. This data helps Puppet development to prioritize more useful module work and
to improve Forge search quality.

All data collected is fully aggregated before anyone can access it. After aggregation, it is available publicly for the
benefit of the Puppet community. You can access public data at Puppet's BigQuery public database.

You can configure dropsonde to enable or disable certain metrics according to your organization's policies or
preferences. For more information on how to do this, visit dropsonde's documentation.

Configuring dropsonde in puppetserver.conf

Find the following section in your puppetserver.conf on page 144 file. If the section is not present, you may add it
manually:

settings related to submitting module metrics via Dropsonde
dropsonde: {
 #enabled: false

 # How long, in seconds, to wait between dropsonde submissions
 # Defaults to one week.
 # interval: 604800
}

To enable telemetry collection, uncomment the enabled setting and update it to true.

The interval setting defines how long, in seconds, Puppet Server waits between telemetry submissions if enabled.
The default is 604800 (one week).

Dropsonde terminal commands

The terminal command puppetserver dropsonde list lists all the loaded metrics plugins and describes
what they do.

To see exactly what data is collected in a readable format, run puppetserver dropsonde preview in the
terminal.

Note: use --format=json if you want to use this data for your own tooling.

For more information on installating and configuring dropsonde, visit its documentation.

© 2024 Puppet, Inc., a Perforce company

https://console.cloud.google.com/bigquery?p=dataops-puppet-public-data&d=community&t=forge_modules&page=table
https://github.com/puppetlabs/dropsonde
https://github.com/puppetlabs/dropsonde

Puppet | The Puppet platform | 263

Scaling Puppet Server

To scale Puppet Server for many thousands of nodes, you'll need to add Puppet primary servers dedicated to catalog
compilation. These Servers are known as compilers, and are simply additional load-balanced Puppet Servers that
receive catalog requests from agents and synchronize the results with each other.

If you're using Puppet Enterprise (PE), consult its documentation instead of this guide for PE-specific
requirements, settings, and instructions:

• Large environment installations (LEI)
• Installing compilers
• High availability
• Code Manager

Planning your load-balancing strategy

The rest of your configuration depends on how you plan on distributing the agent load. Determine what your
deployment will look like before you add any compilers, but implement load balancing as the last step only after
you have the infrastructure in place to support it.

Using round-robin DNS

Leave all of your agents pointed at the same Puppet Server hostname, then configure your site's DNS to arbitrarily
route all requests directed at that hostname to the pool of available servers.

For instance, if all of your agent nodes are configured with server = puppet.example.com, configure a DNS
name such as:

IP address of server 1:
puppet.example.com. IN A 192.0.2.50
IP address of server 2:
puppet.example.com. IN A 198.51.100.215

For this option, configure your servers with dns_alt_names before their certificate request is made.

Using a hardware load balancer

You can also use a hardware load balancer or a load-balancing proxy webserver to redirect requests more
intelligently. Depending on your configuration (for instance, SSL using either raw TCP proxying or acting as its own
SSL endpoint), you might also need to use other procedures in this document.

Configuring a load balancer depends on the product, and is beyond the scope of this document.

Using DNS SRV Records

You can use DNS SRV records to assign a pool of puppet servers for agents to communicate with. This requires a
DNS service capable of SRV records, which includes all major DNS software.

Note: This method makes a large number of DNS requests. Request timeouts are completely under the
DNS server's control and agents cannot cancel requests early. SRV records don't interact well with static
servers set in the config file. Please keep these potential pitfalls in mind when configuring your DNS!

Configure each of your agents with a srv_domain instead of a server in puppet.conf:

[main]
use_srv_records = true
srv_domain = example.com

Agents will then lookup a SRV record at _x-puppet._tcp.example.com when they need to talk to a Puppet
primary server.

Equal-weight load balancing between server-a and server-b:
_x-puppet._tcp.example.com. IN SRV 0 5 8140 server-a.example.com.
_x-puppet._tcp.example.com. IN SRV 0 5 8140 server-b.example.com.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pe/latest/hardware_requirements.html#hardware_requirements_large
https://puppet.com/docs/pe/latest/installing_compilers.html
https://puppet.com/docs/pe/2018.1/high_availability_overview.html
https://puppet.com/docs/pe/latest/code_mgr_how_it_works.html#how_code_manager_works

Puppet | The Puppet platform | 264

You can also implement more complex configurations. For instance, if all devices in site A are configured with a
srv_domain of site-a.example.com, and all nodes in site B are configured to site-b.example.com,
you can configure them to prefer a server in the local site but fail over to the remote site:

Site A has two servers - server-1 is beefier, give it 75% of the load:
_x-puppet._tcp.site-a.example.com. IN SRV 0 75 8140 server-1.site-
a.example.com.
_x-puppet._tcp.site-a.example.com. IN SRV 0 25 8140 server-2.site-
a.example.com.
_x-puppet._tcp.site-a.example.com. IN SRV 1 5 8140 server.site-
b.example.com.

For site B, prefer the local server unless it's down, then fail back to
 site A
_x-puppet._tcp.site-b.example.com. IN SRV 0 5 8140 server.site-
b.example.com.
_x-puppet._tcp.site-b.example.com. IN SRV 1 75 8140 server-1.site-
a.example.com.
_x-puppet._tcp.site-b.example.com. IN SRV 1 25 8140 server-2.site-
a.example.com.

Centralizing the Certificate Authority

Additional Puppet Servers should only share the burden of compiling and serving catalogs, which is why they're
typically referred to as "compilers". Any certificate authority functions should be delegated to a single server.

Before you centralize this functionality, ensure that the single server that you want to use as the central CA is
reachable at a unique hostname other than (or in addition to) puppet. Next, point all agent requests to the centralized
CA server, either by configuring each agent or through DNS SRV records.

Directing individual agents to a central CA

On every agent, set the ca_server setting in puppet.conf (in the [main] configuration block) to the hostname
of the server acting as the certificate authority. If you have a large number of existing nodes, it is easiest to do this by
managing puppet.conf with a Puppet module and a template.

Note: Set this setting before provisioning new nodes, or they won't be able to complete their initial agent
run.

Pointing DNS SRV records at a central CA

If you use SRV records for agents, you can use the _x-puppet-ca._tcp.$srv_domain DNS name to point
clients to one specific CA server, while the _x-puppet._tcp.$srv_domain DNS name handles most of their
requests to servers and can point to a set of compilers.

Creating and configuring compilers

To add a compiler to your deployment, begin by Installing Puppet Server on page 207 on it.

Before running puppet agent or puppet primary server on the new server:

1. In the compiler's puppet.conf, in the [main] configuration block, set the ca_server setting to the
hostname of the server acting as the certificate authority.

2. In the compiler's webserver.conf file, add and set the following SSL settings:

• ssl-cert
• ssl-key
• ssl-ca-cert
• ssl-crl-path

3. Service Bootstrapping on page 144.

If you're using the individual agent configuration method of CA centralization, set ca_server in
puppet.conf to the hostname of your CA server in the [main] config block. If an ssldir is configured,
make sure it's configured in the [main] block only.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/configuration.html#caserver
https://puppet.com/docs/puppet/latest/config_file_main.html
20b58ef19eae94a05586596d190e0afcab14c310.md#using-dns-srv-records
https://puppet.com/docs/puppet/latest/config_file_main.html
https://puppet.com/docs/puppet/latest/configuration.html#caserver
20b58ef19eae94a05586596d190e0afcab14c310.md#directing-individual-agents-to-a-central-ca

Puppet | The Puppet platform | 265

4. If you're using the DNS round robin method of agent load balancing, or a load balancer in TCP proxying mode,
provide compilers with certificates using DNS Subject Alternative Names.

Configure dns_alt_names in the [main] block of puppet.conf to cover every DNS name that might be
used by an agent to access this server.

dns_alt_names = puppet,puppet.example.com,puppet.site-a.example.com

If the agent or server has been run and already created a certificate, remove it by running sudo puppet ssl
clean. If an agent has requested a certificate from the server, delete it there to re-issue a new one with the alt
names: puppetserver ca clean server-2.example.com.

5. Request a new certificate by running puppet agent --test --waitforcert 10.
6. Log into the CA server and run puppetserver ca sign server-2.example.com.

Centralizing reports, inventory service, and catalog searching (storeconfigs)

If you use an HTTP report processor, point your server and all of your Puppet compilers at the same shared report
server in order to see all of your agents' reports.

If you use the inventory service or exported resources, use PuppetDB and point your server and all of your Puppet
compilers at a shared PuppetDB instance. A reasonably robust PuppetDB server can handle many Puppet compilers
and many thousands of agents.

See the PuppetDB documentation for instructions on deploying a PuppetDB server, then configure every Puppet
compiler to use it. Note that every Puppet primary server and compiler must have its own allowlist entry if you're
using HTTPS certificates for authorization.

Keeping manifests and modules synchronized across compilers

You must ensure that all Puppet compilers have identical copies of your manifests, modules, and external node
classifier data. Examples include:

• Using a version control system such as r10k, Git, Mercurial, or Subversion to manage and sync your manifests,
modules, and other data.

• Running an out-of-band rsync task via cron.
• Configuring puppet agent on each compiler to point to a designated model Puppet primary server, then use

Puppet itself to distribute the modules.

Implementing load distribution

Now that your other compilers are ready, you can implement your agent load-balancing strategy.

Restarting Puppet Server"

Starting in version 2.3.0, you can restart Puppet Server by sending a hangup signal, also known as a HUP signal
or SIGHUP, to the running Puppet Server process. The HUP signal stops Puppet Server and reloads it gracefully,
without terminating the JVM process. This is generally much faster than completely stopping and restarting the
process. This allows you to quickly load changes to your Puppet Server primary server, including configuration
changes.

There are several ways to send a HUP signal to the Puppet Server process, but the most straightforward is to run the
following kill command:

kill -HUP `pgrep -f puppet-server`

Starting in version 2.7.0, you can also reload Puppet Server by running the "reload" action via the operating system's
service framework. This is analogous to sending a hangup signal but with the benefit of having the "reload" command
pause until the server has been completely reloaded, similar to how the "restart" command pauses until the service
process has been fully restarted. Advantages to using the "reload" action as opposed to just sending a HUP signal
include:

© 2024 Puppet, Inc., a Perforce company

20b58ef19eae94a05586596d190e0afcab14c310.md#using-round-robin-dns
20b58ef19eae94a05586596d190e0afcab14c310.md#using-a-load-balancer
https://puppet.com/docs/puppetdb/latest/
https://puppet.com/docs/puppetdb/latest/configure.html#certificate-allowlist
https://puppet.com/docs/puppet/latest/nodes_external.html
https://puppet.com/docs/puppet/latest/nodes_external.html
https://github.com/puppetlabs/r10k
20b58ef19eae94a05586596d190e0afcab14c310.md#planning-your-load-balancing-strategy
https://en.wikipedia.org/wiki/SIGHUP
https://en.wikipedia.org/wiki/SIGHUP
http://linux.die.net/man/1/kill

Puppet | The Puppet platform | 266

1. Unlike with the HUP signal approach, you do not have to determine the process ID of the puppetserver process to
be reloaded.

2. When using the HUP signal with an automated script (or Puppet code), it is possible that any additional
commands in the script might behave improperly if performed while the server is still reloading. With the
"reload" command, though, the server should be up and using its latest configuration before any subsequent script
commands are performed.

3. Even if the server fails to reload and shuts down --- for example, due to a configuration error --- the kill -
HUP command might still return a 0 (success) exit code. With the "reload" command, however, any configuration
change which causes the server to shut down will produce a non-0 (failure) exit code. The "reload" command,
therefore, would allow you to more reliably determine if the server failed to reload properly.

Use the following commands to perform the "reload" action for Puppet Server.

All current OS distributions:

service puppetserver reload

OS distributions which use sysvinit-style scripts:

/etc/init.d/puppetserver reload

OS distributions which use systemd service configurations:

systemctl reload puppetserver

Note: If you're using Puppet Enterprise (PE), you can reload the server from the command line by running
service pe-puppetserver reload. However if you need to change a setting, do so in console or
with Heira, and then the agent will reload the server when it applies the change. For more information, see
Configuring and tuning Puppet Server.

Restarting Puppet Server to pick up changes

There are three ways to trigger your Puppet Server environment to refresh and pick up changes you've made. A
request to the JRuby pool on page 326 is the quickest, but picks up only certain types of changes. A HUP signal or
service reload is also quick, and applies additional changes. Other changes require a full Puppet Server restart.

Note: Changes to Puppet Server's logback.xml on page 156 don't require a server restart. Puppet Server
recognizes and applies them automatically, though it can take a minute or so for this to happen. However,
you can restart the service to force it to recognize those changes.

Changes applied after a JRuby pool flush, HUP signal, service reload, or full Server restart

• Changes to your hiera.yaml file to change your Hiera configuration.
• Using Ruby gems on page 241 for Puppet Server by puppetserver gem.
• Changes to the Ruby code for Puppet's core dependencies, such as Puppet, Facter, and Hiera.
• Changes to Puppet modules in an environment where you've enabled environment caching. You can also achieve

this by making a request to the Environment cache on page 326.
• Changes to the CA CRL file. For example, a puppetserver ca clean

Changes applied after a HUP signal, service reload, or full Server restart

• Changes to Puppet Server Configuring Puppet Server on page 142 in its conf.d directory.
• Changes to the CA CRL file. For example, a puppetserver ca clean

Changes that require a full Server restart

• Changes to JVM arguments, such as JVM Heap Size on page 258, that are typically configured in your /etc/
sysconfig/puppetserver or /etc/default/puppetserver file.

• Changes to Service Bootstrapping on page 144 to enable or disable Puppet Server's certificate authority (CA)
service.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pe/2018.1/config_puppetserver.html#configuring_and_tuning_puppet_server
https://puppet.com/docs/puppet/latest/hiera_intro.html
https://puppet.com/docs/puppet/latest/platform_lifecycle.html
https://puppet.com/docs/puppet/latest/environments_about.html
https://puppet.com/docs/puppet/latest/configuration.html#environmenttimeout

Puppet | The Puppet platform | 267

For these types of changes, you must restart the process by using the operating system's service framework, for
example, by using the systemctl or service commands.

Note: To ensure that the Puppet primary server and CA service is running in a platform agnostic way, use
the puppet resource service puppetserver ensure=running command. This command
is equivalent to systemctl start puppetserver on systems that support it. For more information
on the resource command and managing a server’s desired state, see Man Page: puppet resource and
Resource Type: service on page 703.

Developer information

Developer debugging

Because Puppet Server executes both Clojure and Ruby code, approaches to debugging differ depending on which
part of the application you're interested in.

Debugging Clojure Code

If you are interested in debugging the web service layer or other parts of the app that are written in Clojure, there
are lots of options available. The Clojure REPL is often the most useful tool, as it makes it very easy to interact with
individual functions and namespaces.

If you are looking for more traditional debugging capabilities, such as defining breakpoints and stepping through the
lines of your source code, there are many options. Just about any Java debugging tool will work to some degree, but
Clojure-specific tools such as CDT and debug-repl will have better integration with your Clojure source files.

For a more full-featured IDE, Cursive is a great option. It's built on IntelliJ IDEA, and provides a debug REPL that
supports all of the same debugging features that are available in Java; breakpoints, evaluating expressions in the local
scope when stopped at a breakpoint, visual navigation of the call stack across threads, etc.

Debugging Ruby Code

Debugging the Ruby code running in Puppet Server can be a bit trickier, because Java and Clojure debugging tools
will only take you into the JRuby interpreter source code, not into the Ruby code that it is processing. So, if you wish
to debug the Ruby code directly, you'll need to install gems and take advantage of their capabilities (not unlike how
you would debug Ruby code in the MRI interpreter).

For more info on installing gems for Puppet Server, see Using Ruby gems on page 241.

Ruby REPL incompatible with Lein REPL

Please note that a REPL running in Ruby is incompatible with lein repl because JRuby will not receive data from
standard input when running inside of lein repl. To use a ruby REPL during development run puppetserver
from source with lein run rather than lein repl:

$ lein run --config ~/.puppetserver/puppetserver.conf

The lein run command will start the server in the foreground as normal. pry or ruby-debug will display an
input prompt when the relevant statement is reached. Expect to see the normal lein run output and then the Ruby
REPL will present itself as compared to lein repl which presents a prompt early in the process lifecycle. In this
way the "ruby repl" is more of a breakpoint than a REPL in the Clojure sense.

ruby-debug
Installation

There are many gems available that provide various ways of debugging Ruby code depending on what version of
Ruby and which Ruby interpreter you're running. One of the most common gems is ruby-debug, and there is a
JRuby-compatible version available. To install it for use in Puppet Server, run:

$ sudo puppetserver gem install ruby-debug

© 2024 Puppet, Inc., a Perforce company

http://georgejahad.com/clojure/cdt.html
http://github.com/georgejahad/debug-repl
https://cursiveclojure.com/
http://www.jetbrains.com/idea/

Puppet | The Puppet platform | 268

Or, if you're running puppetserver from source:

$ lein gem -c /path/to/puppetserver.conf install ruby-debug

Usage

After installing the gem, you can trigger the debugger by adding a line like this to any of the Ruby code that is run in
Puppet Server (including the Puppet Ruby code):

require 'ruby-debug'; debugger

pry
Installation

Pry is another popular gem for introspecting Ruby code. It is compatible with JRuby. Install pry when running a
packaged version of puppetserver using:

$ sudo puppetserver gem install pry --no-ri --no-rdoc

Or, if you're running puppetserver from source:

$ lein gem -c ~/puppetserver/puppetserver.conf -- install pry \
 --no-ri --no-rdoc

Usage

puppetserver should be run in the foreground to make use of the pry repl. This involves stopping the background
service and starting the server in the foreground with the puppet foreground subcommand:

$ sudo service puppetserver stop
$ sudo puppetserver foreground

After installing, you can add a line like this to the Ruby code:

require 'pry'; binding.pry

This will give you an advanced interactive REPL at the line of code where you've called pry.

There are many other gems that are useful for debugging, and a large percentage of them are compatible with
JRuby. If you have a favorite that is not mentioned here please let us know, and we will consider adding it to this
documentation!

Limitations

We are aware that some favorite gems/tools/features for ruby debugging don't currently work with JRuby/Puppet
Server. (For example, some things like color syntax highlighting in Pry.) It's important to us to make sure that the
Ruby developer experience is not degraded for developers working via Puppet Server rather than webrick, so, if you
run into issues like this, please file an issue on our Bug Tracker, and we will see if it's possible to add support for
things that we're missing. In many cases it might be a matter of simply submitting a patch to JRuby, or submitting
a JRuby-compatibility patch for an existing gem, and we're interested in trying to help with those sorts of things
whenever possible.

Tracing Code Events

Puppet Server can utilize JRuby's standard facilities for tracing events during code execution. For more information
on these techniques, see the Tracing code events on page 274 page.

Running from source
So you'd like to run Puppet Server from source?

The following steps will help you get Puppet Server up and running from source.

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppet.com/browse/SERVER

Puppet | The Puppet platform | 269

Step 0: Quick Start for Developers

clone git repository and initialize submodules
$ git clone --recursive git://github.com/puppetlabs/puppetserver
$ cd puppetserver

Remove any old config if you want to make sure you're using the latest
defaults
$ rm -rf ~/.puppetserver

Run the `dev-setup` script to initialize all required configuration
$./dev-setup

Launch the clojure REPL
$ lein repl
Run Puppet Server
dev-tools=> (go)
dev-tools=> (help)

You should now have a running server. All relevant paths ($confdir, $codedir, etc.) are configured by default
to point to directories underneath ~/.puppetlabs. These should all align with the default values that puppet
uses (for non-root users).

You can find the specific paths in the dev/puppetserver.conf file.

In another shell, you can run the agent:

Go to the directory where you checked out puppetserver
$ cd puppetserver
Set ruby and bin paths
$ export RUBYLIB=./ruby/puppet/lib:./ruby/facter/lib
$ export PATH=./ruby/puppet/bin:./ruby/facter/bin:$PATH
Run the agent
$ puppet agent -t

To make an API request to the running server, run a command like this:

$ curl \
 --cert ~/.puppetlabs/etc/puppet/ssl/certs/localhost.pem \
 --key ~/.puppetlabs/etc/puppet/ssl/private_keys/localhost.pem \
 --cacert ~/.puppetlabs/etc/puppet/ssl/ca/ca_crt.pem \
 https://localhost:8140/puppet/v3/file_content/modules/mymodule/
script.sh?environment=production

More detailed instructions follow.

Step 1: Install Prerequisites

Use your system's package tools to ensure that the following prerequisites are installed:

• JDK 1.8 or Java 11
• Leiningen 2.9.1 (latest)
• Git (for checking out the source code)

Step 2: Clone Git Repo and Set Up Working Tree

$ git clone --recursive git://github.com/puppetlabs/puppetserver
$ cd puppetserver

© 2024 Puppet, Inc., a Perforce company

http://leiningen.org/

Puppet | The Puppet platform | 270

Step 3: Set up Config Files

The easiest way to do this is to just run:

$./dev-setup

This will set up all of the necessary configuration files and directories inside of your ~/.puppetlabs
directory. If you are interested in seeing what all of the default file paths are, you can find them in ./dev/
puppetserver.conf.

The default paths should all align with the default values that are used by puppet (for non-root users).

If you'd like to customize your environment, here are a few things you can do:

• Before running ./dev-setup, set an environment variable called SERVERHOST. If this variable is found
during dev-setup, it will configure your puppet.conf file to use this value for your certname (both for
Puppet Server and for puppet) and for the server configuration (so that your agent runs will automatically use
this hostname as their puppet primary server).

• Create a file called dev/user.clj. This file will be automatically loaded when you run Puppet Server from the
REPL. In it, you can define a function called get-config, and use it to override the default values of various
settings from dev/puppetserver.conf. For an example of what this file should look like, see ./dev/
user.clj.sample.

You don't need to create a user.clj in most cases; the settings that I change the most frequently that would
warrant the creation of this file, though, are:

• jruby-puppet.max-active-instances: the number of JRuby instances to put into the pool. This can
usually be set to 1 for dev purposes, unless you're working on something that involves concurrency.

• jruby-puppet.splay-instance-flush: Do not attempt to splay JRuby flushing, set when testing if
using multiple JRuby instances and you need to control when they are flushed from the pool

• jruby-puppet.master-conf-dir: the puppet primary server confdir (where puppet.conf, modules,
manifests, etc. should be located).

• jruby-puppet.master-code-dir: the puppet primary server codedir
• jruby-puppet.master-var-dir: the puppet primary server vardir
• jruby-puppet.master-run-dir: the puppet primary server rundir
• jruby-puppet.master-log-dir: the puppet primary server logdir

Step 4a: Run the server from the clojure REPL

The preferred way of running the server for development purposes is to run it from inside the clojure REPL. The git
repo includes some files in the /dev directory that are intended to make this process easier.

When running a clojure REPL via the lein repl command-line command, lein will load the dev/dev-
tools.clj namespace by default.

Running the server inside of the clojure REPL allows you to make changes to the source code and reload the server
without having to restart the entire JVM. It can be much faster than running from the command line, when you are
doing iterative development. We are also starting to build up a library of utility functions that can be used to inspect
and modify the state of the running server; see dev/dev-tools.clj for more info.

(NOTE: many of the developers of this project are using a more full-featured IDE called Cursive Clojure, built on
the IntelliJ IDEA platform, for our daily development. It contains an integrated REPL that can be used in place of the
lein repl command-line command, and works great with all of the functions described in this document.)

To start the server from the REPL, run the following:

$ lein repl
nREPL server started on port 47631 on host 127.0.0.1
dev-tools=> (go)
dev-tools=> (help)

© 2024 Puppet, Inc., a Perforce company

https://cursiveclojure.com/

Puppet | The Puppet platform | 271

Then, if you make changes to the source code, all you need to do in order to restart the server with the latest changes
is:

dev-tools=> (reset)

Restarting the server this way should be significantly faster than restarting the entire JVM process.

You can also run the utility functions to inspect the state of the server, e.g.:

dev-tools=> (print-puppet-environment-states)

Have a look at dev-tools.clj if you're interested in seeing what other utility functions are available.

Step 4b: Run the server from the command line

If you prefer not to run the server interactively in the REPL, you can launch it as a normal process. To start the Puppet
Server when running from source, simply run the following:

$ lein run -c /path/to/puppetserver.conf

Step 4c: Development environment gotchas
Missing git submodules

If you get an error like the following:

Execution error (LoadError) at org.jruby.RubyKernel/require
(org/jruby/RubyKernel.java:970).
(LoadError) no such file to load -- puppet

Then you've probably forgotten to fetch the git submodules.

Failing tests

If you change the :webserver :ssl-port config option from the default value of 8140, tests will fail with
errors like the following:

lein test :only puppetlabs.general-puppet.general-puppet-int-test/test-
external-command-execution

ERROR in (test-external-command-execution) (SocketChannelImpl.java:-2)
Uncaught exception, not in assertion.
expected: nil
2019-02-06 14:58:50,541 WARN [async-dispatch-18] [o.e.j.s.h.ContextHandler]
 Empty contextPath
 actual: java.net.ConnectException: Connection refused
 at sun.nio.ch.SocketChannelImpl.checkConnect (SocketChannelImpl.java:-2)
 sun.nio.ch.SocketChannelImpl.finishConnect (SocketChannelImpl.java:717)
 org.apache.http.impl.nio.reactor.DefaultConnectingIOReactor.processEvent
 (DefaultConnectingIOReactor.java:171)

 org.apache.http.impl.nio.reactor.DefaultConnectingIOReactor.processEvents
 (DefaultConnectingIOReactor.java:145)
 org.apache.http.impl.nio.reactor.AbstractMultiworkerIOReactor.execute
 (AbstractMultiworkerIOReactor.java:348)

 org.apache.http.impl.nio.conn.PoolingNHttpClientConnectionManager.execute
 (PoolingNHttpClientConnectionManager.java:192)
 org.apache.http.impl.nio.client.CloseableHttpAsyncClientBase$1.run
 (CloseableHttpAsyncClientBase.java:64)
 java.lang.Thread.run (Thread.java:844)

Changing the ssl-port variable back to 8140 makes the tests run properly.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 272

Running the Agent

Use a command like the one below to run an agent against your running puppetserver:

 puppet agent --confdir ~/.puppetlabs/etc/puppet \
 --debug -t

Note that a system installed Puppet Agent is ok for use with source-based PuppetDB and Puppet Server. The --
confdir above specifies the same confdir that Puppet Server is using. Because the Puppet Agent and Puppet Server
instances are both using the same confdir, they're both using the same certificates as well. This alleviates the need to
sign certificates as a separate step.

Running the Agent inside a Docker container

You can easily run a Puppet Agent inside a Docker container, either by using the host network profile or by
accessing the Puppetserver service using the Docker host IP:

docker run -ti \
 --name agent1 \
 puppet/puppet-agent-ubuntu \
 agent -t --server 172.17.0.1

docker run -ti \
 --name agent2 \
 --network host \
 --add-host puppet:127.0.0.1 \
 puppet/puppet-agent-ubuntu

To start another Puppet Agent run in a previous container you can use the docker start command:

docker start -a agent1

Running tests

• lein test to run the clojure test suite
• rake spec to run the jruby test suite

The Clojure test suite can consume a lot of transient memory. Using a larger JVM heap size when running tests can
significantly improve test run time. The default heap size is somewhat conservative: 1 GB for the minimum heap
(much lower than that as a maximum can lead to Java OutOfMemory errors during the test run) and 2 GB for the
maximum heap. While the heap size can be configured via the -Xms and -Xmx arguments for the :jvm-opts
defproject key within the project.clj file, it can also be customized for an individual user environment via
either of the following methods:

1. An environment variable named PUPPETSERVER_HEAP_SIZE. For example, to use a heap size of 6 GiB for a
lein test run, you could run the following:

$ PUPPETSERVER_HEAP_SIZE=6G lein test
2. A lein profiles.clj setting in the :user profile under the :puppetserver-heap-size key. For

example, to use a heap size of 6 GiB, you could add the following key to your ~/.lein/profiles.clj file:

{:user {:puppetserver-heap-size "6G"
 ...}}

With the :puppetserver-heap-size key defined in the profiles.clj file, any subsequent lein test
run would utilize the associated value for the key. If both the environment variable and the profiles.clj key are
defined, the value from the environment variable takes precedence. When either of these settings is defined, the value
is used as both the minimum and maximum JVM heap size.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 273

From anecdotal testing from the puppetserver server branch as of 10/26/2016, it appeared that at least a heap size of 5
GB would provide the best performance benefit for full runs of the Clojure unit test suite. This value may change over
time depending upon how the tests evolve.

Installing Ruby Gems for Development

The gems that are vendored with the puppetserver OS packages will be automatically installed into your dev
environment by the ./dev-setup script. If you wish to install additional gems, please see the Using Ruby gems on
page 241 document for detailed information.

Debugging

For more information about debugging both Clojure and JRuby code, please see Developer debugging on page 267
documentation.

Running PuppetDB

To run a source PuppetDB with Puppet Server, Puppet Server needs standard PuppetDB configuration and how to
find the PuppetDB terminus. First copy the dev/puppetserver.conf file to another directory. In your copy of
the config, append a new entry to the ruby-load-path list: <PDB source path>/puppet/lib. This tells
PuppetServer to load the PuppetDB terminus from the specified directory.

From here, the instructions are similar to installing PuppetDB manually via packages. The PuppetServer instance
needs configuration for connecting to PuppetDB. Instructions on this configuration are below, but the official docs for
this can be found here.

Update ~/.puppetlabs/etc/puppet/puppet.conf to include:

[server]
storeconfigs = true
storeconfigs_backend = puppetdb
reports = store,puppetdb

Create a new puppetdb config file ~/.puppetlabs/etc/puppet/puppetdb.conf that contains

[main]
server_urls = https://<SERVERHOST>:8081

Then create a new routes file at ~/.puppetlabs/etc/puppet/routes.yaml that contains

server:
 facts:
 terminus: puppetdb
 cache: yaml

Assuming you have a PuppetDB instance up and running, start your Puppet Server instance with the new
puppetserver.conf file that you changed:

lein run -c ~/<YOUR CONFIG DIR>/puppetserver.conf

Depending on your PuppetDB configuration, you might need to change some SSL config. PuppetDB requires that the
same CA that signs it's certificate, also has signed Puppet Server's certificate. The easiest way to do this is to point
PuppetDB at the same configuration directory that Puppet Server and Puppet Agent are pointing to. Typically this
setting is specified in the jetty.ini file in the PuppetDB conf.d directory. The update would look like:

[jetty]

#...
ssl-cert = <home dir>/.puppetlabs/etc/puppet/ssl/certs/<SERVERHOST>.pem
ssl-key = <home dir>/.puppetlabs/etc/puppet/ssl/private_keys/
<SERVERHOST>.pem

© 2024 Puppet, Inc., a Perforce company

https://docs.puppet.com/puppetdb/4.3/connect_puppet_master.html

Puppet | The Puppet platform | 274

ssl-ca-cert = <home dir>/.puppetlabs/etc/puppet/ssl/certs/ca.pem

After the SSL config is in place, start (or restart) PuppetDB:

lein run services -c <path to PDB config>/conf.d

Then run the Puppet Agent and you should see activity in PuppetDB and Puppet Server.

Tracing code events

The JRuby runtime supports the Ruby set_trace_func Kernel method for tracing code events, e.g., lines of code
being executed and calls to C-language routines or Ruby methods. This can likewise be used in Puppet Server for
tracing. See the Ruby documentation for more information.

In order to enable a more verbose level of tracing, e.g., to capture lower-level calls into C code, the
jruby.debug.fullTrace Java property must be set to "true". If you are running Puppet Server from source, this
can be done by adding the option to the project.clj file:

:jvm-opts ["-Djruby.debug.fullTrace=true"]

If you are running Puppet Server from a package, this can be done by adding the option to the puppetserver file
in /etc/sysconfig or /etc/default, depending upon your OS distribution:

JAVA_ARGS="-Xms2g -Xmx2g -Djruby.debug.fullTrace=true"

A call to the set_trace_func function can be done in one of the Ruby files in the Puppet Server code. For the
trace to be in effect for the full execution of Ruby code, one common place to put this call would be at the top of the
../src/ruby/puppetserver-lib/puppet/server/master.rb file, the Puppet Server server class. A
basic implementation might look like this:

set_trace_func proc { |event, file, line, id, binding, classname|
 printf "%8s %s:%-2d %10s %8s\n", event, file, line, id, classname
}

Note that printf will write each trace line to stdout. If you are running Puppet Server from a package install, stdout
should be routed to the /var/log/puppetserver-daemon.log file.

Lines of output from set_trace_func look like the following:

 c-call /usr/share/puppetserver/puppet-server-release.jar!/META-INF/
jruby.home/lib/ruby/shared/jopenssl19/openssl/ssl-internal.rb:30 initialize
 OpenSSL::X509::Store

You could use this technique to locate any references made to specific class names from code and the active stack at
the point of each reference. For example, to locate callers of any OpenSSL classes, you could add the following to
the set_trace_func call:

set_trace_func proc { |event, file, line, id, binding, classname|
 if classname.to_s =~ /OpenSSL/
 printf "%8s %s:%-2d %10s %8s\n", event, file, line, id, classname
 puts caller
 end
}

Puppet Server HTTP API

• Puppet Server HTTP API overview on page 275
• PSON on page 277

© 2024 Puppet, Inc., a Perforce company

http://ruby-doc.org/core-1.9.3/Kernel.html#method-i-set_trace_func

Puppet | The Puppet platform | 275

• Schemas (JSON) on page 309
These JSON files contain schemas for the various HTTP API objects.

Puppet Server HTTP API overview

Puppet Server provides several services via HTTP API, and the Puppet agent application uses those services to
resolve a node's credentials, retrieve a configuration catalog, retrieve file data, and submit reports.

Many of these endpoints are the same as the Puppet Server HTTP API on page 274.

V1/V2 HTTP APIs (removed)

The V1 and V2 APIs were removed in Puppet 4.0.0. The routes that were previously under / or /v2.0 can now be
found under the /puppet/v3 API or /puppet-ca/v1 API.

Starting with Puppet Server 2.1, Server provides both the current and previous API endpoints, and can serve nodes
running Puppet agent 3.x and 4.x. However, Rack servers, WEBrick servers, and Puppet Server 2.0 cannot serve
nodes running Puppet 3.x.

Puppet and Puppet CA APIs

Beginning with Puppet 4, Puppet's HTTP API was split into two separately versioned APIs:

• An API for configuration-related services
• An API for the certificate authority (CA).

All configuration endpoints are prefixed with /puppet, while all CA endpoints are prefixed with /puppet-ca.
All endpoints are explicitly versioned: the prefix is always immediately followed by a string like /v3 (a directory
separator, the letter v, and the version number of the API).

Authorization

Authorization for /puppet and /puppet-ca endpoints is controlled with auth.conf on page 148, which differs
from Puppet's deprecated auth.conf system.

Puppet V3 HTTP API

The Puppet agent application uses several network services to manage systems. These services are all grouped under
the /puppet API. Other tools can access these services and use the Puppet primary server's data for other purposes.

The V3 API contains endpoints of two types: those that are based on dispatching to Puppet's internal "indirector"
framework, and those that are not (namely the environment endpoints).

Every HTTP endpoint that dispatches to the indirector follows the form /puppet/v3/:indirection/:key?
environment=:environment, where:

• :environment is the name of the environment that should be in effect for the request. Not all endpoints need
an environment, but the query parameter must always be specified.

• :indirection is the indirection to which the request is dispatched.
• :key is the "key" portion of the indirection call.

Using this API requires significant understanding of how Puppet's internal services are structured, but the following
documents specify what is available and how to interact with it.

Configuration management services

The Puppet agent application directly uses these servcies to manage the configuration of a node.

These endpoints accept payload formats formatted as JSON by default (MIME type of application/json),
except for File Content and File Bucket File, which always use application/octet-stream.

Note: Legacy PSON (MIME type of text/pson) is still an available format, but should be used only as
a fallback for binary content.

• Facts on page 285
• Catalog on page 278
• Node on page 284

© 2024 Puppet, Inc., a Perforce company

9a1f7a1a0e199482017e9482bfd550ab57c3f8ec.md#puppet-v3-http-api
9a1f7a1a0e199482017e9482bfd550ab57c3f8ec.md#ca-v1-http-api
9a1f7a1a0e199482017e9482bfd550ab57c3f8ec.md#environment-endpoints

Puppet | The Puppet platform | 276

• File Bucket File on page 286
• File Content on page 287
• File Metadata on page 288
• Report on page 295

Informational services

These services are not directly used by Puppet agent, but can be used by other tools.

• Status on page 297

Note: The Puppet Server status API provides more detail and features than Puppet's.

Environment endpoints

The /puppet/v3/environments and /puppet/v3/environment/:environment endpoints use a
different format than the configuration management and informational services endpoints.

These endpoints accept only payloads formatted as JSON, and respond with JSON (MIME type of application/
json).

• Environments on page 297
• Environment catalog

Puppet Server-specific endpoints

Puppet Server adds several unique endpoints of its own. They include these additional /puppet/v3/ endpoints:

• Environment classes on page 316, at /puppet/v3/environment_classes
• Environment modules on page 321, at /puppet/v3/environment_modules
• Static file content on page 324, at /puppet/v3/static_file_content

It also includes these unique APIs, with endpoints containing other URL prefixes:

• Services endpoint on page 313, at /status/v1/services
• v1 metrics on page 309, at /metrics/v1/mbeans
• v2 (Jolokia) metrics on page 311, at /metrics/v2/
• Admin API, at /puppet-admin-api/v1/:

• Environment cache on page 326, at /puppet-admin-api/v1/environment-cache
• JRuby pool on page 326, at /puppet-admin-api/v1/jruby-pool

Error responses

The environments endpoint responds to error conditions in a uniform manner and uses standard HTTP response
codes to signify those errors.

Request problem HTTP API error response code

Client submits malformed request 400 Bad Request

Unauthorized client 403 Not Authorized

Client uses an HTTP method not permitted for the
endpoint

405 Method Not Allowed

Client requests a response in a format other than JSON 406 Unacceptable

Server encounters an unexpected error while handling a
request

500 Server Error

Server can't find an endpoint handler for an HTTP
request

404 Not Found

Except for HEAD requests, error responses contain a body of a uniform JSON object with the following properties:

© 2024 Puppet, Inc., a Perforce company

9a1f7a1a0e199482017e9482bfd550ab57c3f8ec.md#puppet-server-specific-endpoints

Puppet | The Puppet platform | 277

• message: (String) A human-readable message explaining the error.
• issue_kind: (String) A unique label to identify the error class.

Puppet provides a JSON schema for error objects. Endpoints implemented by Puppet Server have a different error
schema:

{
 "msg": "",
 "kind": ""
}

CA V1 HTTP API

The certificate authority (CA) API contains all of the endpoints supporting Puppet's public key infrastructure (PKI)
system.

The CA V1 endpoints share the same basic format as the Puppet V3 API, because they are based on the interface of
Puppet's indirector-based CA. However, Puppet Server's CA is implemented in Clojure. Both have a different prefix
and version than the V3 API.

These endpoints follow the form /puppet-ca/v1/:indirection/:key?environment=:environment,
where:

• :environment is an arbitrary placeholder word, required for historical reasons. No CA endpoints actually use
an environment, but the query parameter must always be specified.

• :indirection is the indirection to which the request is dispatched.
• :key is the "key" portion of the indirection call.

As with the Puppet V3 API, using this API requires a significant amount of understanding of how Puppet's internal
services are structured. The following documents specify what is available and how to interact with it.

SSL certificate-related services

These endpoints accept only plain-text payload formats. Historically, Puppet has used the MIME type s to mean
text/plain. In Puppet 5, it always uses text/plain, but continues to accept s as an equivalent.

• Certificate on page 299
• Certificate Request on page 301
• Certificate Status on page 303
• Certificate Revocation List on page 306

Serialization formats

Puppet sends messages using several serialization formats. Not all REST services support all of the formats.

• JSON
• PSON on page 277

YAML was supported in earlier versions of Puppet, but is no longer for security reasons.

PSON

PSON is a variant of JSON that puppet uses for serializing data to transmit across the network or store on disk.
Whereas JSON requires that the serialized form is valid unicode (usually UTF-8), PSON is 8-bit ASCII, which allows
it to represent arbitrary byte sequences in strings.

Puppet uses the MIME types "pson" and "text/pson" to refer to PSON.

Differences from JSON

PSON does not differ from JSON in its representation of objects, arrays, numbers, booleans, and null values. PSON
does serialize strings differently from JSON.

© 2024 Puppet, Inc., a Perforce company

c28d29f452b10f627aa267acd500693165875881.json
https://tools.ietf.org/html/rfc7159
http://json.org

Puppet | The Puppet platform | 278

A PSON string is a sequence of 8-bit ASCII encoded data. It must start and end with " (ASCII 0x22) characters.
Between these characters it may contain any byte sequence. Some individual characters are represented by a sequence
of characters:

Byte	ASCII Character	Encoded Sequence	Encoded ASCII Sequence
0x22	"	0x5C, 0x22	\"
0x5c	\	0x5C, 0x5C	\\
0x08	Backspace	0x5C, 0x62	\b
0x09	Horizontal Tab	0x5C, 0x74	\t
0x0A	Line Feed	0x5C, 0x6E	\n
0x0C	Form Feed	0x5C, 0x66	\f
0x0D	Carriage Return	0x5C, 0x72	\r

In addition, any character between 0x00 and 0x1F, (except the ones listed above) must be encoded as a six byte
sequence of \u followed by four ASCII digits of the hex number of the desired character. For example the ASCII
Record Separator character (0x1E) is represented as \u001E (0x5C, 0x75, 0x30, 0x30, 0x31, 0x45).

Decoding PSON Using JSON Parsers

Many languages have JSON parsers already, which can often be used to parse PSON data. Although JSON requires
that it is encoded as unicode most parsers will produce usable output from PSON if they are instructed to interpret the
input as Latin-1 encoding.

In all these examples there is a file available called data.pson that contains the ruby structure { "data" =>
"\x07\x08\xC3\xC3" } encoded as PSON (the value is an invalid unicode sequence). In bytes the data is:

0x7b 0x22 0x64 0x61 0x74 0x61 0x22 0x3a 0x22 0x5c 0x75 0x30 0x30 0x30 0x37
 0x5c 0x62 0xc3 0xc3 0x22 0x7d

Python Example:

>>> import json
>>> json.load(open("data.pson"), "latin_1")
{u'data': u'\x07\x08\xc3\xc3'}

Clojure Example:

user> (parse-string (slurp "data.pson" :encoding "ISO-8859-1"))
{"data" "^G\bÃÃ"}

Puppet v3 API
Catalog

The catalog endpoint returns a catalog for the specified node name given the provided facts.

Find

Retrieve a catalog.

POST /puppet/v3/catalog/:nodename
GET /puppet/v3/catalog/:nodename?environment=:environment

Supported HTTP Methods

POST, GET

Supported Response Formats

application/json, text/pson

Notes

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 279

The POST and GET methods are functionally equivalent. Both provide the 3 parameters specified below: the POST
in the request body, the GET in the query string.

Puppet originally used GET; POST was added because some web servers have a maximum URI length of 1024 bytes
(which is easily exceeded with the facts parameter).

The examples below use the POST method.

Parameters

Four parameters should be provided to the POST or GET:

• environment: the environment name.
• facts_format: must be application/json or pson.
• facts: serialized JSON or PSON of the facts hash. Since facts can contain &, which is also the HTTP query

parameter delimiter, facts are doubly-escaped.
• transaction_uuid: a transaction uuid identifying the entire transaction (shows up in the report as well).

Two optional parameters are required for static catalogs:

• static_catalog: a boolean requesting a static catalog if available; should always be true.
• checksum_type: a dot-separated list of checksum types supported by the agent, for use in file resources of a

static catalog. The order signifies preference, highest first.

Optional parameters that may be provided to the POST or GET:

• configured_environment: the environment configured on the client. May be provided to notify an ENC
that the client requested a specific environment which might differ from what the client believes is its current
environment.

• job_id: which orchestration job triggered this catalog request.

Example Response
Catalog found

POST /puppet/v3/catalog/elmo.mydomain.com

environment=env&configured_environment=canary_env&facts_format=application
%2Fjson&facts=%257B%2522name%2522%253A%2522elmo.mydomain.com%2522%252C
%2522values%2522%253A%257B%2522architecture%2522%253A%2522x86_64%2522%257D
%257D&transaction_uuid=aff261a2-1a34-4647-8c20-ff662ec11c4c

HTTP 200 OK
Content-Type: application/json

{
 "tags": [
 "settings",
 "multi_param_class",
 "class"
],
 "name": "elmo.mydomain.com",
 "version": 1377473054,
 "code_id": null,
 "catalog_uuid": "827a74c8-cf98-44da-9ff7-18c5e4bee41e",
 "catalog_format": 1,
 "environment": "production",
 "resources": [
 {
 "type": "Stage",
 "title": "main",
 "tags": [
 "stage"
],
 "exported": false,

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/static_catalogs.html

Puppet | The Puppet platform | 280

 "parameters": {
 "name": "main"
 }
 },
 {
 "type": "Class",
 "title": "Settings",
 "tags": [
 "class",
 "settings"
],
 "exported": false
 },
 {
 "type": "Class",
 "title": "main",
 "tags": [
 "class"
],
 "exported": false,
 "parameters": {
 "name": "main"
 }
 },
 {
 "type": "Class",
 "title": "Multi_param_class",
 "tags": [
 "class",
 "multi_param_class"
],
 "line": 10,
 "exported": false,
 "parameters": {
 "one": "hello",
 "two": "world"
 }
 },
 {
 "type": "Notify",
 "title": "foo",
 "tags": [
 "notify",
 "foo",
 "class",
 "multi_param_class"
],
 "line": 4,
 "exported": false,
 "parameters": {
 "message": "One is hello, two is world"
 }
 }
],
 "edges": [
 {
 "source": "Stage[main]",
 "target": "Class[Settings]"
 },
 {
 "source": "Stage[main]",
 "target": "Class[main]"
 },
 {

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 281

 "source": "Stage[main]",
 "target": "Class[Multi_param_class]"
 },
 {
 "source": "Class[Multi_param_class]",
 "target": "Notify[foo]"
 }
],
 "classes": [
 "settings",
 "multi_param_class"
]
}

Static Catalog found

POST /puppet/v3/catalog/elmo.mydomain.com

environment=env&configured_environment=canary_env&facts_format=application
%2Fjson&facts=%7B%22name%22%3A%22elmo.mydomain.com
%22%2C%22values%22%3A%7B%22architecture%22%3A
%22x86_64%22%7D&transaction_uuid=aff261a2-1a34-4647-8c20-
ff662ec11c4c&static_catalog=true&checksum_type=sha256.md5

HTTP 200 OK
Content-Type: application/json

{
 "tags": [
 "settings",
 "multi_param_class",
 "class"
],
 "name": "elmo.mydomain.com",
 "version": 1377473054,
 "code_id": "arbitrary_code_id_string",
 "catalog_uuid": "827a74c8-cf98-44da-9ff7-18c5e4bee41e",
 "catalog_format": 1,
 "environment": "production",
 "resources": [
 {
 "type": "Stage",
 "title": "main",
 "tags": [
 "stage"
],
 "exported": false,
 "parameters": {
 "name": "main"
 }
 },
 {
 "type": "Class",
 "title": "Settings",
 "tags": [
 "class",
 "settings"
],
 "exported": false
 },
 {
 "type": "Class",
 "title": "main",

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 282

 "tags": [
 "class"
],
 "exported": false,
 "parameters": {
 "name": "main"
 }
 },
 {
 "type": "Class",
 "title": "Multi_param_class",
 "tags": [
 "class",
 "multi_param_class"
],
 "line": 10,
 "exported": false,
 "parameters": {
 "one": "hello",
 "two": "world"
 }
 },
 {
 "type": "Notify",
 "title": "foo",
 "tags": [
 "notify",
 "foo",
 "class",
 "multi_param_class"
],
 "line": 4,
 "exported": false,
 "parameters": {
 "message": "One is hello, two is world"
 }
 },
 {
 "type": "File",
 "title": "/tmp/foo",
 "tags": [
 "file",
 "class"
],
 "line": 12,
 "exported": false,
 "parameters": {
 "ensure": "file",
 "source": "puppet:///modules/a_module/foo"
 }
 },
 {
 "type": "File",
 "title": "/tmp/bar",
 "tags": [
 "file",
 "class"
],
 "line": 16,
 "exported": false,
 "parameters": {
 "ensure": "present",
 "source": "puppet:///modules/a_module/bar",
 "recurse", "true"

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 283

 }
],
 "edges": [
 {
 "source": "Stage[main]",
 "target": "Class[Settings]"
 },
 {
 "source": "Stage[main]",
 "target": "Class[main]"
 },
 {
 "source": "Stage[main]",
 "target": "Class[Multi_param_class]"
 },
 {
 "source": "Class[Multi_param_class]",
 "target": "Notify[foo]"
 },
 {
 "source": "Class[Main]",
 "target": "File[/tmp/foo]"
 }
],
 "classes": [
 "settings",
 "multi_param_class"
]
 "metadata": {
 "/tmp/foo": {
 "checksum": {
 "type": "sha256",
 "value":
 "{sha256}5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2e846f6be03"
 },
 "content_uri": "puppet:///modules/a_module/files/foo",
 "destination": null,
 "group": 20,
 "links": "manage",
 "mode": 420,
 "owner": 501,
 "path": "/etc/puppetlabs/code/environments/production/modules/
a_module/files/foo.txt",
 "relative_path": null,
 "source": "puppet:///modules/a_module/foo",
 "type": "file"
 }
 },
 "recursive_metadata": {
 "/tmp/bar": {
 "puppet:///modules/a_module/bar": [
 {
 "checksum": {
 "type": "ctime",
 "value": "{ctime}2016-02-19 17:38:36 -0800"
 },
 "content_uri": "puppet:///modules/a_module/files/bar",
 "destination": null,
 "group": 20,
 "links": "manage",
 "mode": 420,
 "owner": 501,
 "path": "/etc/puppetlabs/code/environments/production/modules/
a_module/files/bar",

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 284

 "relative_path": ".",
 "source": null,
 "type": "directory"
 },
 {
 "checksum": {
 "type": "sha256",
 "value":
 "{sha256}962dbd7362c34a20baac8afd13fba734d3d51cc2944477d96ee05a730e5edcb7"
 },
 "content_uri": "puppet:///modules/a_module/files/bar/baz",
 "destination": null,
 "group": 20,
 "links": "manage",
 "mode": 420,
 "owner": 501,
 "path": "/etc/puppetlabs/code/environments/production/modules/
a_module/files/bar",
 "relative_path": "baz",
 "source": null,
 "type": "file"
 }
]
 }
 }
}

Schema

In the POST request body (or the GET query), the facts parameter should conform to the facts schema.

A catalog response body conforms to the catalog schema.

Node

The node endpoint is used by the puppet agent to get basic information about a node. The returned information
includes the node name and environment, and optionally any classes set by an External Node Classifier and a hash
of parameters which may include the node's facts. The returned node may have a different environment from the one
given in the request if Puppet is configured with an ENC.

Find

Retrieve data for a node

GET /puppet/v3/node/:certname?
environment=:environment&transaction_uuid=:transaction_uuid&configured_environment=:environment

Supported HTTP Methods

GET

Supported Response Formats

application/json, text/pson

Parameters

One parameter should be provided to the GET:

• transaction_uuid: a transaction uuid identifying the entire transaction (shows up in the report as well)

An optional parameter can be provided to the GET to notify a node classifier that the client requested a specific
environment, which might differ from what the client believes is its current environment:

• configured_environment: the environment configured on the client

© 2024 Puppet, Inc., a Perforce company

eafc36ddfd798e588ff7b0df7af8347ef9c071d1.json
4518e793477f8cecae7f58df8dd69b8eb31f6eaf.json

Puppet | The Puppet platform | 285

Examples

> GET /puppet/v3/node/mycertname?
environment=production&transaction_uuid=aff261a2-1a34-4647-8c20-
ff662ec11c4c&configured_environment=production HTTP/1.1
> Accept: application/json, text/pson

< HTTP/1.1 200 OK
< Content-Type: application/json
< Content-Length: 4630

{
 "name":"thinky.corp.puppetlabs.net",
 "parameters":{
 "architecture":"amd64",
 "kernel":"Linux",
 "blockdevices":"sda,sr0",
 "clientversion":"3.3.1",
 "clientnoop":"false",
 "environment":"production",
 ...
 },
 "environment":"production"
}

Schema

A node response body conforms to the node schema.

Facts

The facts endpoint allows setting the facts for the specified node name.

Save

Store facts for a node. The request body should contain JSON-formatted facts.

PUT /puppet/v3/facts/:nodename?environment=:environment

Supported HTTP Methods

PUT

Supported Format(s)

application/json, text/pson

Parameters

None

Example

• Note: list of facts was shortened for readability.
• Note: JSON was formatted for readability.

 PUT /puppet/v3/facts/elmo.mydomain.com?environment=:environment

 Content-Type: application/json

 {
 "name": "elmo.mydomain.com",
 "values": {
 "architecture": "x86_64",
 "kernel": "Darwin",
 "domain": "local",

© 2024 Puppet, Inc., a Perforce company

b64f9bee691c0e39cbc1c97277e8652de99e9565.json

Puppet | The Puppet platform | 286

 "macaddress": "70:11:24:8c:33:a9",
 "osfamily": "Darwin",
 "operatingsystem": "Darwin",
 "facterversion": "1.7.2",
 "fqdn": "elmo.mydomain.com",
 },
 "timestamp": "2013-09-09 15:49:27 -0700",
 "expiration": "2013-09-09 16:19:27 -0700"
 }

 HTTP/1.1 200 OK
 Content-Type: application/json

Schema

The representation of facts contained in a PUT body, should adhere to the facts schema.

File Bucket File

The file_bucket_file endpoint manages the contents of files in the file bucket. All access to files is managed
with the md5 checksum of the file contents, represented as :md5. Where used, :filename means the full absolute
path of the file on the client system. This is usually optional and used as an error check to make sure correct file is
retrieved. The environment is required in all requests but ignored, as the file bucket does not distinguish between
environments.

Find

Retrieve the contents of a file.

GET /puppet/v3/file_bucket_file/:md5?environment=:environment
GET /puppet/v3/file_bucket_file/:md5/:original_path?environment=:environment

This will return the contents of the file if it's present. If :original_path is provided then the contents will only
be sent if the file was uploaded with the same path at some point.

Head

Check if a file is present in the filebucket

HEAD /puppet/v3/file_bucket_file/:md5?environment=:environment
HEAD /puppet/v3/file_bucket_file/:md5/:original_path?
environment=:environment

This behaves identically to find, only returning headers.

Save

Save a file to the filebucket

PUT /puppet/v3/file_bucket_file/:md5?environment=:environment
PUT /puppet/v3/file_bucket_file/:md5/:original_path?environment=:environment

The body should contain the file contents. This saves the file using the md5 sum of the file contents. If
:original_path is provided, it adds the path to a list for the given file. If the md5 sum in the request is incorrect,
the file will be instead saved under the correct checksum.

Supported HTTP Methods

GET, HEAD, PUT

Supported Response Formats

application/octet-stream

Parameters

© 2024 Puppet, Inc., a Perforce company

eafc36ddfd798e588ff7b0df7af8347ef9c071d1.json

Puppet | The Puppet platform | 287

None

Examples
Saving a file

> PUT /puppet/v3/file_bucket_file/md5/eb61eead90e3b899c6bcbe27ac581660//
home/user/myfile.txt?environment=production HTTP/1.1

> Content-Type: application/octet-stream
> Content-Length: 24

> This is the file content

< HTTP/1.1 200 OK

Retrieving a file

> GET /puppet/v3/file_bucket_file/md5/4949e56d376cc80ce5387e8e89a75396//
home/user/myfile.txt?environment=production HTTP/1.1
> Accept: application/octet-stream

< HTTP/1.1 200 OK
< Content-Length: 24

< This is the file content

Wrong file name

> GET /puppet/v3/file_bucket_file/md5/4949e56d376cc80ce5387e8e89a75396//
home/user/wrong_name?environment=production HTTP/1.1
> Accept: application/octet-stream

< HTTP/1.1 404 Not Found
<
< Not Found: Could not find file_bucket_file
 md5/4949e56d376cc80ce5387e8e89a75396/home/user/wrong_name

Schema

A file_bucket_file response body is not structured data according to any standard scheme such as json/yaml,
so no schema is applicable.

File Content

The file_content endpoint returns the contents of the specified file.

Find

Get a file.

GET /puppet/v3/file_content/:mount_point/:name

The endpoint path includes a :mount_point which can be one of the following types:

• Custom file serving mounts as specified in fileserver.conf --- see the docs on configuring mount points.
• modules/<MODULE> --- a semi-magical mount point which allows access to the files subdirectory of

<MODULE> --- see the docs on file serving.
• plugins --- a highly magical mount point which merges the lib directory of every module together. Used for

syncing plugins; not intended for general consumption. Per-module sub-paths can not be specified.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/file_serving.html
https://puppet.com/docs/puppet/latest/file_serving.html

Puppet | The Puppet platform | 288

• pluginfacts --- a highly magical mount point which merges the facts.d directory of every module
together. Used for syncing external facts; not intended for general consumption. Per-module sub-paths can not be
specified.

• scripts/<MODULE> --- a mount point which allows access to files in the scripts subdirectory of
<MODULE> --- see the docs on file serving.

• tasks/<MODULE> --- a mount point which allows access to files in the tasks subdirectory of <MODULE> ---
see the docs on file serving.

:name is the path to the file within the :mount_point that is requested.

Supported HTTP Methods

GET

Supported Response Formats

application/octet-stream

Parameters

None

Notes
Responses
File found

GET /puppet/v3/file_content/modules/example/my_file?environment=env
Accept: application/octet-stream

HTTP/1.1 200 OK
Content-Type: application/octet-stream
Content-Length: 16

this is my file

File not found

GET /puppet/v3/file_content/modules/example/not_found?environment=env
Accept: application/octet-stream

HTTP/1.1 404 Not Found
Content-Type: text/plain

Not Found: Could not find file_content modules/example/not_found

No file name given

GET /puppet/v3/file_content?environment=env

HTTP/1.1 400 Bad Request
Content-Type: text/plain

No request key specified in /puppet/v3/file_content/

Schema

A file_content response body is not structured data according to any standard scheme such as json/pson/yaml,
so no schema is applicable.

File Metadata

The file_metadata endpoint returns select metadata for a single file or many files. There are find and search
variants of the endpoint; the search variant has a trailing 's' so is actually file_metadatas.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/file_serving.html
https://puppet.com/docs/puppet/latest/file_serving.html

Puppet | The Puppet platform | 289

Although the term 'file' is used generically in the endpoint name and documentation, each returned item can be one of
the following three types:

• File
• Directory
• Symbolic link

The endpoint path includes a :mount which can be one of the following types:

• Custom file serving mounts as specified in fileserver.conf --- see the docs on configuring mount points.
• modules/<MODULE> --- a semi-magical mount point which allows access to the files subdirectory of

<MODULE> --- see the docs on file serving.
• plugins --- a highly magical mount point which merges the lib directory of every module together. Used for

syncing plugins; not intended for general consumption. Per-module sub-paths can not be specified.
• pluginfacts --- a highly magical mount point which merges the facts.d directory of every module

together. Used for syncing external facts; not intended for general consumption. Per-module sub-paths can not be
specified.

• scripts/<MODULE> --- a mount point which allows access to files in the scripts subdirectory of
<MODULE> --- see the docs on file serving.

• tasks/<MODULE> --- a mount point which allows access to files in the tasks subdirectory of <MODULE> ---
see the docs on file serving.

Note: PSON responses in the examples below are pretty-printed for readability.

Find

Get file metadata for a single file

GET /puppet/v3/file_metadata/:mount/path/to/file?environment=:environment

Supported HTTP Methods

GET

Supported Response Formats

application/json, text/pson

Parameters

Optional parameters to GET:

• links -- either manage (default) or follow. See examples in Search below.
• checksum_type -- the checksum type to calculate the checksum value for the result metadata; one of md5

(default), md5lite, sha256, sha256lite, mtime, ctime, and none.
• source_permissions -- whether (and how) Puppet should copy owner, group, and mode permissions; one of

• ignore (the default) will never apply the owner, group, or mode from the source when managing a file.
When creating new files without explicit permissions, the permissions they receive will depend on platform-
specific behavior. On POSIX, Puppet will use the umask of the user it is running as. On Windows, Puppet will
use the default DACL associated with the user it is running as.

• use will cause Puppet to apply the owner, group, and mode from the source to any files it is managing.
• use_when_creating will only apply the owner, group, and mode from the source when creating a file;

existing files will not have their permissions overwritten.

Example Response
File metadata found for a file

GET /puppet/v3/file_metadata/modules/example/just_a_file.txt?environment=env

HTTP/1.1 200 OK
Content-Type: text/pson

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/file_serving.html
https://puppet.com/docs/puppet/latest/file_serving.html
https://puppet.com/docs/puppet/latest/file_serving.html
https://puppet.com/docs/puppet/latest/file_serving.html

Puppet | The Puppet platform | 290

{
 "checksum": {
 "type": "md5",
 "value": "{md5}d0a10f45491acc8743bc5a82b228f89e"
 },
 "destination": null,
 "group": 20,
 "links": "manage",
 "mode": 420,
 "owner": 501,
 "path": "/etc/puppetlabs/code/modules/example/files/just_a_file.txt",
 "relative_path": null,
 "type": "file"
}

File metadata found for a directory

GET /puppet/v3/file_metadata/modules/example/subdirectory?environment=env

HTTP/1.1 200 OK
Content-Type: text/pson

{
 "checksum": {
 "type": "ctime",
 "value": "{ctime}2013-10-01 13:16:10 -0700"
 },
 "destination": null,
 "group": 20,
 "links": "manage",
 "mode": 493,
 "owner": 501,
 "path": "/etc/puppetlabs/code/modules/example/files/subdirectory",
 "relative_path": null,
 "type": "directory"
}

File metadata found for a link ignoring source permissions

GET /puppet/v3/file_metadata/modules/example/link_to_file.txt?
environment=env&source_permissions=ignore

HTTP/1.1 200 OK
Content-Type: text/pson

{
 "checksum": {
 "type": "md5",
 "value": "{md5}d0a10f45491acc8743bc5a82b228f89e"
 },
 "destination": "/etc/puppetlabs/code/modules/example/files/
just_a_file.txt",
 "group": 20,
 "links": "manage",
 "mode": 420,
 "owner": 501,
 "path": "/etc/puppetlabs/code/modules/example/files/link_to_file.txt",
 "relative_path": null,
 "type": "link"
}

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 291

File not found

GET /puppet/v3/file_metadata/modules/example/does_not_exist?environment=env

HTTP/1.1 404 Not Found

Not Found: Could not find file_metadata modules/example/does_not_exist

Search

Get a list of metadata for multiple files

GET /puppet/v3/file_metadatas/foo.txt?environment=env

Supported HTTP Methods

GET

Supported Response Formats

application/json, text/pson

Parameters

• recurse -- should always be set to yes; unfortunately the default is no, which causes a search to behave like a
find operation.

• ignore -- file or directory regex to ignore; can be repeated.
• links -- either manage (default) or follow. See examples below.
• checksum_type -- the checksum type to calculate the checksum value for the result metadata; one of md5

(default), md5lite, sha256, sha256lite, mtime, ctime, and none.
• source_permissions -- whether (and how) Puppet should copy owner, group, and mode permissions; one of

• ignore (the default) will never apply the owner, group, or mode from the source when managing a file.
When creating new files without explicit permissions, the permissions they receive will depend on platform-
specific behavior. On POSIX, Puppet will use the umask of the user it is running as. On Windows, Puppet will
use the default DACL associated with the user it is running as.

• use will cause Puppet to apply the owner, group, and mode from the source to any files it is managing.
• use_when_creating will only apply the owner, group, and mode from the source when creating a file;

existing files will not have their permissions overwritten.

Example Response
Basic search

GET /puppet/v3/file_metadatas/modules/example?environment=env&recurse=yes

HTTP 200 OK
Content-Type: text/pson

[
 {
 "checksum": {
 "type": "ctime",
 "value": "{ctime}2013-10-01 13:15:59 -0700"
 },
 "destination": null,
 "group": 20,
 "links": "manage",
 "mode": 493,
 "owner": 501,
 "path": "/etc/puppetlabs/code/modules/example/files",
 "relative_path": ".",
 "type": "directory"

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 292

 },
 {
 "checksum": {
 "type": "md5",
 "value": "{md5}d0a10f45491acc8743bc5a82b228f89e"
 },
 "destination": null,
 "group": 20,
 "links": "manage",
 "mode": 420,
 "owner": 501,
 "path": "/etc/puppetlabs/code/modules/example/files",
 "relative_path": "just_a_file.txt",
 "type": "file"
 },
 {
 "checksum": {
 "type": "md5",
 "value": "{md5}d0a10f45491acc8743bc5a82b228f89e"
 },
 "destination": "/etc/puppetlabs/code/modules/example/files/
just_a_file.txt",
 "group": 20,
 "links": "manage",
 "mode": 493,
 "owner": 501,
 "path": "/etc/puppetlabs/code/modules/example/files",
 "relative_path": "link_to_file.txt",
 "type": "link"
 },
 {
 "checksum": {
 "type": "ctime",
 "value": "{ctime}2013-10-01 13:15:59 -0700"
 },
 "destination": null,
 "group": 20,
 "links": "manage",
 "mode": 493,
 "owner": 501,
 "path": "/etc/puppetlabs/code/modules/example/files",
 "relative_path": "subdirectory",
 "type": "directory"
 },
 {
 "checksum": {
 "type": "md5",
 "value": "{md5}d41d8cd98f00b204e9800998ecf8427e"
 },
 "destination": null,
 "group": 20,
 "links": "manage",
 "mode": 420,
 "owner": 501,
 "path": "/etc/puppetlabs/code/modules/example/files",
 "relative_path": "subdirectory/another_file.txt",
 "type": "file"
 }
]

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 293

Search ignoring 'sub*' and links = manage

GET /puppet/v3/file_metadatas/modules/example?
environment=env&recurse=true&ignore=sub*&links=manage

HTTP 200 OK
Content-Type: text/pson

[
 {
 "checksum": {
 "type": "ctime",
 "value": "{ctime}2013-10-01 13:15:59 -0700"
 },
 "destination": null,
 "group": 20,
 "links": "manage",
 "mode": 493,
 "owner": 501,
 "path": "/etc/puppetlabs/code/modules/example/files",
 "relative_path": ".",
 "type": "directory"
 },
 {
 "checksum": {
 "type": "md5",
 "value": "{md5}d0a10f45491acc8743bc5a82b228f89e"
 },
 "destination": null,
 "group": 20,
 "links": "manage",
 "mode": 420,
 "owner": 501,
 "path": "/etc/puppetlabs/code/modules/example/files",
 "relative_path": "just_a_file.txt",
 "type": "file"
 },
 {
 "checksum": {
 "type": "md5",
 "value": "{md5}d0a10f45491acc8743bc5a82b228f89e"
 },
 "destination": "/etc/puppetlabs/code/modules/example/files/
just_a_file.txt",
 "group": 20,
 "links": "manage",
 "mode": 493,
 "owner": 501,
 "path": "/etc/puppetlabs/code/modules/example/files",
 "relative_path": "link_to_file.txt",
 "type": "link"
 }
]

Search ignoring "sub*" and links = follow

This example is identical to the above example, except for the links parameter. The resulting PSON, then, is identical
to the above example, except for:

• the "links" field is set to "follow" rather than "manage" in all metadata objects

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 294

• in the "link_to_file.txt" metadata:

• for "manage" the "destination" field is the link destination; for "follow", it's null
• for "manage" the "type" field is "link"; for "follow" it's "file"
• for "manage" the "mode", "owner" and "group" fields are the link's values; for "follow" the destination's values

GET /puppet/v3/file_metadatas/modules/example?
environment=env&recurse=true&ignore=sub*&links=follow

HTTP 200 OK
Content-Type: text/pson

[
 {
 "checksum": {
 "type": "ctime",
 "value": "{ctime}2013-10-01 13:15:59 -0700"
 },
 "destination": null,
 "group": 20,
 "links": "follow",
 "mode": 493,
 "owner": 501,
 "path": "/etc/puppetlabs/code/modules/example/files",
 "relative_path": ".",
 "type": "directory"
 },
 {
 "checksum": {
 "type": "md5",
 "value": "{md5}d0a10f45491acc8743bc5a82b228f89e"
 },
 "destination": null,
 "group": 20,
 "links": "follow",
 "mode": 420,
 "owner": 501,
 "path": "/etc/puppetlabs/code/modules/example/files",
 "relative_path": "just_a_file.txt",
 "type": "file"
 },
 {
 "checksum": {
 "type": "md5",
 "value": "{md5}d0a10f45491acc8743bc5a82b228f89e"
 },
 "destination": null,
 "group": 20,
 "links": "follow",
 "mode": 420,
 "owner": 501,
 "path": "/etc/puppetlabs/code/modules/example/files",
 "relative_path": "link_to_file.txt",
 "type": "file"
 }
]

Schema

The file metadata response body conforms to the file_metadata schema.

© 2024 Puppet, Inc., a Perforce company

624bfb6dfcb268f98a5c6e102db1041ecd9ac117.json

Puppet | The Puppet platform | 295

Sample Module

The examples above use this (faux) module:

/etc/puppetlabs/code/modules/example/
 files/
 just_a_file.txt
 link_to_file.txt -> /etc/puppetlabs/code/modules/example/files/
just_a_file.txt
 subdirectory/
 another_file.txt

Report

This document describes the Puppet master's report endpoint and the schema for Report Format 6 in technical term.
Also see the documentation.

The report endpoint allows clients to send reports to the master via http or https. Once received by the master
they are processed by the report processors configured to be triggered when a report is received. As an example,
storing reports in PuppetDB is handled by one such report processor.

Save

The http(s) endpoint for sending reports to the master is:

PUT /puppet/v3/report/:nodename?environment=:environment

Supported HTTP Methods

PUT

Supported Format(s)

application/json, text/pson

Parameters

None

Content

The content of a report is typically generated by the Puppet Runtime and consists of a JSON serialization of
Puppet::Transaction::Report object which in turn contains a structure of objects with of the following
runtime types:

• Puppet::Util::Log

• Puppet::Util::Metric

• Puppet::Resource::Status

• Puppet::Transaction::Event

This JSON serialization is compliant with the endpoint's report JSON schema.

Example

Here is an example of a PUT request. (Note that the content-length is not correct as the example is formatted for
readability)

PUT /puppet/v3/report/kermit.com?environment=production HTTP/1.0
Content-Type: application/json
Content-Length: 1428

{"host"=>"kermit.com",
 "time"=>"2013-09-12T03:50:59.009301000+02:00",
 "configuration_version"=>1357986,
 "transaction_uuid"=>"df34516e-4050-402d-a166-05b03b940749",
 "code_id"=>null,

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/format_report.html

Puppet | The Puppet platform | 296

 "job_id"=>null,
 "catalog_uuid"=>"827a74c8-cf98-44da-9ff7-18c5e4bee41e",
 "catalog_format"=>1,
 "report_format"=>9,
 "puppet_version"=>"5.0.0",
 "status"=>"unchanged",
 "transaction_completed"=>true,
 "noop"=>false,
 "noop_pending"=>false,
 "environment"=>"test_environment",
 "logs"=>
 [{"level"=>"warning",
 "message"=>"log message",
 "source"=>"Puppet",
 "tags"=>["warning"],
 "time"=>"2013-09-12T03:50:59.009328000+02:00",
 "file"=>nil,
 "line"=>nil}],
 "metrics"=>
 {"resources"=>
 {"name"=>"resources",
 "label"=>"Resources",
 "values"=>
 [["total", "Total", 1],
 ["skipped", "Skipped", 0],
 ["failed", "Failed", 0],
 ["failed_to_restart", "Failed to restart", 0],
 ["restarted", "Restarted", 0],
 ["changed", "Changed", 1],
 ["out_of_sync", "Out of sync", 0],
 ["scheduled", "Scheduled", 0]]},
 "time"=>
 {"name"=>"time",
 "label"=>"Time",
 "values"=>[["timing", "Timing", 4], ["total", "Total", 4]]},
 "changes"=>
 {"name"=>"changes", "label"=>"Changes", "values"=>[["total", "Total",
 0]]},
 "events"=>
 {"name"=>"events",
 "label"=>"Events",
 "values"=>
 [["total", "Total", 0],
 ["failure", "Failure", 0],
 ["success", "Success", 0]]}},
 "resource_statuses"=>
 {"Notify[a resource]"=>
 {"title"=>"a resource",
 "file"=>nil,
 "line"=>nil,
 "resource"=>"Notify[a resource]",
 "resource_type"=>"Notify",
 "provider_used"=>nil,
 "containment_path"=>["Notify[a resource]"],
 "evaluation_time"=>nil,
 "tags"=>["notify"],
 "time"=>"2013-09-12T03:50:59.009238000+02:00",
 "failed"=>false,
 "changed"=>true,
 "out_of_sync"=>false,
 "skipped"=>false,
 "change_count"=>0,
 "out_of_sync_count"=>0,
 "events"=>[]}},

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 297

 "cached_catalog_status"=> "not_used"}

Schema

The sent report objects must conform to the report schema.

Environments

The environments endpoint allows for enumeration of the environments known to the master. Each environment
contains information about itself like its modulepath, manifest directory, environment timeout, and the config
version. This endpoint is by default accessible to any client with a valid certificate, though this may be changed by
auth.conf.

Get

Get the list of known environments.

GET /puppet/v3/environments

Supported Response Formats

application/json

Parameters

None

Example Request & Response

GET /puppet/v3/environments

HTTP 200 OK
Content-Type: application/json

{
 "search_paths": ["/etc/puppetlabs/code/environments"]
 "environments": {
 "production": {
 "settings": {
 "modulepath": ["/etc/puppetlabs/code/environments/production/
modules", "/etc/puppetlabs/code/environments/development/modules"],
 "manifest": ["/etc/puppetlabs/code/environments/production/
manifests"]
 "environment_timeout": 180,
 "config_version": "/version/of/config"
 }
 }
 }
}

The environment_timeout attribute could also be the string "unlimited".

Schema

An environments response body conforms to the environments schema.

Status

The status endpoint provides information about a running master.

Find

Get status for a master

GET /puppet/v3/status/:name?environment=:environment

© 2024 Puppet, Inc., a Perforce company

9ea390aa3f6cd5a3198f843ed0cd918a71e761c0.json
12e5c0a6542eb7f5ca5a3bc1e8ea19e337607db3.json

Puppet | The Puppet platform | 298

The environment parameter and the :name are both required, but have no effect on the response. The
environment must be a valid environment.

Supported HTTP Methods

GET

Supported Response Formats

application/json, text/pson

Parameters

None

Example Response

GET /puppet/v3/status/whatever?environment=env

HTTP 200 OK
Content-Type: application/json

{"is_alive":true,"version":"3.3.2"}

Schema

A status response body conforms to the status schema.

Puppet v4 API
Catalog API

The catalog API returns a compiled catalog for the node specified in the request, making use of provided metadata
like facts or environment if specified. If not specified, it will attempt to fetch this data from Puppet's configured
sources (usually PuppetDB or a node classifier). The returned catalog is in JSON format, ready to be parsed and
applied by an agent.

POST /puppet/v4/catalog

(Introduced in Puppet Server 6.3.0)

The input data for the catalog to be compiled is submitted as a JSON body with the following form:

{
 "certname": "<node name>",
 "persistence": { "facts": <true/false>, "catalog": <true/false> },
 "environment": "<environment name>",
 # The rest are optional:
 "facts": { "values": { "<fact name>": <fact value>, ... } },
 "trusted_facts": { "values": { "<fact name>": <fact value>, ... } },
 "transaction_uuid": "<uuid string>",
 "job_id": "<id string>",
 "options": { "prefer_requested_environment": <true/false>,
 "capture_logs": <true/false>,
 "log_level": <err/warning/info/debug> }
}

certname (required)

The name of the node for which to compile the catalog.

persistence (required)

A hash containing two required keys, facts and catalog, which when set to true will cause the facts and reports
to be stored in PuppetDB, or discarded if set to false.

environment (required)

© 2024 Puppet, Inc., a Perforce company

9013541615837d59788b60a92763b33670d85260.json

Puppet | The Puppet platform | 299

The name of the environment for which to compile the catalog. If prefer_requested_environemnt is true,
override the classified environment with this param. If it is false, only respect this if the classifier allows an agent-
specified environment.

facts

A hash with a required values key, containing a hash of all the facts for the node. If not provided, Puppet will
attempt to fetch facts for the node from PuppetDB.

trusted_facts

A hash with a required values key containing a hash of the trusted facts for a node. In a normal agent's catalog
request, these would be extracted from the cert, but this endpoint does not require a cert for the node whose catalog is
being compiled. If not provided, Puppet will attempt to fetch the trusted facts for the node from PuppetDB or from the
provided facts hash.

transaction_uuid

The id for tracking the catalog compilation and report submission.

job_id

The id of the orchestrator job that triggered this run.

options

A hash of options beyond direct input to catalogs.

prefer_requested_environment Whether to always override a node's classified environment with the one
supplied in the request. If this is true and no environment is supplied, fall back to the classified environment, or
finally, 'production'.

capture_logs Whether to return the errors and warnings that occurred during compilation alongside the catalog in
the response body.

log_level The logging level to use during the compile when capture_logs is true. Options are 'err', 'warning',
'info', and 'debug'.

Schema

The catalog response body conforms to the catalog schema.

Authorization

All requests made to the catalog API are authorized using the Trapperkeeper-based auth.conf. For more
information about the Puppet Server authorization process and configuration settings, see the auth.conf on page
148.

CA v1 API
Certificate

The certificate endpoint returns the certificate for the specified name, which might be either a standard
certname or ca.

Find

Get a certificate.

GET /puppet-ca/v1/certificate/:nodename

Supported HTTP Methods

GET

Supported Response Formats

text/plain

© 2024 Puppet, Inc., a Perforce company

b81670fa506e528e24ea3665fedc8711678b50b9.json

Puppet | The Puppet platform | 300

The returned certificate is always in the .pem format.

Parameters

None

Responses
Certificate found

GET /puppet-ca/v1/certificate/elmo.mydomain.com

HTTP 200 OK
Content-Type: text/plain

-----BEGIN CERTIFICATE-----
MIIFujCCA6KgAwIBAgIBATANBgkqhkiG9w0BAQsFADBiMWAwXgYDVQQDDFdQdXBw
ZXQgQ0EgZ2VuZXJhdGVkIG9uIGRoY3A1MC5reWxvLmJhY2tsaW5lLnB1cHBldGxh
YnMubmV0IGF0IDIwMTMtMDYtMjQgMTY6MzA6MTcgLTA3MDAwHhcNMTMwNjIzMjMz
MDE5WhcNMTgwNjIzMjMzMDE5WjBiMWAwXgYDVQQDDFdQdXBwZXQgQ0EgZ2VuZXJh
dGVkIG9uIGRoY3A1MC5reWxvLmJhY2tsaW5lLnB1cHBldGxhYnMubmV0IGF0IDIw
MTMtMDYtMjQgMTY6MzA6MTcgLTA3MDAwggIiMA0GCSqGSIb3DQEBAQUAA4ICDwAw
ggIKAoICAQDABq1lmzccjuRmnCdXvTmdeXJGb9S8r8+I+G6fkHTa1WKDSob9PZpS
eXJtanbl0zNws9yBt1Dko2zhKDKctBRWf5CT42nDxBZPY7SaD7KaCzb07g9wfWgU
BOb/6smyl/iySEmQzzFLRgZbo5A9WLiy/UdyQim1faakevRme2Xi/l/i0TKbpu27
DhCS+E8aC8Bvaj0ph0T+TzYphTR76pP5Kps6G7Jyk/HFYrVXnY44X2PEt2mgkEXp
xHCbU+qCFMtTLMG+ZArA/noM3I/O6W5LhLSzApjut/M7UdMlpZ45PGDrsvf2R306
NcOh+zbbkhxuIaGqaxeaenYzbOlA3gXhZvYaV6EKjXNtm7BslpsvhLi0U+CWyb3C
qRkpex0MgxJgxoqViJ4TDVA+EmztOnK86+G4HGeJqTPQloYO/Td1wMT1Txh9T5Ue
Wctw/g+4o22EyJQRo+vxxzHNRIfe7EHAerMUtLT5u9MJeQb9N1iUR2ATNAN+QiB2
KEqyc9eMapK6QUZFV23Xvbdup1WCrgsWXBqyRWKV7x0sc9Wv8RMRKEFYaBeHEVXU
m0hGgF34Z8Rzphq2H1FjkLD+xbtGOjrA1Mb2De81Hfvrf18497X5UMPtsuzOt/XU
PHbbSCy+05J7VNZ/gaiGqgpHfcG5yiqCdj1LIzhFuuvm+fADPxK38wIDAQABo3sw
eTA3BglghkgBhvhCAQ0EKhYoUHVwcGV0IFJ1YnkvT3BlblNTTCBJbnRlcm5hbCBD
ZXJ0aWZpY2F0ZTAOBgNVHQ8BAf8EBAMCAQYwDwYDVR0TAQH/BAUwAwEB/zAdBgNV
HQ4EFgQUEhn/MqSDtuxg12klWosCGenxf1cwDQYJKoZIhvcNAQELBQADggIBAH1G
L3FG/keKlGqs70PxxvR1wCo4VM3K/C+5uxnzm1MHEAd96nhtwE6YSkUe+XgDiXfC
+NXS2C4TeTQAEo6grREapWDjhJvrhrgqTZmb4lTKzb91II3/VGYzG5UXxID262zy
QLoX/IBN/xDJ5ds0wF2adUbnHUssEGGljgngewH/7kjeW/L5iL+USXZnKHPSggjM
RAEjlucE/rDqDNoxhOS4K2PjseFm7krW4cZ0gNmxdrhc7OhmJ56dH92F4M9jn7Qy
EqxWB304U/aMcO3NJxTQc7AreL/pUtjtI6hxM4miHbjSh6RfNBqhzRyJvxA6gc6g
m3kumdw04KZFSs/6fPFFbI60i5K+vioB4CnUWpj+3Z+OnDEvhQJEACR1JC8A67Ih
x+GDlbHLU1BWonwZzSMJz+ABXV3dwIrOSFHI0UmDXg+cIdZ+SaL93qMjUVU4v9nu
gR9yJGMqNuzLjgfbD/KGCEEAITKBwPvCVd//OMlWVrXr7vvt+yo6STIlTJxABJDp
CSLyHUtT++CsPXsPADxgRctpIbh1eMFEivkK9Oy+W/CZYIZnARVysUpMWg7TkXqx
mSCXy9ZXLWqU/ssVhbLS9vFVa5pvxcyfiRpsFg0XZsx8mnZP6OaWcL8FjF+/NwNP
tg1+DuYTn+d54OHi/GZEnvutgrDZyrJDrrb/Czm9
-----END CERTIFICATE-----

Certificate not found

GET /puppet-ca/v1/certificate/certificate_does_not_exist

HTTP 404 Not Found
Content-Type: text/plain

Not Found: Could not find certificate certificate_does_not_exist

No Certificate name given

GET /puppet-ca/v1/certificate

HTTP/1.1 400 Bad Request
Content-Type: text/plain

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 301

No request key specified in /puppet-ca/v1/certificate

Primary Server is not a CA

GET /puppet/v1/certificate/valid_certificate

HTTP/1.1 400 Bad Request
Content-Type: text/plain

this primary server is not a CA

Schema

A certificate response body is not structured data according to any standard scheme such as json/pson/yaml, so
no schema is applicable.

Certificate Request

The certificate_request endpoint submits a Certificate Signing Request (CSR) to the primary server. The
primary server must be configured to be a CA. The returned CSR is always in the .pem format.

Find

Get a submitted CSR

GET /puppet-ca/v1/certificate_request/:nodename
Accept: text/plain

Save

Submit a CSR

PUT /puppet-ca/v1/certificate_request/:nodename
Content-Type: text/plain

Note: The :nodename must match the Common Name on the submitted CSR.

Note: Although the Content-Type is sent as text/plain the content is specifically a CSR in PEM format.

Search

Note: The plural certificate_requests endpoint is a legacy feature. Puppet Server doesn't support it, and we
don't plan to add support in the future.

List submitted CSRs

GET /puppet-ca/v1/certificate_requests/:ignored_pattern
Accept: text/plain

The :ignored_pattern parameter is not used, but must still be provided.

Destroy

Delete a submitted CSR

DELETE /puppet-ca/v1/certificate_request/:nodename
Accept: text/plain

Supported HTTP Methods

The default configuration only allows requests that result in a Find and a Save. You need to modify auth.conf in order
to allow clients to use Search and Destroy actions. It is not recommended that you change the default settings.

GET, PUT, DELETE

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 302

Supported Response Formats

text/plain

The returned CSR is always in the .pem format.

Parameters

None

Examples
CSR found

GET /puppet-ca/v1/certificate_request/agency

HTTP/1.1 200 OK
Content-Type: text/plain

-----BEGIN CERTIFICATE REQUEST-----
MIIBnzCCAQwCAQAwYzELMAkGA1UEBhMCVUsxDzANBgNVBAgTBkxvbmRvbjEPMA0G
A1UEBxMGTG9uZG9uMSEwHwYDVQQKExhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQx
DzANBgNVBAMTBmFnZW5jeTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAxSCr
FKUKjVGFPuQ0iGM9mZKw94sOIgGohqrHH743kPvjsId3d38Qk+H+1DbVf42bQY0W
kAVcwNDqmBnx0lOtQ0oeGnbbwlJFjhqXr8jFEljPrc9S2/IIILDf/FeYWw9lRiOV
LoU6ZfCIBfq6v4D4KX3utRbOoELNyBeT6VA1ufMCAwEAAaAAMAkGBSsOAwIPBQAD
gYEAno7O1jkR56TNMe1Cw/eyQUIaniG22+0kmoftjlcMYZ/IKCOz+HRgnDtBPf8j
O5nt0PQN8YClW7Xx2U8ZTvBXn/UEKMtCBkbF+SULiayxPgfyKy/axinfutEChnHS
ZtUMUBLlh+gGFqOuH69979SJ2QmQC6FNomTkYI7FOHD/TG0=
-----END CERTIFICATE REQUEST-----

CSR not found

GET /puppet-ca/v1/certificate_request/does_not_exist

HTTP/1.1 404 Not Found
Content-Type: text/plain

Not Found: Could not find certificate_request does_not_exist

No node name given

GET /puppet-ca/v1/certificate_request

HTTP/1.1 400 Bad Request
Content-Type: text/plain

No request key specified in /puppet-ca/v1/certificate_request

Delete a CSR that exists

DELETE /puppet-ca/v1/certificate_request/agency
Accept: s

HTTP/1.1 200 OK
Content-Type: text/plain

1

Delete a CSR that does not exists

DELETE /puppet-ca/v1/certificate_request/missing
Accept: s

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 303

HTTP/1.1 200 OK
Content-Type: text/plain

false

Retrieve all CSRs

 GET /puppet-ca/v1/certificate_requests/ignored
 Accept: s

 HTTP/1.1 200 OK
 Content-Type: text/plain

 -----BEGIN CERTIFICATE REQUEST-----
 MIIBnzCCAQwCAQAwYzELMAkGA1UEBhMCVUsxDzANBgNVBAgTBkxvbmRvbjEPMA0G
 A1UEBxMGTG9uZG9uMSEwHwYDVQQKExhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQx
 DzANBgNVBAMTBmFnZW5jeTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAxSCr
 FKUKjVGFPuQ0iGM9mZKw94sOIgGohqrHH743kPvjsId3d38Qk+H+1DbVf42bQY0W
 kAVcwNDqmBnx0lOtQ0oeGnbbwlJFjhqXr8jFEljPrc9S2/IIILDf/FeYWw9lRiOV
 LoU6ZfCIBfq6v4D4KX3utRbOoELNyBeT6VA1ufMCAwEAAaAAMAkGBSsOAwIPBQAD
 gYEAno7O1jkR56TNMe1Cw/eyQUIaniG22+0kmoftjlcMYZ/IKCOz+HRgnDtBPf8j
 O5nt0PQN8YClW7Xx2U8ZTvBXn/UEKMtCBkbF+SULiayxPgfyKy/axinfutEChnHS
 ZtUMUBLlh+gGFqOuH69979SJ2QmQC6FNomTkYI7FOHD/TG0=
 -----END CERTIFICATE REQUEST-----

 -----BEGIN CERTIFICATE REQUEST-----
 MIIBnjCCAQsCAQAwYjELMAkGA1UEBhMCVUsxDzANBgNVBAgTBkxvbmRvbjEPMA0G
 A1UEBxMGTG9uZG9uMSEwHwYDVQQKExhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQx
 DjAMBgNVBAMTBWFnZW50MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC1tucK
 enT1CkDPgsCU/0e2cbzRsiKF8yHH7+ntF6Q3d9ZCaZWJ00mj0+YmiYrnum+KAikE
 45Iaf9vaUV3CPsDVrUPOI8kYehiv868ZhP3nxblE6iuNBK+Fdv9GN/vKQrmL5iRE
 bIrOM3/lxpS7SpidGdA6EIVlS3604bwLY4xHNQIDAQABoAAwCQYFKw4DAg8FAAOB
 gQAXH0YFuidPqB6P2MyPEEGZ3rzozINBx/oXvGptXI60Zy5mgH6iAkrZfi57pEzP
 jFoO2JRaFxTJC1FVpc4zR1K6sq4h3fIMwqppJRX+5wJNKyhU61eY2gR2O/rAJzw4
 wcUKf9JhoE7/p1cUulIIIq7t/ibCvf0LYSFwGqTwGqN2TQ==
 -----END CERTIFICATE REQUEST-----

The CSR PEMs are separated by "\n---\n"

Schema

A certificate_request response body is not structured data according to any standard scheme such as json/
pson/yaml, so no schema is applicable.

Certificate Status

The certificate status endpoint allows a client to read or alter the status of a certificate or pending certificate
request. It is only useful on the CA.

Find

GET /puppet-ca/v1/certificate_status/:certname
Accept: application/json, text/pson

Retrieve information about the specified certificate. Similar to puppetserver ca list --certname
<certname>.

Search

GET /puppet-ca/v1/certificate_statuses/:any_key?state=:state
Accept: application/json, text/pson

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 304

Retrieve information about all known certificates. Similar to puppetserver ca list --all. A key is
required but is ignored.

Parameters

• state (optional): The certificate state by which to filter search results. Valid states are 'requested', 'signed', and
'revoked'.

Save

PUT /puppet-ca/v1/certificate_status/:certname
Content-Type: text/pson

Change the status of the specified certificate. The desired state is sent in the body of the PUT request as a one-item
PSON hash; the two allowed complete hashes are:

• {"desired_state":"signed"} (for signing a certificate signing request, similar to puppetserver ca
sign). To set the validity period of the signed certificate, specify the cert_ttl key in the body of the request,
with an integer value. By default, this key specifies the number of seconds, but you can specify another time unit.
See configuration for a list of Puppet's accepted time unit markers.

• {"desired_state":"revoked"} (for revoking a certificate, similar to puppetserver ca revoke).

Note that revoking a certificate does not clean up other info about the host --- see the DELETE request for more
information.

Delete

DELETE /puppet-ca/v1/certificate_status/:hostname
Accept: application/json, text/pson

Cause the certificate authority to discard all SSL information regarding a host (including any certificates, certificate
requests, and keys). This does not revoke the certificate if one is present; if you wish to emulate the behavior of
puppet cert --clean, you must PUT a desired_state of revoked before deleting the host’s SSL
information.

If the deletion was successful, it returns a string listing the deleted classes like

"Deleted for myhost: Puppet::SSL::Certificate, Puppet::SSL::Key"

Otherwise it returns

"Nothing was deleted"

Supported HTTP Methods

This endpoint is disabled in the default configuration. It is recommended to be careful with this endpoint, as it can
allow control over the certificates used by the puppet primary server.

GET, PUT, DELETE

Supported Response Formats

application/json, text/pson, pson

This endpoint can produce yaml as well, but the returned data is incomplete.

Examples
Certificate information

GET /puppet-ca/v1/certificate_status/mycertname

HTTP/1.1 200 OK
Content-Type: text/pson

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/configuration.html#configuration-settings

Puppet | The Puppet platform | 305

{
 "name":"mycertname",
 "state":"signed",

 "fingerprint":"A6:44:08:A6:38:62:88:5B:32:97:20:49:8A:4A:4A:AD:65:C3:3E:A2:4C:30:72:73:02:C5:F3:D4:0E:B7:FC:2F",
 "fingerprints":{

 "default":"A6:44:08:A6:38:62:88:5B:32:97:20:49:8A:4A:4A:AD:65:C3:3E:A2:4C:30:72:73:02:C5:F3:D4:0E:B7:FC:2F",
 "SHA1":"77:E6:5A:7E:DD:83:78:DC:F8:51:E3:8B:12:71:F4:57:F1:C2:34:AE",

 "SHA256":"A6:44:08:A6:38:62:88:5B:32:97:20:49:8A:4A:4A:AD:65:C3:3E:A2:4C:30:72:73:02:C5:F3:D4:0E:B7:FC:2F",

 "SHA512":"CA:A0:8C:B9:FE:9D:C2:72:18:57:08:E9:4B:11:B7:BC:4E:F7:52:C8:9C:76:03:45:B4:B6:C5:D2:DC:E8:79:43:D7:71:1F:5C:97:FA:B2:F3:ED:AE:19:BD:A9:3B:DB:9F:A5:B4:8D:57:3F:40:34:29:50:AA:AA:0A:93:D8:D7:54"
 },
 "dns_alt_names":["DNS:puppet","DNS:mycertname"]
}

Search unsigned certs (CSRs)

GET /puppet-ca/v1/certificate_statuses/ignored?state=requested

HTTP/1.1 200 OK
Content-Type: text/pson

[
 {
 "name":"mycertname1",
 "state":"requested",

 "fingerprint":"A6:44:08:A6:38:62:88:5B:32:97:20:49:8A:4A:4A:AD:65:C3:3E:A2:4C:30:72:73:02:C5:F3:D4:0E:B7:FC:2F",
 "fingerprints":{

 "default":"A6:44:08:A6:38:62:88:5B:32:97:20:49:8A:4A:4A:AD:65:C3:3E:A2:4C:30:72:73:02:C5:F3:D4:0E:B7:FC:2F",

 "SHA1":"77:E6:5A:7E:DD:83:78:DC:F8:51:E3:8B:12:71:F4:57:F1:C2:34:AE",

 "SHA256":"A6:44:08:A6:38:62:88:5B:32:97:20:49:8A:4A:4A:AD:65:C3:3E:A2:4C:30:72:73:02:C5:F3:D4:0E:B7:FC:2F",

 "SHA512":"CA:A0:8C:B9:FE:9D:C2:72:18:57:08:E9:4B:11:B7:BC:4E:F7:52:C8:9C:76:03:45:B4:B6:C5:D2:DC:E8:79:43:D7:71:1F:5C:97:FA:B2:F3:ED:AE:19:BD:A9:3B:DB:9F:A5:B4:8D:57:3F:40:34:29:50:AA:AA:0A:93:D8:D7:54"
 },
 "dns_alt_names":[]
 },
 {
 "name":"mycertname2",
 "state":"requested",

 "fingerprint":"A6:44:08:A6:38:62:88:5B:32:97:20:49:8A:4A:4A:AD:65:C3:3E:A2:4C:30:72:73:02:C5:F3:D4:0E:B7:FC:2F",
 "fingerprints":{

 "default":"A6:44:08:A6:38:62:88:5B:32:97:20:49:8A:4A:4A:AD:65:C3:3E:A2:4C:30:72:73:02:C5:F3:D4:0E:B7:FC:2F",

 "SHA1":"77:E6:5A:7E:DD:83:78:DC:F8:51:E3:8B:12:71:F4:57:F1:C2:34:AE",

 "SHA256":"A6:44:08:A6:38:62:88:5B:32:97:20:49:8A:4A:4A:AD:65:C3:3E:A2:4C:30:72:73:02:C5:F3:D4:0E:B7:FC:2F",

 "SHA512":"CA:A0:8C:B9:FE:9D:C2:72:18:57:08:E9:4B:11:B7:BC:4E:F7:52:C8:9C:76:03:45:B4:B6:C5:D2:DC:E8:79:43:D7:71:1F:5C:97:FA:B2:F3:ED:AE:19:BD:A9:3B:DB:9F:A5:B4:8D:57:3F:40:34:29:50:AA:AA:0A:93:D8:D7:54"
 },
 "dns_alt_names":[]
 }
]

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 306

Revoking a certificate

PUT /puppet-ca/v1/certificate_status/mycertname HTTP/1.1
Content-Type: text/pson
Content-Length: 27

{"desired_state":"revoked"}

This has no meaningful return value.

Deleting the certificate information

DELETE /puppet-ca/v1/certificate_status/mycertname HTTP/1.1

Gets the response:

"Deleted for mycertname: Puppet::SSL::Certificate, Puppet::SSL::Key"

Schema

Find and search operations return objects which conform to the host schema.

Certificate Revocation List

The certificate_revocation_list endpoint retrieves a Certificate Revocation List (CRL) from the primary
server. The primary server must be configured to be a CA. The returned CRL is always in the .pem format.

The :nodename should always be ca, due to the default auth.conf rules for WEBrick and Rack Puppet servers.
(You can use a different :nodename if you change the auth rules, but it will have no effect on the response.)

Find

Get the submitted CRL

GET /puppet-ca/v1/certificate_revocation_list/:nodename
Accept: text/plain

Supported HTTP Methods

GET

Supported Response Formats

text/plain

The returned CRL is always in the .pem format.

Parameters

None

Examples

Because the returned CRL always looks similar to the human eye, the successful examples are each followed by an
openssl decoding of the CRL PEM file.

Empty revocation list

GET /puppet-ca/v1/certificate_revocation_list/ca

HTTP/1.1 200 OK
Content-Type: text/plain

-----BEGIN X509 CRL-----
MIICdzBhAgEBMA0GCSqGSIb3DQEBBQUAMB8xHTAbBgNVBAMMFFB1cHBldCBDQTog
bG9jYWxob3N0Fw0xMzA3MTYyMDQ4NDJaFw0xODA3MTUyMDQ4NDNaoA4wDDAKBgNV

© 2024 Puppet, Inc., a Perforce company

5a17843da9bc3b966dfc35156b277d549ddcde2e.json

Puppet | The Puppet platform | 307

HRQEAwIBADANBgkqhkiG9w0BAQUFAAOCAgEAqyBJOy3dtCOcrb0Fu7ZOOiDQnarg
IzXUV/ug1dauPEVyURLNNr+CJrr89QZnU/71lqgpWTN/J47mO/lffMSPjmINE+ng
XzOffm0qCG2+gNyaOBOdEmQTLdHPIXvcm7T+wEqc7XFW2tjEdpEubZgweruU/+DB
RX6/PhFbalQ0bKcMeFLzLAD4mmtBaQCJISmUUFWx1pyCS6pgBtQ1bNy3PJPN2PNW
YpDf3DNZ16vrAJ4a4SzXLXCoONw0MGxZcS6/hctJ75Vz+dTMrArKwckytWgQS/5e
c/1/wlMZn4xlho+EcIPMPfCB5hW1qzGU2WjUakTVxzF4goamnfFuKbHKEoXVOo9C
3dEQ9un4Uyd1xHxj8WvQck79In5/S2l9hdqp4eud4BaYB6tNRKxlUntSCvCNriR2
wrDNsMuQ5+KJReG51vM0OzzKmlScgIHaqbVeNFZI9X6TpsO2bLEZX2xyqKw4xrre
OIEZRoJrmX3VQ/4u9hj14Qbt72/khYo6z/Fckc5zVD+dW4fjP2ztVTSPzBqIK3+H
zAgewYW6cJ6Aan8GSl3IfRqj6WlOubWj8Gr1U0dOE7SkBX6w/X61uqsHrOyg/E/Z
0Wcz/V+W5iZxa4Spm0x4sfpNzf/bNmjTe4M2MXyn/hXx5MdHf/HZdhOs/lzwKUGL
kEwcy38d6hYtUjs=
-----END X509 CRL-----

> openssl crl -inform PEM -in empty.crl -text -noout
Certificate Revocation List (CRL):
 Version 2 (0x1)
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: /CN=Puppet CA: localhost
 Last Update: Jul 16 20:48:42 2013 GMT
 Next Update: Jul 15 20:48:43 2018 GMT
 CRL extensions:
 X509v3 CRL Number:
 0
No Revoked Certificates.
 Signature Algorithm: sha1WithRSAEncryption
 ab:20:49:3b:2d:dd:b4:23:9c:ad:bd:05:bb:b6:4e:3a:20:d0:
 ...

One-item revocation list

GET /puppet-ca/v1/certificate_revocation_list/ca

HTTP/1.1 200 OK
Content-Type: text/plain

-----BEGIN X509 CRL-----
MIICnDCBhQIBATANBgkqhkiG9w0BAQUFADAfMR0wGwYDVQQDDBRQdXBwZXQgQ0E6
IGxvY2FsaG9zdBcNMTMxMDA3MTk0ODQwWhcNMTgxMDA2MTk0ODQxWjAiMCACAQUX
DTEzMTAwNzE5NDg0MVowDDAKBgNVHRUEAwoBAaAOMAwwCgYDVR0UBAMCAQEwDQYJ
KoZIhvcNAQEFBQADggIBALrh49WNdmrJOPCRntD1nxCObmqZgl8ZwTv7TO9VkmCG
Ksvo8zR2aTIOH9VUKqWrE0squhtFJXl8dxL4PR1RiLbmhO7dp+NHdu8ejTQpoOTp
h69xbQFT3oHcIdn2cBGrLJQcZgXsiswT0KJ8nuw6eDO93yXDrguSUdou99M99wTw
2nn1kUQKW9b0vUI7t2ADF5U8/DES+1IrvBq2IEHmg4+ekZRCxeJMuqd1R13gymcJ
osSPbRgIjCli6zD3aK4Nq5OMMpVLV/VVPwyQb4GwW4Wj5iyNAp8d/EAqtZ21ZHUi
nvuXmRtUWHJwfi40D5T2GQXxuUjB4pnh8cFq7f89iUvqoCwFo7nRIacrrweNFMYD
GxVJVMfz4PkP66ckIPQ5Uuey92dg5p2w4b2cp8NstxMdgcc3KAF483ItKA8uIDuU
1dbzw1v2k5qUjoImueHwKolbLmPyYmvFp7hbnV+WpFbvGjyIfW3BMankDEv4ig0L
MCw6n2GKv1hSWM6Mrk8Ja1yYOFLsjI0RoVCZsf1iNiRT28haldXVTPyNtct9mGAv
6az5W/nyixIPrrHubTx28zhmuHZx6y3hQMCLmuYOT+e7F/eFsYXVEjuJjxjr33uA
O/ii4EkTls1gzvonOtoBoGElzQAogrZI3HXCwFYvU2whLKr9cwv5bpRkUfPCMQ4n
-----END X509 CRL-----

> openssl crl -inform PEM -in 1revoked.crl -text -noout
Certificate Revocation List (CRL):
 Version 2 (0x1)
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: /CN=Puppet CA: localhost
 Last Update: Oct 7 19:48:40 2013 GMT
 Next Update: Oct 6 19:48:41 2018 GMT
 CRL extensions:
 X509v3 CRL Number:

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 308

 1
Revoked Certificates:
 Serial Number: 05
 Revocation Date: Oct 7 19:48:41 2013 GMT
 CRL entry extensions:
 X509v3 CRL Reason Code:
 Key Compromise
 Signature Algorithm: sha1WithRSAEncryption
 ba:e1:e3:d5:8d:76:6a:c9:38:f0:91:9e:d0:f5:9f:10:8e:6e:
 ...

No node name given

GET /puppet-ca/v1/certificate_revocation_list

HTTP/1.1 400 Bad Request
Content-Type: text/plain

No request key specified in /puppet-ca/v1/certificate_revocation_list

Schema

A certificate_revocation_list response body is not structured data according to any standard scheme
such as json/pson/yaml, so no schema is applicable.

Update upstream CRLs

If your organization's CRLs require frequent updating, you can use the following endpoint to insert updated copies of
your CRLs into the trust chain:

PUT /puppet-ca/v1/certificate_revocation_list
accept: text/plain

This endpoint accepts a list of CRL PEMs as a body and updates the matching CRLs saved on disk if the submitted
ones have a higher CRL number than their counterparts. Note that it cannot be used to replace the leaf CRL (the one
used to track certificates revoked by the Puppet Intermediate CA certificate), only CRLs further up the chain, which
correspond to certs belonging to your organization's PKI. If an updated version of the Puppet leaf CRL is submitted in
the body, it is ignored.

Note: If you are using curl to submit to this endpoint, use the data-binary flag for the body, instead of the
data flag. The data-binary flag preserves newlines in the request body, which is required for the CRLs to be
parsed correctly.

Supported HTTP Methods

PUT

Supported Response Formats

text/plain

Parameters

No parameters, only the body which contains the contents of the CRL update

Example

PUT /puppet-ca/v1/certificate_revocation_list

BODY
-----BEGIN X509 CRL-----
MIIBizB1AgEBMA0GCSqGSIb3DQEBCwUAMBIxEDAOBgNVBAMTB1Jvb3QgQ0EXDTIx
MDUxMzE3MTAyOFoXDTI2MDUxMzE3MTAyOFqgLzAtMB8GA1UdIwQYMBaAFIAc7NI2
Jesrcny7yh8B2fzCEte7MAoGA1UdFAQDAgEBMA0GCSqGSIb3DQEBCwUAA4IBAQAn
j87vWjd9qr9BZq2rf92Ku/owQlAJTHwIPAKmmUyzMF+Aw0P2nlF7FPDiOaXXGm9x

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 309

KWwstCaefp4jbru+pD5cH/UFSCyLBuUlfzqtMvF4SL7/CjGZa4W3WW4a+fqlv/HI
U8Wxjqa00LBV77rqJm54z2QUlqgCPD/7r2Pqy5rrfrZTGGy58727whtSsV5sAWOw
kxzRogsSm23Uh4//lmEx0BYJYTaz+HdWaEckpJU1S3DfBBrh5Rv2AG/OjsRfUvgC
tB0SGdKL0EM8KG4GxbeXTvq8HuTKUp2HaWvGWpdojyxqwwiAtNaOHt76qpBkRe3f
igWihATMaKzytX4xXk1C
-----END X509 CRL-----

HTTP/1.1 200 OK
Content-Type: text/plain

Successfully updated CRLs

PUT /puppet/ca/v1/certificate_revocation_list

BODY
 ----BEGIN X509 CRL-----
 Invalid CRL Content
 ----END X509 CRL------

HTTP/1.1 400 Bad Request
Content-Type: text/plain

No valid CRLs submitted

Schemas (JSON)
These JSON files contain schemas for the various HTTP API objects.

Use these links to open the JSON files in your browser:

• catalog.json
• environments.json
• error.json
• facts.json
• file_metadata.json
• host.json
• json-meta-schema.json
• node.json
• report.json
• status.json

You can also use curl commands to download these files. For example, this command downloads the
catalog.json file:

curl https://puppet.com/docs/puppet/6/schemas/catalog.json -L --output
 catalog.json

Metrics API endpoints

v1 metrics

By default, Puppet Server enables two optional web APIs for Java Management Extension (JMX) metrics, namely
managed beans (MBeans). For the newer Jolokia-based metrics API, see v2 (Jolokia) metrics on page 311.

The metrics v1 API was introduced in Puppet Enterprise 2016.4 and is now open sourced. It is still enabled but is
deprecated.

Note: The metrics described here are returned only when passing the level=debug URL parameter,
and the structure of the returned data might change, or the endpoint might be removed, in future versions.

© 2024 Puppet, Inc., a Perforce company

4518e793477f8cecae7f58df8dd69b8eb31f6eaf.json
12e5c0a6542eb7f5ca5a3bc1e8ea19e337607db3.json
c28d29f452b10f627aa267acd500693165875881.json
eafc36ddfd798e588ff7b0df7af8347ef9c071d1.json
624bfb6dfcb268f98a5c6e102db1041ecd9ac117.json
5a17843da9bc3b966dfc35156b277d549ddcde2e.json
b75446616be62a8a7a4379981219061097e79bc9.json
b64f9bee691c0e39cbc1c97277e8652de99e9565.json
9ea390aa3f6cd5a3198f843ed0cd918a71e761c0.json
9013541615837d59788b60a92763b33670d85260.json
https://docs.oracle.com/javase/tutorial/jmx/index.html
https://docs.oracle.com/javase/tutorial/jmx/mbeans/

Puppet | The Puppet platform | 310

GET /metrics/v1/mbeans

The GET /metrics/v1/mbeans endpoint lists available MBeans.

Response keys

• The key is the name of a valid MBean.
• The value is a URI to use when requesting that MBean's attributes.

POST /metrics/v1/mbeans

The POST /metrics/v1/mbeans endpoint retrieves requested MBean metrics.

Query parameters

The query doesn't require any parameters, but the request body must contain a JSON object whose values are metric
names, or a JSON array of metric names, or a JSON string containing a single metric's name.

For a list of metric names, make a GET request to /metrics/v1/mbeans.

Response keys

The response format, though always JSON, depends on the request format:

• Requests with a JSON object return a JSON object where the values of the original object are transformed into the
Mbeans' attributes for the metric names.

• Requests with a JSON array return a JSON array where the items of the original array are transformed into the
Mbeans' attributes for the metric names.

• Requests with a JSON string return a JSON object of the Mbean's attributes for the given metric name.

GET /metrics/v1/mbeans/<name>

The GET /metrics/v1/mbeans/<name> endpoint reports on a single metric.

Query parameters

The query doesn't require any parameters, but the endpoint itself must correspond to one of the metrics returned by a
GET request to /metrics/v1/mbeans.

Response keys

The endpoint's responses contain a JSON object mapping strings to values. The keys and values returned in the
response vary based on the specified metric.

Example

Use curl from localhost to request data on MBean memory usage:

curl 'http://localhost:8080/metrics/v1/mbeans/java.lang:type=Memory'

The response should contain a JSON object representing the data:

{
 "ObjectPendingFinalizationCount" : 0,
 "HeapMemoryUsage" : {
 "committed" : 807403520,
 "init" : 268435456,
 "max" : 3817865216,
 "used" : 129257096
 },
 "NonHeapMemoryUsage" : {
 "committed" : 85590016,
 "init" : 24576000,
 "max" : 184549376,
 "used" : 85364904
 },
 "Verbose" : false,

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 311

 "ObjectName" : "java.lang:type=Memory"
}

v2 (Jolokia) metrics

By default, Puppet Server enables two optional web APIs for Java Management Extension (JMX) metrics, namely
managed beans (MBeans). For the older metrics API, see v1 metrics on page 309.

Jolokia endpoints

The v2 metrics endpoint uses the Jolokia library, an extensive open-source metrics library with its own
documentation.

The documentation below provides only the information you need to use the metrics as configured by default for
Puppet Server, but Jolokia offers more features than are described below. Consult the Jolokia documentation for more
information.

For security reasons, we enable only the read-access Jolokia interface by default:

• read

• list

• version

• search

Configuring Jolokia

To change the security access policy, create the /etc/puppetlabs/puppetserver/jolokia-
access.xml file with contents that follow the Jolokia access policy and uncomment the metrics.metrics-
webservice.jolokia.servlet-init-params.policyLocation parameter before restarting
puppetserver.

The metrics.metrics-webservice.jolokia.servlet-init-params table within the metrics.conf on
page 219 file provides more configuration options. See Jolokia's agent initialization documentation for all of the
available options.

Disabling the endpoints

To disable the v2 endpoints, set the metrics.metrics-webservice.jolokia.enabled parameter in
metrics.conf to false.

Usage

You can query the metrics v2 API using GET or POST requests.

GET /metrics/v2/

(Introduced in Puppet Server 5)

This endpoint requires an operation, and depending on the operation can accept or might require an additional query:

GET /metrics/v2/<OPERATION>/<QUERY>

Response

A successful request returns a JSON document.

Examples

To list all valid mbeans querying the metrics endpoint

GET /metrics/v2/list

Which should return a response similar to

{
 "request": {

© 2024 Puppet, Inc., a Perforce company

https://docs.oracle.com/javase/tutorial/jmx/index.html
https://docs.oracle.com/javase/tutorial/jmx/mbeans/
https://jolokia.org
https://jolokia.org/documentation.html
https://jolokia.org/reference/html/security.html
https://jolokia.org/reference/html/agents.html#agent-war-init-params

Puppet | The Puppet platform | 312

 "type": "list"
 },
 "value": {
 "java.util.logging": {
 "type=Logging": {
 "op": {
 "getLoggerLevel": {
 ...
 },
 ...
 },
 "attr": {
 "LoggerNames": {
 "rw": false,
 "type": "[Ljava.lang.String;",
 "desc": "LoggerNames"
 },
 "ObjectName": {
 "rw": false,
 "type": "javax.management.ObjectName",
 "desc": "ObjectName"
 }
 },
 "desc": "Information on the management interface of the MBean"
 }
 },
 ...
 }
}

So, from the example above we could query for the registered logger names with this HTTP call:

GET /metrics/v2/read/java.util.logging:type=Logging/LoggerNames

Which would return the JSON document

{
 "request": {
 "mbean": "java.util.logging:type=Logging",
 "attribute": "LoggerNames",
 "type": "read"
 },
 "value": [
 "javax.management.snmp",
 "global",
 "javax.management.notification",
 "javax.management.modelmbean",
 "javax.management.timer",
 "javax.management",
 "javax.management.mlet",
 "javax.management.mbeanserver",
 "javax.management.snmp.daemon",
 "javax.management.relation",
 "javax.management.monitor",
 "javax.management.misc",
 ""
],
 "timestamp": 1497977258,
 "status": 200
}

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 313

The MBean names can then be created by joining the the first two keys of the value table with a colon (the domain
and prop list in Jolokia parlance). Querying the MBeans is achieved via the read operation. The read
operation has as its GET signature:

GET /metrics/v2/read/<MBEAN NAMES>/<ATTRIBUTES>/<OPTIONAL INNER PATH FILTER>

POST /metrics/v2/<OPERATION>

You can also submit a POST request with the query as a JSON document in the body of the POST.

Filtering

The new Jolokia-based metrics API also provides globbing (wildcard selection) and response filtering features.

Example

You can combine both of these features to query garbage collection data, but return only the collection counts and
times.

GET metrics/v2/read/java.lang:name=*,type=GarbageCollector/
CollectionCount,CollectionTime

This returns a JSON response:

{
 "request": {
 "mbean": "java.lang:name=*,type=GarbageCollector",
 "attribute": [
 "CollectionCount",
 "CollectionTime"
],
 "type": "read"
 },
 "value": {
 "java.lang:name=PS Scavenge,type=GarbageCollector": {
 "CollectionTime": 1314,
 "CollectionCount": 27
 },
 "java.lang:name=PS MarkSweep,type=GarbageCollector": {
 "CollectionTime": 580,
 "CollectionCount": 5
 }
 },
 "timestamp": 1497977710,
 "status": 200
}

Refer to the Jolokia protocol documentation for more advanced usage.

Status API endpoints

Services endpoint

The services endpoint of Puppet Server's Status API provides information about services running on Puppet
Server. As of Puppet Server 2.6.0, the endpoint provides information about memory usage similar to the data
produced by the Java MemoryMXBean, as well as basic data on the pupppetserver process's state and uptime.
See the Java MemoryMXBean documentation for help interpreting the memory information.

Note: This is an experimental feature provided for troubleshooting purposes. In future releases, the
services endpoint's response payload might change without warning.

For information about HTTP client metrics, which are served from the status endpoint, see HTTP Client
Metrics on page 255.

© 2024 Puppet, Inc., a Perforce company

https://jolokia.org/reference/html/protocol.html
https://docs.oracle.com/javase/7/docs/api/java/lang/management/MemoryMXBean.html

Puppet | The Puppet platform | 314

GET /status/v1/services

(Introduced in Puppet Server 2.6.0)

Supported HTTP methods

GET

Supported formats

JSON

Query parameters

• level (optional): The response includes status information for all registered services at the requested level of
detail. Default: info. Valid values:

• critical: Returns the minimum amount of status information for each service. This level returns data
quickly and is suitable for frequently updating uses, such as health checks for a load balancer.

• info: Returns more info than the critical level for each service. The specific data depends on the
implementation details of the services loaded in the application, but generally includes enough human-readable
data to provide a quick impression of each service's health and status.

• debug: This level returns status information about a service in enough detail to be suitable for debugging
issues with the puppetserver process. Depending on the service, this level can be significantly more
expensive than lower levels, reduce the process's performance, and generate large amounts of data. This
level is suitable for producing aggregate metrics about the performance or resource usage of Puppet Server's
subsystems.

The information returned for any service at each increasing level of detail includes the data from lower levels. In
other words, the info level returns the same data structure as the critical level, and might provide additional
data in the status field depending on the service. Likewise, the debug level returns the same data structure as
info, and might also add additional information in the status field.

Response

The services endpoint's response includes information for each service about which the Status service is aware.
Each service's state value is one of the following:

• running, if and only if all services are running
• error if any service reports an error
• starting if any service reports that it is starting, and no service reports an error or that it is stopping
• stopping if any service reports that it is stopping and no service reports an error
• unknown if any service reports an unknown state and no services report an error

Requests to this endpoint return one of the following status codes:

• 200 when all services are in running state.
• 404 when a requested service is not found.
• 503 when the service state is unknown, error, starting, or stopping

Example request and response for a debug-level GET request

GET /status/v1/services?level=debug

HTTP/1.1 200 OK
Content-Type: application/json

{
 "status-service": {
 "detail_level": "debug",
 "service_status_version": 1,
 "service_version": "0.3.5",
 "state": "running",
 "status": {

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 315

 "experimental": {
 "jvm-metrics": {
 "heap-memory": {
 "committed": 1049100288,
 "init": 268435456,
 "max": 1908932608,
 "used": 216512656
 },
 "non-heap-memory": {
 "committed": 256466944,
 "init": 2555904,
 "max": -1,
 "used": 173201432
 },
 "start-time-ms": 1472496731281,
 "up-time-ms": 538974
 }
 }
 }
 }
}

Authorization

Requests to the services endpoint are authorized by the auth.conf on page 148 as of Puppet Server 5.3.0. For
more information about the supported Puppet Server authorization processes and configuration settings, see the
auth.conf on page 148.

One may also restrict access to the status service by changing the client-auth setting to required for the
webserver. See Configuring the Webserver Service for more information on the client-auth setting.

Simple endpoint

The simple endpoint of Puppet Server's Status API provides a simple indication of whether Puppet Server is
running on a server. It's designed for load balancers that don't support any kind of JSON parsing or parameter setting
and returns a simple string body (either the state of the server or a simple error message) and a status code relevant to
the result.

The content type for this endpoint is text/plain; charset=utf-8.

GET /status/v1/simple

(Introduced in Puppet Server 2.6.0)

Supported HTTP methods

GET

Supported formats

Plain text

Query parameters

None

Response

The simple endpoint's response consists of a single word describing Puppet Server's status:

• running, if and only if the Puppet Server service is running
• error, if the service reports an error
• unknown, if the service reports an unknown state, but doesn't report an error

Requests to this endpoint return one of the following status codes:

• 200 if and only if the Puppet Server service reports a status of running

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/trapperkeeper-webserver-jetty9/blob/master/doc/jetty-config.md#client-auth

Puppet | The Puppet platform | 316

• 503 if the service's status is unknown or error

Example request and response for a GET request

GET /status/v1/simple

HTTP/1.1 200 OK
Content-Type: application/json

running

Authorization

Requests to the simple endpoint are authorized by the auth.conf on page 148 as of Puppet Server 5.3.0. For more
information about the supported Puppet Server authorization processes and configuration settings, see the auth.conf
on page 148.

One may also restrict access to the status service by changing the client-auth setting to required for the
webserver. See Configuring the Webserver Service for more information on the client-auth setting.

Server-specific Puppet API endpoints

Environment classes

The environment classes API serves as a replacement for the Puppet resource type API for classes, which was
removed in Puppet 5.

Changes in the environment classes API

Compared to the resource type API, the environment classes API covers different things, returns new or different
information, and omits some information.

Covers classes only

The environment classes API covers only classes, whereas the resource type API covers classes, node definitions, and
defined types.

Changes class information caching behavior

Queries to the resource type API use cached class information per the configuration of the
environment_timeout setting, as set in the corresponding environment's environment.conf file. The
environment classes API does not use the value of environment_timeout with respect to the data that it
caches. Instead, only when the environment-class-cache-enabled setting in the jruby-puppet
configuration section is set to true, the environment classes API uses HTTP Etags to represent specific versions of
the class information. And it uses the Puppet Server Environment cache on page 326 as an explicit mechanism for
marking an Etag as expired. See the Headers and caching behavior section for more information about caching and
invalidation of entries.

Uses typed values

The environment classes API includes a type, if defined for a class parameter. For example, if the class parameter
were defined as String $some_str, the type parameter would hold a value of String.

Provides default literal values

For values that can be presented in pure JSON, the environment classes API provides a default_literal form
of a class parameter's default value. For example, if an Integer type class parameter were defined in the manifest
as having a default value of 3, the default_literal element for the parameter will contain a JSON Number type
of 3.

Lacks filters

The environment classes API does not provide a way to filter the list of classes returned via use of a search string. The
environment classes API returns information for all classes found within an environment's manifest files.

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/trapperkeeper-webserver-jetty9/blob/master/doc/jetty-config.md#client-auth
https://puppet.com/docs/puppet/latest/lang_classes.html
https://puppet.com/docs/puppet/latest/lang_classes.html
https://puppet.com/docs/puppet/latest/lang_node_definitions.html
https://puppet.com/docs/puppet/latest/lang_defined_types.html
https://puppet.com/docs/puppet/latest/config_file_environment.html#environmenttimeout
https://tools.ietf.org/html/rfc7232#section-2.3
a465fda90fd2807fe87ea73f9c9dbfaf17a8cccb.md#headers-and-caching-behavior

Puppet | The Puppet platform | 317

Includes filenames

Unlike the resource type API in Puppet 4, the environment classes API does include the filename in which each class
was found. The resource type API in Puppet 3 does include the filename, but the resource type API under Puppet 4
does not.

Lacks line numbers

The environment classes API does not include the line number at which a class is found in the file.

Lacks documentation strings (vs. Puppet 3)

Unlike the resource type API in Puppet 3, the environment classes API does not include any doc strings for a class
entry. Note that doc strings are also not returned for class entries in the Puppet 4 resource type API.

Returns file entries for manifests with no classes

The environment classes API returns a file entry for manifests that exist in the environment but in which no classes
were found. The resource type API omits entries for files which do not contain any classes.

Uses application/json Content-Type

The Content-Type in the response to an environment classes API query is application/json, whereas the
resource type API uses a Content-Type of text/pson.

Includes successfully parsed classes, even if some return errors, and returns error messages

The environment classes API includes information for every class that can successfully be parsed. For any errors
which occur when parsing individual manifest files, the response includes an entry for the corresponding manifest
file, along with an error and detail string about the failure.

In comparison, if an error is encountered when parsing a manifest, the resource type API omits information from the
manifest entirely. It includes class information from other manifests that it successfully parsed, assuming none of the
parsing errors were found in one of the files associated with the environment's manifest setting. If one or more
classes is returned but errors were encountered parsing other manifests, the response from the resource type API call
doesn't include any explicit indication that a parsing error was encountered.

GET /puppet/v3/environment_classes?environment=:environment

(Introduced in Puppet Server 2.3.0.)

Making a request with no query parameters is not supported and returns an HTTP 400 (Bad Request) response.

Supported HTTP Methods

GET

Supported Formats

JSON

Query Parameters

Provide one parameter to the GET request:

• environment: Only the classes and parameter information pertaining to the specified environment will be
returned for the call.

Responses
GET request with results

GET /puppet/v3/environment_classes?environment=env

HTTP/1.1 200 OK
Etag: b02ede6ecc432b134217a1cc681c406288ef9224
Content-Type: application/json

{

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/config_file_environment.html#manifest

Puppet | The Puppet platform | 318

 "files": [
 {
 "path": "/etc/puppetlabs/code/environments/env/manifests/site.pp",
 "classes": []
 },
 {
 "path": "/etc/puppetlabs/code/environments/env/modules/mymodule/
manifests/init.pp",
 "classes": [
 {
 "name": "mymodule",
 "params": [
 {
 "default_literal": "this is a string",
 "default_source": "\"this is a string\"",
 "name": "a_string",
 "type": "String"
 },
 {
 "default_literal": 3,
 "default_source": "3",
 "name": "an_integer",
 "type": "Integer"
 }
]
 }
]
 },
 {
 "error": "Syntax error at '=>' at /etc/puppetlabs/code/environments/
env/modules/mymodule/manifests/other.pp:20:19",
 "path": "/etc/puppetlabs/code/environments/env/modules/mymodule/
manifests/other.pp"
 }
],
 "name": "env"
}

GET request with Etag roundtripped from a previous GET request

If you send the Etag value that was returned from the previous request to the server in a follow-up request, and the
underlying environment cache has not been invalidated, the server will return an HTTP 304 (Not Modified) response.
See the Headers and Caching Behavior section for more information about caching and invalidation of entries.

GET /puppet/v3/environment_classes?environment=env
If-None-Match: b02ede6ecc432b134217a1cc681c406288ef9224

HTTP/1.1 304 Not Modified
Etag: b02ede6ecc432b134217a1cc681c406288ef9224

If the environment cache has been updated from what was used to calculate the original Etag, the server will return a
response with the full set of environment class information:

GET /puppet/v3/environment_classes?environment=env
If-None-Match: b02ede6ecc432b134217a1cc681c406288ef9224

HTTP/1.1 200 OK
Etag: 2f4f83096265b9741c5304b3055f866df0336762
Content-Type: application/json

{
 "files": [
 {

© 2024 Puppet, Inc., a Perforce company

https://tools.ietf.org/html/rfc7232#section-2.3
a465fda90fd2807fe87ea73f9c9dbfaf17a8cccb.md#headers-and-caching-behavior

Puppet | The Puppet platform | 319

 "path": "/etc/puppetlabs/code/environments/env/manifests/site.pp",
 "classes": []
 },
 {
 "path": "/etc/puppetlabs/code/environments/env/modules/mymodule/
manifests/init.pp",
 "classes": [
 {
 "name": "mymodule",
 "params": [
 {
 "default_literal": "this is a string",
 "default_source": "\"this is a string\"",
 "name": "a_string",
 "type": "String"
 },
 {
 "default_literal": 3,
 "default_source": "3",
 "name": "an_integer",
 "type": "Integer"
 },
 {
 "default_literal": {
 "one": "foo",
 "two": "hello"
 },
 "default_source": "{ \"one\" => \"foo\", \"two\" => \"hello
\" }",
 "name": "a_hash",
 "type": "Hash"
 }
]
 }
]
 }
],
 "name": "env"
}

Environment does not exist

If you send a request with an environment parameter that doesn't correspond to the name of a directory environment
on the server, the server returns an HTTP 404 (Not Found) error:

GET /puppet/v3/environment_classes?environment=doesnotexist

HTTP/1.1 404 Not Found

Could not find environment 'doesnotexist'

No environment given

GET /puppet/v3/environment_classes

HTTP/1.1 400 Bad Request

You must specify an environment parameter.

Environment parameter specified with no value

GET /puppet/v3/environment_classes?environment=

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 320

HTTP/1.1 400 Bad Request

The environment must be purely alphanumeric, not ''

Environment includes non-alphanumeric characters

If the environment parameter in your request includes any characters that are not A-Z, a-z, 0-9, or _ (underscore),
the server returns an HTTP 400 (Bad Request) error:

GET /puppet/v3/environment_classes?environment=bog|us

HTTP/1.1 400 Bad Request

The environment must be purely alphanumeric, not 'bog|us'

Schema

An environment classes response body conforms to the environment classes schema.

Headers and Caching Behavior

If the environment-class-cache-enabled setting in the jruby-puppet configuration section is set to
true, the environment classes API caches the response data. This can provide a significant performance benefit by
reducing the amount of data that needs to be provided in a response when the underlying Puppet code on disk remains
unchanged from one request to the next. Use of the cache does, however, require that cache entries are invalidated
after Puppet code has been updated.

To avoid invalidated cache entries, you can omit the environment-class-cache-enabled setting from a
node's configuration or set it to false. In this case, the server discovers and parses manifests for every incoming
request. This can significantly increase bandwidth overhead for repeated requests, particularly when there are few
changes to the underlying Puppet code. However, this approach ensures that the latest available data is returned to
every request.

Behaviors when the environment class cache is enabled

When the environment-class-cache-enabled setting is set to true, the response to a query to the
environment_classes endpoint includes an HTTP Etag header. The value for the Etag header is a hash that
represents the state of the latest class information available for the requested environment. For example:

ETag: 31d64b8038258202b4f5eb508d7dab79c46327bb

A client can (but is not required to) provide the Etag value back to the server in a subsequent
environment_classes request. The client would provide the tag value as the value for an If-None-Match HTTP
header:

If-None-Match: 31d64b8038258202b4f5eb508d7dab79c46327bb

If the latest state of code available on the server matches that of the value in the If-None-Match header, the
server returns an HTTP 304 (Not Modified) response with no response body. If the server has newer code available
than what is captured by the If-None-Match header value, or if no If-None-Match header is provided in the
request, the server parses manifests again. Assuming the resulting payload is different than a previous request's, the
server provides a different Etag value and new class information in the response payload.

If the client sends an Accept-Encoding: gzip HTTP header for the request and the server provides a gzip-
encoded response body, the server might append the characters --gzip to the end of the Etag. For example, the
HTTP response headers could include:

Content-Encoding: gzip
ETag: e84bbce5482243b3eb3a190e5c90e535cf4f20de--gzip

© 2024 Puppet, Inc., a Perforce company

b2f6c2c3fd1d322d6f2cefb2dac9d5ed1e478442.json
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-3.2

Puppet | The Puppet platform | 321

The server accepts both forms of an Etag (with or without the trailing --gzip characters) as the same value when
validating it in a request's If-None-Match header against its cache.

It is best, however, for clients to use the Etag without parsing its content. A client expecting an HTTP 304 (Not
Modified) response if the cache has not been updated since the prior request should provide the exact value returned
in the Etag header from one request, to the server in an If-None-Match header in a subsequent request for the
environment's class information.

Clearing class information cache entries

After updating an environment's manifests, you must clear the server's class information cache entries, so the server
can parse the latest manifests and reflect class changes to the class information in queries to the environment classes
endpoint. To clear cache entries on the server, do one of the following:

• Call the Environment cache on page 326.

For best performance, call this endpoint with a query parameter that specifies the environment whose cache
should be flushed.

• Restart Puppet Server.

Each environment's cache is held in memory for the Puppet Server process and is effectively flushed whenever
Puppet Server is restarted, whether with a Restarting Puppet Server" on page 265 or a full JVM restart.

Authorization

Unlike other Puppet primary server service-based API endpoints, the environment classes API is provided exclusively
by Puppet Server. All requests made to the environment classes API are authorized using the Trapperkeeper-
based auth.conf on page 148 feature introduced in Puppet Server 2.2.0, and ignores the older Ruby-based
authorization process and configuration. The value of the use-legacy-auth-conf setting in the jruby-
puppet configuration section of puppetserver.conf on page 144 is ignored for requests to the environment classes
API, because the Ruby-based authorization process is not equipped to authorize these requests.

For more information about the Puppet Server authorization process and configuration settings, see the auth.conf on
page 148.

Environment modules

The environment modules API will return information about what modules are installed for the requested
environment.

This endpoint is available only when the Puppet primary server is running Puppet Server, not on Ruby Puppet
primary servers, such as the deprecated WEBrick Puppet primary server. It also ignores the Ruby-based Puppet
primary server's authorization methods and configuration. See the Authorization section for more information.

GET /puppet/v3/environment_modules
Supported HTTP Methods

GET

Supported Formats

JSON

Responses
GET request with results

GET /puppet/v3/environment_modules

HTTP/1.1 200 OK
Content-Type: application/json

[{
 "modules": [
 {
 "name": "puppetlabs/ntp",

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/services_master_webrick.html
04856109584aa6bded5d4ed8d491776a493580da.md#authorization

Puppet | The Puppet platform | 322

 "version": "6.0.0"
 },
 {
 "name": "puppetlabs/stdlib",
 "version": "4.14.0"
 }
],
 "name": "env"
},
{
 "modules": [
 {
 "name": "puppetlabs/stdlib",
 "version": "4.14.0"
 },
 {
 "name": "puppetlabs/azure",
 "version": "1.1.0"
 }
],
 "name": "production"
}]

GET /puppet/v3/environment_modules?environment=:environment
Supported HTTP Methods

GET

Supported Formats

JSON

Query Parameters

Provide one parameter to the GET request:

• environment: Request information about modules pertaining to the specified environment only.

Responses
GET request with results

GET /puppet/v3/environment_modules?environment=env

HTTP/1.1 200 OK
Content-Type: application/json

{
 "modules": [
 {
 "name": "puppetlabs/ntp",
 "version": "6.0.0"
 },
 {
 "name": "puppetlabs/stdlib",
 "version": "4.14.0"
 }
],
 "name": "env"
}

Environment does not exist

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 323

If you send a request with an environment parameter that doesn't correspond to the name of a directory environment
on the server, the server returns an HTTP 404 (Not Found) error:

GET /puppet/v3/environment_modules?environment=doesnotexist

HTTP/1.1 404 Not Found

Could not find environment 'doesnotexist'

No environment given

GET /puppet/v3/environment_modules

HTTP/1.1 400 Bad Request

An environment parameter must be specified

Environment parameter specified with no value

GET /puppet/v3/environment_modules?environment=

HTTP/1.1 400 Bad Request

The environment must be purely alphanumeric, not ''

Environment includes non-alphanumeric characters

If the environment parameter in your request includes any characters that are not A-Z, a-z, 0-9, or _ (underscore),
the server returns an HTTP 400 (Bad Request) error:

GET /puppet/v3/environment_modules?environment=bog|us

HTTP/1.1 400 Bad Request

The environment must be purely alphanumeric, not 'bog|us'

No metadata.json file

If your modules do not have a metadata.json file, puppetserver will not be able to determine the version of your
module. In this case, puppetserver will return a null value for version in the response body.

Schema

An environment modules response body conforms to the environment modules schema.

Validating your json

If you have a response body that you'd like to validate against the environment_modules.json schema, you can do so
using the ruby library json-schema.

First, install the ruby gem to be used:

gem install json-schema

Next, given a json file, you can validate its schema.

Here is a basic json file called example.json:

{
 "modules": [
 {
 "name": "puppetlabs/ntp",
 "version": "6.0.0"

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/modules_metadata.html
b63911e22471d502a9f6afccbd06d99bc8201622.json
b63911e22471d502a9f6afccbd06d99bc8201622.json
https://github.com/ruby-json-schema/json-schema

Puppet | The Puppet platform | 324

 },
 {
 "name": "puppetlabs/stdlib",
 "version": "4.16.0"
 }
],
 "name": "production"
}

Run this command from the root dir of the puppetserver project (or update the path to the json schema file in the
command below):

ruby -rjson-schema -e "puts JSON::Validator.validate!('./documentation/
puppet-api/v3/environment_modules.json','example.json')"

If the json is a valid schema, the command should output true. Otherwise, the library will print a schema validation
error detailing which key or keys validate the schema.

If you have a response that is the entire list of environment modules (i.e. the environment_modules endpoint), you
will need to use this command to validate the json schema:

ruby -rjson-schema -e "puts JSON::Validator.validate!('./documentation/
puppet-api/v3/environment_modules.json','all.json', :list=>true)"

Authorization

Unlike other Puppet primary server service-based API endpoints, the environment modules API is provided
exclusively by Puppet Server. All requests made to the environment modules API are authorized using the
Trapperkeeper-based auth.conf on page 148 feature introduced in Puppet Server 2.2.0, and ignores the older Ruby-
based authorization process and configuration. The value of the use-legacy-auth-conf setting in the jruby-
puppet configuration section of puppetserver.conf on page 144 is ignored for requests to the environment
modules API, because the Ruby-based authorization process is not equipped to authorize these requests.

For more information about the Puppet Server authorization process and configuration settings, see the auth.conf on
page 148.

Static file content

The static_file_content endpoint returns the standard output of a code-content-command script, which
should output the contents of a specific version of a file resource that has a source attribute with a puppet:///
URI value. That source must be a file from the files, scripts, or tasks directory of a module in a specific
environment.

Puppet Agent uses this endpoint only when applying a static catalog. This endpoint is available only when the Puppet
primary server is running Puppet Server, not Ruby Puppet primary servers, such as the deprecated WEBrick Puppet
primary server.

GET /puppet/v3/static_file_content/<FILE-PATH>

(Introduced in Puppet Server 2.3.0)

To retrieve a specific version of a file at a given environment and path, make an HTTP request to this endpoint with
the required parameters.

The <FILE-PATH> segment of the endpoint is required. The path corresponds to the requested file's path on the
Server relative to the given environment's root directory, and must point to a file in the */*/files/**, */*/
lib/**, */*/scripts/**, or */*/tasks/** glob. For example, Puppet Server sources module files located
by default in /etc/puppetlabs/code/environments/<ENVIRONMENT>/modules/<MODULENAME>/
files/**, and interpolates the metadata from these files into static catalogs for file resources.

Query parameters

You must also pass two parameters in the GET request:

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/latest/config_file_puppetserver.html
https://puppet.com/docs/puppet/latest/type.html#file
https://puppet.com/docs/puppet/latest/environments_about.html
https://puppet.com/docs/puppet/latest/static_catalogs.html
https://puppet.com/docs/puppet/latest/services_master_webrick.html
https://puppet.com/docs/puppet/latest/services_master_webrick.html

Puppet | The Puppet platform | 325

• code_id: a unique string provided by the catalog that identifies which version of the file to return.
• environment: the environment that contains the desired file.

Response

A successful request to this endpoint returns an HTTP 200 response code and application/octet-stream
Content-Type header, and the contents of the specified file's requested version in the response body. An unsuccessful
request returns an error response code with a text/plain Content-Type header:

• 400: returned when any of the parameters are not provided.
• 403: returned when requesting a file that is not within a module's files, scripts, or tasks directory.
• 500: returned when code-content-command is not configured on the server, or when a requested file or

version is not present in a repository.

Example response

Consider a server localhost, with a versioned file located at /modules/example/files/data.txt
in the production environment. The version is identified by a code_id of urn:puppet:code-
id:1:67eb71417fbd736a619c8b5f9bfc0056ea8c53ca;production, and that version of the file
contains Puppet test.

If you run this command:

curl -i -k 'https://localhost:8140/puppet/v3/static_file_content/
modules/example/files/data.txt?code_id=urn:puppet:code-
id:1:67eb71417fbd736a619c8b5f9bfc0056ea8c53ca;production&environment=production'

Puppet Server returns:

HTTP/1.1 200 OK
Date: Wed, 2 Mar 2016 23:44:08 GMT
X-Puppet-Version: 4.4.0
Content-Length: 4
Server: Jetty(9.2.10.v20150310)

Puppet test

Notes

When requesting a file from this endpoint, Puppet Server passes the values of the file-path, code_id, and
environment parameters as arguments to the code-content-command script. If the script returns an exit code
of 0, Puppet Server returns the script's standard output, which should be the contents of the requested version of the
file.

This endpoint returns an error (status 500) if the code-content-command setting is not configured on Puppet
Server.

Note: The code-content-command and code-id-command scripts are not provided in a default
installation or upgrade. For more information about these scripts, see the static catalog documentation.

Authorization

Puppet Server always authorizes requests made to the static_file_content API endpoint with the
Trapperkeeper-based auth.conf feature introduced in Puppet Server 2.2. This is different than most other Puppet
primary server service-based endpoints, for which the authorization mechanism is controlled by the use-legacy-
auth-conf setting in the jruby-puppet configuration section. The value of the use-legacy-auth-
conf setting is ignored for the static_file_content API endpoint, and Puppet Server never uses the legacy
auth.conf mechanism when authorizing requests. For more information about authorization options, see the
auth.conf documentation.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/subsystem_catalog_compilation.html
https://puppet.com/docs/puppetserver/latest/config_file_puppetserver.html
https://puppet.com/docs/puppet/latest/static_catalogs.html
https://puppet.com/docs/puppetserver/latest/config_file_auth.html
https://puppet.com/docs/puppetserver/latest/config_file_auth.html

Puppet | The Puppet platform | 326

Administrative API endpoints

Environment cache

When using directory environments, the Puppet primary server caches the data it loads from disk for each
environment. Puppet Server adds a new endpoint to the primary server's HTTP API:

DELETE /puppet-admin-api/v1/environment-cache

To trigger a complete invalidation of the data in this cache, make an HTTP request to this endpoint.

Query Parameters

(Introduced in Puppet Server 1.1/2.1)

This endpoint accepts an optional query parameter, environment, whose value may be set to the name of a
specific Puppet environment. If this parameter is provided, only the specified environment will be flushed from the
cache, as opposed to all environments.

Response

A successful request to this endpoint will return an HTTP 204: No Content. The response body will be empty.

Example

$ curl -i --cert <PATH TO CERT> --key <PATH TO KEY> --cacert <PATH TO PUPPET
 CA CERT> -X DELETE https://localhost:8140/puppet-admin-api/v1/environment-
cache
HTTP/1.1 204 No Content

$ curl -i --cert <PATH TO CERT> --key <PATH TO KEY> --cacert <PATH TO PUPPET
 CA CERT> -X DELETE https://localhost:8140/puppet-admin-api/v1/environment-
cache?environment=production
HTTP/1.1 204 No Content

Relevant Configuration

Access to this endpoint is controlled by the puppet-admin section of puppetserver.conf. See Configuring
Puppet Server on page 142 for more information.

In the example above, the curl command is using a certificate and private key. You must make sure this certificate's
name is included in the puppet-admin -> client-allowlist setting before you can use it.

JRuby pool

Puppet Server contains a pool of JRuby instances. Puppet Server adds a new, experimental endpoint to the primary
server's HTTP API:

DELETE /puppet-admin-api/v1/jruby-pool

This will remove all of the existing JRuby interpreters from the pool, allowing the memory occupied by these
interpreters to be reclaimed by the JVM's garbage collector. The pool will then be refilled with new JRuby instances,
each of which will load the latest Ruby code and related resources from disk.

If you're developing new Ruby plugins that run on the Puppet primary server (functions, resource types, report
handlers), you may need to force Puppet to re-load its plugins when a new version is ready to test. Killing the JRuby
instances will do this, and it's faster than restarting the entire JVM process.

Furthermore, if you are using multiple environments, this could be useful if you want to make sure that your JRuby
instances are cleaned up and don't have conflicts based on common code that appears in multiple environments.

This is an experimental feature, and as such the performance impact is unknown at this time. Also, please note that
this operation is computationally expensive, and as such Puppet Server will be unable to fulfill any incoming requests
until the first of the new interpreters has been initialized, which may take several seconds.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/environments_creating.html

Puppet | The Puppet platform | 327

Response

A successful request to this endpoint will return an HTTP 204: No Content. The response body will be empty.

Example

$ curl -i --cert <PATH TO CERT> --key <PATH TO KEY> --cacert <PATH TO PUPPET
 CA CERT> -X DELETE https://localhost:8140/puppet-admin-api/v1/jruby-pool
HTTP/1.1 204 No Content

GET /puppet-admin-api/v1/jruby-pool/thread-dump

Retrieve a Ruby thread dump for each JRuby instance registered to the pool. The thread dump provides a
backtrace through the Ruby code that each instance is executing and is useful for diagnosing instances that have
stalled or are otherwise unresponsive. Backtraces are generated using the JRuby JMX interface and require the
jruby.management.enabled property to be set to true in the JVM running Puppet Server.

Response

A successful request to this endpoint will return a HTTP 200: Ok status code. The response body will be a JSON
document containing a map that associates each JRuby instance ID with a map containing a thread-dump entry
that has a string value with the Ruby backtrace.

A HTTP 500: Internal Server Error status code will be returned if an exception occurs while retrieving
the thread dump for a JRuby instance, or if the jruby.management.enabled property is not set to true. The
response body in this case is also JSON, but the failed instances will be associated with a map containing a error
entry with a value describing the issue.

Example

$ curl -si --cert <PATH TO CERT> --key <PATH TO KEY> --cacert <PATH TO
 PUPPET CA CERT> -X GET https://localhost:8140/puppet-admin-api/v1/jruby-
pool/thread-dump
HTTP/1.1 200 OK

{"1":{"thread-dump":"All threads known to Ruby instance 1960016402\n
\n ..."}}

Error returned when jruby.management.enabled is not configured
$ curl -si --cert <PATH TO CERT> --key <PATH TO KEY> --cacert <PATH TO
 PUPPET CA CERT> -X GET https://localhost:8140/puppet-admin-api/v1/jruby-
pool/thread-dump
HTTP/1.1 500 Server Error

{"1":{"error":"JRuby management interface not enabled. Add '-
Djruby.management.enabled=true' to JAVA_ARGS to enable thread dumps."}}

Relevant Configuration

Access to this endpoint is controlled by the puppet-admin section of puppetserver.conf. See Configuring
Puppet Server on page 142 for more information.

In the example above, the curl command is using a certificate and private key. You must make sure this certificate's
name is included in the puppet-admin -> client-allowlist setting before you can use it.

Bootstrap upgrade notes

Potential upgrade issues

Potential breaking issues when upgrading with a modified bootstrap.cfg

If you disabled the certificate authority (CA) on Puppet Server by editing the bootstrap.cfg file file on older
versions of Puppet Server --- for instance, because you have a multi-server configuration with the default CA disabled

© 2024 Puppet, Inc., a Perforce company

https://docs.puppet.com/puppetserver/2.4/external_ca_configuration.html#disabling-the-internal-puppet-ca-service

Puppet | The Puppet platform | 328

on some primary servers, or use an external CA --- be aware that Puppet Server as of version 2.5.0 no longer uses the
bootstrap.cfg file.

Puppet Server 2.5.0 and newer instead create a new configuration file, /etc/puppetlabs/puppetserver/
services.d/ca.cfg, if it doesn't already exist, and this new file enables CA services by default.

To ensure that CA services remain disabled after upgrading, create the /etc/puppetlabs/puppetserver/
services.d/ca.cfg file with contents that disable the CA services before you upgrade to Server 2.5.0. The
puppetserver service restarts after the upgrade if the service is running before the upgrade, and the service restart
also reloads the new ca.cfg file.

Also, back up your primary servers' ssldir (or at least your crl.pem file) before you upgrade to ensure that you
can restore your previous certificates and certificate revocation list, so you can restore them in case any mistakes or
failures to disable the CA services in ca.cfg lead to a server unexpectedly enabling CA services and overwriting
them.

Potential service failures when upgrading with a modified init configuration

If you modified the init configuration file --- for instance, to configure Puppet Server's JVM memory allocation or
Tuning guide on page 257 --- and upgrade Puppet Server 2.5.0 or newer with a package manager, you might see a
warning during the upgrade that the updated package will overwrite the file (/etc/sysconfig/puppetserver
in Red Hat and derivatives, or /etc/default/puppetserver in Debian-based systems).

The changes to the file support the new service bootstrapping behaviors. If you don't accept changes to the file during
the upgrade, the puppetserver service fails and you might see a Service ':PoolManagerService' not
found or similar warning. To resolve the issue, set the BOOTSTRAP_CONFIG setting in the init configuration file
to:

BOOTSTRAP_CONFIG="/etc/puppetlabs/puppetserver/services.d/,/opt/puppetlabs/
server/apps/puppetserver/config/services.d/"

If you modified other settings in the file before upgrading, and then overwrite the file during the upgrade, you might
need to reapply those modifications after the upgrade.

Users of Puppet Server 2.4.x and earlier could modify their bootstrap.cfg file in order to disable the CA on
compile servers and support a multi-server configuration. Upgrades between these older versions have been painful,
however, due to package managers attempting to overwrite this file during upgrades.

This could cause two problems:

1. If users disabled CA services and chose the packaged version during the upgrade, CA services would be re-
enabled on the server after the upgrade, which could break their multi-server setup.

2. If users disabled CA services and chose their version of bootstrap.cfg, and the new version contained
settings for new services that were added to the packaged version of bootstrap.cfg, and in that case, the
server will fail to start.

Puppet Server 2.5.0 takes the first steps toward resolving this problem while maintaining configurability by changing
how service bootstrap configuration works. However, users of Puppet Server 2.4.x and older who disabled the
CA service in bootstrap.cfg must take special precautions when upgrading to 2.5.0 or newer to prevent
the upgrade process from re-enabling the CA service or potentially overwriting files in the ssldir. (Subsequent
releases should no longer be subject to this issue.)

Upgrading to 2.5.0 or newer

Puppet Server 2.5.0 and newer no longer use the bootstrap.cfg file to configure service bootstrapping. Instead,
it reads files within the /etc/puppetlabs/puppetserver/services.d/ directory, which can contain
multiple files --- some designed to be edited by users --- that configure service bootstrapping.

If you edited or manage your bootstrap.cfg file, do the following:

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/dirs_ssldir.html
https://docs.puppet.com/puppetserver/2.4/external_ca_configuration.html#disabling-the-internal-puppet-ca-service
https://docs.puppet.com/puppetserver/2.4/external_ca_configuration.html#disabling-the-internal-puppet-ca-service

Puppet | The Puppet platform | 329

Before you upgrade: ca.cfg

Warning: Back up your primary servers' ssldir (or at least your crl.pem file) before the upgrade.
If a server unexpectedly enables CA services or an emergency rollback overwrites your certificates and
certificate revocation list, you'll need to restore them from backups.

Puppet Server 2.5 and newer create a new configuration file, /etc/puppetlabs/puppetserver/
services.d/ca.cfg, if it doesn't already exist, and this new file enables CA services by default.

To ensure that CA services remain disabled after upgrading, create the /etc/puppetlabs/puppetserver/
services.d/ca.cfg file with contents that disable the CA services before you upgrade to Server 2.5.0 or newer.
Unlike the bootstrap.cfg file, package managers do not overwrite the new ca.cfg file, allowing future
upgrades to respect settings without attempting to overwrite them.

This example ca.cfg file disables the CA services:

To enable the CA service, leave the following line uncommented
#puppetlabs.services.ca.certificate-authority-service/certificate-authority-
service
To disable the CA service, comment out the above line and uncomment the
 line below
puppetlabs.services.ca.certificate-authority-disabled-service/certificate-
authority-disabled-service

After you upgrade: New bootstrap configuration files

Starting in Puppet Server 2.5.0, the bootstrap.cfg file has been split into multiple configuration files in two
locations:

• /etc/puppetlabs/puppetserver/services.d/: For services that users are expected to edit.
• /opt/puppetlabs/server/apps/puppetserver/config/services.d/: For services users

shouldn't edit.

Any files with a .cfg extension in either of these locations are combined to form the final set of services Puppet
Server will use.

The CA-related configuration settings previously in bootstrap.cfg are set in /etc/puppetlabs/
puppetserver/services.d/ca.cfg. If services added in future versions have user-configurable settings, the
configuration files will be in this directory. When upgrading Puppet Server 2.5.0 and newer with a package manager,
it should not overwrite files already in this directory.

The remaining services are configured in /opt/puppetlabs/server/apps/puppetserver/config/
services.d/bootstrap.cfg. This allows us to create and enforce default configuration files for other services
across upgrades.

Certificate authority and SSL
Puppet can use its built-in certificate authority (CA) and public key infrastructure (PKI) tools or use an existing
external CA for all of its secure socket layer (SSL) communications.

Puppet uses certificates to verify the the identity of nodes. These certificates are issued by the certificate authority
(CA) service of a Puppet primary server. When a node checks into the Puppet v for the first time, it requests a
certificate. The Puppet primary server examines this request, and if it seems safe, creates a certificate for the node.
When the agent node picks up this certificate, it knows it can trust the Puppet primary server, and it can now identify
itself later when requesting a catalog.

After installing the Puppet Server, before starting it for the first time, use the puppetserver ca setup
command to create a default intermediate CA. For more complex use cases, see the Intermediate and External CA
documentation.

Note: For backward compatibility, starting Puppet Server before running puppetserver ca setup creates
the old single-cert CA. This configuration is not recommended, so if you are using Puppet 6, use the setup command
instead.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/dirs_ssldir.html

Puppet | The Puppet platform | 330

Puppet provides two command line tools for performing SSL tasks:

• puppetserver ca signs certificate requests and revokes certificates.
• puppet ssl performs agent-side tasks, such as submitting a certificate request or downloading a node

certificate.

What's changed in Puppet 6

Puppet 6 removes the puppet cert command and its associated certificate-related faces. In Puppet 6 you must use
the new subcommands listed above instead.

Puppet 6 also introduces full support for intermediate CAs, the recommended architecture. This requires changes on
both the server and the agent, so using it requires both the server and the agent to be updated to Puppet 6.

• Puppet Server CA commands on page 330
Puppet Server has a puppetserver ca command that performs certificate authority (CA) tasks like signing
and revoking certificates. Most of its actions are performed by making HTTP requests to Puppet Server’s CA API,
specifically the certificate_status endpoint. You must have Puppet Server running in order to sign or revoke
certificates.
• Intermediate CA on page 243
• Autosigning certificate requests on page 334
Before Puppet agent nodes can retrieve their configuration catalogs, they require a signed certificate from the local
Puppet certificate authority (CA). When using Puppet’s built-in CA instead of an external CA, agents submit a
certificate signing request (CSR) to the CA to retrieve a signed certificate after it's available.
• CSR attributes and certificate extensions on page 338
When Puppet agent nodes request their certificates, the certificate signing request (CSR) usually contains only their
certname and the necessary cryptographic information. Agents can also embed additional data in their CSR, useful for
policy-based autosigning and for adding new trusted facts.
• Regenerating certificates in a Puppet deployment on page 343
In some cases, you might need to regenerate the certificates and security credentials (private and public keys) that are
generated by Puppet’s built-in PKI systems.
• External CA on page 346
This information describes the supported and tested configurations for external CAs in this version of Puppet. If you
have an external CA use case that isn’t listed here, contact Puppet so we can learn more about it.
• External SSL termination on page 246

Puppet Server CA commands
Puppet Server has a puppetserver ca command that performs certificate authority (CA) tasks like signing
and revoking certificates. Most of its actions are performed by making HTTP requests to Puppet Server’s CA API,
specifically the certificate_status endpoint. You must have Puppet Server running in order to sign or revoke
certificates.

CA subcommands

If you have yet to review the actions for the puppetserver ca command, visit Subcommands. Some actions have
additional options. Run puppetserver ca help for details.

The puppetserver-ca CLI tool is shipped as a gem alongside Puppet Server. You can update the gem between
releases for bug fixes and improvements. To update the gem, run:

/opt/puppetlabs/puppet/bin/gem install -i /opt/puppetlabs/puppet/lib/ruby/
vendor_gems puppetserver-ca

API authentication

Access to the certificate_status API endpoint is tightly restricted for security purposes because the endpoint
lets you sign or revoke certificates. To access the certificate_status and certificate_statuses
endpoints, you must add a special extension to each endpoint's allowlist in the auth.conf entries. If other CSRs

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/latest/intermediate_ca.html
https://puppet.com/docs/puppet/7/server/subcommands.html

Puppet | The Puppet platform | 331

request this extension, Puppet Server refuses to sign them because the extension is reserved (even if allow-
authorization-extensions is set to true).

If you need a certificate with this extension, you can generate it offline by doing the following:

1. Stop Puppet Server.

Note: Although this particular use of the generate command requires you to stop puppetserver service,
all other uses of this command require the service to be running.

2. Run puppetserver ca generate --ca-client --certname <name>

API authentication is required for regenerating the primary server's certificate. For details on certificate regeneration,
visit Regenerating certificates in a Puppet deployment.

Upgrading

To use the Puppet CA commands, you must update Puppet Server's auth.conf to include a rule that allows the
primary server's certname to access the certificate_status and certicate_statuses endpoints.

The following example displays how to allow the CA commands to access the certificate_status endpoint:

{
 match-request: {
 path: "/puppet-ca/v1/certificate_status"
 type: path
 method: [get, put, delete]
 }
 allow: primaryserver.example.com
 sort-order: 500
 name: "puppetlabs cert status"
},

For more information about upgrading your auth.conf file, visit auth.conf.

Signing certificates with subject alternative names or auth extensions

Puppet Server's CA API can sign certificates with subject alternative names (SANs) or auth extensions. These options
are disabled by default for security purposes. To enable these options, in the certificate-authority section
of Puppet Server's configuration (usually located in ca.conf), set allow-subject-alt-names or allow-
authorization-extensions to true. After configuration, you can use puppetserver ca sign --
certname <name> to sign certificates with these additions.

Intermediate CA

Puppet Server supports both a simple CA architecture, with a self-signed root cert that is also used as the CA signing
cert; and an intermediate CA architecture, with a self-signed root that issues an intermediate CA cert used for signing
incoming certificate requests. The intermediate CA architecture is preferred, because it is more secure and makes
regenerating certs easier. To generate a default intermediate CA for Puppet Server, run the puppetserver ca
setup command before starting your server for the first time.

The following diagram shows the configuration of Puppet's basic certificate infrastructure.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/7/ssl_regenerate_certificates.html#ssl_regenerate_certificates
https://puppet.com/docs/puppet/7/server/config_file_auth.html

Puppet | The Puppet platform | 332

If you have an external certificate authority, you can create a cert chain from it, and use the puppetserver ca
import subcommand to install the chain on your server. Puppet agents starting with Puppet 6 handle an intermediate
CA setup out of the box. No need to copy files around by hand or configure CRL checking. Like setup, import
needs to be run before starting your server for the first time.

Note: The PE installer uses the puppetserver ca setup command to create a root cert and an intermediate
signing cert for Puppet Server. This means that in PE, the default CA is always an intermediate CA as of PE 2019.0.

Note: If for some reason you cannot use an intermediate CA, in Puppet Server 6 starting the server will generate
a non-intermediate CA the same as it always did before the introduction of these commands. However, we don't
recommend this, as using an intermediate CA provides more security and easier paths for CA regeneration. It is also
the default in PE, and some recommended workflows may rely on it.

Where to set CA configuration

All CA configuration takes place in Puppet’s config file. See the Puppet Configuration Reference for details.

Set up Puppet as an intermediate CA with an external root

Puppet Server needs to present the full certificate chain to clients so the client can authenticate the server. You
construct the certificate chain by concatenating the CA certificates, starting with the new intermediate CA certificate
and descending to the root CA certificate.

The following diagram shows the configuration of Puppet's certificate infrastructure with an external root.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 333

To set up Puppet as an intermediate CA with an external root:

1. Collect the PEM-encoded certificates and CRLs for your organization's chain of trust, including the root
certificate, any intermediate certificates, and the signing certificate. (The signing certificate might be the root or
intermediate certificate.)

2. Create a private RSA key, with no passphrase, for the Puppet CA.
3. Create a PEM-encoded Puppet CA certificate.

a. Create a CSR for the Puppet CA.
b. Generate the Puppet CA certificate by signing the CSR using your external CA.

Ensure the CA constraint is set to true and the keyIdentifier is composed of the 160-bit SHA-1 hash of the
value of the bit string subjectPublicKeyfield. See RFC 5280 section 4.2.1.2 for details.

4. Concatenate all of the certificates into a PEM-encoded certificate bundle, starting with the Puppet CA cert and
ending with your root certificate.

-----BEGIN CERTIFICATE-----
<Puppet’s CA cert>
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
<Org’s intermediate CA signing cert>
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
<Org’s root CA cert>
-----END CERTIFICATE-----

5. Concatenate all of the CRLs into a PEM-encoded CRL chain, starting with any optional intermediate CA CRLs
and ending with your root certificate CRL.

-----BEGIN X509 CRL-----
<Puppet’s CA CRL>

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 334

-----END X509 CRL-----
-----BEGIN X509 CRL-----
<Org’s intermediate CA CRL>
-----END X509 CRL-----
-----BEGIN X509 CRL-----
<Org’s root CA CRL>
-----END X509 CRL-----

6. Use the puppetserver ca import command to trigger the rest of the CA setup:

puppetserver ca import --cert-bundle ca-bundle.pem --crl-chain crls.pem --
private-key puppet_ca_key.pem

7. optional.

openssl x509 -in /etc/puppetlabs/puppet/ssl/ca/signed/<HOSTNAME>.crt
-text -noout
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 1 (0x1)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: CN=intermediate-ca

Note: Puppet 5 agents still do not support intermediate CAs. If you must use a Puppet 5 agent with a new (or
regenerated) Puppet 6 CA, follow the instructions for setting up Puppet 5 agents for intermediate CAs.

Autosigning certificate requests
Before Puppet agent nodes can retrieve their configuration catalogs, they require a signed certificate from the local
Puppet certificate authority (CA). When using Puppet’s built-in CA instead of an external CA, agents submit a
certificate signing request (CSR) to the CA to retrieve a signed certificate after it's available.

By default, these CSRs must be manually signed by an admin user, using either the puppetserver ca command
or the Node requests page in the Puppet Enterprise console.

Alternatively, to speed up the process of bringing new agent nodes into the deployment, you can configure the CA to
automatically sign certain CSRs.

CAUTION: Autosigning CSRs changes the nature of your deployment’s security, and you should
understand the implications before configuring it. Each type of autosigning has its own security impact.

Disabling autosigning
By default, the autosign setting in the [server] section of the CA’s puppet.conf file is set to $confdir/
autosign.conf. The basic autosigning functionality is enabled upon installation.

Depending on your installation method, there might not be an allowlist at that location after the Puppet Server is
running:

• Open source Puppet: autosign.conf doesn’t exist by default.
• Monolithic Puppet Enterprise (PE) installations: All required services run on one server, and autosign.conf

exists on the primary server, but by default it's empty because the primary server doesn’t need to add other servers
to an allowlist.

• Split PE installations: Services like PuppetDB can run on different servers, the autosign.conf exists on the
CA server and contains an allowlist of other required hosts.

If the autosign.conf file is empty or doesn’t exist, the allowlist is effectively empty. The CA Puppet primary
server doesn’t autosign any certificates until the the autosign setting’s path is configured, or until the default
autosign.conf file is a non-executable allowlist file. This file must contain correctly formatted content or a
custom policy executable that the Puppet user has permission to run.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 335

To explicitly disable autosigning, set autosign = false in the [server] section of the CA Puppet primary
server’s puppet.conf. This disables CA autosigning even if the autosign.conf file or a custom policy
executable exists.

For more information about the autosign setting in puppet.conf, see the configuration reference.

Naïve autosigning
Naïve autosigning causes the CA to autosign all CSRs.

To enable naïve autosigning, set autosign = true in the [server] section of the CA Puppet primary server’s
puppet.conf.

CAUTION: For security reasons, never use naïve autosigning in a production deployment. Naïve
autosigning is suitable only for temporary test deployments that are incapable of serving catalogs containing
sensitive information.

Basic autosigning (autosign.conf)
In basic autosigning, the CA uses a config file containing an allowlist of certificate names and domain name globs.
When a CSR arrives, the requested certificate name is checked against the allowlist file. If the name is present, or
covered by one of the domain name globs, the certificate is autosigned. If not, it's left for a manual review.

Enabling basic autosigning

The autosign.conf allowlist file’s location and contents are described in its documentation.

Puppet looks for autosign.conf at the path configured in the [autosign setting] within the [server]
section of puppet.conf. The default path is $confdir/autosign.conf, and the default confdir path
depends on your operating system. For more information, see the confdir documentation.

If the autosign.conf file pointed to by the autosign setting is a file that the Puppet user can execute, Puppet
instead attempts to run it as a custom policy executable, even if it contains a valid autosign.conf allowlist.

Note: In open source Puppet, no autosign.conf file exists by default. In Puppet Enterprise, the file exists by
default but might be empty. In both cases, the basic autosigning feature is technically enabled by default but doesn’t
autosign any certificates because the allowlist is effectively empty.

The CA Puppet primary server therefore doesn’t autosign any certificates until the autosign.conf file contains a
properly formatted allowlist or is a custom policy executable that the Puppet user has permission to run, or until the
autosign setting is pointed at an allowlist file with properly formatted content or a custom policy executable that
the Puppet user has permission to run.

Security implications of basic autosigning

Basic autosigning is insecure because any host can provide any certname when requesting a certificate. Use it only
when you fully trust any computer capable of connecting to the Puppet primary server.

With basic autosigning enabled, an attacker who guesses an unused certname allowed by autosign.conf can
obtain a signed agent certificate from the Puppet primary server. The attacker could then obtain a configuration
catalog, which can contain sensitive information depending on your deployment’s Puppet code and node
classification.

Policy-based autosigning
In policy-based autosigning, the CA runs an external policy executable every time it receives a CSR. This executable
examines the CSR and tells the CA whether the certificate is approved for autosigning. If the executable approves, the
certificate is autosigned; if not, it's left for manual review.

Enabling policy-based autosigning

To enable policy-based autosigning, set autosign = <policy executable file> in the [server]
section of the CA Puppet primary server’s puppet.conf.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 336

The policy executable file must be executable by the same user as the Puppet primary server. If not, it is treated as a
certname allowlist file.

Custom policy executables

A custom policy executable can be written in any programming language; it just has to be executable in a *nix-like
environment. The Puppet primary server passes it the certname of the request (as a command line argument) and the
PEM-encoded CSR (on stdin), and expects a 0 (approved) or non-zero (rejected) exit code.

After it has the CSR, a policy executable can extract information from it and decide whether to approve the certificate
for autosigning. This is useful when you are provisioning your nodes and are embedding additional information in the
CSR.

If you aren’t embedding additional data, the CSR contains only the node’s certname and public key. This can still
provide more flexibility and security than autosign.conf, as the executable can do things like query your
provisioning system, CMDB, or cloud provider to make sure a node with that name was recently added.

Security implications of policy-based autosigning

Depending on how you manage the information the policy executable is using, policy-based autosigning can be fast
and extremely secure.

For example:

• If you embed a unique pre-shared key on each node you provision, and provide your policy executable with
a database of these keys, your autosigning security is as good as your handling of the keys. As long as it’s
impractical for an attacker to acquire a PSK, it's impractical for them to acquire a signed certificate.

• If nodes running on a cloud service embed their instance UUIDs in their CSRs, and your executable queries the
cloud provider’s API to check that a node's UUID exists in your account, your autosigning security is as good
as the security of the cloud provider’s API. If an attacker can impersonate a legit user to the API and get a list of
node UUIDs, or if they can create a rogue node in your account, they can acquire a signed certificate.

When designing your CSR data and signing policy, you must think things through carefully. If you can arrange
reasonable end-to-end security for secret data on your nodes, you can configure a secure autosigning system.

Policy executable API

The API for policy executables is as follows.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 337

Run environment • The executable runs one time for each incoming
CSR.

• It is executed by the Puppet primary server process
and runs as the same user as the Puppet primary
server.

• The Puppet primary server process is blocked until
the executable finishes running. We expect policy
executables to finish in a timely fashion; if they
do not, it’s possible for them to tie up all available
Puppet primary server threads and deny service
to other agents. If an executable needs to perform
network requests or other potentially expensive
operations, the author is in charge of implementing
any necessary timeouts, possibly bailing and exiting
non-zero in the event of failure.

Arguments • The executable must allow a single command
line argument. This argument is the Subject CN
(certname) of the incoming CSR.

• No other command line arguments should be
provided.

• The Puppet primary server should never fail to
provide this argument.

Stdin • The executable receives the entirety of the incoming
CSR on its stdin stream. The CSR is encoded in pem
format.

• The stdin stream contains nothing but the complete
CSR.

• The Puppet primary server should never fail to
provide the CSR on stdin.

Exit status • The executable must exit with a status of 0 if the
certificate should be autosigned; it must exit with a
non-zero status if it should not be autosigned.

• The Puppet primary server treats all non-zero exit
statuses as equivalent.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 338

Stdout and stderr • Anything the executable emits on stdout or stderr is
copied to the Puppet Server log output at the debug
log level. Puppet otherwise ignores the executable’s
output; only the exit code is considered significant.

CSR attributes and certificate extensions
When Puppet agent nodes request their certificates, the certificate signing request (CSR) usually contains only their
certname and the necessary cryptographic information. Agents can also embed additional data in their CSR, useful for
policy-based autosigning and for adding new trusted facts.

Embedding additional data into CSRs is useful when:

• Large numbers of nodes are regularly created and destroyed as part of an elastic scaling system.
• You are willing to build custom tooling to make certificate autosigning more secure and useful.

It might also be useful in deployments where Puppet is used to deploy private keys or other sensitive information, and
you want extra control over nodes that receive this data.

If your deployment doesn’t match one of these descriptions, you might not need this feature.

Timing: When data can be added to CSRs and certificates

When Puppet agent starts the process of requesting a catalog, it checks whether it has a valid signed certificate. If
it does not, it generates a key pair, crafts a CSR, and submits it to the certificate authority (CA) Puppet Server. For
detailed information, see agent/server HTTPS traffic.

For practical purposes, a certificate is locked and immutable as soon as it is signed. For data to persist in the
certificate, it has to be added to the CSR before the CA signs the certificate.

This means any desired extra data must be present before Puppet agent attempts to request its catalog for the first
time.

Populate any extra data when provisioning the node. If you make an error, see the Troubleshooting section below for
information about recovering from failed data embedding.

Data location and format
Extra data for the CSR is read from the csr_attributes.yaml file in Puppet's confdir. The location of this
file can be changed with the csr_attributes configuration setting.

The csr_attributes.yaml file must contain a YAML hash with one or both of the following keys:

• custom_attributes

• extension_requests

The value of each key must also be a hash, where:

• Each key is a valid object identifier (OID) — Puppet-specific OIDscan optionally be referenced by short name
instead of by numeric ID.

• Each value is an object that can be cast to a string — numbers are allowed but arrays are not.

For information about how each hash is used and recommended OIDs for each hash, see the sections below.

Custom attributes (transient CSR data)
Custom attributes are pieces of data that are embedded only in the CSR. The CA can use them when deciding whether
to sign the certificate, but they are discarded after that and aren’t transferred to the final certificate.

Default behavior

The puppetserver ca list command doesn’t display custom attributes for pending CSRs, and basic
autosigning (autosign.conf) doesn’t check them before signing.

© 2024 Puppet, Inc., a Perforce company

http://en.wikipedia.org/wiki/Object_identifier

Puppet | The Puppet platform | 339

Configurable behavior

If you use policy-based autosigning your policy executable receives the complete CSR in PEM format. The
executable can extract and inspect the custom attributes, and use them to decide whether to sign the certificate.

The simplest method is to embed a pre-shared key of some kind in the custom attributes. A policy executable can
compare it to a list of known keys and autosign certificates for any pre-authorized nodes.

A more complex use might be to embed an instance-specific ID and write a policy executable that can check it against
a list of your recently requested instances on a public cloud, like EC2 or GCE.

Manually checking for custom attributes in CSRs

You can check for custom attributes by using OpenSSL to dump a CSR in pem format to text format, by running this
command:

openssl req -noout -text -in <name>.pem

In the output, look for the Attributes section which appears below the Subject Public Key Info block:

Attributes:
 challengePassword :342thbjkt82094y0uthhor289jnqthpc2290

Recommended OIDs for attributes

Custom attributes can use any public or site-specific OID, with the exception of the OIDs used for core X.509
functionality. This means you can’t re-use existing OIDs for things like subject alternative names.

One useful OID is the challengePassword attribute — 1.2.840.113549.1.9.7. This is a rarely-used
corner of X.509 that can easily be repurposed to hold a pre-shared key. The benefit of using this instead of an
arbitrary OID is that it appears by name when using OpenSSL to dump the CSR to text; OIDs that openssl req
can’t recognize are displayed as numerical strings.

You can also use the Puppet-specific OIDs.

Extension requests (permanent certificate data)
Extension requests are pieces of data that are transferred as extensions to the final certificate, when the CA signs the
CSR. They persist as trusted, immutable data, that cannot be altered after the certificate is signed.

They can also be used by the CA when deciding whether or not to sign the certificate.

Default behavior

When signing a certificate, Puppet’s CA tools transfer any extension requests into the final certificate.

You can access certificate extensions in manifests as $trusted["extensions"]["<EXTENSION OID>"].

Select OIDs in the ppRegCertExt and ppAuthCertExt ranges. See the Puppet-specific Registered IDs. By default, any
other OIDs appear as plain dotted numbers, but you can use the custom_trusted_oid_mapping.yaml
file to assign short names to any other OIDs you use at your site. If you do, those OIDs appear in $trusted as their
short names, instead of their full numerical OID.

For more information about $trusted, see Facts and built-in variables.

The visibility of extensions is limited:

• The puppetserver ca list command does not display custom attributes for any pending CSRs, and basic
autosigning (autosign.conf) doesn’t check them before signing. Either use policy-based autosigning or
inspect CSRs manually with the openssl command (see below).

Puppet’s authorization system (auth.conf) does not use certificate extensions, but Puppet Server’s authorization
system, which is based on trapperkeeper-authorization, can use extensions in the ppAuthCertExt
OID range, and requires them for requests to write access rules.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/latest/config_file_auth.html
https://puppet.com/docs/puppetserver/latest/config_file_auth.html

Puppet | The Puppet platform | 340

Configurable behavior

If you use policy-based autosigning, your policy executable receives the complete CSR in pem format. The
executable can extract and inspect the extension requests, and use them when deciding whether to sign the certificate.

Manually checking for extensions in CSRs and certificates

You can check for extension requests in a CSR by running the OpenSSL command to dump a CSR in pem format to
text format:

openssl req -noout -text -in <name>.pem

In the output, look for a section called Requested Extensions, which appears below the Subject Public
Key Info and Attributes blocks:

Requested Extensions:
 pp_uuid:
 .$ED803750-E3C7-44F5-BB08-41A04433FE2E
 1.3.6.1.4.1.34380.1.1.3:
 ..my_ami_image
 1.3.6.1.4.1.34380.1.1.4:
 .$342thbjkt82094y0uthhor289jnqthpc2290

Note: Every extension is preceded by any combination of two characters (.$ and .. in the example above) that
contain ASN.1 encoding information. Because OpenSSL is unaware of Puppet’s custom extensions OIDs, it’s unable
to properly display the values.

Any Puppet-specific OIDs (see below) appear as numeric strings when using OpenSSL.

You can check for extensions in a signed certificate by running puppetserver ca print <name>. In the
output, look for the X509v3 extensions section. Any of the Puppet-specific registered OIDs appear as their
descriptive names:

X509v3 extensions:
 Netscape Comment:
 Puppet Ruby/OpenSSL Internal Certificate
 X509v3 Subject Key Identifier:
 47:BC:D5:14:33:F2:ED:85:B9:52:FD:A2:EA:E4:CC:00:7F:7F:19:7E
 Puppet Node UUID:
 ED803750-E3C7-44F5-BB08-41A04433FE2E
 X509v3 Extended Key Usage: critical
 TLS Web Server Authentication, TLS Web Client Authentication
 X509v3 Basic Constraints: critical
 CA:FALSE
 Puppet Node Preshared Key:
 342thbjkt82094y0uthhor289jnqthpc2290
 X509v3 Key Usage: critical
 Digital Signature, Key Encipherment
 Puppet Node Image Name:
 my_ami_image

Recommended OIDs for extensions

Extension request OIDs must be under the ppRegCertExt (1.3.6.1.4.1.34380.1.1), ppPrivCertExt
(1.3.6.1.4.1.34380.1.2), or ppAuthCertExt (1.3.6.1.4.1.34380.1.3) OID arcs.

Puppet provides several registered OIDs (under ppRegCertExt) for the most common kinds of extension
information, a private OID range (ppPrivCertExt) for site-specific extension information, and an OID range for
safe authorization to Puppet Server (ppAuthCertExt).

There are several benefits to using the registered OIDs:

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 341

• You can reference them in the csr_attributes.yaml file with their short names instead of their numeric
IDs.

• You can access them in $trusted[extensions] with their short names instead of their numeric IDs.
• When using Puppet tools to print certificate info, they appear using their descriptive names instead of their

numeric IDs.

The private range is available for any information you want to embed into a certificate that isn’t widely used already.
It is completely unregulated, and its contents are expected to be different in every Puppet deployment.

You can use the custom_trusted_oid_mapping.yaml file to set short names for any private extension OIDs you use.
Note that this enables only the short names in the $trusted[extensions] hash.

Puppet-specific registered IDs

ppRegCertExt

The ppRegCertExt OID range contains the following OIDs:

Numeric ID Short name Descriptive name

1.3.6.1.4.1.34380.1.1.1 pp_uuid Puppet node UUID

1.3.6.1.4.1.34380.1.1.2 pp_instance_id Puppet node instance ID

1.3.6.1.4.1.34380.1.1.3 pp_image_name Puppet node image name

1.3.6.1.4.1.34380.1.1.4 pp_preshared_key Puppet node preshared key

1.3.6.1.4.1.34380.1.1.5 pp_cost_center Puppet node cost center name

1.3.6.1.4.1.34380.1.1.6 pp_product Puppet node product name

1.3.6.1.4.1.34380.1.1.7 pp_project Puppet node project name

1.3.6.1.4.1.34380.1.1.8 pp_application Puppet node application name

1.3.6.1.4.1.34380.1.1.9 pp_service Puppet node service name

1.3.6.1.4.1.34380.1.1.10 pp_employee Puppet node employee name

1.3.6.1.4.1.34380.1.1.11 pp_created_by Puppet node created_by tag

1.3.6.1.4.1.34380.1.1.12 pp_environment Puppet node environment name

1.3.6.1.4.1.34380.1.1.13 pp_role Puppet node role name

1.3.6.1.4.1.34380.1.1.14 pp_software_version Puppet node software version

1.3.6.1.4.1.34380.1.1.15 pp_department Puppet node department name

1.3.6.1.4.1.34380.1.1.16 pp_cluster Puppet node cluster name

1.3.6.1.4.1.34380.1.1.17 pp_provisioner Puppet node provisioner name

1.3.6.1.4.1.34380.1.1.18 pp_region Puppet node region name

1.3.6.1.4.1.34380.1.1.19 pp_datacenter Puppet node datacenter name

1.3.6.1.4.1.34380.1.1.20 pp_zone Puppet node zone name

1.3.6.1.4.1.34380.1.1.21 pp_network Puppet node network name

1.3.6.1.4.1.34380.1.1.22 pp_securitypolicy Puppet node security policy name

1.3.6.1.4.1.34380.1.1.23 pp_cloudplatform Puppet node cloud platform name

1.3.6.1.4.1.34380.1.1.24 pp_apptier Puppet node application tier

1.3.6.1.4.1.34380.1.1.25 pp_hostname Puppet node hostname

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 342

ppAuthCertExt

The ppAuthCertExt OID range contains the following OIDs:

Numeric ID Short name Descriptive name

1.3.6.1.4.1.34380.1.3.1 pp_authorization Certificate extension authorization

1.3.6.1.4.1.34380.1.3.13 pp_auth_role Puppet node role name for
authorization. For PE internal use
only.

Cloud provider attributes and extensions population example
To populate the csr_attributes.yaml file when you provision a node, use an automated script such as cloud-
init.

For example, when provisioning a new node from the AWS EC2 dashboard, enter the following script into the
Configure Instance Details —> Advanced Details section:

#!/bin/sh
if [! -d /etc/puppetlabs/puppet]; then
 mkdir /etc/puppetlabs/puppet
fi
cat > /etc/puppetlabs/puppet/csr_attributes.yaml << YAML
custom_attributes:
 1.2.840.113549.1.9.7: mySuperAwesomePassword
extension_requests:
 pp_instance_id: $(curl -s http://169.254.169.254/latest/meta-data/
instance-id)
 pp_image_name: $(curl -s http://169.254.169.254/latest/meta-data/ami-
id)
YAML

This populates the attributes file with the AWS instance ID, image name, and a pre-shared key to use with policy-
based autosigning.

Troubleshooting

Recovering from failed data embedding

When testing this feature for the first time, you might not embed the right information in a CSR, or certificate, and
might want to start over for your test nodes. This is not really a problem after your provisioning system is changed to
populate the data, but it can easily happen when doing things manually.

To start over, do the following.

On the test node:

• Turn off Puppet agent, if it’s running.
• If using Puppet version 6.0.3 or greater, run puppet ssl clean. If not, delete the following files:

• $ssldir/certificate_requests/<name>.pem

• $ssldir/certs/<name>.pem

On the CA primary Puppet server:

• Check whether a signed certificate exists. Use puppetserver ca list --all to see the complete list. If it
exists, revoke and delete it with puppetserver ca clean --certname <name>.

After you’ve done that, you can start over.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 343

Regenerating certificates in a Puppet deployment
In some cases, you might need to regenerate the certificates and security credentials (private and public keys) that are
generated by Puppet’s built-in PKI systems.

For example, you might have a Puppet primary server you need to move to a different network in your infrastructure,
or you might have experienced a security vulnerability that makes existing credentials untrustworthy.

Note: There are other, more automated ways of doing this. We recommend using Bolt to regenerate certs when
needed. See the Bolt documentation for more information. There is also a puppetlabs-certregen module
but is not supported with Puppet Server 6.

Important: The information on this page describes the steps for regenerating certs in an open source Puppet
deployment. If you use Puppet Enterprise do not use the information on this page, as it leaves you with an incomplete
replacement and non-functional deployment. Instead, PE customers must refer to one of the following pages:

• Regenerating certificates in split PE deployments
• Regenerating certificates in monolithic PE deployments

If your goal is to... Do this...

Regenerate an agent’s certificate Clear and regenerate certs for Puppet agents

Fix a compromised or damaged certificate authority Regenerate the CA and all certificates

Completely regenerate all Puppet deployment certificates Regenerate the CA and all certificates

Add DNS alt-names or other certificate extensions to
your existing Puppet primary server

Regenerate the agent certificate of your Puppet primary
server and add DNS alt-names or other certificates

Regenerate the agent certificate of your Puppet primary server and add DNS alt-names or other
certificate extensions
This option preserves the primary server/agent relationship and lets you add DNS alt-names or certificate extensions
to your existing primary server.

1. Revoke the Puppet primary server’s certificate and clean the CA files pertaining to it. Note that the agents won’t
be able to connect to the primary server until all of the following steps are finished.

puppetserver ca clean --certname <CERTNAME_OF_YOUR_SERVER>

2. Remove the agent-specific copy of the public key, private key, and certificate-signing request pertaining to the
certificate:

puppet ssl clean

3. Stop the Puppet primary server service:

puppet resource service puppetserver ensure=stopped

Note: The CA and server run in the same primary server so this also stops the CA.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/bolt/latest/bolt.html
https://forge.puppet.com/puppetlabs/certregen
https://puppet.com/docs/pe/2019.0/regenerate_certificates_split.html
https://puppet.com/docs/pe/2019.0/regenerate_certificates.html

Puppet | The Puppet platform | 344

4. After you’ve stopped the primary server and CA service, create a certificate signed by the CA and add DNS alt
names (comma separated):

 puppetserver ca generate --certname <CERTNAME> --subject-alt-names <DNS
 ALT NAMES> --ca-client

Note:

• If you don’t want to add DNS alt names to your primary server, omit the --subject-alt-names <DNS
ALT NAMES> option from the command above.

• Although this particular use of the generate command requires you to stop puppetserver service, all
other uses of this command require the service to be running.

5. Restart the Puppet primary server service:

puppet resource service puppetserver ensure=running

Regenerate the CA and all certificates

CAUTION: This process destroys the certificate authority and all other certificates. It is meant for use in
the event of a total compromise of your site, or some other unusual circumstance. If you want to preserve the
primary server/agent relationship, regenerate the agent certificate of your Puppet primary server. If you just
need to replace a few agent certificates, clear and regenerate certs for Puppet agents.

Step 1: Clear and regenerate certs on your primary Puppet server

On the primary server hosting the CA:

1. Back up the SSL directory, which is in /etc/puppetlabs/puppet/ssl/. If something goes wrong, you
can restore this directory so your deployment can stay functional. However, if you needed to regenerate your certs
for security reasons and couldn’t, get some assistance as soon as possible so you can keep your site secure.

2. Stop the agent service:

sudo puppet resource service puppet ensure=stopped

3. Stop the primary server service.

For Puppet Server, run:

sudo puppet resource service puppetserver ensure=stopped

4. Delete the SSL directory:

sudo rm -r /etc/puppetlabs/puppet/ssl

5. Regenerate the CA and primary server's cert:

sudo puppetserver ca setup

You will see this message: Notice: Signed certificate request for ca.

6. Start the primary server service by running:

sudo puppet resource service puppetserver ensure=running

7. Start the Puppet agent service by running this command:

sudo puppet resource service puppet ensure=running

At this point:

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 345

• You have a new CA certificate and key.
• Your primary server has a certificate from the new CA, and it can field new certificate requests.
• The primary server rejects any requests for configuration catalogs from nodes that haven’t replaced their

certificates. At this point, it is all of them except itself.
• When using any extensions that rely on Puppet certificates, like PuppetDB, the primary server won’t be able to

communicate with them. Consequently, it might not be able to serve catalogs, even to agents that do have new
certificates.

Step 2: Clear and regenerate certs for any extension
You might be using an extension, like PuppetDB or MCollective, to enhance Puppet. These extensions probably use
certificates from Puppet’s CA in order to communicate securely with the primary Puppet server. For each extension
like this, you’ll need to regenerate the certificates it uses.

Many tools have scripts or documentation to help you set up SSL, and you can often just re-run the setup instructions.

PuppetDB

We recommend PuppetDB users first follow the instructions in Step 3: Clear and regenerate certs for agents, below,
because PuppetDB re-uses Puppet agents’ certificates. After that, restart the PuppetDB service. See Redo SSL setup
after changing certificates for more information.

Step 3: Clear and regenerate certs for Puppet agents
To replace the certs on agents, you’ll need to log into each agent node and do the following steps.

1. Stop the agent service. On *nix:

sudo puppet resource service puppet ensure=stopped

On Windows, with Administrator privileges:

puppet resource service puppet ensure=stopped

2. Locate Puppet’s SSL directory and delete its contents.

The SSL directory can be determined by running puppet config print ssldir --section agent

3. Restart the agent service. On *nix:

sudo puppet resource service puppet ensure=running

On Windows, with Administrator privileges:

puppet resource service puppet ensure=running

When the agent starts, it generates keys and requests a new certificate from the CA primary server.

4. If you are not using autosigning, log in to the CA primary server and sign each agent node’s certificate request.

To view pending requests, run:

sudo puppetserver ca list

To sign requests, run:

sudo puppetserver ca sign --certname <NAME>

After an agent node’s new certificate is signed, it's retrieved within a few minutes and a Puppet run starts.

After you have regenerated all agents’ certificates, everything will be fully functional under the new CA.

Note: You can achieve the same results by turning these steps into Bolt tasks or plans. See the Bolt documentation
for more information.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetdb/latest/maintain_and_tune.html
https://puppet.com/docs/puppetdb/latest/maintain_and_tune.html
https://puppet.com/docs/bolt/latest/bolt.html

Puppet | The Puppet platform | 346

External CA
This information describes the supported and tested configurations for external CAs in this version of Puppet. If you
have an external CA use case that isn’t listed here, contact Puppet so we can learn more about it.

Supported external CA configurations

This version of Puppet supports some external CA configurations, however not every possible configuration is
supported.

We fully support the following setup options:

• Single CA which directly issues SSL certificates.
• Puppet Server functioning as an intermediate CA.

Fully supported by Puppet means:

• If issues arise that are considered bugs, we'll fix them as soon as possible.
• If issues arise in any other external CA setup that are considered feature requests, we’ll consider whether to

expand our support.

Option 1: Puppet Server functioning as an intermediate CA
Puppet Server can operate as an intermediate CA to an external root CA.

See Using Puppet Server as an intermediate certificate authority.

Option 2: Single CA
When Puppet uses its internal CA, it defaults to a single CA configuration. A single externally issued CA can also be
used in a similar manner.

This is an all or nothing configuration rather than a mix-and-match. When using an external CA, the built-in Puppet
CA service must be disabled and cannot be used to issue SSL certificates.

Note: Puppet cannot automatically distribute certificates in this configuration.

Puppet Server

Configure Puppet Server in three steps:

• Disable the internal CA service.
• Ensure that the certname does not change.
• Put certificates and keys in place on disk.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/latest/intermediate_ca.html

Puppet | The Puppet platform | 347

1. Edit the Puppet Server/etc/puppetlabs/puppetserver/services.d/ca.cfg file:

a) To disable the internal CA, comment out puppetlabs.services.ca.certificate-
authority-service/certificate-authority-service and uncomment
puppetlabs.services.ca.certificate-authority-disabled-service/certificate-
authority-disabled-service.

2. Set a static value for the certname setting in puppet.conf:

[server]
certname = puppetserver.example.com

Setting a static value prevents any confusion if the machine's hostname changes. The value must match the
certname you’ll use to issue the server's certificate, and it must not be blank.

3. Put the credentials from your external CA on disk in the correct locations. These locations must match what’s
configured in your webserver.conf file.

If you haven’t changed those settings, run the following commands to find the default locations.

Credential File location

Server SSL certificate puppet config print hostcert --
section server

Server SSL certificate private key puppet config print hostprivkey --
section server

Root CA certificate puppet config print localcacert --
section server

Root certificate revocation list puppet config print hostcrl --section
server

If you’ve put the credentials in the correct locations, you don't need to change any additional settings.

Puppet agent
You don’t need to change any settings. Put the external credentials into the correct filesystem locations. You can run
the following commands to find the appropriate locations.

Credential File location

Agent SSL certificate puppet config print hostcert --section
agent

Agent SSL certificate private key puppet config print hostprivkey --
section agent

Root CA certificate puppet config print localcacert --
section agent

Root certificate revocation list puppet config print hostcrl --section
agent

General notes and requirements

PEM encoding of credentials is mandatory

Puppet expects its SSL credentials to be in .pem format.

Normal Puppet certificate requirements still apply

Any Puppet Server certificate must contain the DNS name, either as the Subject Common Name (CN) or as a Subject
Alternative Name (SAN), that agent nodes use to attempt contact with the server.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/latest/config_file_webserver.html

Puppet | The Puppet platform | 348

Client DN authentication

Puppet Server is hosted by a Jetty web server; therefore. For client authentication purposes, Puppet Server can extract
the distinguished name (DN) from a client certificate provided during SSL negotiation with the Jetty web server.

The use of an X-Client-DN request header is supported for cases where SSL termination of client requests needs
to be done on an external server. See External SSL Termination with Puppet Server for details.

Web server configuration

Use the webserver.conf file for Puppet Server to configure Jetty. Several ssl- settings can be added to the
webserver.conf file to enable the web server to use the correct SSL configuration:

• ssl-cert: The value of puppet server --configprint hostcert. Equivalent to the
‘SSLCertificateFile’ Apache config setting.

• ssl-key: The value of puppet server --configprint hostprivkey. Equivalent to the
‘SSLCertificateKeyFile’ Apache config setting.

• ssl-ca-cert: The value of puppet server --configprint localcacert. Equivalent to the
‘SSLCACertificateFile’ Apache config setting.

• ssl-cert-chain: Equivalent to the ‘SSLCertificateChainFile’ Apache config setting. Optional.
• ssl-crl-path: The path to the CRL file to use. Optional.

An example webserver.conf file might look something like this:

webserver: {
client-auth : want
 ssl-host : 0.0.0.0
 ssl-port : 8140
 ssl-cert : /path/to/server.pem
 ssl-key : /path/to/server.key
 ssl-ca-cert : /path/to/ca_bundle.pem
 ssl-cert-chain : /path/to/ca_bundle.pem
 ssl-crl-path : /etc/puppetlabs/puppet/ssl/crl.pem
}

For more information on these settings, seeConfiguring the Web Server Service.

Restart required

After the above changes are made to Puppet Server’s configuration files, you’ll have to restart the Puppet Server
service for the new settings to take effect.

External SSL termination

Use the following steps to configure external SSL termination.

Disable HTTPS for Puppet Server

You'll need to turn off SSL and have Puppet Server use the HTTP protocol instead: remove the ssl-port and
ssl-host settings from the conf.d/webserver.conf file and replace them with port and host settings.
See Configuring the Webserver Service for more information on configuring the web server service.

Allow Client Cert Data From HTTP Headers

When using external SSL termination, Puppet Server expects to receive client certificate information via some HTTP
headers.

By default, reading this data from headers is disabled. To allow Puppet Server to recognize it, you'll need to set
allow-header-cert-info: true in the authorization config section of the /etc/puppetlabs/
puppetserver/conf.d/auth.conf file.

See Configuring Puppet Server on page 142 for more information on the puppetserver.conf and
auth.conf files.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/latest/external_ssl_termination.html
https://puppet.com/docs/puppetserver/latest/config_file_webserver.html
https://github.com/puppetlabs/trapperkeeper-webserver-jetty9/blob/master/doc/jetty-config.md
https://github.com/puppetlabs/trapperkeeper-webserver-jetty9/blob/master/doc/jetty-config.md

Puppet | The Puppet platform | 349

Note: This assumes the default behavior of Puppet 5 and greater of using Puppet Server's hocon auth.conf rather
Puppet's older ini-style auth.conf.

WARNING: Setting allow-header-cert-info to 'true' puts Puppet Server in an incredibly
vulnerable state. Take extra caution to ensure it is absolutely not reachable by an untrusted network.

With allow-header-cert-info set to 'true', authorization code will use only the client HTTP
header values---not an SSL-layer client certificate---to determine the client subject name, authentication
status, and trusted facts. This is true even if the web server is hosting an HTTPS connection. This applies
to validation of the client via rules in the auth.conf file and any trusted facts extracted from certificate
extensions.

If the client-auth setting in the webserver config block is set to need or want, the Jetty web
server will still validate the client certificate against a certificate authority store, but it will only verify the
SSL-layer client certificate---not a certificate in an X-Client-Cert header.

Reload Puppet Server

You'll need to reload Puppet Server for the configuration changes to take effect.

Configure SSL Terminating Proxy to Set HTTP Headers

The device that terminates SSL for Puppet Server must extract information from the client's certificate and insert that
information into three HTTP headers. See the documentation for your SSL terminator for details.

The headers you'll need to set are X-Client-Verify, X-Client-DN, and X-Client-Cert.

X-Client-Verify

Mandatory. Must be either SUCCESS if the certificate was validated, or something else if not. (The convention
seems to be to use NONE for when a certificate wasn't presented, and FAILED:reason for other validation
failures.) Puppet Server uses this to authorize requests; only requests with a value of SUCCESS will be considered
authenticated.

X-Client-DN

Mandatory. Must be the Subject DN of the agent's certificate, if a certificate was presented. Puppet Server uses this to
authorize requests.

X-Client-Cert

Optional. Should contain the client's PEM-formatted (Base-64) certificate (if a certificate was presented) in a single
URI-encoded string. Note that URL encoding is not sufficient; all space characters must be encoded as %20 and not +
characters.

Note: Puppet Server only uses the value of this header to extract trusted facts from extensions in the client
certificate. If you aren't using trusted facts, you can choose to reduce the size of the request payload by
omitting the X-Client-Cert header.

Note: Apache's mod_proxy converts line breaks in PEM documents to spaces for some reason, and
Puppet Server can't decode the result. We're tracking this issue as SERVER-217.

PuppetDB
All of the data generated by Puppet (for example facts, catalogs, reports) is stored in PuppetDB.

Storing data in PuppetDB allows Puppet to work faster and provides an API for other applications to access Puppet's
collected data. Once PuppetDB is full of your data, it becomes a great tool for infrastructure discovery, compliance
reporting, vulnerability assessment, and more. You perform all of these tasks with PuppetDB queries.

See the PuppetDB docs for more information.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/config_file_auth.html
https://puppet.com/docs/puppet/latest/lang_facts_and_builtin_vars.html#trusted-facts
https://docs.puppet.com/background/ssl/cert_anatomy.html#the-subject-dn-cn-certname-etc
https://docs.puppet.com/background/ssl/cert_anatomy.html#pem-file
https://puppet.com/docs/puppet/latest/lang_facts_and_builtin_vars.html#trusted-facts
https://tickets.puppetlabs.com/browse/SERVER-217
https://puppet.com/docs/puppetdb/latest/index.html

Puppet | The Puppet platform | 350

Facter
Facter is Puppet’s cross-platform system profiling library. It discovers and reports per-node facts, which are available
in your Puppet manifests as variables.

Facter is published as a gem to https://rubygems.org/. If you've already got Ruby installed, you can install Facter by
running:

gem install facter

• Facter: Core Facts on page 350
• Custom facts overview on page 393
You can add custom facts by writing snippets of Ruby code on the primary Puppet server. Puppet then uses plug-ins
in modules to distribute the facts to the client.
• Writing custom facts on page 399
A typical fact in Facter is an collection of several elements, and is written either as a simple value (“flat” fact) or as
structured data (“structured” fact). This page shows you how to write and format facts correctly.
• External facts on page 404
External facts provide a way to use arbitrary executables or scripts as facts, or set facts statically with structured data.
With this information, you can write a custom fact in Perl, C, or a one-line text file.
• Configuring Facter with facter.conf on page 407
The facter.conf file is a configuration file that allows you to cache and block fact groups, and manage how
Facter interacts with your system. There are three sections: facts, global, and cli. All sections are optional and
can be listed in any order within the file.

Facter: Core Facts

NOTE: This page was generated from the Puppet source code on 2022-02-07 10:11:53 -0800

This is a list of all of the built-in facts that ship with Facter, which includes both legacy facts and newer structured
facts.

Not all of them apply to every system, and your site might also use Custom facts overview on page 393 delivered
via Puppet modules. To see the full list of structured facts and values on a given system (including plugin facts), run
puppet facts at the command line. If you are using Puppet Enterprise, you can view all of the facts for any node
on the node's page in the console.

You can access facts in your Puppet manifests as $fact_name or $facts[fact_name]. For more information,
see Facts and built-in variables on page 844

Legacy Facts Note: As of Facter 3, legacy facts such as architecture are hidden by default to reduce
noise in Facter's default command-line output. These older facts are now part of more useful structured
facts; for example, architecture is now part of the os fact and accessible as os.architecture.
You can still use these legacy facts in Puppet manifests ($architecture), request them on the
command line (facter architecture), and view them alongside structured facts (facter --
show-legacy).

Modern Facts
aio_agent_version

Type: string

Purpose:

Return the version of the puppet-agent package that installed facter.

Resolution:

• All platforms: use the compile-time enabled version definition.

(# Back to top)

© 2024 Puppet, Inc., a Perforce company

https://rubygems.org/
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 351

augeas

Type: map

Purpose:

Return information about augeas.

Elements:

• version (string) --- The version of augparse.

Resolution:

• All platforms: query augparse for augeas metadata.

(# Back to top)

cloud

Type: map

Purpose:

Information about the cloud instance of the node. This is currently only populated on nodes running in Microsoft
Azure.

Elements:

• provider (string) --- The cloud provider for the node.

(# Back to top)

disks

Type: map

Purpose:

Return the disk (block) devices attached to the system.

Elements:

• <devicename> (map) --- Represents a disk or block device.

• model (string) --- The model of the disk or block device.
• product (string) --- The product name of the disk or block device.
• serial_number (string) --- The serial number of the disk or block device.
• size (string) --- The display size of the disk or block device, such as "1 GiB".
• size_bytes (integer) --- The size of the disk or block device, in bytes.
• vendor (string) --- The vendor of the disk or block device.

Resolution:

• AIX: query the ODM for all disk devices
• Linux: parse the contents of /sys/block/<device>/.
• Solaris: use the kstat function to query disk information.

Caveats:

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

dmi

Type: map

Purpose:

Return the system management information.

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 352

Elements:

• bios (map) --- The system BIOS information.

• release_date (string) --- The release date of the system BIOS.
• vendor (string) --- The vendor of the system BIOS.
• version (string) --- The version of the system BIOS.

• board (map) --- The system board information.

• asset_tag (string) --- The asset tag of the system board.
• manufacturer (string) --- The manufacturer of the system board.
• product (string) --- The product name of the system board.
• serial_number (string) --- The serial number of the system board.

• chassis (map) --- The system chassis information.

• asset_tag (string) --- The asset tag of the system chassis.
• type (string) --- The type of the system chassis.

• manufacturer (string) --- The system manufacturer.
• product (map) --- The system product information.

• name (string) --- The product name of the system.
• serial_number (string) --- The product serial number of the system.
• uuid (string) --- The product unique identifier of the system.

Resolution:

• Linux: parse the contents of /sys/class/dmi/id/ to retrieve system management information.
• Mac OSX: use the sysctl function to retrieve system management information.
• Solaris: use the smbios, prtconf, and uname utilities to retrieve system management information.
• Windows: use WMI to retrieve system management information.

Caveats:

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

az_metadata

Type: map

Purpose:

Return the Microsoft Azure instance metadata. Please see the Microsoft Azure instance metadata documentation for
the contents of this fact.

Resolution:

• Azure: query the Azure metadata endpoint and parse the response.

Caveats:

• All platforms: libfacter must be built with libcurl support.

(# Back to top)

ec2_metadata

Type: map

Purpose:

Return the Amazon Elastic Compute Cloud (EC2) instance metadata. Please see the EC2 instance metadata
documentation for the contents of this fact.

Resolution:

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
http://https://docs.microsoft.com/en-us/azure/virtual-machines/windows/instance-metadata-service
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

Puppet | The Puppet platform | 353

• EC2: query the EC2 metadata endpoint and parse the response.

Caveats:

• All platforms: libfacter must be built with libcurl support.

(# Back to top)

ec2_userdata

Type: string

Purpose:

Return the Amazon Elastic Compute Cloud (EC2) instance user data. Please see the EC2 instance user data
documentation for the contents of this fact.

Resolution:

• EC2: query the EC2 user data endpoint and parse the response.

Caveats:

• All platforms: libfacter must be built with libcurl support.

(# Back to top)

env_windows_installdir

Type: string

Purpose:

Return the path of the directory in which Puppet was installed.

Resolution:

• Windows: This fact is specific to the Windows MSI generated environment, and is
• set using the environment.bat script that configures the runtime environment
• for all Puppet executables. Please see the original commit in the puppet_for_the_win repo for more information.

Caveats:

• This fact is specific to Windows, and will not resolve on any other platform.

(# Back to top)

facterversion

Type: string

Purpose:

Return the version of facter.

Resolution:

• All platforms: use the built-in version of libfacter.

(# Back to top)

filesystems

Type: string

Purpose:

Return the usable file systems for block or disk devices.

Resolution:

• AIX: parse the contents of /etc/vfs to retrieve the usable file systems.
• Linux: parse the contents of /proc/filesystems to retrieve the usable file systems.

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
https://github.com/puppetlabs/puppet_for_the_win/commit/0cc32c1a09550c13d725b200d3c0cc17d93ec262
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 354

• Mac OSX: use the getfsstat function to retrieve the usable file systems.
• Solaris: use the sysdef utility to retrieve the usable file systems.

Caveats:

• Linux: The proc file system must be mounted.
• Mac OSX: The usable file systems is limited to the file system of mounted devices.

(# Back to top)

fips_enabled

Type: boolean

Purpose:

Return whether the platform is in FIPS mode

Resolution:

• Linux: parse the contents of /proc/sys/crypto/fips_enabled which if non-zero indicates fips mode has
been enabled.

• Windows: check if key HKEY_LOCAL_MACHINE/System/CurrentControlSet/Control/Lsa/
FipsAlgorithmPolicy/Enabled is 1 or 0

Caveats:

• Linux: Limited to linux redhat family only

(# Back to top)

gce

Type: map

Purpose:

Return the Google Compute Engine (GCE) metadata. Please see the GCE metadata documentation for the contents of
this fact.

Resolution:

• GCE: query the GCE metadata endpoint and parse the response.

Caveats:

• All platforms: libfacter must be built with libcurl support.

(# Back to top)

hypervisors

Type: map

Purpose:

Experimental fact: Return the names of any detected hypervisors and any collected metadata about them.

Resolution:

• All platforms: Use the external whereami library to gather hypervisor data, if available.

(# Back to top)

identity

Type: map

Purpose:

Return the identity information of the user running facter.

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
https://cloud.google.com/compute/docs/metadata
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 355

Elements:

• gid (integer) --- The group identifier of the user running facter.
• group (string) --- The group name of the user running facter.
• uid (integer) --- The user identifier of the user running facter.
• user (string) --- The user name of the user running facter.
• privileged (boolean) --- True if facter is running as a privileged process or false if not.

Resolution:

• POSIX platforms: use the getegid, getpwuid_r, geteuid, and getgrgid_r functions to retrieve the
identity information; use the result of the geteuid() == 0 test as the value of the privileged element

• Windows: use the GetUserNameExW function to retrieve the identity information; use the
GetTokenInformation to get the current process token elevation status and use it as the value of the
privileged element on versions of Windows supporting the token elevation, on older versions of Windows use the
CheckTokenMembership to test whether the well known local Administrators group SID is enabled in the
current thread impersonation token and use the test result as the value of the privileged element

(# Back to top)

is_virtual

Type: boolean

Purpose:

Return whether or not the host is a virtual machine.

Resolution:

• Linux: use procfs or utilities such as vmware and virt-what to retrieve virtual machine status.
• Mac OSX: use the system profiler to retrieve virtual machine status.
• Solaris: use the zonename utility to retrieve virtual machine status.
• Windows: use WMI to retrieve virtual machine status.

(# Back to top)

kernel

Type: string

Purpose:

Return the kernel's name.

Resolution:

• POSIX platforms: use the uname function to retrieve the kernel name.
• Windows: use the value of windows for all Windows versions.

(# Back to top)

kernelmajversion

Type: string

Purpose:

Return the kernel's major version.

Resolution:

• POSIX platforms: use the uname function to retrieve the kernel's major version.
• Windows: use the file version of kernel32.dll to retrieve the kernel's major version.

(# Back to top)

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 356

kernelrelease

Type: string

Purpose:

Return the kernel's release.

Resolution:

• POSIX platforms: use the uname function to retrieve the kernel's release.
• Windows: use the file version of kernel32.dll to retrieve the kernel's release.

(# Back to top)

kernelversion

Type: string

Purpose:

Return the kernel's version.

Resolution:

• POSIX platforms: use the uname function to retrieve the kernel's version.
• Windows: use the file version of kernel32.dll to retrieve the kernel's version.

(# Back to top)

ldom

Type: map

Purpose:

Return Solaris LDom information from the virtinfo utility.

Resolution:

• Solaris: use the virtinfo utility to retrieve LDom information.

(# Back to top)

load_averages

Type: map

Purpose:

Return the load average over the last 1, 5 and 15 minutes.

Elements:

• 1m (double) --- The system load average over the last minute.
• 5m (double) --- The system load average over the last 5 minutes.
• 15m (double) --- The system load average over the last 15 minutes.

Resolution:

• POSIX platforms: use getloadavg function to retrieve the system load averages.

(# Back to top)

memory

Type: map

Purpose:

Return the system memory information.

Elements:

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 357

• swap (map) --- Represents information about swap memory.

• available (string) --- The display size of the available amount of swap memory, such as "1 GiB".
• available_bytes (integer) --- The size of the available amount of swap memory, in bytes.
• capacity (string) --- The capacity percentage (0% is empty, 100% is full).
• encrypted (boolean) --- True if the swap is encrypted or false if not.
• total (string) --- The display size of the total amount of swap memory, such as "1 GiB".
• total_bytes (integer) --- The size of the total amount of swap memory, in bytes.
• used (string) --- The display size of the used amount of swap memory, such as "1 GiB".
• used_bytes (integer) --- The size of the used amount of swap memory, in bytes.

• system (map) --- Represents information about system memory.

• available (string) --- The display size of the available amount of system memory, such as "1 GiB".
• available_bytes (integer) --- The size of the available amount of system memory, in bytes.
• capacity (string) --- The capacity percentage (0% is empty, 100% is full).
• total (string) --- The display size of the total amount of system memory, such as "1 GiB".
• total_bytes (integer) --- The size of the total amount of system memory, in bytes.
• used (string) --- The display size of the used amount of system memory, such as "1 GiB".
• used_bytes (integer) --- The size of the used amount of system memory, in bytes.

Resolution:

• Linux: parse the contents of /proc/meminfo to retrieve the system memory information.
• Mac OSX: use the sysctl function to retrieve the system memory information.
• Solaris: use the kstat function to retrieve the system memory information.
• Windows: use the GetPerformanceInfo function to retrieve the system memory information.

(# Back to top)

mountpoints

Type: map

Purpose:

Return the current mount points of the system.

Elements:

• <mountpoint> (map) --- Represents a mount point.

• available (string) --- The display size of the available space, such as "1 GiB".
• available_bytes (integer) --- The size of the available space, in bytes.
• capacity (string) --- The capacity percentage (0% is empty, 100% is full).
• device (string) --- The name of the mounted device.
• filesystem (string) --- The file system of the mounted device.
• options (array) --- The mount options.
• size (string) --- The display size of the total space, such as "1 GiB".
• size_bytes (integer) --- The size of the total space, in bytes.
• used (string) --- The display size of the used space, such as "1 GiB".
• used_bytes (integer) --- The size of the used space, in bytes.

Resolution:

• AIX: use the mntctl function to retrieve the mount points.
• Linux: use the setmntent function to retrieve the mount points.
• Mac OSX: use the getfsstat function to retrieve the mount points.
• Solaris: parse the contents of /etc/mnttab to retrieve the mount points.

(# Back to top)

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 358

networking

Type: map

Purpose:

Return the networking information for the system.

Elements:

• dhcp (ip) --- The address of the DHCP server for the default interface.
• domain (string) --- The domain name of the system.
• fqdn (string) --- The fully-qualified domain name of the system.
• hostname (string) --- The host name of the system.
• interfaces (map) --- The network interfaces of the system.

• <interface> (map) --- Represents a network interface.

• bindings (array) --- The array of IPv4 address bindings for the interface.
• bindings6 (array) --- The array of IPv6 address bindings for the interface.
• dhcp (ip) --- The DHCP server for the network interface.
• ip (ip) --- The IPv4 address for the network interface.
• ip6 (ip6) --- The IPv6 address for the network interface.
• mac (mac) --- The MAC address for the network interface.
• mtu (integer) --- The Maximum Transmission Unit (MTU) for the network interface.
• netmask (ip) --- The IPv4 netmask for the network interface.
• netmask6 (ip6) --- The IPv6 netmask for the network interface.
• network (ip) --- The IPv4 network for the network interface.
• network6 (ip6) --- The IPv6 network for the network interface.
• scope6 (string) --- The IPv6 scope for the network interface.

• ip (ip) --- The IPv4 address of the default network interface.
• ip6 (ip6) --- The IPv6 address of the default network interface.
• mac (mac) --- The MAC address of the default network interface.
• mtu (integer) --- The Maximum Transmission Unit (MTU) of the default network interface.
• netmask (ip) --- The IPv4 netmask of the default network interface.
• netmask6 (ip6) --- The IPv6 netmask of the default network interface.
• network (ip) --- The IPv4 network of the default network interface.
• network6 (ip6) --- The IPv6 network of the default network interface.
• primary (string) --- The name of the primary interface.
• scope6 (string) --- The IPv6 scope of the default network interface.

Resolution:

• Linux: use the getifaddrs function to retrieve the network interfaces.
• Mac OSX: use the getifaddrs function to retrieve the network interfaces.
• Solaris: use the ioctl function to retrieve the network interfaces.
• Windows: use the GetAdaptersAddresses function to retrieve the network interfaces.

Caveats:

• Windows Server 2003: the GetAdaptersInfo function is used for DHCP and netmask lookup. This function
does not support IPv6 netmasks.

(# Back to top)

os

Type: map

Purpose:

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 359

Return information about the host operating system.

Elements:

• architecture (string) --- The operating system's hardware architecture.
• distro (map) --- Represents information about a Linux distribution.

• codename (string) --- The code name of the Linux distribution.
• description (string) --- The description of the Linux distribution.
• id (string) --- The identifier of the Linux distribution.
• release (map) --- Represents information about a Linux distribution release.

• full (string) --- The full release of the Linux distribution.
• major (string) --- The major release of the Linux distribution.
• minor (string) --- The minor release of the Linux distribution.

• specification (string) --- The Linux Standard Base (LSB) release specification.
• family (string) --- The operating system family.
• hardware (string) --- The operating system's hardware model.
• macosx (map) --- Represents information about Mac OSX.

• build (string) --- The Mac OSX build version.
• product (string) --- The Mac OSX product name.
• version (map) --- Represents information about the Mac OSX version.

• full (string) --- The full Mac OSX version number.
• major (string) --- The major Mac OSX version number.
• minor (string) --- The minor Mac OSX version number.

• name (string) --- The operating system's name.
• release (map) --- Represents the operating system's release.

• full (string) --- The full operating system release.
• major (string) --- The major release of the operating system.
• minor (string) --- The minor release of the operating system.
• patchlevel (string) --- The patchlevel of the operating system.
• branch (string) --- The branch the operating system was cut from.

• selinux (map) --- Represents information about Security-Enhanced Linux (SELinux).

• config_mode (string) --- The configured SELinux mode.
• config_policy (string) --- The configured SELinux policy.
• current_mode (string) --- The current SELinux mode.
• enabled (boolean) --- True if SELinux is enabled or false if not.
• enforced (boolean) --- True if SELinux policy is enforced or false if not.
• policy_version (string) --- The version of the SELinux policy.

• windows (map) --- Represents information about Windows.

• edition_id (string) --- Specify the edition variant. (ServerStandard|Professional|Enterprise)
• installation_type (string) --- Specify the installation type. (Server|Server Core|Client)
• product_name (string) --- Specify the textual product name.
• display_version (string) --- Windows Display Version of the form YYMM.
• release_id (string) --- Windows Build Version of the form YYMM.
• system32 (string) --- The path to the System32 directory.

Resolution:

• Linux: use the lsb_release utility and parse the contents of release files in /etc to retrieve the OS
information.

• OSX: use the sw_vers utility to retrieve the OS information.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 360

• Solaris: parse the contents of /etc/release to retrieve the OS information.
• Windows: use WMI to retrieve the OS information.

(# Back to top)

partitions

Type: map

Purpose:

Return the disk partitions of the system.

Elements:

• <partition> (map) --- Represents a disk partition.

• filesystem (string) --- The file system of the partition.
• label (string) --- The label of the partition.
• mount (string) --- The mount point of the partition (if mounted).
• partlabel (string) --- The label of a GPT partition.
• partuuid (string) --- The unique identifier of a GPT partition.
• size (string) --- The display size of the partition, such as "1 GiB".
• size_bytes (integer) --- The size of the partition, in bytes.
• uuid (string) --- The unique identifier of a partition.
• backing_file (string) --- The path to the file backing the partition.

Resolution:

• AIX: use the ODM to retrieve list of logical volumes; use lvm_querylv function to get details
• Linux: use libblkid to retrieve the disk partitions.

Caveats:

• Linux: libfacter must be built with libblkid support.

(# Back to top)

path

Type: string

Purpose:

Return the PATH environment variable.

Resolution:

• All platforms: retrieve the value of the PATH environment variable.

(# Back to top)

processors

Type: map

Purpose:

Return information about the system's processors.

Elements:

• count (integer) --- The count of logical processors.
• isa (string) --- The processor instruction set architecture.
• models (array) --- The processor model strings (one for each logical processor).
• physicalcount (integer) --- The count of physical processors.
• speed (string) --- The speed of the processors, such as "2.0 GHz".

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 361

Resolution:

• Linux: parse the contents /sys/devices/system/cpu/ and /proc/cpuinfo to retrieve the processor
information.

• Mac OSX: use the sysctl function to retrieve the processor information.
• Solaris: use the kstat function to retrieve the processor information.
• Windows: use WMI to retrieve the processor information.

(# Back to top)

ruby

Type: map

Purpose:

Return information about the Ruby loaded by facter.

Elements:

• platform (string) --- The platform Ruby was built for.
• sitedir (string) --- The path to Ruby's site library directory.
• version (string) --- The version of Ruby.

Resolution:

• All platforms: Use RbConfig, RUBY_PLATFORM, and RUBY_VERSION to retrieve information about Ruby.

Caveats:

• All platforms: facter must be able to locate libruby.

(# Back to top)

solaris_zones

Type: map

Purpose:

Return information about Solaris zones.

Elements:

• current (string) --- The name of the current Solaris zone.
• zones (map) --- Represents the Solaris zones.

• <zonename> (map) --- Represents a Solaris zone.

• brand (string) --- The brand of the Solaris zone.
• id (string) --- The id of the Solaris zone.
• ip_type (string) --- The IP type of the Solaris zone.
• path (string) --- The path of the Solaris zone.
• status (string) --- The status of the Solaris zone.
• uuid (string) --- The unique identifier of the Solaris zone.

Resolution:

• Solaris: use the zoneadm and zonename utilities to retrieve information about the Solaris zones.

(# Back to top)

ssh

Type: map

Purpose:

Return SSH public keys and fingerprints.

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 362

Elements:

• dsa (map) --- Represents the public key and fingerprints for the DSA algorithm.

• fingerprints (map) --- Represents fingerprint information.

• sha1 (string) --- The SHA1 fingerprint of the public key.
• sha256 (string) --- The SHA256 fingerprint of the public key.

• key (string) --- The DSA public key.
• type (string) --- The exact type of the key, i.e. "ssh-dss".

• ecdsa (map) --- Represents the public key and fingerprints for the ECDSA algorithm.

• fingerprints (map) --- Represents fingerprint information.

• sha1 (string) --- The SHA1 fingerprint of the public key.
• sha256 (string) --- The SHA256 fingerprint of the public key.

• key (string) --- The ECDSA public key.
• type (string) --- The exact type of the key, e.g. "ecdsa-sha2-nistp256".

• ed25519 (map) --- Represents the public key and fingerprints for the Ed25519 algorithm.

• fingerprints (map) --- Represents fingerprint information.

• sha1 (string) --- The SHA1 fingerprint of the public key.
• sha256 (string) --- The SHA256 fingerprint of the public key.

• key (string) --- The Ed25519 public key.
• type (string) --- The exact type of the key, i.e. "ssh-ed25519".

• rsa (map) --- Represents the public key and fingerprints for the RSA algorithm.

• fingerprints (map) --- Represents fingerprint information.

• sha1 (string) --- The SHA1 fingerprint of the public key.
• sha256 (string) --- The SHA256 fingerprint of the public key.

• key (string) --- The RSA public key.
• type (string) --- The exact type of the key, i.e. "ssh-rsa".

Resolution:

• POSIX platforms: parse SSH public key files and derive fingerprints.

Caveats:

• POSIX platforms: facter must be built with OpenSSL support.

(# Back to top)

system_profiler

Type: map

Purpose:

Return information from the Mac OSX system profiler.

Elements:

• boot_mode (string) --- The boot mode.
• boot_rom_version (string) --- The boot ROM version.
• boot_volume (string) --- The boot volume.
• computer_name (string) --- The name of the computer.
• cores (string) --- The total number of processor cores.
• hardware_uuid (string) --- The hardware unique identifier.
• kernel_version (string) --- The version of the kernel.
• l2_cache_per_core (string) --- The size of the processor per-core L2 cache.

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 363

• l3_cache (string) --- The size of the processor L3 cache.
• memory (string) --- The size of the system memory.
• model_identifier (string) --- The identifier of the computer model.
• model_name (string) --- The name of the computer model.
• processor_name (string) --- The model name of the processor.
• processor_speed (string) --- The speed of the processor.
• processors (string) --- The total number of processors.
• secure_virtual_memory (string) --- Whether or not secure virtual memory is enabled.
• serial_number (string) --- The serial number of the computer.
• smc_version (string) --- The System Management Controller (SMC) version.
• system_version (string) --- The operating system version.
• uptime (string) --- The uptime of the system.
• username (string) --- The name of the user running facter.

Resolution:

• Mac OSX: use the system_profiler utility to retrieve system profiler information.

(# Back to top)

system_uptime

Type: map

Purpose:

Return the system uptime information.

Elements:

• days (integer) --- The number of complete days the system has been up.
• hours (integer) --- The number of complete hours the system has been up.
• seconds (integer) --- The number of total seconds the system has been up.
• uptime (string) --- The full uptime string.

Resolution:

• Linux: use the sysinfo function to retrieve the system uptime.
• POSIX platforms: use the uptime utility to retrieve the system uptime.
• Solaris: use the kstat function to retrieve the system uptime.
• Windows: use WMI to retrieve the system uptime.

(# Back to top)

timezone

Type: string

Purpose:

Return the system timezone.

Resolution:

• POSIX platforms: use the localtime_r function to retrieve the system timezone.
• Windows: use the localtime_s function to retrieve the system timezone.

(# Back to top)

virtual

Type: string

Purpose:

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 364

Return the hypervisor name for virtual machines or "physical" for physical machines.

Resolution:

• Linux: use procfs or utilities such as vmware and virt-what to retrieve virtual machine name.
• Mac OSX: use the system profiler to retrieve virtual machine name.
• Solaris: use the zonename utility to retrieve virtual machine name.
• Windows: use WMI to retrieve virtual machine name.

(# Back to top)

xen

Type: map

Purpose:

Return metadata for the Xen hypervisor.

Elements:

• domains (array) --- list of strings identifying active Xen domains.

Resolution:

• POSIX platforms: use /usr/lib/xen-common/bin/xen-toolstack to locate xen admin commands if
available, otherwise fallback to /usr/sbin/xl or /usr/sbin/xm. Use the found command to execute the
list query.

Caveats:

• POSIX platforms: confined to Xen privileged virtual machines.

(# Back to top)

zfs_featurenumbers

Type: string

Purpose:

Return the comma-delimited feature numbers for ZFS.

Resolution:

• Solaris: use the zfs utility to retrieve the feature numbers for ZFS

Caveats:

• Solaris: the zfs utility must be present.

(# Back to top)

zfs_version

Type: string

Purpose:

Return the version for ZFS.

Resolution:

• Solaris: use the zfs utility to retrieve the version for ZFS

Caveats:

• Solaris: the zfs utility must be present.

(# Back to top)

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 365

zpool_featureflags

Type: string

Purpose:

Return the comma-delimited feature flags for ZFS storage pools.

Resolution:

• Solaris: use the zpool utility to retrieve the feature numbers for ZFS storage pools

Caveats:

• Solaris: the zpool utility must be present.

(# Back to top)

zpool_featurenumbers

Type: string

Purpose:

Return the comma-delimited feature numbers for ZFS storage pools.

Resolution:

• Solaris: use the zpool utility to retrieve the feature numbers for ZFS storage pools

Caveats:

• Solaris: the zpool utility must be present.

(# Back to top)

zpool_version

Type: string

Purpose:

Return the version for ZFS storage pools.

Resolution:

• Solaris: use the zpool utility to retrieve the version for ZFS storage pools

Caveats:

• Solaris: the zpool utility must be present.

(# Back to top)

Legacy Facts
architecture

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the operating system's hardware architecture.

Resolution:

• POSIX platforms: use the uname function to retrieve the OS hardware architecture.
• Windows: use the GetNativeSystemInfo function to retrieve the OS hardware architecture.

Caveats:

• Linux: Debian, Gentoo, kFreeBSD, and Ubuntu use "amd64" for "x86_64" and Gentoo uses "x86" for "i386".

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 366

(# Back to top)

augeasversion

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the version of augeas.

Resolution:

• All platforms: query augparse for the augeas version.

(# Back to top)

blockdevices

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return a comma-separated list of block devices.

Resolution:

• Linux: parse the contents of /sys/block/<device>/.
• Solaris: use the kstat function to query disk information.

Caveats:

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

blockdevice_<devicename>_model

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the model name of block devices attached to the system.

Resolution:

• Linux: parse the contents of /sys/block/<device>/device/model to retrieve the model name/number
for a device.

• Solaris: use the kstat function to query disk information.

Caveats:

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

blockdevice_<devicename>_size

This legacy fact is hidden by default in Facter's command-line output.

Type: integer

Purpose:

Return the size of a block device in bytes.

Resolution:

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 367

• Linux: parse the contents of /sys/block/<device>/size to receive the size (multiplying by 512 to correct
for blocks-to-bytes).

• Solaris: use the kstat function to query disk information.

Caveats:

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

blockdevice_<devicename>_vendor

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the vendor name of block devices attached to the system.

Resolution:

• Linux: parse the contents of /sys/block/<device>/device/vendor to retrieve the vendor for a device.
• Solaris: use the kstat function to query disk information.

Caveats:

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

bios_release_date

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the release date of the system BIOS.

Resolution:

• Linux: parse the contents of /sys/class/dmi/id/bios_date to retrieve the system BIOS release date.
• Solaris: use the smbios utility to retrieve the system BIOS release date.

Caveats:

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

bios_vendor

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the vendor of the system BIOS.

Resolution:

• Linux: parse the contents of /sys/class/dmi/id/bios_vendor to retrieve the system BIOS vendor.
• Solaris: use the smbios utility to retrieve the system BIOS vendor.

Caveats:

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 368

bios_version

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the version of the system BIOS.

Resolution:

• Linux: parse the contents of /sys/class/dmi/id/bios_version to retrieve the system BIOS version.
• Solaris: use the smbios utility to retrieve the system BIOS version.

Caveats:

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

boardassettag

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the system board asset tag.

Resolution:

• Linux: parse the contents of /sys/class/dmi/id/board_asset_tag to retrieve the system board asset
tag.

Caveats:

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

boardmanufacturer

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the system board manufacturer.

Resolution:

• Linux: parse the contents of /sys/class/dmi/id/board_vendor to retrieve the system board
manufacturer.

Caveats:

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

boardproductname

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the system board product name.

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 369

Resolution:

• Linux: parse the contents of /sys/class/dmi/id/board_name to retrieve the system board product name.

Caveats:

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

boardserialnumber

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the system board serial number.

Resolution:

• Linux: parse the contents of /sys/class/dmi/id/board_serial to retrieve the system board serial
number.

Caveats:

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

chassisassettag

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the system chassis asset tag.

Resolution:

• Linux: parse the contents of /sys/class/dmi/id/chassis_asset_tag to retrieve the system chassis
asset tag.

• Solaris: use the smbios utility to retrieve the system chassis asset tag.

Caveats:

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

chassistype

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the system chassis type.

Resolution:

• Linux: parse the contents of /sys/class/dmi/id/chassis_type to retrieve the system chassis type.
• Solaris: use the smbios utility to retrieve the system chassis type.

Caveats:

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 370

dhcp_servers

This legacy fact is hidden by default in Facter's command-line output.

Type: map

Purpose:

Return the DHCP servers for the system.

Elements:

• <interface> (ip) --- The DHCP server for the interface.
• system (ip) --- The DHCP server for the default interface.

Resolution:

• Linux: parse dhclient lease files or use the dhcpcd utility to retrieve the DHCP servers.
• Mac OSX: use the ipconfig utility to retrieve the DHCP servers.
• Solaris: use the dhcpinfo utility to retrieve the DHCP servers.
• Windows: use the GetAdaptersAddresses (Windows Server 2003: GetAdaptersInfo) function to

retrieve the DHCP servers.

(# Back to top)

domain

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the network domain of the system.

Resolution:

• POSIX platforms: use the getaddrinfo function to retrieve the network domain.
• Windows: query the registry to retrieve the network domain; falls back to the primary interface's domain if not set

in the registry.

(# Back to top)

fqdn

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the fully qualified domain name (FQDN) of the system.

Resolution:

• POSIX platforms: use the getaddrinfo function to retrieve the FQDN or use host and domain names.
• Windows: use the host and domain names to build the FQDN.

(# Back to top)

gid

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the group identifier (GID) of the user running facter.

Resolution:

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 371

• POSIX platforms: use the getegid fuction to retrieve the group identifier.

(# Back to top)

hardwareisa

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the hardware instruction set architecture (ISA).

Resolution:

• POSIX platforms: use uname to retrieve the hardware ISA.
• Windows: use WMI to retrieve the hardware ISA.

(# Back to top)

hardwaremodel

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the operating system's hardware model.

Resolution:

• POSIX platforms: use the uname function to retrieve the OS hardware model.
• Windows: use the GetNativeSystemInfo function to retrieve the OS hardware model.

(# Back to top)

hostname

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the host name of the system.

Resolution:

• POSIX platforms: use the gethostname function to retrieve the host name
• Windows: use the GetComputerNameExW function to retrieve the host name.

(# Back to top)

id

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the user identifier (UID) of the user running facter.

Resolution:

• POSIX platforms: use the geteuid fuction to retrieve the user identifier.

(# Back to top)

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 372

interfaces

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the comma-separated list of network interface names.

Resolution:

• Linux: use the getifaddrs function to retrieve the network interface names.
• Mac OSX: use the getifaddrs function to retrieve the network interface names.
• Solaris: use the ioctl function to retrieve the network interface names.
• Windows: use the GetAdaptersAddresses function to retrieve the network interface names.

(# Back to top)

ipaddress

This legacy fact is hidden by default in Facter's command-line output.

Type: ip

Purpose:

Return the IPv4 address for the default network interface.

Resolution:

• Linux: use the getifaddrs function to retrieve the network interface address.
• Mac OSX: use the getifaddrs function to retrieve the network interface address.
• Solaris: use the ioctl function to retrieve the network interface address.
• Windows: use the GetAdaptersAddresses function to retrieve the network interface address.

(# Back to top)

ipaddress6

This legacy fact is hidden by default in Facter's command-line output.

Type: ip6

Purpose:

Return the IPv6 address for the default network interface.

Resolution:

• Linux: use the getifaddrs function to retrieve the network interface address.
• Mac OSX: use the getifaddrs function to retrieve the network interface address.
• Solaris: use the ioctl function to retrieve the network interface address.
• Windows: use the GetAdaptersAddresses function to retrieve the network interface address.

(# Back to top)

ipaddress6_<interface>

This legacy fact is hidden by default in Facter's command-line output.

Type: ip6

Purpose:

Return the IPv6 address for a network interface.

Resolution:

• Linux: use the getifaddrs function to retrieve the network interface address.

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 373

• Mac OSX: use the getifaddrs function to retrieve the network interface address.
• Solaris: use the ioctl function to retrieve the network interface address.
• Windows: use the GetAdaptersAddresses function to retrieve the network interface address.

(# Back to top)

ipaddress_<interface>

This legacy fact is hidden by default in Facter's command-line output.

Type: ip

Purpose:

Return the IPv4 address for a network interface.

Resolution:

• Linux: use the getifaddrs function to retrieve the network interface address.
• Mac OSX: use the getifaddrs function to retrieve the network interface address.
• Solaris: use the ioctl function to retrieve the network interface address.
• Windows: use the GetAdaptersAddresses function to retrieve the network interface address.

(# Back to top)

ldom_<name>

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return Solaris LDom information.

Resolution:

• Solaris: use the virtinfo utility to retrieve LDom information.

(# Back to top)

lsbdistcodename

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the Linux Standard Base (LSB) distribution code name.

Resolution:

• Linux: use the lsb_release utility to retrieve the LSB distribution code name.

Caveats:

• Linux: Requires that the lsb_release utility be installed.

(# Back to top)

lsbdistdescription

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the Linux Standard Base (LSB) distribution description.

Resolution:

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 374

• Linux: use the lsb_release utility to retrieve the LSB distribution description.

Caveats:

• Linux: Requires that the lsb_release utility be installed.

(# Back to top)

lsbdistid

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the Linux Standard Base (LSB) distribution identifier.

Resolution:

• Linux: use the lsb_release utility to retrieve the LSB distribution identifier.

Caveats:

• Linux: Requires that the lsb_release utility be installed.

(# Back to top)

lsbdistrelease

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the Linux Standard Base (LSB) distribution release.

Resolution:

• Linux: use the lsb_release utility to retrieve the LSB distribution release.

Caveats:

• Linux: Requires that the lsb_release utility be installed.

(# Back to top)

lsbmajdistrelease

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the Linux Standard Base (LSB) major distribution release.

Resolution:

• Linux: use the lsb_release utility to retrieve the LSB major distribution release.

Caveats:

• Linux: Requires that the lsb_release utility be installed.

(# Back to top)

lsbminordistrelease

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 375

Return the Linux Standard Base (LSB) minor distribution release.

Resolution:

• Linux: use the lsb_release utility to retrieve the LSB minor distribution release.

Caveats:

• Linux: Requires that the lsb_release utility be installed.

(# Back to top)

lsbrelease

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the Linux Standard Base (LSB) release.

Resolution:

• Linux: use the lsb_release utility to retrieve the LSB release.

Caveats:

• Linux: Requires that the lsb_release utility be installed.

(# Back to top)

macaddress

This legacy fact is hidden by default in Facter's command-line output.

Type: mac

Purpose:

Return the MAC address for the default network interface.

Resolution:

• Linux: use the getifaddrs function to retrieve the network interface address.
• Mac OSX: use the getifaddrs function to retrieve the network interface address.
• Solaris: use the ioctl function to retrieve the network interface address.
• Windows: use the GetAdaptersAddresses function to retrieve the network interface address.

(# Back to top)

macaddress_<interface>

This legacy fact is hidden by default in Facter's command-line output.

Type: mac

Purpose:

Return the MAC address for a network interface.

Resolution:

• Linux: use the getifaddrs function to retrieve the network interface address.
• Mac OSX: use the getifaddrs function to retrieve the network interface address.
• Solaris: use the ioctl function to retrieve the network interface address.
• Windows: use the GetAdaptersAddresses function to retrieve the network interface address.

(# Back to top)

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 376

macosx_buildversion

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the Mac OSX build version.

Resolution:

• Mac OSX: use the sw_vers utility to retrieve the Mac OSX build version.

(# Back to top)

macosx_productname

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the Mac OSX product name.

Resolution:

• Mac OSX: use the sw_vers utility to retrieve the Mac OSX product name.

(# Back to top)

macosx_productversion

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the Mac OSX product version.

Resolution:

• Mac OSX: use the sw_vers utility to retrieve the Mac OSX product version.

(# Back to top)

macosx_productversion_major

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the Mac OSX product major version.

Resolution:

• Mac OSX: use the sw_vers utility to retrieve the Mac OSX product major version.

(# Back to top)

macosx_productversion_minor

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the Mac OSX product minor version.

Resolution:

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 377

• Mac OSX: use the sw_vers utility to retrieve the Mac OSX product minor version.

(# Back to top)

manufacturer

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the system manufacturer.

Resolution:

• Linux: parse the contents of /sys/class/dmi/id/sys_vendor to retrieve the system manufacturer.
• Solaris: use the prtconf utility to retrieve the system manufacturer.
• Windows: use WMI to retrieve the system manufacturer.

Caveats:

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

memoryfree

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the display size of the free system memory, such as "1 GiB".

Resolution:

• Linux: parse the contents of /proc/meminfo to retrieve the free system memory.
• Mac OSX: use the sysctl function to retrieve the free system memory.
• Solaris: use the kstat function to retrieve the free system memory.
• Windows: use the GetPerformanceInfo function to retrieve the free system memory.

(# Back to top)

memoryfree_mb

This legacy fact is hidden by default in Facter's command-line output.

Type: double

Purpose:

Return the size of the free system memory, in mebibytes.

Resolution:

• Linux: parse the contents of /proc/meminfo to retrieve the free system memory.
• Mac OSX: use the sysctl function to retrieve the free system memory.
• Solaris: use the kstat function to retrieve the free system memory.
• Windows: use the GetPerformanceInfo function to retrieve the free system memory.

(# Back to top)

memorysize

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 378

Return the display size of the total system memory, such as "1 GiB".

Resolution:

• Linux: parse the contents of /proc/meminfo to retrieve the total system memory.
• Mac OSX: use the sysctl function to retrieve the total system memory.
• Solaris: use the kstat function to retrieve the total system memory.
• Windows: use the GetPerformanceInfo function to retrieve the total system memory.

(# Back to top)

memorysize_mb

This legacy fact is hidden by default in Facter's command-line output.

Type: double

Purpose:

Return the size of the total system memory, in mebibytes.

Resolution:

• Linux: parse the contents of /proc/meminfo to retrieve the total system memory.
• Mac OSX: use the sysctl function to retrieve the total system memory.
• Solaris: use the kstat function to retrieve the total system memory.
• Windows: use the GetPerformanceInfo function to retrieve the total system memory.

(# Back to top)

mtu_<interface>

This legacy fact is hidden by default in Facter's command-line output.

Type: integer

Purpose:

Return the Maximum Transmission Unit (MTU) for a network interface.

Resolution:

• Linux: use the ioctl function to retrieve the network interface MTU.
• Mac OSX: use the getifaddrs function to retrieve the network interface MTU.
• Solaris: use the ioctl function to retrieve the network interface MTU.
• Windows: use the GetAdaptersAddresses function to retrieve the network interface MTU.

(# Back to top)

netmask

This legacy fact is hidden by default in Facter's command-line output.

Type: ip

Purpose:

Return the IPv4 netmask for the default network interface.

Resolution:

• Linux: use the getifaddrs function to retrieve the network interface netmask.
• Mac OSX: use the getifaddrs function to retrieve the network interface netmask.
• Solaris: use the ioctl function to retrieve the network interface netmask.
• Windows: use the GetAdaptersAddresses (Windows Server 2003: GetAdaptersInfo) function to

retrieve the network interface netmask.

(# Back to top)

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 379

netmask6

This legacy fact is hidden by default in Facter's command-line output.

Type: ip6

Purpose:

Return the IPv6 netmask for the default network interface.

Resolution:

• Linux: use the getifaddrs function to retrieve the network interface netmask.
• Mac OSX: use the getifaddrs function to retrieve the network interface netmask.
• Solaris: use the ioctl function to retrieve the network interface netmask.
• Windows: use the GetAdaptersAddresses function to retrieve the network interface netmask.

Caveats:

• Windows Server 2003: IPv6 netmasks are not supported.

(# Back to top)

netmask6_<interface>

This legacy fact is hidden by default in Facter's command-line output.

Type: ip6

Purpose:

Return the IPv6 netmask for a network interface.

Resolution:

• Linux: use the getifaddrs function to retrieve the network interface netmask.
• Mac OSX: use the getifaddrs function to retrieve the network interface netmask.
• Solaris: use the ioctl function to retrieve the network interface netmask.
• Windows: use the GetAdaptersAddresses function to retrieve the network interface netmask.

Caveats:

• Windows Server 2003: IPv6 netmasks are not supported.

(# Back to top)

netmask_<interface>

This legacy fact is hidden by default in Facter's command-line output.

Type: ip

Purpose:

Return the IPv4 netmask for a network interface.

Resolution:

• Linux: use the getifaddrs function to retrieve the network interface netmask.
• Mac OSX: use the getifaddrs function to retrieve the network interface netmask.
• Solaris: use the ioctl function to retrieve the network interface netmask.
• Windows: use the GetAdaptersAddresses (Windows Server 2003: GetAdaptersInfo) function to

retrieve the network interface netmask.

(# Back to top)

network

This legacy fact is hidden by default in Facter's command-line output.

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 380

Type: ip

Purpose:

Return the IPv4 network for the default network interface.

Resolution:

• Linux: use the getifaddrs function to retrieve the network interface network.
• Mac OSX: use the getifaddrs function to retrieve the network interface network.
• Solaris: use the ioctl function to retrieve the network interface network.
• Windows: use the GetAdaptersAddresses function to retrieve the network interface network.

(# Back to top)

network6

This legacy fact is hidden by default in Facter's command-line output.

Type: ip6

Purpose:

Return the IPv6 network for the default network interface.

Resolution:

• Linux: use the getifaddrs function to retrieve the network interface network.
• Mac OSX: use the getifaddrs function to retrieve the network interface network.
• Solaris: use the ioctl function to retrieve the network interface network.
• Windows: use the GetAdaptersAddresses function to retrieve the network interface network.

(# Back to top)

network6_<interface>

This legacy fact is hidden by default in Facter's command-line output.

Type: ip6

Purpose:

Return the IPv6 network for a network interface.

Resolution:

• Linux: use the getifaddrs function to retrieve the network interface network.
• Mac OSX: use the getifaddrs function to retrieve the network interface network.
• Solaris: use the ioctl function to retrieve the network interface network.
• Windows: use the GetAdaptersAddresses function to retrieve the network interface network.

(# Back to top)

network_<interface>

This legacy fact is hidden by default in Facter's command-line output.

Type: ip

Purpose:

Return the IPv4 network for a network interface.

Resolution:

• Linux: use the getifaddrs function to retrieve the network interface network.
• Mac OSX: use the getifaddrs function to retrieve the network interface network.
• Solaris: use the ioctl function to retrieve the network interface network.
• Windows: use the GetAdaptersAddresses function to retrieve the network interface network.

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 381

(# Back to top)

operatingsystem

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the name of the operating system.

Resolution:

• All platforms: default to the kernel name.
• Linux: use various release files in /etc to retrieve the OS name.

(# Back to top)

operatingsystemmajrelease

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the major release of the operating system.

Resolution:

• All platforms: default to the major version of the kernel release.
• Linux: parse the contents of release files in /etc to retrieve the OS major release.
• Solaris: parse the contents of /etc/release to retrieve the OS major release.
• Windows: use WMI to retrieve the OS major release.

Caveats:

• Linux: for Ubuntu, the major release is X.Y, such as "10.4".

(# Back to top)

operatingsystemrelease

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the release of the operating system.

Resolution:

• All platforms: default to the kernel release.
• Linux: parse the contents of release files in /etc to retrieve the OS release.
• Solaris: parse the contents of /etc/release to retrieve the OS release.
• Windows: use WMI to retrieve the OS release.

(# Back to top)

osfamily

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the family of the operating system.

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 382

Resolution:

• All platforms: default to the kernel name.
• Linux: map various Linux distributions to their base distribution. For example, Ubuntu is a "Debian" distro.
• Solaris: map various Solaris-based operating systems to the "Solaris" family.
• Windows: use "windows" as the family name.

(# Back to top)

physicalprocessorcount

This legacy fact is hidden by default in Facter's command-line output.

Type: integer

Purpose:

Return the count of physical processors.

Resolution:

• Linux: parse the contents /sys/devices/system/cpu/ and /proc/cpuinfo to retrieve the count of
physical processors.

• Mac OSX: use the sysctl function to retrieve the count of physical processors.
• Solaris: use the kstat function to retrieve the count of physical processors.
• Windows: use WMI to retrieve the count of physical processors.

Caveats:

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

processor<N>

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the model string of processor N.

Resolution:

• Linux: parse the contents of /proc/cpuinfo to retrieve the processor model string.
• Mac OSX: use the sysctl function to retrieve the processor model string.
• Solaris: use the kstat function to retrieve the processor model string.
• Windows: use WMI to retrieve the processor model string.

(# Back to top)

processorcount

This legacy fact is hidden by default in Facter's command-line output.

Type: integer

Purpose:

Return the count of logical processors.

Resolution:

• Linux: parse the contents /sys/devices/system/cpu/ and /proc/cpuinfo to retrieve the count of
logical processors.

• Mac OSX: use the sysctl function to retrieve the count of logical processors.
• Solaris: use the kstat function to retrieve the count of logical processors.

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 383

• Windows: use WMI to retrieve the count of logical processors.

Caveats:

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

productname

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the system product name.

Resolution:

• Linux: parse the contents of /sys/class/dmi/id/product_name to retrieve the system product name.
• Mac OSX: use the sysctl function to retrieve the system product name.
• Solaris: use the smbios utility to retrieve the system product name.
• Windows: use WMI to retrieve the system product name.

Caveats:

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

rubyplatform

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the platform Ruby was built for.

Resolution:

• All platforms: use RUBY_PLATFORM from the Ruby loaded by facter.

Caveats:

• All platforms: facter must be able to locate libruby.

(# Back to top)

rubysitedir

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the path to Ruby's site library directory.

Resolution:

• All platforms: use RbConfig from the Ruby loaded by facter.

Caveats:

• All platforms: facter must be able to locate libruby.

(# Back to top)

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 384

rubyversion

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the version of Ruby.

Resolution:

• All platforms: use RUBY_VERSION from the Ruby loaded by facter.

Caveats:

• All platforms: facter must be able to locate libruby.

(# Back to top)

scope6

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the IPv6 scope for the default network interface.

Resolution:

• Linux: parse the contents of /proc/net/if_inet6 to retrieve the network interface scope.
• Mac OSX: use the getifaddrs function to retrieve the network interface scope.
• Solaris: use the ioctl function to retrieve the network interface scope.
• Windows: use the GetAdaptersAddresses function to retrieve the network interface scope.

(# Back to top)

scope6_<interface>

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the IPv6 scope for the default network interface.

Resolution:

• Linux: parse the contents of /proc/net/if_inet6 to retrieve the network interface scope.
• Mac OSX: use the getifaddrs function to retrieve the network interface scope.
• Solaris: use the ioctl function to retrieve the network interface scope.
• Windows: use the GetAdaptersAddresses function to retrieve the network interface scope.

(# Back to top)

selinux

This legacy fact is hidden by default in Facter's command-line output.

Type: boolean

Purpose:

Return whether Security-Enhanced Linux (SELinux) is enabled.

Resolution:

• Linux: parse the contents of /proc/self/mounts to determine if SELinux is enabled.

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 385

(# Back to top)

selinux_config_mode

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the configured Security-Enhanced Linux (SELinux) mode.

Resolution:

• Linux: parse the contents of /etc/selinux/config to retrieve the configured SELinux mode.

(# Back to top)

selinux_config_policy

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the configured Security-Enhanced Linux (SELinux) policy.

Resolution:

• Linux: parse the contents of /etc/selinux/config to retrieve the configured SELinux policy.

(# Back to top)

selinux_current_mode

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the current Security-Enhanced Linux (SELinux) mode.

Resolution:

• Linux: parse the contents of <mountpoint>/enforce to retrieve the current SELinux mode.

(# Back to top)

selinux_enforced

This legacy fact is hidden by default in Facter's command-line output.

Type: boolean

Purpose:

Return whether Security-Enhanced Linux (SELinux) is enforced.

Resolution:

• Linux: parse the contents of <mountpoint>/enforce to retrieve the current SELinux mode.

(# Back to top)

selinux_policyversion

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the Security-Enhanced Linux (SELinux) policy version.

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 386

Resolution:

• Linux: parse the contents of <mountpoint>/policyvers to retrieve the SELinux policy version.

(# Back to top)

serialnumber

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the system product serial number.

Resolution:

• Linux: parse the contents of /sys/class/dmi/id/product_name to retrieve the system product serial
number.

• Solaris: use the smbios utility to retrieve the system product serial number.
• Windows: use WMI to retrieve the system product serial number.

Caveats:

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

sp_<name>

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return Mac OSX system profiler information.

Resolution:

• Mac OSX: use the system_profiler utility to retrieve system profiler information.

(# Back to top)

ssh<algorithm>key

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the SSH public key for the algorithm.

Resolution:

• POSIX platforms: parse SSH public key files.

Caveats:

• POSIX platforms: facter must be built with OpenSSL support.

(# Back to top)

sshfp_<algorithm>

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 387

Return the SSH fingerprints for the algorithm's public key.

Resolution:

• POSIX platforms: derive the SHA1 and SHA256 fingerprints; delimit with a new line character.

Caveats:

• POSIX platforms: facter must be built with OpenSSL support.

(# Back to top)

swapencrypted

This legacy fact is hidden by default in Facter's command-line output.

Type: boolean

Purpose:

Return whether or not the swap is encrypted.

Resolution:

• Mac OSX: use the sysctl function to retrieve swap encryption status.

(# Back to top)

swapfree

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the display size of the free swap memory, such as "1 GiB".

Resolution:

• Linux: parse the contents of /proc/meminfo to retrieve the free swap memory.
• Mac OSX: use the sysctl function to retrieve the free swap memory.
• Solaris: use the swapctl function to retrieve the free swap memory.

(# Back to top)

swapfree_mb

This legacy fact is hidden by default in Facter's command-line output.

Type: double

Purpose:

Return the size of the free swap memory, in mebibytes.

Resolution:

• Linux: parse the contents of /proc/meminfo to retrieve the free swap memory.
• Mac OSX: use the sysctl function to retrieve the free swap memory.
• Solaris: use the swapctl function to retrieve the free swap memory.

(# Back to top)

swapsize

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the display size of the total swap memory, such as "1 GiB".

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 388

Resolution:

• Linux: parse the contents of /proc/meminfo to retrieve the total swap memory.
• Mac OSX: use the sysctl function to retrieve the total swap memory.
• Solaris: use the swapctl function to retrieve the total swap memory.

(# Back to top)

swapsize_mb

This legacy fact is hidden by default in Facter's command-line output.

Type: double

Purpose:

Return the size of the total swap memory, in mebibytes.

Resolution:

• Linux: parse the contents of /proc/meminfo to retrieve the total swap memory.
• Mac OSX: use the sysctl function to retrieve the total swap memory.
• Solaris: use the swapctl function to retrieve the total swap memory.

(# Back to top)

windows_edition_id

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the type of Windows edition, Server or Desktop Edition variant.

Resolution:

• Windows: query the registry to retrieve the type of edition (ServerStandard|Professional|Enterprise).

(# Back to top)

windows_installation_type

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return Windows installation type (Server|Server Core|Client).

Resolution:

• Windows: query the registry to retrive data to differentiate Server, Server Core, Client.

(# Back to top)

windows_product_name

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return Windows textual product name.

Resolution:

• Windows: uery the registry to retrive textual product name.

(# Back to top)

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 389

windows_release_id

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return Windows Build Version of the form YYMM.

Resolution:

• Windows: query the registry to retrieve the build version number.

(# Back to top)

windows_display_version

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return Windows Display Version.

Resolution:

• Windows: query the registry to retrieve the display version.

(# Back to top)

system32

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the path to the System32 directory on Windows.

Resolution:

• Windows: use the SHGetFolderPath function to retrieve the path to the System32 directory.

(# Back to top)

uptime

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the system uptime.

Resolution:

• Linux: use the sysinfo function to retrieve the system uptime.
• POSIX platforms: use the uptime utility to retrieve the system uptime.
• Solaris: use the kstat function to retrieve the system uptime.
• Windows: use WMI to retrieve the system uptime.

(# Back to top)

uptime_days

This legacy fact is hidden by default in Facter's command-line output.

Type: integer

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 390

Purpose:

Return the system uptime days.

Resolution:

• Linux: use the sysinfo function to retrieve the system uptime days.
• POSIX platforms: use the uptime utility to retrieve the system uptime days.
• Solaris: use the kstat function to retrieve the system uptime days.
• Windows: use WMI to retrieve the system uptime days.

(# Back to top)

uptime_hours

This legacy fact is hidden by default in Facter's command-line output.

Type: integer

Purpose:

Return the system uptime hours.

Resolution:

• Linux: use the sysinfo function to retrieve the system uptime hours.
• POSIX platforms: use the uptime utility to retrieve the system uptime hours.
• Solaris: use the kstat function to retrieve the system uptime hours.
• Windows: use WMI to retrieve the system uptime hours.

(# Back to top)

uptime_seconds

This legacy fact is hidden by default in Facter's command-line output.

Type: integer

Purpose:

Return the system uptime seconds.

Resolution:

• Linux: use the sysinfo function to retrieve the system uptime seconds.
• POSIX platforms: use the uptime utility to retrieve the system uptime seconds.
• Solaris: use the kstat function to retrieve the system uptime seconds.
• Windows: use WMI to retrieve the system uptime seconds.

(# Back to top)

uuid

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the system product unique identifier.

Resolution:

• Linux: parse the contents of /sys/class/dmi/id/product_uuid to retrieve the system product unique
identifier.

• Solaris: use the smbios utility to retrieve the system product unique identifier.

Caveats:

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 391

• Linux: kernel 2.6+ is required due to the reliance on sysfs.

(# Back to top)

xendomains

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return a list of comma-separated active Xen domain names.

Resolution:

• POSIX platforms: see the xen structured fact.

Caveats:

• POSIX platforms: confined to Xen privileged virtual machines.

(# Back to top)

zone_<name>_brand

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the brand for the Solaris zone.

Resolution:

• Solaris: use the zoneadm utility to retrieve the brand for the Solaris zone.

Caveats:

• Solaris: the zoneadm utility must be present.

(# Back to top)

zone_<name>_iptype

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the IP type for the Solaris zone.

Resolution:

• Solaris: use the zoneadm utility to retrieve the IP type for the Solaris zone.

Caveats:

• Solaris: the zoneadm utility must be present.

(# Back to top)

zone_<name>_name

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the name for the Solaris zone.

Resolution:

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 392

• Solaris: use the zoneadm utility to retrieve the name for the Solaris zone.

Caveats:

• Solaris: the zoneadm utility must be present.

(# Back to top)

zone_<name>_uuid

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the unique identifier for the Solaris zone.

Resolution:

• Solaris: use the zoneadm utility to retrieve the unique identifier for the Solaris zone.

Caveats:

• Solaris: the zoneadm utility must be present.

(# Back to top)

zone_<name>_id

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the zone identifier for the Solaris zone.

Resolution:

• Solaris: use the zoneadm utility to retrieve the zone identifier for the Solaris zone.

Caveats:

• Solaris: the zoneadm utility must be present.

(# Back to top)

zone_<name>_path

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the zone path for the Solaris zone.

Resolution:

• Solaris: use the zoneadm utility to retrieve the zone path for the Solaris zone.

Caveats:

• Solaris: the zoneadm utility must be present.

(# Back to top)

zone_<name>_status

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 393

Return the zone state for the Solaris zone.

Resolution:

• Solaris: use the zoneadm utility to retrieve the zone state for the Solaris zone.

Caveats:

• Solaris: the zoneadm utility must be present.

(# Back to top)

zonename

This legacy fact is hidden by default in Facter's command-line output.

Type: string

Purpose:

Return the name of the current Solaris zone.

Resolution:

• Solaris: use the zonename utility to retrieve the current zone name.

Caveats:

• Solaris: the zonename utility must be present.

(# Back to top)

zones

This legacy fact is hidden by default in Facter's command-line output.

Type: integer

Purpose:

Return the count of Solaris zones.

Resolution:

• Solaris: use the zoneadm utility to retrieve the count of Solaris zones.

Caveats:

• Solaris: the zoneadm utility must be present.

(# Back to top)

Custom facts overview
You can add custom facts by writing snippets of Ruby code on the primary Puppet server. Puppet then uses plug-ins
in modules to distribute the facts to the client.

For information on how to add custom facts to modules, see Module plug-in types.

Related information
External facts on page 404
External facts provide a way to use arbitrary executables or scripts as facts, or set facts statically with structured data.
With this information, you can write a custom fact in Perl, C, or a one-line text file.

Plug-ins in modules on page 979

© 2024 Puppet, Inc., a Perforce company

c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav
c6e83732ad0f4be21d2ba263e2073c2def1804f1.md#page-nav

Puppet | The Puppet platform | 394

Puppet supports several kinds of plug-ins, which are distributed in modules. These plug-ins enable features such as
custom facts and functions for managing your nodes. Modules that you download from the Forge can include these
kinds of plug-ins, and you can also develop your own.

Adding custom facts to Facter
Sometimes you need to be able to write conditional expressions based on site-specific data that just isn’t available via
Facter, or perhaps you’d like to include it in a template.

Because you can’t include arbitrary Ruby code in your manifests, the best solution is to add a new fact to Facter.
These additional facts can then be distributed to Puppet clients and are available for use in manifests and templates,
just like any other fact is.

Note: Facter 3.0 removed the Ruby implementations of some features and replaced them with a custom facts API.
Any custom fact that requires one of the Ruby files previously stored in lib/facter/util fails with an error.

Structured and flat facts

A typical fact extracts a piece of information about a system and returns it as either as a simple value (“flat” fact) or
data organized as a hash or array (“structured” fact). There are several types of facts classified by how they collect
information, including:

• Core facts, which are built into Facter and are common to almost all systems.
• Custom facts, which run Ruby code to produce a value.
• External facts, which return values from pre-defined static data, or the result of an executable script or program.

All fact types can produce flat or structured values.

Related information
Facter release notes on page 98
These are the new features, resolved issues, and deprecations in this version of Facter.

External facts on page 404
External facts provide a way to use arbitrary executables or scripts as facts, or set facts statically with structured data.
With this information, you can write a custom fact in Perl, C, or a one-line text file.

Loading custom facts
Facter offers multiple methods of loading facts.

These include:

• $LOAD_PATH, or the Ruby library load path.
• The --custom-dir command line option.
• The environment variable FACTERLIB.

You can use these methods to do things like test files locally before distributing them, or you can arrange to have a
specific set of facts available on certain machines.

Using the Ruby load path

Facter searches all directories in the Ruby $LOAD_PATH variable for subdirectories named Facter, and loads all
Ruby files in those directories. If you had a directory in your $LOAD_PATH like ~/lib/ruby, set up like this:

#~/lib/ruby
facter
 ### rackspace.rb
 ### system_load.rb
 ### users.rb

Facter loads facter/system_load.rb, facter/users.rb, and facter/rackspace.rb.

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/facter/blob/master/Extensibility.md#Extensibility

Puppet | The Puppet platform | 395

Using the --custom-dir command line option

Facter can take multiple --custom-dir options on the command line that specifies a single directory to search for
custom facts. Facter attempts to load all Ruby files in the specified directories. This allows you to do something like
this:

$ ls my_facts
system_load.rb
$ ls my_other_facts
users.rb
$ facter --custom-dir=./my_facts --custom-dir=./my_other_facts system_load
 users
system_load => 0.25
users => thomas,pat

Using the FACTERLIB environment variable

Facter also checks the environment variable FACTERLIB for a delimited (semicolon for Windows and colon for
all other platforms) set of directories, and tries to load all Ruby files in those directories. This allows you to do
something like this:

$ ls my_facts
system_load.rb
$ ls my_other_facts
users.rb
$ export FACTERLIB="./my_facts:./my_other_facts"
$ facter system_load users
system_load => 0.25
users => thomas,pat

Two parts of every fact
Most facts have at least two elements.

1. A call to Facter.add('fact_name'), which determines the name of the fact.
2. A setcode statement for simple resolutions, which is evaluated to determine the fact’s value.

Facts can get a lot more complicated than that, but those two together are the most common implementation of a
custom fact.

Executing shell commands in facts
Puppet gets information about a system from Facter, and the most common way for Facter to get that information is
by executing shell commands.

You can then parse and manipulate the output from those commands using standard Ruby code. The Facter API gives
you a few ways to execute shell commands:

• To run a command and use the output verbatim, as your fact’s value, you can pass the command into setcode
directly. For example: setcode 'uname --hardware-platform'

• If your fact is more complicated than that, you can call Facter::Core::Execution.execute('uname
--hardware-platform') from within the setcode do ... end block. Whatever the setcode
statement returns is used as the fact’s value.

• Your shell command is also a Ruby string, so you need to escape special characters if you want to pass them
through.

Note: Not everything that works in the terminal works in a fact. You can use the pipe (|) and similar operators as
you normally would, but Bash-specific syntax like if statements do not work. The best way to handle this limitation
is to write your conditional logic in Ruby.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 396

Example

To get the output of uname --hardware-platform to single out a specific type of workstation, you create a
custom fact.

1. Start by giving the fact a name, in this case, hardware_platform.
2. Create the fact in a file called hardware_platform.rb on the primary Puppet server:

hardware_platform.rb

Facter.add('hardware_platform') do
 setcode do
 Facter::Core::Execution.execute('/bin/uname --hardware-platform')
 end
end

3. Use the instructions in the Plug-ins in modules docs to copy the new fact to a module and distribute it. During
your next Puppet run, the value of the new fact is available to use in your manifests and templates.

Using other facts
You can write a fact that uses other facts by accessing Facter.value('somefact'). If the fact fails to resolve
or is not present, Facter returns nil.

For example:

Facter.add('osfamily') do
 setcode do
 distid = Facter.value('lsbdistid')
 case distid
 when /RedHatEnterprise|CentOS|Fedora/
 'redhat'
 when 'ubuntu'
 'debian'
 else
 distid
 end
 end
end

Configuring facts
Facts have properties that you can use to customize how they are evaluated.

Confining facts

One of the more commonly used properties is the confine statement, which restricts the fact to run only on systems
that match another given fact.

For example:

Facter.add('powerstates') do
 confine kernel: 'Linux'
 setcode do
 Facter::Core::Execution.execute('cat /sys/power/states')
 end
end

This fact uses sysfs on Linux to get a list of the power states that are available on the given system. Because this
is available only on Linux systems, we use the confine statement to ensure that this fact isn’t needlessly run on
systems that don’t support this type of enumeration.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 397

To confine structured facts like ['os']['family'], you can use Facter.value: You can also use a Ruby
block:

confine 'os' do |os|
 os['family'] == 'RedHat'
end

Fact precedence

A single fact can have multiple resolutions, each of which is a different way of determining the value of the fact. It’s
common to have different resolutions for different operating systems, for example. To add a new resolution to a fact,
you add the fact again with a different setcode statement.

When a fact has more than one resolution, the first resolution that returns a value other than nil sets the fact’s value.
The way that Facter decides the issue of resolution precedence is the weight property. After Facter rules out any
resolutions that are excluded because of confine statements, the resolution with the highest weight is evaluated
first. If that resolution returns nil, Facter moves on to the next resolution (by descending weight) until it gets a value
for the fact.

By default, the weight of a resolution is the number of confine statements it has, so that more specific resolutions
take priority over less specific resolutions. External facts have a weight of 1000 — to override them, set a weight
above 1000.

Check to see if this server has been marked as a postgres server
Facter.add('role') do
 has_weight 100
 setcode do
 if File.exist? '/etc/postgres_server'
 'postgres_server'
 end
 end
end

Guess if this is a server by the presence of the pg_create binary
Facter.add('role') do
 has_weight 50
 setcode do
 if File.exist? '/usr/sbin/pg_create'
 'postgres_server'
 end
 end
end

If this server doesn't look like a server, it must be a desktop
Facter.add('role') do
 setcode do
 'desktop'
 end
end

Execution timeouts

Although this version of Facter does not support overall timeouts on resolutions, you can pass a timeout to
Facter::Core::Execution#execute:

Facter.add('sleep') do
 setcode do
 begin
 Facter::Core::Execution.execute('sleep 10', options = {:timeout => 5})
 'did not timeout!'
 rescue Facter::Core::Execution::ExecutionFailure

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 398

 Facter.warn("Sleep fact timed out!")
 end
 end
end

When Facter runs as standalone, using Facter.warn ensures that the message is printed to STDERR. When Facter
is called as part of a catalog application, using Facter.warn prints the message to Puppet’s log. If an exception is
not caught, Facter automatically logs it as an error.

Structured facts
Structured facts take the form of either a hash or an array.

To create a structured fact, return a hash or an array from the setcode statement.

You can see some relevant examples in the Writing structured facts section of the Custom facts overview.

Related information
Writing custom facts on page 399
A typical fact in Facter is an collection of several elements, and is written either as a simple value (“flat” fact) or as
structured data (“structured” fact). This page shows you how to write and format facts correctly.

Aggregate resolutions
If your fact combines the output of multiple commands, use aggregate resolutions. An aggregate resolution is split
into chunks, each one responsible for resolving one piece of the fact. After all of the chunks have been resolved
separately, they’re combined into a single flat or structured fact and returned.

Aggregate resolutions have several key differences compared to simple resolutions, beginning with the fact
declaration. To introduce an aggregate resolution, add the :type => :aggregate parameter:

Facter.add('fact_name', :type => :aggregate) do
 #chunks go here
 #aggregate block goes here
end

Each step in the resolution then gets its own named chunk statement:

chunk('one') do
 'Chunk one returns this. '
end

chunk('two') do
 'Chunk two returns this.'
end

Aggregate resolutions never have a setcode statement. Instead, they have an optional aggregate block that
combines the chunks. Whatever value the aggregate block returns is the fact’s value. Here’s an example that just
combines the strings from the two chunks above:

aggregate do |chunks|
 result = ''

 chunks.each_value do |str|
 result += str
 end

 # Result: "Chunk one returns this. Chunk two returns this."
 result
end

If the chunk blocks all return arrays or hashes, you can omit the aggregate block. If you do, Facter merges all of
your data into one array or hash and uses that as the fact’s value.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 399

For more examples of aggregate resolutions, see the Aggregate resolutions section of the Custom facts overview
page.

Related information
Writing custom facts on page 399
A typical fact in Facter is an collection of several elements, and is written either as a simple value (“flat” fact) or as
structured data (“structured” fact). This page shows you how to write and format facts correctly.

Viewing fact values
If your Puppet primary servers are configured to use PuppetDB, you can view and search all of the facts for any node,
including custom facts.

See the PuppetDB docs for more info.

Writing custom facts
A typical fact in Facter is an collection of several elements, and is written either as a simple value (“flat” fact) or as
structured data (“structured” fact). This page shows you how to write and format facts correctly.

Important: You must be able to distinguish facts from resolutions. A fact is a piece of information about a given
node, while a resolution is a way of determining the value of an applicable fact. The following is a structure of a fact:

Facter.add(:my_custom_fact) do
 <resolution>
end

A single fact can have multiple resolutions. A resolution details how, when and in which order to obtain the value for
a fact. It is common to have different resolutions for different operating systems. To add a new resolution to a fact,
you add the fact again but with a different setcode statement.

You need some familiarity with Ruby to understand most of these examples. For an introduction, see out the Custom
facts overview. For information on how to add custom facts to modules, see Module plug-in types.

Writing facts with simple resolutions
Most facts are resolved all at the same time, without any need to merge data from different sources. In that case, the
resolution is simple. Both flat and structured facts can have simple resolutions.

Main components of simple resolutions

Simple facts are typically made up of the following parts:

1. A call to Facter.add(:fact_name):

• This introduces a new fact or a new resolution for an existing fact with the same name.
• The name can be either a symbol or a string.
• The rest of the fact is wrapped in the add call’s do ... end block.

2. Zero or more confine statements:

• Determine whether the resolution is suitable (and therefore is evaluated).
• Can either match against the value of another fact or evaluate a Ruby block.
• If given a symbol or string representing a fact name, a block is required and the block receives the fact’s value

as an argument.
• If given a hash, the keys are expected to be fact names. The values of the hash are either the expected fact

values or an array of values to compare against.
• If given a block, the confine is suitable if the block returns a value other than nil or false.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetdb/latest

Puppet | The Puppet platform | 400

3. An optional has_weight statement:

• When multiple resolutions are available for a fact, resolutions are evaluated from highest weight value to
lowest.

• Must be an integer greater than 0.
• Defaults to the number of confine statements for the resolution.

4. A setcode statement that determines the value of the fact:

• Can take either a string or a block.
• If given a string, Facter executes it as a shell command. If the command succeeds, the output of the command

is the value of the fact. If the command fails, the next suitable resolution is evaluated.
• If given a block, the block’s return value is the value of the fact unless the block returns nil. If nil is

returned, the next suitable resolution is evalutated.
• Can execute shell commands within a setcode block, using the Facter::Core::Execution.exec

function.
• If multiple setcode statements are evaluated for a single resolution, only the last setcode block is used.

Note: Set all code inside the sections outlined above — there should not be any code outside setcodeand
confine blocks other than an optional has_weight statement in a custom fact.

How to format facts
The format of a fact is important because of the way that Factor evaluates them — by reading all the fact definitions.
If formatted incorrectly, Facter can execute code too early. You need to use the setcode correctly. Below is a good
example and a bad example of a fact, showing you where to place the setcode.

Good:

Facter.add('phi') do
 confine :owner => "BTO"
 confine :kernel do |value|
 value == "Linux"
 end

 setcode do
 bar=Facter.value('theta')
 bar + 1
 end
end

In this example, the bar=Facter.value('theta') call is guarded by setcode, which means it won’t be
executed unless or until it is appropriate to do so. Facter will load all Facter.add blocks first, use any OS or
confine/weight information to decide which facts to evaluate, and once it chooses, it selectively executes setcode
blocks for each fact that it needs.

Bad:

Facter.add('phi') do
 confine :owner => "BTO"
 confine :kernel do |value|
 value == "Linux"
 end

 bar = Facter.value('theta')

 setcode do
 bar + 1
 end
end

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 401

In this example, the Facter.value('theta') call is outside of the guarded setcode block and in the
unguarded part of the Facter.add block. This means that the statement will always execute, on every system,
regardless of confine, weight, or which resolution of phi is appropriate. Any code with possible side-effects, or code
pertaining to figuring out the value of a fact, should be kept inside the setcode block. The only code left outside
setcode is code that helps Facter choose which resolution of a fact to use.

Examples

The following example shows a minimal fact that relies on a single shell command:

Facter.add(:rubypath) do
 setcode 'which ruby'
end

The following example shows different resolutions for different operating systems:

Facter.add(:rubypath) do
 setcode 'which ruby'
end

Facter.add(:rubypath) do
 confine :osfamily => "Windows"
 # Windows uses 'where' instead of 'which'
 setcode 'where ruby'
end

The following example shows a more complex fact, confined to Linux with a block:

Facter.add(:jruby_installed) do
 confine :kernel do |value|
 value == "Linux"
 end

 setcode do
 # If jruby is present, return true. Otherwise, return false.
 Facter::Core::Execution.which('jruby') != nil
 end
end

Writing structured facts
Structured facts can take the form of hashes or arrays.

You don’t have to do anything special to mark the fact as structured — if your fact returns a hash or array, Facter
recognizes it as a structured fact. Structured facts can have simple or aggregate resolutions.

Example: Returning an array of network interfaces

Facter.add(:interfaces_array) do
 setcode do
 interfaces = Facter.value(:interfaces)
 # the 'interfaces' fact returns a single comma-delimited string, such as
 "lo0,eth0,eth1"
 # this splits the value into an array of interface names
 interfaces.split(',')
 end
end

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 402

Example: Returning a hash of network interfaces to IP addresses

Facter.add(:interfaces_hash) do
 setcode do
 interfaces_hash = {}

 Facter.value(:interfaces_array).each do |interface|
 ipaddress = Facter.value("ipaddress_#{interface}")
 if ipaddress
 interfaces_hash[interface] = ipaddress
 end
 end

 interfaces_hash
 end
end

Writing facts with aggregate resolutions
Aggregate resolutions allow you to split up the resolution of a fact into separate chunks.

By default, Facter merges hashes with hashes or arrays with arrays, resulting in a structured fact, but you can also
aggregate the chunks into a flat fact using concatenation, addition, or any other function that you can express in Ruby
code.

Main components of aggregate resolutions

Aggregate resolutions have two key differences compared to simple resolutions: the presence of chunk statements
and the lack of a setcode statement. The aggregate block is optional, and without it Facter merges hashes with
hashes or arrays with arrays.

1. A call to Facter.add(:fact_name, :type => :aggregate):

• Introduces a new fact or a new resolution for an existing fact with the same name.
• The name can be either a symbol or a string.
• The :type => :aggregate parameter is required for aggregate resolutions.
• The rest of the fact is wrapped in the add call’s do ... end block.

2. Zero or more confine statements:

• Determine whether the resolution is suitable and (therefore is evaluated).
• They can either match against the value of another fact or evaluate a Ruby block.
• If given a symbol or string representing a fact name, a block is required and the block receives the fact’s value

as an argument.
• If given a hash, the keys are expected to be fact names. The values of the hash are either the expected fact

values or an array of values to compare against.
• If given a block, the confine is suitable if the block returns a value other than nil or false.

3. An optional has_weight statement:

• Evaluates multiple resolutions for a fact from highest weight value to lowest.
• Must be an integer greater than 0.
• Defaults to the number of confine statements for the resolution.

4. One or more calls to chunk, each containing:

• A name (as the argument to chunk).
• A block of code, which is responsible for resolving the chunk to a value. The block’s return value is the value

of the chunk; it can be any type, but is typically a hash or array.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 403

5. An optional aggregate block:

• If absent, Facter automatically merges hashes with hashes or arrays with arrays.
• To merge the chunks in any other way, you need to make a call to aggregate, which takes a block of code.
• The block is passed one argument (chunks, in the example), which is a hash of chunk name to chunk value

for all the chunks in the resolution.

Example: Building a structured fact progressively

This example builds a new fact, networking_primary_sha, by progressively merging two chunks. One chunk
encodes each networking interface’s MAC address as an encoded base64 value, and the other determines if each
interface is the system’s primary interface.

require 'digest'
require 'base64'

Facter.add(:networking_primary_sha, :type => :aggregate) do

 chunk(:sha256) do
 interfaces = {}

 Facter.value(:networking)['interfaces'].each do |interface, values|
 if values['mac']
 hash = Digest::SHA256.digest(values['mac'])
 encoded = Base64.encode64(hash)
 interfaces[interface] = {:mac_sha256 => encoded.strip}
 end
 end

 interfaces
 end

 chunk(:primary?) do
 interfaces = {}

 Facter.value(:networking)['interfaces'].each do |interface, values|
 interfaces[interface] = {:primary? => (interface ==
 Facter.value(:networking)['primary'])}
 end

 interfaces
 end
 # Facter merges the return values for the two chunks
 # automatically, so there's no aggregate statement.
end

The fact’s output is organized by network interface into hashes, each containing the two chunks:

{
 bridge0 => {
 mac_sha256 => "bfgEFV7m1V04HYU6UqzoNoVmnPIEKWRSUOU650j0Wkk=",
 primary? => false
 },
 en0 => {
 mac_sha256 => "6Fd3Ws2z+aIl8vNmClCbzxiO2TddyFBChMlIU+QB28c=",
 primary? => true
 },
 ...
}

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 404

Example: Building a flat fact progressively with addition

Facter.add(:total_free_memory_mb, :type => :aggregate) do
 chunk(:physical_memory) do
 Facter.value(:memoryfree_mb)
 end

 chunk(:virtual_memory) do
 Facter.value(:swapfree_mb)
 end

 aggregate do |chunks|
 # The return value for this block determines the value of the fact.
 sum = 0
 chunks.each_value do |i|
 sum += i
 end

 sum
 end
end

External facts
External facts provide a way to use arbitrary executables or scripts as facts, or set facts statically with structured data.
With this information, you can write a custom fact in Perl, C, or a one-line text file.

Executable facts on Unix

Executable facts on Unix work by dropping an executable file into the standard external fact path. A shebang (#!) is
always required for executable facts on Unix. If the shebang is missing, the execution of the fact fails.

An example external fact written in Python:

#!/usr/bin/env python
data = {"key1" : "value1", "key2" : "value2" }

for k in data:
 print "%s=%s" % (k,data[k])

You must ensure that the script has its execute bit set:

chmod +x /etc/facter/facts.d/my_fact_script.py

For Facter to parse the output, the script should return key-value pairs, JSON, or YAML.

Custom executable external facts can return data in YAML or JSON format, and Facter parses it into a structured fact.
If the returned value is not YAML, Facter falls back to parsing it as a key-value pair.

By using the key-value pairs on STDOUT format, a single script can return multiple facts:

key1=value1
key2=value2
key3=value3

Executable facts on Windows

Executable facts on Windows work by dropping an executable file into the external fact path. The external facts
interface expects Windows scripts to end with a known extension. Line endings can be either LF or CRLF. The
following extensions are supported:

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 405

• .com and .exe: binary executables
• .bat and .cmd: batch scripts
• .ps1: PowerShell scripts

The script should return key-value pairs, JSON, or YAML.

Custom executable external facts can return data in YAML or JSON format, and Facter parses it into a structured fact.
If the returned value is not YAML, Facter falls back to parsing it as a key-value pair.

By using the key-value pairs on STDOUT format, a single script can return multiple facts:

key1=value1
key2=value2
key3=value3

Using this format, a single script can return multiple facts in one return.

For batch scripts, the file encoding for the .bat or .cmd files must be ANSI or UTF8 without BOM.

Here is a sample batch script which outputs facts using the required format:

@echo off
echo key1=val1
echo key2=val2
echo key3=val3
REM Invalid - echo 'key4=val4'
REM Invalid - echo "key5=val5"

For PowerShell scripts, the encoding used with .ps1 files is flexible. PowerShell determines the encoding of the file
at run time.

Here is a sample PowerShell script which outputs facts using the required format:

Write-Host "key1=val1"
Write-Host 'key2=val2'
Write-Host key3=val3

Save and execute this PowerShell script on the command line.

Executable fact locations

Distribute external executable facts with pluginsync. To add external executable facts to your Puppet modules, place
them in <MODULEPATH>/<MODULE>/facts.d/.

If you’re not using pluginsync, then external facts must go in a standard directory. The location of this directory
varies depending on your operating system, whether your deployment uses Puppet Enterprise or open source releases,
and whether you are running as root or Administrator. When calling Facter from the command line, you can specify
the external facts directory with the --external-dir option.

Note: These directories don’t necessarily exist by default; you might need to create them. If you create the directory,
make sure to restrict access so that only administrators can write to the directory.

In a module (recommended):

<MODULEPATH>/<MODULE>/facts.d/

On Unix, Linux, or Mac OS X, there are three directories:

/opt/puppetlabs/facter/facts.d/
/etc/puppetlabs/facter/facts.d/
/etc/facter/facts.d/

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 406

On Windows:

C:\ProgramData\PuppetLabs\facter\facts.d\

When running as a non-root or non-Administrator user:

<HOME DIRECTORY>/.facter/facts.d/

Note: You can use custom facts as a non-root user only if you have first configured non-root user access and
previously run Puppet agent as that same user.

Structured data facts

Facter can parse structured data files stored in the external facts directory and set facts based on their contents.

Structured data files must use one of the supported data types and must have the correct file extension. Facter
supports the following extensions and data types:

• .yaml: YAML data, in the following format:

key1: val1
key2: val2
key3: val3

• .json: JSON data, in the following format:

{ "key1": "val1", "key2": "val2", "key3": "val3" }

• .txt: Key-value pairs, of the String data type, in the following format:

key1=value1
key2=value2
key3=value3

As with executable facts, structured data files can set multiple facts at one time.

{
 "datacenter":
 {
 "location": "bfs",
 "workload": "Web Development Pipeline",
 "contact": "Blackbird"
 },
 "provision":
 {
 "birth": "2017-01-01 14:23:34",
 "user": "alex"
 }
}

Structured data facts on Windows

All of the above types are supported on Windows with the following notes:

• The line endings can be either LF or CRLF.
• The file encoding must be either ANSI or UTF8 without BOM.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pe/latest/installing/installing_agents.html#installing_agents

Puppet | The Puppet platform | 407

Troubleshooting

If your external fact is not appearing in Facter’s output, running Facter in debug mode can reveal why and tell you
which file is causing the problem:

puppet facts --debug

One possible cause is a fact that returns invalid characters. For example if you used a hyphen instead of an equals sign
in your script test.sh:

#!/bin/bash

echo "key1-value1"

Running puppet facts --debug yields the following message:

...
Debug: Facter: resolving facts from executable file "/tmp/test.sh".
Debug: Facter: executing command: /tmp/test.sh
Debug: Facter: key1-value1
Debug: Facter: ignoring line in output: key1-value1
Debug: Facter: process exited with status code 0.
Debug: Facter: completed resolving facts from executable file "/tmp/
test.sh".
...

If you find that an external fact does not match what you have configured in your facts.d directory, make sure you
have not defined the same fact using the external facts capabilities found in the stdlib module.

Drawbacks

While external facts provide a mostly-equal way to create variables for Puppet, they have a few drawbacks:

• An external fact cannot internally reference another fact. However, due to parse order, you can reference an
external fact from a Ruby fact.

• External executable facts are forked instead of executed within the same process.

Related information
Custom facts overview on page 393
You can add custom facts by writing snippets of Ruby code on the primary Puppet server. Puppet then uses plug-ins
in modules to distribute the facts to the client.

Configuring Facter with facter.conf
The facter.conf file is a configuration file that allows you to cache and block fact groups, and manage how
Facter interacts with your system. There are three sections: facts, global, and cli. All sections are optional and
can be listed in any order within the file.

When you run Facter from the Ruby API, only the facts section and limited global settings are loaded.

Example facter.conf file:

facts : {
 blocklist : ["file system", "EC2"],
 ttls : [
 { "timezone" : 30 days },
]
}
global : {
 external-dir : ["path1", "path2"],
 custom-dir : ["custom/path"],
 no-exernal-facts : false,

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 408

 no-custom-facts : false,
 no-ruby : false
}

cli : {
 debug : false,
 trace : true,
 verbose : false,
 log-level : "warn"
}

Location

Facter does not create the facter.conf file automatically, so you must create it manually, or use a module to
manage it. Facter loads the file by default from /etc/puppetlabs/facter/facter.conf on *nix systems
and C:\ProgramData\PuppetLabs\facter\etc\facter.conf on Windows. Or you can specify a
different default with the --config command line option:

facter --config path/to/my/config/file/facter.conf

facts

The facts section of facter.conf contains settings that affect fact groups. A fact group is a set of individual
facts that are resolved together because they all rely on the same underlying system information. When you add
a group name to the config file as a part of either of these facts settings, all facts in that group will be affected.
Currently only built-in facts can be cached or blocked.

The settings in this section are:

• blocklist — Prevents all facts within the listed groups from being resolved when Facter runs. Use the --
list-block-group command line option to list valid groups.

• ttls — Caches the key-value pairs of groups and their duration to be cached. Use the --list-cache-group
command line option to list valid groups.

• Cached facts are stored as JSON in /opt/puppetlabs/facter/cache/cached_facts on *nix and
C:\ProgramData\PuppetLabs\facter\cache\cached_facts on Windows.

Caching and blocking facts is useful when Facter is taking a long time and slowing down your code. When a system
has a lot of something — for example, mount points or disks — Facter can take a long time to collect the facts from
each one. When this is a problem, you can speed up Facter’s collection by either blocking facts you’re uninterested in
(blocklist), or caching ones you don’t need retrieved frequently (ttls).

To see a list of valid group names, from the command line, run facter --list-block-groups or facter
--list-cache-groups. The output shows the fact group at the top level, with all facts in that group nested
below:

$ facter --list-block-groups
EC2
 - ec2_metadata
 - ec2_userdata
file system
 - mountpoints
 - filesystems
 - partitions

If you want to block any of these groups, add the group name to the facts section of facter.conf, with the
blocklist setting:

facts : {
 blocklist : ["file system"],

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 409

}

Here, the file system group has been added, so the mountpoints, filesystems, and partitions facts
will all be prevented from loading.

global

The global section of facter.conf contains settings to control how Facter interacts with its external elements
on your system.

Setting Effect Default

external-dir A list of directories to search for
external facts.

custom-dir A list of directories to search for
custom facts.

no-external* If true, prevents Facter from
searching for external facts.

false

no-custom* If true, prevents Facter from
searching for custom facts.

false

no-ruby* If true, prevents Facter from
loading its Ruby functionality.

false

*Not available when you run Facter from the Ruby API.

cli

The cli section of facter.conf contains settings that affect Facter’s command line output. All of these settings
are ignored when you run Facter from the Ruby API.

Setting Effect Default

debug If true, Facter outputs debug
messages.

false

trace If true, Facter prints stacktraces
from errors arising in your custom
facts.

false

verbose If true, Facter outputs its most
detailed messages.

false

log-level Sets the minimum level of message
severity that gets logged. Valid
options: "none", "fatal",
"error", "warn", "info",
"debug", "trace".

"warn"

Hiera
Hiera is a built-in key-value configuration data lookup system, used for separating data from Puppet code.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 410

• About Hiera on page 410
Puppet’s strength is in reusable code. Code that serves many needs must be configurable: put site-specific information
in external configuration data files, rather than in the code itself.
• Getting started with Hiera on page 414
This page introduces the basic concepts and tasks to get you started with Hiera, including how to create a hiera.yaml
config file and write data. It is the foundation for understanding the more advanced topics described in the rest of the
Hiera documentation.
• Configuring Hiera on page 417
The Hiera configuration file is called hiera.yaml. It configures the hierarchy for a given layer of data.
• Creating and editing data on page 425
Important aspects of using Hiera are merge behavior and interpolation.
• Looking up data with Hiera on page 433
• Writing new data backends on page 438
You can extend Hiera to look up values in data sources, for example, a PostgreSQL database table, a custom web app,
or a new kind of structured data file.
• Upgrading to Hiera 5 on page 445
Upgrading to Hiera 5 offers some major advantages. A real environment data layer means changes to your hierarchy
are now routine and testable, using multiple backends in your hierarchy is easier and you can make a custom backend.

About Hiera
Puppet’s strength is in reusable code. Code that serves many needs must be configurable: put site-specific information
in external configuration data files, rather than in the code itself.

Puppet uses Hiera to do two things:

• Store the configuration data in key-value pairs
• Look up what data a particular module needs for a given node during catalog compilation

This is done via:

• Automatic Parameter Lookup for classes included in the catalog
• Explicit lookup calls

Hiera’s hierarchical lookups follow a “defaults, with overrides” pattern, meaning you specify common data one time,
and override it in situations where the default won’t work. Hiera uses Puppet’s facts to specify data sources, so you
can structure your overrides to suit your infrastructure. While using facts for this purpose is common, data-sources
can also be defined without the use of facts.

Puppet 5 comes with support for JSON, YAML, and EYAML files.

Related topics: Automatic Parameter Lookup.

Hiera hierarchies
Hiera looks up data by following a hierarchy — an ordered list of data sources.

Hierarchies are configured in a hiera.yaml configuration file. Each level of the hierarchy tells Hiera how to access
some kind of data source. A hierarchy is usually organized like this:

version: 5
defaults: # Used for any hierarchy level that omits these keys.
 datadir: data # This path is relative to hiera.yaml's directory.
 data_hash: yaml_data # Use the built-in YAML backend.

hierarchy:
 - name: "Per-node data" # Human-readable name.
 path: "nodes/%{trusted.certname}.yaml" # File path, relative to
 datadir.
 # ^^^ IMPORTANT: include the file
 extension!

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 411

 - name: "Per-datacenter business group data" # Uses custom facts.
 path: "location/%{facts.whereami}/%{facts.group}.yaml"

 - name: "Global business group data"
 path: "groups/%{facts.group}.yaml"

 - name: "Per-datacenter secret data (encrypted)"
 lookup_key: eyaml_lookup_key # Uses non-default backend.
 path: "secrets/%{facts.whereami}.eyaml"
 options:
 pkcs7_private_key: /etc/puppetlabs/puppet/eyaml/private_key.pkcs7.pem
 pkcs7_public_key: /etc/puppetlabs/puppet/eyaml/public_key.pkcs7.pem

 - name: "Per-OS defaults"
 path: "os/%{facts.os.family}.yaml"

 - name: "Common data"
 path: "common.yaml"

In this example, every level configures the path to a YAML file on disk.

Hierarchies interpolate variables

Most levels of a hierarchy interpolate variables into their configuration:

path: "os/%{facts.os.family}.yaml"

The percent-and-braces %{variable} syntax is a Hiera interpolation token. It is similar to the Puppet language’s
${expression} interpolation tokens. Wherever you use an interpolation token, Hiera determines the variable’s
value and inserts it into the hierarchy.

The facts.os.family uses the Hiera special key.subkey notation for accessing elements of hashes and
arrays. It is equivalent to $facts['os']['family'] in the Puppet language but the 'dot' notation produces an
empty string instead of raising an error if parts of the data is missing. Make sure that an empty interpolation does not
end up matching an unintended path.

You can only interpolate values into certain parts of the config file. For more info, see the hiera.yaml format
reference.

With node-specific variables, each node gets a customized set of paths to data. The hierarchy is always the same.

Hiera searches the hierarchy in order

After Hiera replaces the variables to make a list of concrete data sources, it checks those data sources in the order they
were written.

Generally, if a data source doesn’t exist, or doesn’t specify a value for the current key, Hiera skips it and moves on to
the next source, until it finds one that exists — then it uses it. Note that this is the default merge strategy, but does not
always apply, for example, Hiera can use data from all data sources and merge the result.

Earlier data sources have priority over later ones. In the example above, the node-specific data has the highest
priority, and can override data from any other level. Business group data is separated into local and global sources,
with the local one overriding the global one. Common data used by all nodes always goes last.

That’s how Hiera’s “defaults, with overrides” approach to data works — you specify common data at lower levels of
the hierarchy, and override it at higher levels for groups of nodes with special needs.

Layered hierarchies

Hiera uses layers of data with a hiera.yaml for each layer.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 412

Each layer can configure its own independent hierarchy. Before a lookup, Hiera combines them into a single super-
hierarchy: global # environment # module.

Note: There is a fourth layer - default_hierarchy - that can be used in a module’s hiera.yaml. It only
comes into effect when there is no data for a key in any of the other regular hierarchies

Assume the example above is an environment hierarchy (in the production environment). If we also had the following
global hierarchy:

version: 5
hierarchy:
 - name: "Data exported from our old self-service config tool"
 path: "selfserve/%{trusted.certname}.json"
 data_hash: json_data
 datadir: data

And the NTP module had the following hierarchy for default data:

version: 5
hierarchy:
 - name: "OS values"
 path: "os/%{facts.os.name}.yaml"
 - name: "Common values"
 path: "common.yaml"
defaults:
 data_hash: yaml_data
 datadir: data

Then in a lookup for the ntp::servers key, thrush.example.com would use the following combined
hierarchy:

• <CODEDIR>/data/selfserve/thrush.example.com.json

• <CODEDIR>/environments/production/data/nodes/thrush.example.com.yaml

• <CODEDIR>/environments/production/data/location/belfast/ops.yaml

• <CODEDIR>/environments/production/data/groups/ops.yaml

• <CODEDIR>/environments/production/data/os/Debian.yaml

• <CODEDIR>/environments/production/data/common.yaml

• <CODEDIR>/environments/production/modules/ntp/data/os/Ubuntu.yaml

• <CODEDIR>/environments/production/modules/ntp/data/common.yaml

The combined hierarchy works the same way as a layer hierarchy. Hiera skips empty data sources, and either returns
the first found value or merges all found values.

Note: By default, datadir refers to the directory named ‘data’ next to the hiera.yaml.

Tips for making a good hierarchy

• Make a short hierarchy. Data files are easier to work with.
• Use the roles and profiles method to manage less data in Hiera. Sorting hundreds of class parameters is easier than

sorting thousands.
• If the built-in facts don’t provide an easy way to represent differences in your infrastructure, make custom facts.

For example, create a custom datacenter fact that is based on information particular to your network layout so that
each datacenter is uniquely identifiable.

• Give each environment – production, test, development – its own hierarchy.

Related topics: codedir, confdir.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 413

Hiera configuration layers
Hiera uses three independent layers of configuration. Each layer has its own hierarchy, and they’re linked into one
super-hierarchy before doing a lookup.

The three layers are searched in the following order: global # environment # module. Hiera searches every data source
in the global layer’s hierarchy before checking any source in the environment layer.

The global layer

The configuration file for the global layer is located, by default, in $confdir/hiera.yaml. You can change the
location by changing the hiera_config setting in puppet.conf.

Hiera has one global hierarchy. Because it goes before the environment layer, it’s useful for temporary overrides, for
example, when your ops team needs to bypass its normal change processes.

The global layer is the only place where legacy Hiera 3 backends can be used - it’s an important piece of the
transition period when you migrate you backends to support Hiera 5. It supports the following config formats:
hiera.yaml v5, hiera.yaml v3 (deprecated).

Other than the above use cases, try to avoid the global layer. Specify all normal data in the environment layer.

The environment layer

The configuration file for the environment layer is located, by default, in <ENVIRONMENT DIR>/hiera.yaml.

The environment layer is where most of your Hiera data hierarchy definition happens. Every Puppet environment has
its own hierarchy configuration, which applies to nodes in that environment. Supported config formats include: v5, v3
(deprecated).

The module layer

The configuration file for a module layer is located, by default, in a module's <MODULE>/hiera.yaml.

The module layer sets default values and merge behavior for a module’s class parameters. It is a convenient
alternative to the params.pp pattern.

Note: To get the exact same behaviour as params.pp, use the default_hierarchy, as those bindings are
excluded from merges. When placed in the regular hierarchy in the module’s hierarchy the bindings are merged when
a merge lookup is performed.

It comes last in Hiera’s lookup order, so environment data set by a user overrides the default data set by the module’s
author.

Every module can have its own hierarchy configuration. You can only bind data for keys in the module’s namespace.
For example:

Lookup key Relevant module hierarchy

ntp::servers ntp

jenkins::port jenkins

secure_server (none)

Hiera uses the ntp module’s hierarchy when looking up ntp::servers, but uses the jenkins module’s
hierarchy when looking up jenkins::port. Hiera never checks the module for a key beginning with
jenkins::.

When you use the lookup function for keys that don’t have a namespace (for example, secure_server), the
module layer is not consulted.

The three-layer system means that each environment has its own hierarchy, and so do modules. You can make
hierarchy changes on an environment-by-environment basis. Module data is also customizable.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 414

Getting started with Hiera
This page introduces the basic concepts and tasks to get you started with Hiera, including how to create a hiera.yaml
config file and write data. It is the foundation for understanding the more advanced topics described in the rest of the
Hiera documentation.
Related information
Hiera configuration layers on page 413
Hiera uses three independent layers of configuration. Each layer has its own hierarchy, and they’re linked into one
super-hierarchy before doing a lookup.

Merge behaviors on page 425
There are four merge behaviors to choose from: first, unique, hash, and deep.

Create a hiera.yaml config file
The Hiera config file is called hiera.yaml. Each environment should have its own hiera.yaml file.

In the main directory of one of your environments, create a new file called hiera.yaml. Paste the following
contents into it:

<ENVIRONMENT>/hiera.yaml

version: 5

hierarchy:
 - name: "Per-node data" # Human-readable name.
 path: "nodes/%{trusted.certname}.yaml" # File path, relative to
 datadir.
 # ^^^ IMPORTANT: include the file
 extension!

 - name: "Per-OS defaults"
 path: "os/%{facts.os.family}.yaml"

 - name: "Common data"
 path: "common.yaml"

This file is in a format called YAML, which is used extensively throughout Hiera.

For more information on YAML, see YAML Cookbook.

Related information
Config file syntax on page 418
The hiera.yaml file is a YAML file, containing a hash with up to four top-level keys.

The hierarchy
The hiera.yaml file configures a hierarchy: an ordered list of data sources.

Hiera searches these data sources in the order they are written. Higher-priority sources override lower-priority ones.
Most hierarchy levels use variables to locate a data source, so that different nodes get different data.

This is the core concept of Hiera: a defaults-with-overrides pattern for data lookup, using a node-specific list of data
sources.

Related information
Interpolation on page 430
In Hiera you can insert, or interpolate, the value of a variable into a string, using the syntax %{variable}.

Hiera hierarchies on page 410

© 2024 Puppet, Inc., a Perforce company

http://www.yaml.org/YAML_for_ruby.html

Puppet | The Puppet platform | 415

Hiera looks up data by following a hierarchy — an ordered list of data sources.

Write data: Create a test class
A test class writes the data it receives to a temporary file — on the agent when applying the catalog.

Hiera is used with Puppet code, so the first step is to create a Puppet class for testing.

1. If you do not already use the roles and profiles method, create a module named profile. Profiles are wrapper
classes that use multiple component modules to configure a layered technology stack. See The roles and profile
method for more information.

2. Use Puppet Development Kit (PDK) to create a class called hiera_test.pp in your profile module.

3. Add the following code you your hiera_test.pp file:

/etc/puppetlabs/code/environments/production/modules/profile/manifests/
hiera_test.pp
class profile::hiera_test (
 Boolean $ssl,
 Boolean $backups_enabled,
 Optional[String[1]] $site_alias = undef,
) {
 file { '/tmp/hiera_test.txt':
 ensure => file,
 content => @("END"),
 Data from profile::hiera_test

 profile::hiera_test::ssl: ${ssl}
 profile::hiera_test::backups_enabled: ${backups_enabled}
 profile::hiera_test::site_alias: ${site_alias}
 |END
 owner => root,
 mode => '0644',
 }
}

The test class uses class parameters to request configuration data. Puppet looks up class parameters in Hiera, using
<CLASS NAME>::<PARAMETER NAME> as the lookup key.

4. Make a manifest that includes the class:

site.pp
include profile::hiera_test

5. Compile the catalog and observe that this fails because there are required values.

6. To provide values for the missing class parameters, set these keys in your Hiera data. Depending on where in your
hierarchy you want to set the parameters, you can add them to your common data, os data, or per-node data.

Parameter Hiera key

$ssl profile::hiera_test::ssl

$backups_enabled profile::hiera_test::backups_enabled

$site_alias profile::hiera_test::site_alias

7. Compile again and observe that the parameters are now automatically looked up.

Related information
The Puppet lookup function on page 434

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pe/latest/the_roles_and_profiles_method.html
https://puppet.com/docs/pe/latest/the_roles_and_profiles_method.html

Puppet | The Puppet platform | 416

The lookup function uses Hiera to retrieve a value for a given key.

Write data: Set values in common data
Set values in your common data — the level at the bottom of your hierarchy.

This hierarchy level uses the YAML backend for data, which means the data goes into a YAML file. To know where
to put that file, combine the following pieces of information:

• The current environment’s directory.
• The data directory, which is a subdirectory of the environment. By default, it's <ENVIRONMENT>/data.
• The file path specified by the hierarchy level.

In this case, /etc/puppetlabs/code/environments/production/ + data/ + common.yaml.

Open that YAML file in an editor, and set values for two of the class’s parameters.

/etc/puppetlabs/code/environments/production/data/common.yaml

profile::hiera_test::ssl: false
profile::hiera_test::backups_enabled: true

The third parameter, $site_alias, has a default value defined in code, so you can omit it from the data.

Write data: Set per-operating system data
The second level of the hierarchy uses the os fact to locate its data file. This means it can use different data files
depending on the operating system of the current node.

For this example, suppose that your developers use MacBook laptops, which have an OS family of Darwin. If a
developer is running an app instance on their laptop, it should not send data to your production backup server, so set
$backups_enabled to false.

If you do not run Puppet on any Mac laptops, choose an OS family that is meaningful to your infrastructure.

1. Locate the data file, by replacing %{facts.os.family} with the value you are targeting:

/etc/puppetlabs/code/environments/production/data/ + os/ + Darwin + .yaml

2. Add the following contents:

/etc/puppetlabs/code/environments/production/data/os/Darwin.yaml

profile::hiera_test::backups_enabled: false

3. Compile to observe that the override takes effect.

Related topics: the os fact.

Write data: Set per-node data
The highest level of the example hierarchy uses the value of $trusted['certname'] to locate its data file, so
you can set data by name for each individual node.

This example supposes you have a server named jenkins-prod-03.example.com, and configures it to use
SSL and to serve this application at the hostname ci.example.com. To try this out, choose the name of a real
server that you can run Puppet on.

1. To locate the data file, replace %{trusted.certname}with the node name you’re targeting:

/etc/puppetlabs/code/environments/production/data/ + nodes/ + jenkins-
prod-03.example.com + .yaml

© 2024 Puppet, Inc., a Perforce company

core_facts.html#core_facts

Puppet | The Puppet platform | 417

2. Open that file in an editor and add the following contents:

/etc/puppetlabs/code/environments/production/data/nodes/jenkins-
prod-03.example.com.yaml

profile::hiera_test::ssl: true
profile::hiera_test::site_alias: ci.example.com

3. Compile to observe that the override takes effect.

Related topics: $trusted[‘certname’].

Testing Hiera data on the command line
As you set Hiera data or rearrange your hierarchy, it is important to double-check the data a node receives.

The puppet lookup command helps test data interactively. For example:

puppet lookup profile::hiera_test::backups_enabled --environment production
 --node jenkins-prod-03.example.com

This returns the value true.

To use the puppet lookup command effectively:

• Run the command on a Puppet Server node, or on another node that has access to a full copy of your Puppet code
and configuration.

• The node you are testing against should have contacted the server at least one time as this makes the facts for that
node available to the lookup command (otherwise you need to supply the facts yourself on the command line).

• Make sure the command uses the global confdir and codedir, so it has access to your live data. If you’re not
running puppet lookup as root user, specify --codedir and --confdir on the command line.

• If you use PuppetDB, you can use any node’s facts in a lookup by specifying --node <NAME>. Hiera can
automatically get that node’s real facts and use them to resolve data.

• If you do not use PuppetDB, or if you want to test for a set of facts that don't exist, provide facts in a YAML or
JSON file and specify that file as part of the command with --facts <FILE>. To get a file full of facts, rather
than creating one from scratch, run facter -p --json > facts.json on a node that is similar to the
node you want to examine, copy the facts.json file to your Puppet Server node, and edit it as needed.

• Puppet Development Kit comes with predefined fact sets for a variety of platforms. You can use those if you
want to test against platforms you do not have, or if you want "typical facts" for a kind of platform.

• If you are not getting the values you expect, try re-running the command with --explain. The --explain
flag makes Hiera output a full explanation of which data sources it searched and what it found in them.

Related topics: The puppet lookup command, confdir, codedir.

Configuring Hiera
The Hiera configuration file is called hiera.yaml. It configures the hierarchy for a given layer of data.
Related information
Hiera configuration layers on page 413
Hiera uses three independent layers of configuration. Each layer has its own hierarchy, and they’re linked into one
super-hierarchy before doing a lookup.

Hiera hierarchies on page 410
Hiera looks up data by following a hierarchy — an ordered list of data sources.

Location of hiera.yaml files
There are several hiera.yaml files in a typical deployment. Hiera uses three layers of configuration, and the
module and environment layers typically have multiple instances.

The configuration file locations for each layer:

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 418

Layer Location Example

Global $confdir/hiera.yaml /etc/puppetlabs/puppet/
hiera.yaml C:\ProgramData
\PuppetLabs\puppet\etc
\hiera.yaml

Environment <ENVIRONMENT>/hiera.yaml /etc/puppetlabs/code/
environments/production/
hiera.yaml C:\ProgramData
\PuppetLabs\code
\environments\production
\hiera.yaml

Module <MODULE>/hiera.yaml /etc/puppetlabs/code/
environments/production/
modules/ntp/hiera.yaml C:
\ProgramData\PuppetLabs
\code\environments
\production\modules\ntp
\hiera.yaml

Note: To change the location for the global layer’s hiera.yaml set the hiera_config setting in your
puppet.conf file.

Hiera searches for data in the following order: global # environment # module. For more information, see Hiera
configuration layers.

Related topics: codedir, Environments, Modules fundamentals.

Config file syntax
The hiera.yaml file is a YAML file, containing a hash with up to four top-level keys.

The following keys are in a hiera.yaml file:

• version - Required. Must be the number 5, with no quotes.
• defaults - A hash, which can set a default datadir, backend, and options for hierarchy levels.
• hierarchy - An array of hashes, which configures the levels of the hierarchy.
• default_hierarchy - An array of hashes, which sets a default hierarchy to be used only if the normal

hierarchy entries do not result in a value. Only allowed in a module's hiera.yaml.

version: 5
defaults: # Used for any hierarchy level that omits these keys.
 datadir: data # This path is relative to hiera.yaml's directory.
 data_hash: yaml_data # Use the built-in YAML backend.

hierarchy:
 - name: "Per-node data" # Human-readable name.
 path: "nodes/%{trusted.certname}.yaml" # File path, relative to
 datadir.
 # ^^^ IMPORTANT: include the file
 extension!

 - name: "Per-datacenter business group data" # Uses custom facts.
 path: "location/%{facts.whereami}/%{facts.group}.yaml"

 - name: "Global business group data"
 path: "groups/%{facts.group}.yaml"

 - name: "Per-datacenter secret data (encrypted)"

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 419

 lookup_key: eyaml_lookup_key # Uses non-default backend.
 path: "secrets/%{facts.whereami}.eyaml"
 options:
 pkcs7_private_key: /etc/puppetlabs/puppet/eyaml/private_key.pkcs7.pem
 pkcs7_public_key: /etc/puppetlabs/puppet/eyaml/public_key.pkcs7.pem

 - name: "Per-OS defaults"
 path: "os/%{facts.os.family}.yaml"

 - name: "Common data"
 path: "common.yaml"

Note: When writing in Hiera YAML files, do not use hard tabs for indentation.

The default configuration

If you omit the hierarchy or defaults keys, Hiera uses the following default values.

version: 5
hierarchy:
 - name: Common
 path: common.yaml
defaults:
 data_hash: yaml_data
 datadir: data

These defaults are only used if the file is present and specifies version: 5. If hiera.yaml is absent, it disables
Hiera for that layer. If it specifies a different version, different defaults apply.

The defaults key

The defaults key sets default values for the lookup function and datadir keys, which lets you omit those
keys in your hierarchy levels. The value of defaults must be a hash, which can have up to three keys: datadir,
options, and one of the mutually exclusive lookup function keys.

datadir: a default value for datadir, used for any file-based hierarchy level that doesn't specify its own. If not
given, the datadir is the directory data in the same directory as the hiera.yaml configuration file.

options: a default value for options, used for any hierarchy level that does not specify its own.

The lookup function keys: used for any hierarchy level that doesn't specify its own. This must be one of:

• data_hash - produces a hash of key-value pairs (typically from a data file)
• lookup_key - produces values key by key (typically for a custom data provider)
• data_dig - produces values key by key (for a more advanced data provider)
• hiera3_backend - a data provider that calls out to a legacy Hiera 3 backend (global layer only).

For the built-in data providers — YAML, JSON, and HOCON — the key is always data_hash and the value is one
of yaml_data, json_data, or hocon_data. To set a custom data provider as the default, see the data provider
documentation. Whichever key you use, the value must be the name of the custom Puppet function that implements
the lookup function.

The hierarchy key

The hierarchy key configures the levels of the hierarchy. The value of hierarchy must be an array of hashes.

Indent the hash's keys by four spaces, so they line up with the first key. Put an empty line between hashes, to visually
distinguish them. For example:

hierarchy:
 - name: "Per-node data"

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 420

 path: "nodes/%{trusted.certname}.yaml"

 - name: "Per-datacenter business group data"
 path: "location/%{facts.whereami}/%{facts.group}.yaml"

The default_hierarchy key

The default_hierarchy key is a top-level key. It is initiated when, and only when, the lookup in the
regular hierarchy does not find a value. Within this default hierarchy, the normal merging rules apply. The
default_hierarchy is not permitted in environment or global layers.

If lookup_options is used, the values found in the regular hierarchy have no effect on the values found in the
default_hierarchy, and vice versa. A merge parameter, given in a call to lookup, is only used in the regular
hierarchy. It does not affect how a value in the default hierarchy is assembled. The only way to influence that, is to
use lookup_options, found in the default hierarchy.

For more information about the YAML file, see YAML.

Related information
Hiera hierarchies on page 410
Hiera looks up data by following a hierarchy — an ordered list of data sources.

Configuring a hierarchy level: built-in backends
Hiera has three built-in backends: YAML, JSON, and HOCON. All of these use files as data sources.

You can use any combination of these backends in a hierarchy, and can also combine them with custom backends.
But if most of your data is in one file format, set default values for the datadir and data_hash keys.

Each YAML/JSON/HOCON hierarchy level needs the following keys:

• name — A name for this level, shown in debug messages and --explain output.
• path, paths, glob, globs, or mapped_paths (choose one) — The data files to use for this hierarchy level.

• These paths are relative to the datadir, they support variable interpolation, and they require a file extension.
See “Specifying file paths” for more details.

• data_hash — Which backend to use. Can be omitted if you set a default. The value must be one of the
following:

• yaml_data for YAML.
• json_data for JSON.
• hocon_data for HOCON.

• datadir — The directory where data files are kept. Can be omitted if you set a default.

• This path is relative to hiera.yaml's directory: if the config file is at /etc/puppetlabs/code/
environments/production/hiera.yaml and the datadir is set to data, the full path to the data
directory is /etc/puppetlabs/code/environments/production/data.

• In the global layer, you can optionally set the datadir to an absolute path; in the other layers, it must always
be relative.

For more information on built-in backends, see YAML, JSON, HOCON.

Related information
Interpolate a Puppet variable on page 431
The most common thing to interpolate is the value of a Puppet top scope variable.

Specifying file paths
Options for specifying a file path.

Key Data type Expected value

path String One file path.

© 2024 Puppet, Inc., a Perforce company

http://www.yaml.org/YAML_for_ruby.html
https://github.com/puppetlabs/puppet/tree/master/lib/puppet/functions/yaml_data.rb
https://github.com/puppetlabs/puppet/tree/master/lib/puppet/functions/json_data.rb
https://github.com/puppetlabs/puppet/tree/master/lib/puppet/functions/hocon_data.rb

Puppet | The Puppet platform | 421

Key Data type Expected value

paths Array Any number of file paths. This acts
like a sub-hierarchy: if multiple files
exist, Hiera searches all of them, in
the order in which they're written.

glob String One shell-like glob pattern, which
might match any number of
files. If multiple files are found,
Hiera searches all of them in
alphanumerical order.

globs Array Any number of shell-like glob
patterns. If multiple files are found,
Hiera searches all of them in
alphanumerical order (ignoring the
order of the globs).

mapped_paths Array or Hash A fact that is a collection (array or
hash) of values. Hiera expands these
values to produce an array of paths.

Note: You can only use one of these keys in a given hierarchy level.

Explicit file extensions are required, for example, common.yaml, not common.

File paths are relative to the datadir: if the full datadir is /etc/puppetlabs/code/environments/
production/data and the file path is set to "nodes/%{trusted.certname}.yaml", the full path to the
file is /etc/puppetlabs/code/environments/production/data/nodes/<NODE NAME>.yaml.

Note: Hierarchy levels should interpolate variables into the path.

Globs are implemented with Ruby's Dir.glob method:

• One asterisk (*) matches a run of characters.
• Two asterisks (**) matches any depth of nested directories.
• A question mark (?) matches one character.
• Comma-separated lists in curly braces ({one,two}) match any option in the list.
• Sets of characters in square brackets ([abcd]) match any character in the set.
• A backslash (\) escapes special characters.

Example:

- name: "Domain or network segment"
 glob: "network/**/{%{facts.networking.domain},
%{facts.networking.interfaces.en0.bindings.0.network}}.yaml"

The mapped_paths key must contain three string elements, in the following order:

• A scope variable that points to a collection of strings.
• The variable name that is mapped to each element of the collection.
• A template where that variable can be used in interpolation expressions.

For example, a fact named $services contains the array ["a", "b", "c"]. The following configuration
has the same results as if paths had been specified to be [service/a/common.yaml, service/b/
common.yaml, service/c/common.yaml].

- name: Example

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 422

 mapped_paths: [services, tmp, "service/%{tmp}/common.yaml"]

Related information
Interpolation on page 430
In Hiera you can insert, or interpolate, the value of a variable into a string, using the syntax %{variable}.

The hierarchy on page 414
The hiera.yaml file configures a hierarchy: an ordered list of data sources.

Configuring a hierarchy level: hiera-eyaml
Hiera 5 (Puppet 4.9.3 and later) includes a native interface for the Hiera eyaml extension, which keeps data encrypted
on disk but lets Puppet read it during catalog compilation.

To learn how to create keys and edit encrypted files, see the Hiera eyaml documentation.

Within hiera.yaml, the eyaml backend resembles the standard built-in backends, with a few differences: it uses
lookup_key instead of data_hash, and requires an options key to locate decryption keys. Note that the eyaml
backend can read regular yaml files as well as yaml files with encrypted data.

Important: To use the eyaml backend, you must have the hiera-eyaml gem installed where Puppet can use it.
It's included in Puppet Server since version 5.2.0, so you just need to make it available for command line usage. To
enable eyaml on the command line and with puppet apply, use sudo /opt/puppetlabs/puppet/bin/
gem install hiera-eyaml.

Each eyaml hierarchy level needs the following keys:

• name — A name for this level, shown in debug messages and --explain output.
• lookup_key — Which backend to use. The value must be eyaml_lookup_key. Use this instead of the

data_hash setting.
• path, paths, mapped_paths, glob, or globs (choose one) — The data files to use for this hierarchy level.

These paths are relative to the datadir, they support variable interpolation, and they require a file extension. In this
case, you'll usually use .eyaml. They work the same way they do for the standard backends.

• datadir — The directory where data files are kept. Can be omitted if you set a default. Works the same way it
does for the standard backends.

• options — A hash of options specific to hiera-eyaml, mostly used to configure decryption. For the default
encryption method, this hash must have the following keys:

• pkcs7_private_key — The location of the PKCS7 private key to use.
• pkcs7_public_key — The location of the PKCS7 public key to use.
• If you use an alternate encryption plugin, search the plugin's docs for the encryption options. Set an

encrypt_method option, plus some plugin-specific options to replace the pkcs7 ones.
• You can use normal strings as keys in this hash; you don't need to use symbols.

The file path key and the options key both support variable interpolation.

An example hierarchy level:

hierarchy:
 - name: "Per-datacenter secret data (encrypted)"
 lookup_key: eyaml_lookup_key
 path: "secrets/%{facts.whereami}.eyaml"
 options:
 pkcs7_private_key: /etc/puppetlabs/puppet/eyaml/private_key.pkcs7.pem
 pkcs7_public_key: /etc/puppetlabs/puppet/eyaml/public_key.pkcs7.pem

Related information
Interpolation on page 430

© 2024 Puppet, Inc., a Perforce company

https://github.com/voxpupuli/hiera-eyaml

Puppet | The Puppet platform | 423

In Hiera you can insert, or interpolate, the value of a variable into a string, using the syntax %{variable}.

Configuring a hierarchy level: legacy Hiera 3 backends
If you rely on custom data backends designed for Hiera 3, you can use them in your global hierarchy. They are not
supported at the environment or module layers.

Note: This feature is a temporary measure to let you start using new features while waiting for backend updates.

Each legacy hierarchy level needs the following keys:

• name — A name for this level, shown in debug messages and --explain output.
• path or paths (choose one) — The data files to use for this hierarchy level.

• For file-based backends, include the file extension, even though you would have omitted it in the v3
hiera.yaml file.

• For non-file backends, don't use a file extension.
• hiera3_backend — The legacy backend to use. This is the same name you'd use in the v3 config file's

:backends key.
• datadir — The directory where data files are kept. Set this only if your backend required a :datadir setting

in its backend-specific options.

• This path is relative to hiera.yaml's directory: if the config file is at /etc/puppetlabs/code/
environments/production/hiera.yaml and the datadir is set to data, the full path to the data
directory is /etc/puppetlabs/code/environments/production/data. Note that Hiera v3 uses
'hieradata' instead of 'data'.

• In the global layer, you can optionally set the datadir to an absolute path.
• options — A hash, with any backend-specific options (other than datadir) required by your backend. In the

v3 config, this would have been in a top-level key named after the backend. You can use normal strings as keys.
Hiera converts them to symbols for the backend.

The following example shows roughly equivalent v3 and v5 hiera.yaml files using legacy backends:

hiera.yaml v3

:backends:
 - mongodb
 - xml

:mongodb:
 :connections:
 :dbname: hdata
 :collection: config
 :host: localhost

:xml:
 :datadir: /some/other/dir

:hierarchy:
 - "%{trusted.certname}"
 - "common"

hiera.yaml v5

version: 5
hierarchy:
 - name: MongoDB
 hiera3_backend: mongodb
 paths:
 - "%{trusted.certname}"
 - common

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 424

 options:
 connections:
 dbname: hdata
 collection: config
 host: localhost

 - name: Data in XML
 hiera3_backend: xml
 datadir: /some/other/dir
 paths:
 - "%{trusted.certname}.xml"
 - common.xml

Configuring a hierarchy level: general format
Hiera supports custom backends.

Each hierarchy level is represented by a hash which needs the following keys:

• name — A name for this level, shown in debug messages and --explain output.
• A backend key, which must be one of:

• data_hash

• lookup_key

• data_dig — a more specialized form of lookup_key, suitable when the backend is for a database.
data_dig resolves dot separated keys, whereas lookup_key does not.

• hiera3_backend (global layer only)
• A path or URI key — only if required by the backend. These keys support variable interpolation. The following

path/URI keys are available:

• path

• paths

• mapped_paths

• glob

• globs

• uri

• uris - these paths or URIs work the same way they do for the built-in backends. Hiera handles the work of
locating files, so any backend that supports path automatically supports paths, glob, and globs. uri
(string) and uris (array) can represent any kind of data source. Hiera does not ensure URIs are resolvable
before calling the backend, and does not need to understand any given URI schema. A backend can omit the
path/URI key, and rely wholly on the options key to locate its data.

• datadir — The directory where data files are kept: the path is relative to hiera.yaml's directory. Only required if
the backend uses the path(s) and glob(s) keys, and can be omitted if you set a default.

• options — A hash of extra options for the backend; for example, database credentials or the location of a
decryption key. All values in the options hash support variable interpolation.

Whichever key you use, the value must be the name of a function that implements the backend API. Note that the
choice here is made by the implementer of the particular backend, not the user.

For more information, see custom Puppet function.

Related information
Custom backends overview on page 438
A backend is a custom Puppet function that accepts a particular set of arguments and whose return value obeys a
particular format. The function can do whatever is necessary to locate its data.

Interpolation on page 430

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 425

In Hiera you can insert, or interpolate, the value of a variable into a string, using the syntax %{variable}.

Creating and editing data
Important aspects of using Hiera are merge behavior and interpolation.

Set the merge behavior for a lookup
When you look up a key in Hiera, it is common for multiple data sources to have different values for it. By default,
Hiera returns the first value it finds, but it can also continue searching and merge all the found values together.

1. You can set the merge behavior for a lookup in two ways:

• At lookup time. This works with the lookup function, but does not support automatic class parameter lookup.
• In Hiera data, with the lookup_options key. This works for both manual and automatic lookups. It also

lets module authors set default behavior that users can override.

2. With both of these methods, specify a merge behavior as either a string, for example, 'first' or a hash, for
example {'strategy' => 'first'}. The hash syntax is useful for deep merges (where extra options are
available), but it also works with the other merge types.

Related information
The Puppet lookup function on page 434
The lookup function uses Hiera to retrieve a value for a given key.

Merge behaviors
There are four merge behaviors to choose from: first, unique, hash, and deep.

When specifying a merge behavior, use one of the following identifiers:

• 'first', {'strategy' => 'first'}, or nothing.
• 'unique' or {'strategy' => 'unique'}.
• 'hash' or {'strategy' => 'hash'}.
• 'deep' or {'strategy' => 'deep', <OPTION> => <VALUE>, ...}. Valid options:

• 'knockout_prefix' - string or undef; disabled by default.
• 'sort_merged_arrays' - Boolean; default is false
• 'merge_hash_arrays' - Boolean; default is false

First

A first-found lookup doesn’t merge anything: it returns the first value found for the key, and ignores the rest. This is
Hiera’s default behavior.

Specify this merge behavior with one of these:

• 'first'

• {'strategy' => 'first'}

• lookup($key)

• Nothing (because it’s the default)

Unique

A unique merge (also called an array merge) combines any number of array and scalar (string, number, boolean)
values to return a merged, flattened array with all matching values for a key. All duplicate values are removed. The
lookup fails if any of the values are hashes. The result is ordered from highest priority to lowest.

Specify this merge behavior with one of these:

• 'unique'

• lookup($key, { 'merge' => 'unique' })

• {'strategy' => 'unique'}

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 426

Hash

A hash merge combines the keys and values of any number of hashes to return a merged hash of all matching values
for a key. Every match must be a hash and the lookup fails if any of the values aren’t hashes.

If multiple source hashes have a given key, Hiera uses the value from the highest priority data source: it won’t
recursively merge the values.

Hashes in Puppet preserve the order in which their keys are written. When merging hashes, Hiera starts with the
lowest priority data source. For each higher priority source, it appends new keys at the end of the hash and updates
existing keys in place.

web01.example.com.yaml
mykey:
 d: "per-node value"
 b: "per-node override"
common.yaml
mykey:
 a: "common value"
 b: "default value"
 c: "other common value"

`lookup('mykey', {merge => 'hash'})

Returns the following:

{
 a => "common value",
 b => "per-node override", # Using value from the higher-priority source,
 but
 # preserving the order of the lower-priority
 source.
 c => "other common value",
 d => "per-node value",
}

Specify this merge behavior with one of these:

• 'hash'

• lookup($key, { 'merge' => 'hash' })

• {'strategy' => 'hash'}

Deep

A deep merge combines the keys and values of any number of hashes to return a merged hash. It contains an array of
class names and can be used as a lightweight External Node Classifier (ENC).

If the same key exists in multiple source hashes, Hiera recursively merges them:

• Hash values are merged with another deep merge.
• Array values are merged. This differs from the unique merge. The result is ordered from lowest priority to highest,

which is the reverse of the unique merge’s ordering. The result is not flattened, so it can contain nested arrays. The
merge_hash_arrays and sort_merged_arrays options can make further changes to the result.

• Scalar (String, Number, Boolean) values use the highest priority value, like in a first-found lookup.

Specify this merge behavior with one of these:

• 'deep'

• include(lookup($key, { 'merge' => 'deep' }))

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 427

• {'strategy' => 'deep', <OPTION> => <VALUE>, ...} — Adjust the merge behavior with these
additional options:

• 'knockout_prefix' (String or undef) - Use with a string prefix to indicate a value to remove from the
final result. Note that this option is disabled by default due to a known issue that causes it to be ineffective in
hierarchies more than three levels deep. For more information, see Puppet 6 known issues.

• 'sort_merged_arrays' (Boolean) - Whether to sort all arrays that are merged together. Defaults to
false.

• 'merge_hash_arrays' (Boolean) - Whether to deep-merge hashes within arrays, by position. For
example, [{a => high}, {b => high}] and [{c => low}, {d => low}] would be
merged as [{c => low, a => high}, {d => low, b => high}]. Defaults to false.

Note: Unlike a hash merge, a deep merge can also accept arrays as the root values. It merges them with its normal
array merging behavior, which differs from a unique merge as described above. This does not apply to the deprecated
Hiera 3 hiera_hash function, which can be configured to do deep merges but can’t accept arrays.

Set merge behavior at lookup time
Use merge behaviour at lookup time to override preconfigured merge behavior for a key.

Use the lookup function or the puppet lookup command to provide a merge behavior as an argument or flag.

Function example:

Merge several arrays of class names into one array:
lookup('classes', {merge => 'unique'})

Command line example:

$ puppet lookup classes --merge unique --environment production --explain

Note: Each of the deprecated hiera_* functions is locked to one particular merge behavior. (For example, Hiera
only merges first-found, and hiera_array only performs a unique merge.)

Set lookup_options to refine the result of a lookup
You can set lookup_options to further refine the result of a lookup, including defining merge behavior and using
the convert_to key to get automatic type conversion.

The lookup_options format

The value of lookup_options is a hash. It follows this format:

 lookup_options:
 <NAME or REGEXP>:
 merge: <MERGE BEHAVIOR>

Each key is either the full name of a lookup key (like ntp::servers) or a regular expression (like '^profile::
(.*)::users$'). In a module’s data, you can configure lookup keys only within that module’s namespace: the ntp
module can set options for ntp::servers, but the apache module can’t.

Each value is a hash with either a merge key, a convert_to key, or both. A merge behavior can be a string or a
hash, and the type for type conversion is either a Puppet type, or an array with a type and additional arguments.

lookup_options is a reserved key in Hiera. You can’t put other kinds of data in it, and you can’t look it up
directly.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 428

Location for setting lookup_options

You can set lookup_options metadata keys in Hiera data sources, including module data, which controls the
default merge behavior for other keys in your data. Hiera uses a key’s configured merge behavior in any lookup that
doesn’t explicitly override it.

Note: Set lookup_options in the data sources of your backend; don’t put it in the hiera.yaml file. For
example, you can set lookup_options in common.yaml.

Defining Merge Behavior with lookup_options

In your Hiera data source, set the lookup_options key to configure merge behavior:

<ENVIRONMENT>/data/common.yaml
lookup_options:
 ntp::servers: # Name of key
 merge: unique # Merge behavior as a string
 "^profile::(.*)::users$": # Regexp: `$users` parameter of any profile
 class
 merge: # Merge behavior as a hash
 strategy: deep
 merge_hash_arrays: true

Hiera uses the configured merge behaviors for these keys.

Note: The lookup_options settings have no effect if you are using the deprecated hiera_* functions, which
define for themselves how they do the lookup. To take advantage of lookup_options, use the lookup function or
Automatic Parameter Lookup (APL).

Overriding merge behavior

When Hiera is given lookup options, a hash merge is performed. Higher priority sources override lower priority
lookup options for individual keys. You can configure a default merge behavior for a given key in a module and let
users of that module specify overrides in the environment layer.

As an example, the following configuration defines lookup_options for several keys in a module. One of the
keys is overridden at the environment level – the others retain their configuration:

<MYMODULE>/data/common.yaml
lookup_options:
 mymodule::key1:
 merge:
 strategy: deep
 merge_hash_arrays: true
 mymodule::key2:
 merge: deep
 mymodule::key3:
 merge: deep

<ENVIRONMENT>/data/common.yaml
lookup_options:
 mymodule::key1:
 merge: deep # this overrides the merge_hash_arrays true

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 429

Overriding merge behavior in a call to lookup()

When you specify a merge behavior as an argument to the lookup function, it overrides the configured merge
behavior. For example, with the configuration above:

lookup('mymodule::key1', 'strategy' => 'first')

The lookup of 'mymodule::key1' uses strategy 'first' instead of strategy 'deep' in the
lookup_options configuration.

Make Hiera return data by casting to a specific data type

To convert values from Hiera backends to rich data values, not representable in YAML or JSON, use the
lookup_options key convert_to, which accepts either a type name or an array of type name and arguments.

When you use convert_to, you get automatic type checking. For example, if you specify a convert_to using
type "Enum['red', 'blue', 'green']" and the looked-up value is not one of those strings, it raises an
error. You can use this to assert the type when there is not enough type checking in the Puppet code that is doing the
lookup.

For types that have a single-value constructor, such as Integer, String, Sensitive, or Timestamp, specify the data type
in string form.

For example, to turn a String value into an Integer:

mymodule::mykey: "42"
lookup_options:
 mymodule::mykey:
 convert_to: "Integer"

To make a value Sensitive:

mymodule::mykey: 42
lookup_options:
 mymodule::mykey:
 convert_to: "Sensitive"

If the constructor requires arguments, specify type and the arguments in an array. You can also specify it this way
when a data type constructor takes optional arguments.

For example, to convert a string ("042") to an Integer with explicit decimal (base 10) interpretation of the string:

mymodule::mykey: "042"
lookup_options:
 mymodule::mykey:
 convert_to:
 - "Integer"
 - 10

The default would interpret the leading 0 to mean an octal value (octal 042 is decimal 34):

To turn a non-Array value into an Array:

mymodule::mykey: 42
lookup_options:
 mymodule::mykey:
 convert_to:
 - "Array"
 - true

Related information
Automatic lookup of class parameters on page 433

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 430

Puppet looks up the values for class parameters in Hiera, using the fully qualified name of the parameter
(myclass::parameter_one) as a lookup key.

Use a regular expression in lookup_options
You can use regular expressions in lookup_options to configure merge behavior for many lookup keys at the
same time.

A regular expression key such as '^profile::(.*)::users$' sets the merge
behavior for profile::server::users, profile::postgresql::users,
profile::jenkins::server::users. Regular expression lookup options use Puppet’s regular expression
support, which is based on Ruby’s regular expressions.

To use a regular expression in lookup_options:

1. Write the pattern as a quoted string. Do not use the Puppet language’s forward-slash (/.../) regular expression
delimiters.

2. Begin the pattern with the start-of-line metacharacter (^, also called a carat). If ^ isn’t the first character, Hiera
treats it as a literal key name instead of a regular expression.

3. If this data source is in a module, follow ^ with the module’s namespace: its full name, plus the :: namespace
separator. For example, all regular expression lookup options in the ntp module must start with ^ntp::.
Starting with anything else results in an error.

The merge behavior you set for that pattern applies to all lookup keys that match it. In cases where multiple lookup
options could apply to the same key, Hiera resolves the conflict. For example, if there’s a literal (not regular
expression) option available, Hiera uses it. Otherwise, Hiera uses the first regular expression that matches the lookup
key, using the order in which they appear in the module code.

Note: lookup_options are assembled with a hash merge, which puts keys from lower priority data sources
before those from higher priority sources. To override a module’s regular expression configured merge behavior, use
the exact same regular expression string in your environment data, so that it replaces the module’s value. A slightly
different regular expression won’t work because the lower-priority regular expression goes first.

Interpolation
In Hiera you can insert, or interpolate, the value of a variable into a string, using the syntax %{variable}.

Hiera uses interpolation in two places:

• Hierarchies: you can interpolate variables into the path, paths, glob, globs, uri, uris, datadir,
mapped_paths, and options of a hierarchy level. This lets each node get a customized version of the
hierarchy.

• Data: you can use interpolation to avoid repetition. This takes one of two forms:

• If some value always involves the value of a fact (for example, if you need to specify a mail server and
you have one predictably-named mail server per domain), reference the fact directly instead of manually
transcribing it.

• If multiple keys need to share the same value, write it out for one of them and reuse it for the rest with the
lookup or alias interpolation functions. This makes it easier to keep data up to date, as you only need to
change a given value in one place.

Interpolation token syntax

Interpolation tokens consist of the following:

• A percent sign (%)
• An opening curly brace ({)
• One of:

• A variable name, optionally using key.subkey notation to access a specific member of a hash or array.
• An interpolation function and its argument.

• A closing curly brace (}).

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 431

For example, %{trusted.certname} or %{alias("users")}.

Hiera interpolates values of Puppet data types and converts them to strings. Note that the exception to this is when
using an alias. If the alias is the only thing present, then its value is not converted.

In YAML files, any string containing an interpolation token must be enclosed in quotation marks.

Note: Unlike the Puppet interpolation tokens, you can’t interpolate an arbitrary expression.

Related topics: Puppet’s data types, Puppet’s rules for interpolating non-string values.

Interpolate a Puppet variable
The most common thing to interpolate is the value of a Puppet top scope variable.

The facts hash, trusted hash, and server_facts hash are the most useful variables to Hiera and behave
predictably.

Note: If you have a hierarchy level that needs to reference the name of a node, get the node’s name by using
trusted.certname. To reference a node’s environment, use server_facts.environment.

Avoid using local variables, namespaced variables from classes (unless the class has already been evaluated), and
Hiera-specific pseudo-variables (pseudo-variables are not supported in Hiera 5).

If you are using Hiera 3 pseudo-variables, see Puppet variables passed to Hiera.

Puppet makes facts available in two ways: grouped together in the facts hash ($facts['networking']), and
individually as top-scope variables ($networking).

When you use individual fact variables, specify the (empty) top-scope namespace for them, like this:

• %{::networking}

Not like this:

• %{networking}

Note: The individual fact names aren’t protected the way $facts is, and local scopes can set unrelated variables
with the same names. In most of Puppet, you don’t have to worry about unknown scopes overriding your variables,
but in Hiera you do.

To interpolate a Puppet variable:

Use the name of the variable, omitting the leading dollar sign ($). Use the Hiera key.subkey notation to access a
member of a data structure. For example, to interpolate the value of $facts['networking']['domain']
write: smtpserver: "mail.%{facts.networking.domain}"

For more information, see facts, environments.

Related information
Access hash and array elements using a key.subkey notation on page 437
Access hash and array members in Hiera using a key.subkey notation.

Interpolation functions
In Hiera data sources, you can use interpolation functions to insert non-variable values. These aren’t the same as
Puppet functions; they’re only available in Hiera interpolation tokens.

Note: You cannot use interpolation functions in hiera.yaml. They’re only for use in data sources.

There are five interpolation functions:

• lookup - looks up a key using Hiera, and interpolates the value into a string
• hiera - a synonym for lookup

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 432

• alias - looks up a key using Hiera, and uses the value as a replacement for the enclosing string. The result has
the same data type as what the aliased key has - no conversion to string takes place if the value is exactly one alias

• literal - a way to write a literal percent sign (%) without accidentally interpolating something
• scope - an alternate way to interpolate a variable. Not generally useful

The lookup and hiera function

The lookup and hiera interpolation functions look up a key and return the resulting value. The result of the
lookup must be a string; any other result causes an error. The hiera interpolation functions look up a key and return
the resulting value. The result of the lookup must be a string; any other result causes an error.

This is useful in the Hiera data sources. If you need to use the same value for multiple keys, you can assign the literal
value to one key, then call lookup to reuse the value elsewhere. You can edit the value in one place to change it
everywhere it’s used.

For example, suppose your WordPress profile needs a database server, and you’re already configuring that hostname
in data because the MySQL profile needs it. You could write:

in location/pdx.yaml:
profile::mysql::public_hostname: db-server-01.pdx.example.com

in location/bfs.yaml:
profile::mysql::public_hostname: db-server-06.belfast.example.com

in common.yaml:
profile::wordpress::database_server:
 "%{lookup('profile::mysql::public_hostname')}"

The value of profile::wordpress::database_server is always the same as
profile::mysql::public_hostname. Even though you wrote the WordPress parameter in the
common.yaml data, it’s location-specific, as the value it references was set in your per-location data files.

The value referenced by the lookup function can contain another call to lookup; if you accidentally make an infinite
loop, Hiera detects it and fails.

Note: The lookup and hiera interpolation functions aren’t the same as the Puppet functions of the same names.
They only take a single argument.

The alias function

The alias function lets you reuse Hash, Array, Boolean, Integer or String values.

When you interpolate alias in a string, Hiera replaces that entire string with the aliased value, using its original data
type. For example:

original:
 - 'one'
 - 'two'
aliased: "%{alias('original')}"

A lookup of original and a lookup of aliased would both return the value ['one', 'two'].

When you use the alias function, its interpolation token must be the only text in that string. For example, the
following would be an error:

aliased: "%{alias('original')} - 'three'"

Note: A lookup resulting in an interpolation of `alias` referencing a non-existant key returns an empty string, not a
Hiera "not found" condition.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 433

The literal function

The literal interpolation function lets you escape a literal percent sign (%) in Hiera data, to avoid triggering
interpolation where it isn’t wanted.

This is useful when dealing with Apache config files, for example, which might include text such as
%{SERVER_NAME}. For example:

server_name_string: "%{literal('%')}{SERVER_NAME}"

The value of server_name_string would be %{SERVER_NAME}, and Hiera would not attempt to interpolate a
variable named SERVER_NAME.

The only legal argument for literal is a single % sign.

The scope function

The scope interpolation function interpolates variables.

It works identically to variable interpolation. The functions argument is the name of a variable.

The following two values would be identical:

smtpserver: "mail.%{facts.domain}"
smtpserver: "mail.%{scope('facts.domain')}"

Using interpolation functions

To use an interpolation function to insert non-variable values, write:

1. The name of the function.
2. An opening parenthesis.
3. One argument to the function, enclosed in single or double quotation marks.
4. Use the opposite of what the enclosing string uses: if it uses single quotation marks, use double quotation marks.
5. A closing parenthesis.

For example:

wordpress::database_server: "%{lookup('instances::mysql::public_hostname')}"

Note: There must be no spaces between these elements.

Looking up data with Hiera

Automatic lookup of class parameters
Puppet looks up the values for class parameters in Hiera, using the fully qualified name of the parameter
(myclass::parameter_one) as a lookup key.

Most classes need configuration, and you can specify them as parameters to a class as this looks up the needed data
if not directly given when the class is included in a catalog. There are several ways Puppet sets values for class
parameters, in this order:

1. If you're doing a resource-like declaration, Puppet uses parameters that are explicitly set (if explicitly setting
undef, a looked up value or default is used).

2. Puppet uses Hiera, using <CLASS NAME>::<PARAMETER NAME> as the lookup key. For example, it looks up
ntp::servers for the ntp class's $servers parameter.

3. If a parameter still has no value, Puppet uses the default value from the parameter's default value expression in the
class's definition.

4. If any parameters have no value and no default, Puppet fails compilation with an error.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 434

For example, you can set servers for the NTP class like this:

/etc/puppetlabs/code/production/data/nodes/web01.example.com.yaml

ntp::servers:
 - time.example.com
 - 0.pool.ntp.org

The best way to manage this is to use the roles and profiles method, which allows you to store a smaller amount of
more meaningful data in Hiera.

Note: Automatic lookup of class parameters uses the "first" merge method by default. You cannot change the
default. If you want to get deep merges on keys, use the lookup_options feature.

This feature is often referred to as Automatic Parameter Lookup (APL).

The Puppet lookup function
The lookup function uses Hiera to retrieve a value for a given key.

By default, the lookup function returns the first value found and fails compilation if no values are available. You
can also configure the lookup function to merge multiple values into one.

When looking up a key, Hiera searches up to four hierarchy layers of data, in the following order:

1. Global hierarchy.
2. The current environment's hierarchy.
3. The indicated module's hierarchy, if the key is of the form <MODULE NAME>::<SOMETHING>.
4. If not found and the module's hierarchy has a default_hierarchy entry in its hiera.yaml — the lookup

is repeated if steps 1-3 did not produce a value.

Note: Hiera checks the global layer before the environment layer. If no global hiera.yaml file has been
configured, Hiera defaults are used. If you do not want it to use the defaults, you can create an empty hiera.yaml
file in /etc/puppetlabs/puppet/hiera.yaml.

Default global hiera.yaml is installed at /etc/puppetlabs/puppet/hiera.yaml.

Arguments

You must provide the key's name. The other arguments are optional.

You can combine these arguments in the following ways:

• lookup(<NAME>, [<VALUE TYPE>], [<MERGE BEHAVIOR>], [<DEFAULT VALUE>])

• lookup([<NAME>], <OPTIONS HASH>)

• lookup(as above) |$key| { <VALUE> } # lambda returns a default value

Arguments in [square brackets] are optional.

Note: Giving a hash of options containing default_value at the same time as giving a lambda means that the
lambda wins. The rationale for allowing this is that you might be using the same hash of options multiple times, and
you might want to override the production of the default value. A default_values_hash wins over the lambda
if it has a value for the looked up key.

Arguments accepted by lookup:

• <NAME> (String or Array) - The name of the key to look up. This can also be an array of keys. If Hiera doesn't
find anything for the first key, it tries with the subsequent ones, only resorting to a default value if none of them
succeed.

• <VALUE TYPE> (data Type) - A data type that must match the retrieved value; if not, the lookup (and catalog
compilation) fails. Defaults to Data which accepts any normal value.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pe/2019.8/the_roles_and_profiles_method.html

Puppet | The Puppet platform | 435

• <MERGE BEHAVIOR> (String or Hash; see Merge behaviors) - Whether and how to combine multiple values. If
present, this overrides any merge behavior specified in the data sources. Defaults to no value; Hiera uses merge
behavior from the data sources if present, otherwise it does a first-found lookup.

• <DEFAULT VALUE> (any normal value) - If present, lookup returns this when it can't find a normal value.
Default values are never merged with found values. Like a normal value, the default must match the value type.
Defaults to no value; if Hiera can't find a normal value, the lookup (and compilation) fails.

• <OPTIONS HASH> (Hash) - Alternate way to set the arguments above, plus some less common additional
options. If you pass an options hash, you can't combine it with any regular arguments (except <NAME>). An
options hash can have the following keys:

• 'name' - Same as <NAME> (argument 1). You can pass this as an argument or in the hash, but not both.
• 'value_type' - Same as <VALUE TYPE>.
• 'merge' - Same as <MERGE BEHAVIOR>.
• 'default_value' - Same as <DEFAULT VALUE> .
• 'default_values_hash' (Hash) - A hash of lookup keys and default values. If Hiera can't find

a normal value, it checks this hash for the requested key before giving up. You can combine this with
default_value or a lambda, which is used if the key isn't present in this hash. Defaults to an empty hash.

• 'override' (Hash) - A hash of lookup keys and override values. Puppet checks for the requested key in the
overrides hash first. If found, it returns that value as the final value, ignoring merge behavior. Defaults to an
empty hash.

• lookup - can take a lambda, which must accept a single parameter. This is yet another way to set a default
value for the lookup; if no results are found, Puppet passes the requested key to the lambda and use its result as
the default value.

Merge behaviors

Hiera uses a hierarchy of data sources, and a given key can have values in multiple sources. Hiera can either return
the first value it finds, or continue to search and merge all the values together. When Hiera searches, it first searches
the global layer, then the environment layer, and finally the module layer — where it only searches in modules that
have a matching namespace. By default (unless you use one of the merge strategies) it is priority/"first found wins", in
which case the search ends as soon as a value is found.

Note: Data sources can use the lookup_options metadata key to request a specific merge behavior for a key.
The lookup function uses that requested behavior unless you specify one.

Examples:

Default values for a lookup:

(Still works, but deprecated)

hiera('some::key', 'the default value')

(Recommended)

lookup('some::key', undef, undef, 'the default value')

Look up a key and returning the first value found:

lookup('ntp::service_name')

A unique merge lookup of class names, then adding all of those classes to the catalog:

lookup('classes', Array[String], 'unique').include

A deep hash merge lookup of user data, but letting higher priority sources remove values by prefixing them with:

lookup({ 'name' => 'users',

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 436

 'merge' => {
 'strategy' => 'deep',
 'knockout_prefix' => '--',
 },
})

The puppet lookup command
The puppet lookup command is the command line interface (CLI) for Puppet's lookup function.

The puppet lookup command lets you do Hiera lookups from the command line. You must run it on a node that
has a copy of your Hiera data. You can log into a Puppet Server node and run puppet lookup with sudo.

The most common version of this command is:

puppet lookup <KEY> --node <NAME> --environment <ENV> --explain

The puppet lookup command searches your Hiera data and returns a value for the requested lookup key, so you
can test and explore your data. It replaces the hiera command. Hiera relies on a node's facts to locate the relevant
data sources. By default, puppet lookup uses facts from the node you run the command on, but you can get data
for any other node with the --node NAME option. If possible, the lookup command uses the requested node's real
stored facts from PuppetDB. If PuppetDB is not configured or you want to provide other fact values, pass facts from a
JSON or YAML file with the --facts FILE option.

Note: The puppet lookup command replaces the hiera command.

Examples

To look up key_name using the Puppet Server node’s facts:

$ puppet lookup key_name

To look up key_name with agent.local's facts:

$ puppet lookup --node agent.local key_name

To get the first value found for key_name_one and key_name_two with agent.local's facts while merging
values and knocking out the prefix 'example' while merging:

puppet lookup --node agent.local --merge deep --knock-out-prefix example
 key_name_one key_name_two

To lookup key_name with agent.local's facts, and return a default value of 0 if nothing is found:

puppet lookup --node agent.local --default 0 key_name

To see an explanation of how the value for key_name is found, using agent.local facts:

puppet lookup --node agent.local --explain key_name

Options

The puppet lookup command has the following command options:

• --help: Print a usage message.
• --explain: Explain the details of how the lookup was performed and where the final value came from, or the

reason no value was found. Useful when debugging Hiera data. If --explain isn't specified, lookup exits with 0
if a value was found and 1 if not. With --explain, lookup always exits with 0 unless there is a major error. You

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 437

can provide multiple lookup keys to this command, but it only returns a value for the first found key, omitting the
rest.

• --node <NODE-NAME>: Specify which node to look up data for; defaults to the node where the command is
run. The purpose of Hiera is to provide different values for different nodes; use specific node facts to explore your
data. If the node where you're running this command is configured to talk to PuppetDB, the command uses the
requested node's most recent facts. Otherwise, override facts with the '--facts' option.

• --facts <FILE>: Specify a JSON or YAML file that contains key-value mappings to override the facts for
this lookup. Any facts not specified in this file maintain their original value.

• --environment <ENV>: Specify an environment. Different environments can have different Hiera data.
• --merge first/unique/hash/deep: Specify the merge behavior, overriding any merge behavior from

the data's lookup_options.
• --knock-out-prefix <PREFIX-STRING>: Used with 'deep' merge. Specifies a prefix to indicate a value

should be removed from the final result.
• --sort-merged-arrays: Used with 'deep' merge. When this flag is used, all merged arrays are sorted.
• --merge-hash-arrays: Used with the 'deep' merge strategy. When this flag is used, hashes within arrays are

deep-merged with their counterparts by position.
• --explain-options: Explain whether a lookup_options hash affects this lookup, and how that hash was

assembled. (lookup_options is how Hiera configures merge behavior in data.)
• --default <VALUE>: A value to return if Hiera can't find a value in data. Useful for emulating a call to the

`lookup function that includes a default.
• --type <TYPESTRING>: Assert that the value has the specified type. Useful for emulating a call to the

lookup function that includes a data type.
• --compile: Perform a full catalog compilation prior to the lookup. If your hierarchy and data only use the

$facts, $trusted, and $server_facts variables, you don't need this option. If your Hiera configuration
uses arbitrary variables set by a Puppet manifest, you need this to get accurate data. The lookup command
doesn't cause catalog compilation unless this flag is given.

• --render-as s/json/yaml/binary/msgpack: Specify the output format of the results; s means plain
text. The default when producing a value is yaml and the default when producing an explanation is s.

Access hash and array elements using a key.subkey notation
Access hash and array members in Hiera using a key.subkey notation.

You can access hash and array elements when doing the following things:

• Interpolating variables into hiera.yaml or a data file. Many of the most commonly used variables, for example
facts and trusted, are deeply nested data structures.

• Using the lookup function or the puppet lookup command. If the value of lookup('some_key') is a
hash or array, look up a single member of it by using lookup('some_key.subkey').

• Using interpolation functions that do Hiera lookups, for example lookup and alias.

To access a single member of an array or hash:

Use the name of the value followed by a period (.) and a subkey.

• If the value is an array, the subkey must be an integer, for example: users.0 returns the first entry in the users
array.

• If the value is a hash, the subkey must be the name of a key in that hash, for example, facts.os.
• To access values in nested data structures, you can chain subkeys together. For example, because the value of

facts.system_uptime is a hash, you can access its hours key with facts.system_uptime.hours.

Example:

To look up the value of home in this data:

accounts::users:
 ubuntu:
 home: '/var/local/home/ubuntu'

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 438

You would use the following lookup command:

lookup('accounts::users.ubuntu.home')

Hiera dotted notation
The Hiera dotted notation does not support arbitrary expressions for subkeys; only literal keys are valid.

A hash can include literal dots in the text of a key. For example, the value of $trusted['extensions']
is a hash containing any certificate extensions for a node, but some of its keys can be raw OID strings like
'1.3.6.1.4.1.34380.1.2.1'. You can access those values in Hiera with the key.subkey notation, but you
must put quotation marks — single or double — around the affected subkey. If the entire compound key is quoted
(for example, as required by the lookup interpolation function), use the other kind of quote for the subkey, and escape
quotes (as needed by your data file format) to ensure that you don't prematurely terminate the whole string.

For example:

aliased_key: "%{lookup('other_key.\"dotted.subkey\"')}"
Or:
aliased_key: "%{lookup(\"other_key.'dotted.subkey'\")}"

Note: Using extra quotes prevents digging into dotted keys. For example, if the lookup key contains a dot (.) then
the entire key must be enclosed within single quotes within double quotes, for example, lookup("'has.dot'").

Writing new data backends
You can extend Hiera to look up values in data sources, for example, a PostgreSQL database table, a custom web app,
or a new kind of structured data file.

To teach Hiera how to talk to other data sources, write a custom backend.

Important: Writing a custom backend is an advanced topic. Before proceeding, make sure you really need it. It is
also worth asking the puppet-dev mailing list or Slack channel to see whether there is one you can re-use, rather than
starting from scratch.

Custom backends overview
A backend is a custom Puppet function that accepts a particular set of arguments and whose return value obeys a
particular format. The function can do whatever is necessary to locate its data.

A backend function uses the modern Ruby functions API or the Puppet language. This means you can use different
versions of a Hiera backend in different environments, and you can distribute Hiera backends in Puppet modules.

Different types of data have different performance characteristics. To make sure Hiera performs well with every type
of data source, it supports three types of backends: data_hash, lookup_key, and data_dig.

data_hash

For data sources where it’s inexpensive, performance-wise, to read the entire contents at one time, like simple files on
disk. We suggest using the data_hash backend type if:

• The cache is alive for the duration of one compilation
• The data is small
• The data can be retrieved all at one time
• Most of the data gets used
• The data is static

For more information, see data_hash backends.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 439

lookup_key

For data sources where looking up a key is relatively expensive, performance-wise, like an HTTPS API. We suggest
using the lookup_key backend type if:

• The data set is big, but only a small portion is used
• The result can vary during the compilation

The hiera-eyaml backend is a lookup_key function, because decryption tends to affect performance; as a
given node uses only a subset of the available secrets, it makes sense to decrypt only on-demand.

For more information, see lookup_key backends.

data_dig

For data sources that can access arbitrary elements of hash or array values before passing anything back to Hiera, like
a database.

For more information, see data_dig backends.

The RichDataKey and RichData types

To simplify backend function signatures, you can use two extra data type aliases: RichDataKey and RichData.
These are only available to backend functions called by Hiera; normal functions and Puppet code can not use them.

For more information, see custom Puppet functions, the modern Ruby functions API.

data_hash backends
A data_hash backend function reads an entire data source at one time, and returns its contents as a hash.

The built-in YAML, JSON, and HOCON backends are all data_hash functions. You can view their source on
GitHub:

• yaml_data.rb
• json_data.rb
• hocon_data.rb

Arguments

Hiera calls a data_hash function with two arguments:

• A hash of options

• The options hash contains a path when the entry in hiera.yaml is using path, paths, glob, globs,
or mapped_paths, and the backend receives one call per path to an existing file. When the entry in
hiera.yaml is using uri or uris, the options hash has a uri key, and the backend function is called one
time per given uri. When uri or uris are used, Hiera does not perform an existence check. It is up to the
function to type the options parameter as wanted.

• A Puppet::LookupContext object

Return type

The function must either call the context object’s not_found method, or return a hash of lookup keys and their
associated values. The hash can be empty.

Puppet language example signature:

function mymodule::hiera_backend(
 Hash $options,
 Puppet::LookupContext $context,
)

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppet/tree/master/lib/puppet/functions/yaml_data.rb
https://github.com/puppetlabs/puppet/tree/master/lib/puppet/functions/json_data.rb
https://github.com/puppetlabs/puppet/tree/master/lib/puppet/functions/hocon_data.rb

Puppet | The Puppet platform | 440

Ruby example signature:

dispatch :hiera_backend do
 param 'Hash', :options
 param 'Puppet::LookupContext', :context
end

The returned hash can include the lookup_options key to configure merge behavior for other keys. See
Configuring merge behavior in Hiera data for more information. Values in the returned hash can include Hiera
interpolation tokens like %{variable} or %{lookup('key')}; Hiera interpolates values as needed. This is
a significant difference between data_hash and the other two backend types; lookup_key and data_dig
functions have to explicitly handle interpolation.

Related information
Configure merge behavior in data

lookup_key backends
A lookup_key backend function looks up a single key and returns its value. For example, the built-in
hiera_eyaml backend is a lookup_key function.

You can view its source on Git at eyaml_lookup_key.rb.

Arguments

Hiera calls a lookup_key function with three arguments:

• A key to look up.
• A hash of options.
• A Puppet::LookupContext object.

Return type

The function must either call the context object’s not_found method, or return a value for the requested key. It can
return undef as a value.

Puppet language example signature:

function mymodule::hiera_backend(
 Variant[String, Numeric] $key,
 Hash $options,
 Puppet::LookupContext $context,
)

Ruby example signature:

dispatch :hiera_backend do
 param 'Variant[String, Numeric]', :key
 param 'Hash', :options
 param 'Puppet::LookupContext', :context
end

A lookup_key function can return a hash for the the lookup_options key to configure merge behavior for
other keys. See Configuring merge behavior in Hiera data for more information. To support Hiera interpolation
tokens, for example, %{variable} or %{lookup('key')} in your data, call context.interpolate on
your values before returning them.

Related information
Interpolation on page 430
In Hiera you can insert, or interpolate, the value of a variable into a string, using the syntax %{variable}.

Hiera calling conventions for backend functions on page 442

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppet/blob/master/lib/puppet/functions/eyaml_lookup_key.rb

Puppet | The Puppet platform | 441

Hiera uses the following conventions when calling backend functions.

data_dig backends
A data_dig backend function is similar to a lookup_key function, but instead of looking up a single key, it
looks up a single sequence of keys and subkeys.

Hiera lets you look up individual members of hash and array values using key.subkey notation. Use data_dig
types in cases where:

• Lookups are relatively expensive.
• The data source knows how to extract elements from hash and array values.
• Users are likely to pass key.subkey requests to the lookup function to access subsets of large data structures.

Arguments

Hiera calls a data_dig function with three arguments:

• An array of lookup key segments, made by splitting the requested lookup key on the dot (.) subkey separator.
For example, a lookup for users.dbadmin.uid results in ['users', 'dbadmin', 'uid']. Positive
base-10 integer subkeys (for accessing array members) are converted to Integer objects, but other number subkeys
remain as strings.

• A hash of options.
• A Puppet::LookupContext object.

Return type

The function must either call the context object’s not_found method, or return a value for the requested sequence
of key segments. Note that returning undef (nil in Ruby) means that the key was found but that the value for that key
was specified to be undef. Puppet language example signature:

function mymodule::hiera_backend(
 Array[Variant[String, Numeric]] $segments,
 Hash $options,
 Puppet::LookupContext $context,
)

Ruby example signature:

dispatch :hiera_backend do
 param 'Array[Variant[String, Numeric]]', :segments
 param 'Hash', :options
 param 'Puppet::LookupContext', :context
end

A data_dig function can return a hash for the the lookup_options key to configure merge behavior for other
keys. See Configuring merge behavior in Hiera data for more info.

To support Hiera interpolation tokens like %{variable} or %{lookup('key')} in your data, call
context.interpolate on your values before returning them.

Related information
Configure merge behavior in data

Access hash and array elements using a key.subkey notation on page 437

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 442

Access hash and array members in Hiera using a key.subkey notation.

Hiera calling conventions for backend functions
Hiera uses the following conventions when calling backend functions.

Hiera calls data_hash one time per data source, calls lookup_key functions one time per data source for every
unique key lookup, and calls data_dig functions one time per data source for every unique sequence of key
segments.

However, a given hierarchy level can refer to multiple data sources with the path, paths, uri, uris, glob, and
globs settings. Hiera handles each hierarchy level as follows:

• If the path, paths, glob, or globs settings are used, Hiera determines which files exist and calls the function
one time for each. If no files were found, the function is not be called.

• If the uri or uris settings are used, Hiera calls the function one time per URI.
• If none of those settings are used, Hiera calls the function one time.

Hiera can call a function again for a given data source, if the inputs change. For example, if hiera.yaml
interpolates a local variable in a file path, Hiera calls the function again for scopes where that variable has a different
value. This has a significant performance impact, so you must interpolate only facts, trusted facts, and server facts in
the hierarchy.

The options hash
Hierarchy levels are configured in the hiera.yaml file. When calling a backend function, Hiera passes a modified
version of that configuration as a hash.

The options hash can contain (depending on whether path, glob, uri, ormapped_paths have been set) the
following keys:

• path - The absolute path to a file on disk. It is present only if path, paths, glob, globs, or
mapped_paths is present in the hierarchy. Hiera never calls the function unless the file is present.

• uri - A uri that your function can use to locate a data source. It is present only if uri or uris is present in the
hierarchy. Hiera does not verify the URI before passing it to the function.

• Every key from the hierarchy level’s options setting. List any options your backend requires or accepts. The
path and uri keys are reserved.

Note: If your backend uses data files, use the context object’s cached_file_data method to read them.

For example, the following hierarchy level in hiera.yaml results in several different options hashes, depending on
such things as the current node’s facts and whether the files exist:

- name: "Secret data: per-node, per-datacenter, common"
 lookup_key: eyaml_lookup_key # eyaml backend
 datadir: data
 paths:
 - "secrets/nodes/%{trusted.certname}.eyaml"
 - "secrets/location/%{facts.whereami}.eyaml"
 - "common.eyaml"
 options:
 pkcs7_private_key: /etc/puppetlabs/puppet/eyaml/private_key.pkcs7.pem
 pkcs7_public_key: /etc/puppetlabs/puppet/eyaml/public_key.pkcs7.pem

The various hashes would all be similar to this:

{
 'path' => '/etc/puppetlabs/code/environments/production/data/secrets/
nodes/web01.example.com.eyaml',
 'pkcs7_private_key' => '/etc/puppetlabs/puppet/eyaml/
private_key.pkcs7.pem',
 'pkcs7_public_key' => '/etc/puppetlabs/puppet/eyaml/public_key.pkcs7.pem'

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 443

}

In your function’s signature, you can validate the options hash by using the Struct data type to restrict its contents. In
particular, note you can disable all of the path, paths, glob, and globs settings for your backend by disallowing
the path key in the options hash.

For more information, see the Struct data type.

Related information
Configure merge behavior in data

Configuring a hierarchy level: hiera-eyaml on page 422
Hiera 5 (Puppet 4.9.3 and later) includes a native interface for the Hiera eyaml extension, which keeps data encrypted
on disk but lets Puppet read it during catalog compilation.

Interpolation on page 430
In Hiera you can insert, or interpolate, the value of a variable into a string, using the syntax %{variable}.

The Puppet::LookupContext object and methods
To support caching and other backends needs, Hiera provides a Puppet::LookupContext object.

In Ruby functions, the context object is a normal Ruby object of class Puppet::LookupContext, and you can
call methods with standard Ruby syntax, for example context.not_found.

In Puppet language functions, the context object appears as the special data type Puppet::LookupContext,
that has methods attached.You can call the context’s methods using Puppet’s chained function call syntax with the
method name instead of a normal function call syntax, for example, $context.not_found. For methods that take
a block, use Puppet’s lambda syntax (parameters outside block) instead of Ruby’s block syntax (parameters inside
block).

not_found()

Tells Hiera to halt this lookup and move on to the next data source. Call this method when your function cannot find a
matching key or a given lookup. This method returns no value.

For data_hash backends, return an empty hash. The empty hash results in not_found, and prevents further calls
to the provider. Missing data sources are not an issue when using path, paths, glob, or globs, but are important
for backends that locate their own data sources.

For lookup_key and data_dig backends, use not_found when a requested key is not present in the data
source or the data source does not exist. Do not return undef or nil for missing keys, as these are legal values that
can be set in data.

interpolate(value)

Returns the provided value, but with any Hiera interpolation tokens (%{variable} or %{lookup('key')})
replaced by their value. This lets you opt-in to allowing Hiera-style interpolation in your backend’s data sources. It
works recursively on arrays and hashes. Hashes can interpolate into both keys and values.

In data_hash backends, support for interpolation is built in, and you do not need to call this method.

In lookup_key and data_dig backends, call this method if you want to support interpolation.

environment_name()

Returns the name of the environment, regardless of layer.

module_name()

Returns the name of the module whose hiera.yaml called the function. Returns undef (in Puppet) or nil (in
Ruby) if the function was called by the global or environment layer.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 444

cache(key, value)

Caches a value, in a per-data-source private cache. It also returns the cached value.

On future lookups in this data source, you can retrieve values by calling cached_value(key). Cached values are
immutable, but you can replace the value for an existing key. Cache keys can be anything valid as a key for a Ruby
hash, including nil.

For example, on its first invocation for a given YAML file, the built-in eyaml_lookup_key backend reads the
whole file and caches it, and then decrypts only the specific value that was requested. On subsequent lookups into that
file, it gets the encrypted value from the cache instead of reading the file from disk again. It also caches decrypted
values so that it won’t have to decrypt again if the same key is looked up repeatedly.

The cache is useful for storing session keys or connection objects for backends that access a network service.

Each Puppet::LookupContext cache lasts for the duration of the current catalog compilation. A node can’t
access values cached for a previous node.

Hiera creates a separate cache for each combination of inputs for a function call, including inputs like name that are
configured in hiera.yaml but not passed to the function. Each hierarchy level has its own cache, and hierarchy
levels that use multiple paths have a separate cache for each path.

If any inputs to a function change, for example, a path interpolates a local variable whose value changes between
lookups, Hiera uses a fresh cache.

cache_all(hash)

Caches all the key-value pairs from a given hash. Returns undef (in Puppet) or nil (in Ruby).

cached_value(key)

Returns a previously cached value from the per-data-source private cache. Returns undef or nil if no value with
this name has been cached.

cache_has_key(key)

Checks whether the cache has a value for a given key yet. Returns true or false.

cached_entries()

Returns everything in the per-data-source cache as an iterable object. The returned object is
not a hash. If you want a hash, use Hash($context.all_cached()) in the Puppet language or
Hash[context.all_cached()] in Ruby.

cached_file_data(path)

Puppet syntax:

cached_file_data(path) |content| { ... }

Ruby syntax:

cached_file_data(path) {|content| ...}

For best performance, use this method to read files in Hiera backends.

cached_file_data(path) {|content| ...} returns the content of the specified file as a string. If an
optional block is provided, it passes the content to the block and returns the block’s return value. For example, the
built-in JSON backend uses a block to parse JSON and return a hash:

context.cached_file_data(path) do |content|
 begin
 JSON.parse(content)
 rescue JSON::ParserError => ex

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 445

 # Filename not included in message, so we add it here.
 raise Puppet::DataBinding::LookupError, "Unable to parse (#{path}):
 #{ex.message}"
 end
 end

On repeated access to a given file, Hiera checks whether the file has changed on disk. If it hasn’t, Hiera uses cached
data instead of reading and parsing the file again.

This method does not use the same per-data-source caches as cache(key, value) and similar methods.
It uses a separate cache that lasts across multiple catalog compilations, and is tied to Puppet Server’s environment
cache.

Because the cache can outlive a given node’s catalog compilation, do not do any node-specific pre-processing (like
calling context.interpolate) in this method’s block.

explain() { ‘message’ }

Puppet syntax:

explain() || { 'message' }

Ruby syntax:

explain() { 'message' }

In both Puppet and Ruby, the provided block must take zero arguments.

explain() { 'message' } adds a message, which appears in debug messages or when using puppet lookup --
explain. The block provided to this function must return a string.

The explain method is useful for complex lookups where a function tries several different things before arriving at the
value. The built-in backends do not use the explain method, and they still have relatively verbose explanations. This
method is for when you need to provide even more detail.

Hiera never executes the explain block unless explain is enabled.

Upgrading to Hiera 5
Upgrading to Hiera 5 offers some major advantages. A real environment data layer means changes to your hierarchy
are now routine and testable, using multiple backends in your hierarchy is easier and you can make a custom backend.

Note: If you’re already a Hiera user, you can use your current code with Hiera 5 without any changes to it. Hiera 5 is
fully backward-compatible with Hiera 3. You can even start using some Hiera 5 features—like module data—without
upgrading anything.

Hiera 5 uses the same built-in data formats as Hiera 3. You don't need to do mass edits of any data files.

Updating your code to take advantage of Hiera 5 features involves the following tasks:

Task Benefit

Enable the environment layer, by giving each
environment its own hiera.yaml file.

Note: Enabling the environment layer takes the most
work, but yields the biggest benefits. Focus on that first,
then do the rest at your own pace.

Future hierarchy changes are cheap and testable. The
legacy Hiera functions (hiera, hiera_array,
hiera_hash, and hiera_include) gain full Hiera
5 powers in any migrated environment, only if there is a
hiera.yaml in the environment root.

Convert your global hiera.yaml file to the version 5
format.

You can use new Hiera 5 backends at the global layer.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 446

Task Benefit

Convert any experimental (version 4) hiera.yaml
files to version 5.

Future-proof any environments or modules where you
used the experimental version of Puppet lookup.

In Puppet code, replace legacy Hiera functions
(hiera, hiera_array, hiera_hash, and
hiera_include) with lookup().

Future-proof your Puppet code.

Use Hiera for default data in modules. Simplify your modules with an elegant alternative to the
"params.pp" pattern.

Considerations for hiera-eyaml users

Upgrade now. In Puppet 4.9.3, we added a built-in hiera-eyaml backend for Hiera 5. (It still requires that the hiera-
eyaml gem be installed.) See the usage instructions in the hiera.yaml (v5) syntax reference. This means you can
move your existing encrypted YAML data into the environment layer at the same time you move your other data.

Considerations for custom backend users

Wait for updated backends. You can keep using custom Hiera 3 backends with Hiera 5, but they'll make upgrading
more complex, because you can't move legacy data to the environment layer until there's a Hiera 5 backend for it. If
an updated version of the backend is coming out soon, wait.

If you're using an off-the-shelf custom backend, check its website or contact its developer. If you developed your
backend in-house, read the documentation about writing Hiera 5 backends.

Considerations for custom data_binding_terminus users

Upgrade now, and replace it with a Hiera 5 backend as soon as possible. There's a deprecated
data_binding_terminus setting in the puppet.conf file, which changes the behavior of automatic class
parameter lookup. It can be set to hiera (normal), none (deprecated; disables auto-lookup), or the name of a
custom plug-in.

With a custom data_binding_terminus, automatic lookup results are different from function-based lookups
for the same keys. If you're one of the few who use this feature, you've already had to design your Puppet code to
avoid that problem, so it's safe to upgrade your configuration to Hiera 5. But because we've deprecated that extension
point, you have to replace your custom terminus with a Hiera 5 backend.

If you're using an off-the-shelf plug-in, such as Jerakia, check its website or contact its developer. If you developed
your plug-in in-house, read the documentation about writing Hiera 5 backends.

After you have a Hiera 5 backend, integrate it into your hierarchies and delete the data_binding_terminus
setting.

Related information
The Puppet lookup function on page 434
The lookup function uses Hiera to retrieve a value for a given key.

Config file syntax on page 418
The hiera.yaml file is a YAML file, containing a hash with up to four top-level keys.

Writing new data backends on page 438
You can extend Hiera to look up values in data sources, for example, a PostgreSQL database table, a custom web app,
or a new kind of structured data file.

Hiera configuration layers on page 413

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 447

Hiera uses three independent layers of configuration. Each layer has its own hierarchy, and they’re linked into one
super-hierarchy before doing a lookup.

Enable the environment layer for existing Hiera data
A key feature in Hiera 5 is per-environment hierarchy configuration. Because you probably store data in each
environment, local hiera.yaml files are more logical and convenient than a single global hierarchy.

You can enable the environment layer gradually. In migrated environments, the legacy Hiera functions switch to
Hiera 5 mode — they can access environment and module data without requiring any code changes.

Note: Before migrating environment data to Hiera 5, read the introduction to migrating Hiera configurations. In
particular, be aware that if you rely on custom Hiera 3 backends, we recommend you upgrade them for Hiera 5 or
prepare for some extra work during migration. If your only custom backend is hiera-eyaml, continue upgrading
— Puppet 4.9.3 and higher include a Hiera 5 eyaml backend. See the usage instructions in the hiera.yaml (v5)
syntax reference.

In each environment:

1. Check your code for Hiera function calls with "hierarchy override arguments" (as shown later), which cause
errors.

2. Add a local hiera.yaml file.

3. Update your custom backends if you have them.

4. Rename the data directory to exclude this environment from the global layer. Unmigrated environments still rely
on the global layer, which gets checked before the environment layer. If you want to maintain both migrated
and unmigrated environments during the migration process, choose a different data directory name for migrated
environments. The new name 'data' is a good choice because it is also the new default (unless you are already
using 'data', in which case choose a different name and set datadir in hiera.yaml). This process has no
particular time limit and doesn't involve any downtime. After all of your environments are migrated, you can
phase out or greatly reduce the global hierarchy.

Important: The environment layer does not support Hiera 3 backends. If any of your data uses a custom backend
that has not been ported to Hiera 5, omit those hierarchy levels from the environment config and continue to use
the global layer for that data. Because the global layer is checked before the environment layer, it's possible to run
into situations where you cannot migrate data to the environment layer yet. For example, if your old :backends
setting was [custom_backend, yaml], you can do a partial migration, because the custom data was
all going before the YAML data anyway. But if :backends was [yaml, custom_backend], and you
frequently use YAML data to override the custom data, you can't migrate until you have a Hiera 5 version of that
custom backend. If you run into a situation like this, get an upgraded backend before enabling the environment
layer.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 448

5. Check your Puppet code for classic Hiera functions (hiera, hiera_array, hiera_hash, and
hiera_include) that are passing the optional hierarchy override argument, and remove the argument.

In Hiera 5, the hierarchy override argument is an error.

A quick way to find instances of using this argument is to search for calls with two or more commas. Search your
codebase using the following regular expression:

hiera(_array|_hash|_include)?\(([^,\)]*,){2,}[^\)]*\)

This results in some false positives, but helps find the errors before you run the code.

Alternatively, continue to the next step and fix errors as they come up. If you use environments for code testing
and promotion, you’re probably migrating a temporary branch of your control repo first, then pointing some
canary nodes at it to make sure everything works as expected. If you think you’ve never used hierarchy override
arguments, you’ll be verifying that assumption when you run your canary nodes. If you do find any errors, you
can fix them before merging your branch to production, the same way you would with any work-in-progress code.

Note: If your environments are similar to each other, you might only need to check for the hierarchy override
argument in function calls in one environment. If you find none, likely the others won’t have many either.

6. Choose a new data directory name to use in the next two steps. The default data directory name in Hiera 3 was
<ENVIRONMENT>/hieradata, and the default in Hiera 5 is <ENVIRONMENT>/data. If you used the old
default, use the new default. If you were already using data, choose something different.

7. Add a Hiera 5 hiera.yaml file to the environment.

Each environment needs a Hiera config file that works with its existing data. If this is the first environment you’re
migrating, see converting a version 3 hiera.yaml to version 5. Make sure to reference the new datadir
name. If you’ve already migrated at least one environment, copy the hiera.yaml file from a migrated
environment and make changes to it if necessary.

Save the resulting file as <ENVIRONMENT>/hiera.yaml. For example, /etc/puppetlabs/code/
environments/production/hiera.yaml.

8. If any of your data relies on custom backends that have been ported to Hiera 5, install them in the environment.
Hiera 5 backends are distributed as Puppet modules, so each environment can use its own version of them.

9. If you use only file-based Hiera 5 backends, move the environment’s data directory by renaming it from its old
name (hieradata) to its new name (data). If you use custom file-based Hiera 3 backends, the global layer still
needs access to their data, so you need to sort the files: Hiera 5 data moves to the new data directory, and Hiera 3
data stays in the old data directory. When you have Hiera 5 versions of your custom backends, you can move the
remaining files to the new datadir. If you use non-file backends that don’t have a data directory:

a) Decide that the global hierarchy is the right place for configuring this data, and leave it there permanently.
b) Do something equivalent to moving the datadir; for example, make a new database table for migrated data

and move values into place as you migrate environments.
c) Allow the global and environment layers to use duplicated configuration for this data until the migration is

done.

10. Repeat these steps for each environment. If you manage your code by mapping environments to branches in a
control repo, you can migrate most of your environments using your version control system’s merging tools.

11. After you have migrated the environments that have active node populations, delete the parts of your global
hierarchy that you transferred into environment hierarchies.

For more information on mapping environments to branches, see control repo.

Related information
Enable the environment layer for existing Hiera data on page 447
A key feature in Hiera 5 is per-environment hierarchy configuration. Because you probably store data in each
environment, local hiera.yaml files are more logical and convenient than a single global hierarchy.

Configuring a hierarchy level: legacy Hiera 3 backends on page 423

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pe/2017.3/cmgmt_control_repo.html

Puppet | The Puppet platform | 449

If you rely on custom data backends designed for Hiera 3, you can use them in your global hierarchy. They are not
supported at the environment or module layers.

Config file syntax on page 418
The hiera.yaml file is a YAML file, containing a hash with up to four top-level keys.

Custom backends overview on page 438
A backend is a custom Puppet function that accepts a particular set of arguments and whose return value obeys a
particular format. The function can do whatever is necessary to locate its data.

Convert a version 3 hiera.yaml to version 5
Hiera 5 supports three versions of the hiera.yaml file: version 3, version 4, and version 5. If you've been using
Hiera 3, your existing configuration is a version 3 hiera.yaml file at the global layer.

There are two migration tasks that involve translating a version 3 config to a version 5:

• Creating new v5 hiera.yaml files for environments.
• Updating your global configuration to support Hiera 5 backends.

These are essentially the same process, although the global hierarchy has a few special capabilities.

Consider this example hiera.yaml version 3 file:

:backends:
 - mongodb
 - eyaml
 - yaml
:yaml:
 :datadir: "/etc/puppetlabs/code/environments/%{environment}/hieradata"
:mongodb:
 :connections:
 :dbname: hdata
 :collection: config
 :host: localhost
:eyaml:
 :datadir: "/etc/puppetlabs/code/environments/%{environment}/hieradata"
 :pkcs7_private_key: /etc/puppetlabs/puppet/eyaml/private_key.pkcs7.pem
 :pkcs7_public_key: /etc/puppetlabs/puppet/eyaml/public_key.pkcs7.pem
:hierarchy:
 - "nodes/%{trusted.certname}"
 - "location/%{facts.whereami}/%{facts.group}"
 - "groups/%{facts.group}"
 - "os/%{facts.os.family}"
 - "common"
:logger: console
:merge_behavior: native
:deep_merge_options: {}

To convert this version 3 file to version 5:

1. Use strings instead of symbols for keys.

Hiera 3 required you to use Ruby symbols as keys. Symbols are short strings that start with a colon, for example,
:hierarchy. The version 5 config format lets you use regular strings as keys, although symbols won’t (yet)
cause errors. You can remove the leading colons on keys.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 450

2. Remove settings that aren’t used anymore. In this example, remove everything except the :hierarchy setting:

a) Delete the following settings completely, which are no longer needed:

• :logger

• :merge_behavior

• :deep_merge_options

For information on how Hiera 5 supports deep hash merging, see Merging data from multiple sources.
b) Delete the following settings, but paste them into a temporary file for later reference:

• :backends

• Any backend-specific setting sections, like :yaml or :mongodb

3. Add a version key, with a value of 5:

version: 5
hierarchy:
 # ...

4. Set a default backend and data directory.

If you use one backend for the majority of your data, for example YAML or JSON, set a defaults key, with
values for datadir and one of the backend keys.

The names of the backends have changed for Hiera 5, and the backend setting itself has been split into three
settings:

Hiera 3 backend Hiera 5 backend setting

yaml data_hash: yaml_data

json data_hash: json_data

eyaml lookup_key: eyaml_lookup_key

5. Translate the hierarchy.

The version 5 and version 3 hierarchies work differently:

• In version 3, hierarchy levels don’t have a backend assigned to them, and Hiera loops through the entire
hierarchy for each backend.

• In version 5, each hierarchy level has one designated backend, as well as its own independent configuration for
that backend.

Consult the previous values for the :backends key and any backend-specific settings.

In the example above, we used yaml, eyaml, and mongodb backends. Your business only uses Mongo for per-
node data, and uses eyaml for per-group data. The rest of the hierarchy is irrelevant to these backends. You need
one Mongo level and one eyaml level, but still want all five levels in YAML. This means Hiera consults multiple
backends for per-node and per-group data. You want the YAML version of per-node data to be authoritative,
so put it before the Mongo version. The eyaml data does not overlap with the unencrypted per-group data, so it
doesn’t matter where you put it. Put it before the YAML levels. When you translate your hierarchy, you have to
make the same kinds of investigations and decisions.

6. Remove hierarchy levels that use calling_module, calling_class, and calling_class_path,
which were allowed pseudo-variables in Hiera 3. Anything you were doing with these variables is better
accomplished by using the module data layer, or by using the glob pattern (if the reason for using them was to
enable splitting up data into multiple files, and not knowing in advance what they names of those would be)

Hiera.yaml version 5 does not support these. Remove hierarchy levels that interpolate them.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 451

7. Translate built-in backends to the version 5 config, where the hierarchy is written as an array of hashes. For
hierarchy levels that use the built-in backends, for example YAML and JSON, use the data_hash key to set
the backend. See Configuring a hierarchy level in the hiera.yaml v5 reference for more information.

Set the following keys:

• name - A human-readable name.
• path or paths - The path you used in your version 3 hiera.yaml hierarchy, but with a file extension

appended.
• data_hash - The backend to use yaml_data for YAML, json_data for JSON.
• datadir - The data directory. In version 5, it’s relative to the hiera.yaml file’s directory.

If you have set default values for data_hash and datadir, you can omit them.

version: 5
defaults:
 datadir: data
 data_hash: yaml_data
hierarchy:
 - name: "Per-node data (yaml version)"
 path: "nodes/%{trusted.certname}.yaml" # Add file extension.
 # Omitting datadir and data_hash to use defaults.

 - name: "Other YAML hierarchy levels"
 paths: # Can specify an array of paths instead of one.
 - "location/%{facts.whereami}/%{facts.group}.yaml"
 - "groups/%{facts.group}.yaml"
 - "os/%{facts.os.family}.yaml"
 - "common.yaml"

8. Translate hiera-eyaml backends, which work in a similar way to the other built-in backends.

The differences are:

• The hiera-eyaml gem has to be installed, and you need a different backend setting. Instead of
data_hash: yaml, use lookup_key: eyaml_lookup_key. Each hierarchy level needs an
options key with paths to the public and private keys. You cannot set a global default for this.

- name: "Per-group secrets"
 path: "groups/%{facts.group}.eyaml"
 lookup_key: eyaml_lookup_key
 options:
 pkcs7_private_key: /etc/puppetlabs/puppet/eyaml/
private_key.pkcs7.pem
 pkcs7_public_key: /etc/puppetlabs/puppet/eyaml/
public_key.pkcs7.pem

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 452

9. Translate custom Hiera 3 backends.

Check to see if the backend’s author has published a Hiera 5 update for it. If so, use that; see its documentation for
details on how to configure hierarchy levels for it.

If there is no update, use the version 3 backend in a version 5 hierarchy at the global layer — it does not work in
the environment layer. Find a Hiera 5 compatible replacement, or write Hiera 5 backends yourself.

For details on how to configure a legacy backend, see Configuring a hierarchy level (legacy Hiera 3 backends) in
the hiera.yaml (version 5) reference.

When configuring a legacy backend, use the previous value for its backend-specific settings. In the example, the
version 3 config had the following settings for MongoDB:

:mongodb:
 :connections:
 :dbname: hdata
 :collection: config
 :host: localhost

So, write the following for a per-node MongoDB hierarchy level:

- name: "Per-node data (MongoDB version)"
 path: "nodes/%{trusted.certname}" # No file extension
 hiera3_backend: mongodb
 options: # Use old backend-specific options, changing keys to plain
 strings
 connections:
 dbname: hdata
 collection: config
 host: localhost

After following these steps, you’ve translated the example configuration into the following v5 config:

version: 5
defaults:
 datadir: data
 data_hash: yaml_data
hierarchy:
 - name: "Per-node data (yaml version)"
 path: "nodes/%{trusted.certname}.yaml" # Add file extension
 # Omitting datadir and data_hash to use defaults.

 - name: "Per-node data (MongoDB version)"
 path: "nodes/%{trusted.certname}" # No file extension
 hiera3_backend: mongodb
 options: # Use old backend-specific options, changing keys to plain
 strings
 connections:
 dbname: hdata
 collection: config
 host: localhost

 - name: "Per-group secrets"
 path: "groups/%{facts.group}.eyaml"
 lookup_key: eyaml_lookup_key
 options:
 pkcs7_private_key: /etc/puppetlabs/puppet/eyaml/private_key.pkcs7.pem
 pkcs7_public_key: /etc/puppetlabs/puppet/eyaml/public_key.pkcs7.pem

 - name: "Other YAML hierarchy levels"
 paths: # Can specify an array of paths instead of a single one.
 - "location/%{facts.whereami}/%{facts.group}.yaml"

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 453

 - "groups/%{facts.group}.yaml"
 - "os/%{facts.os.family}.yaml"
 - "common.yaml"

Related information
Hiera configuration layers on page 413
Hiera uses three independent layers of configuration. Each layer has its own hierarchy, and they’re linked into one
super-hierarchy before doing a lookup.

Custom backends overview on page 438
A backend is a custom Puppet function that accepts a particular set of arguments and whose return value obeys a
particular format. The function can do whatever is necessary to locate its data.

Configuring a hierarchy level: general format on page 424
Hiera supports custom backends.

Configuring a hierarchy level: hiera-eyaml on page 422
Hiera 5 (Puppet 4.9.3 and later) includes a native interface for the Hiera eyaml extension, which keeps data encrypted
on disk but lets Puppet read it during catalog compilation.

Convert an experimental (version 4) hiera.yaml to version 5
If you used the experimental version of Puppet lookup (Hiera 5's predecessor), you might have some version
4 hiera.yaml files in your environments and modules. Hiera 5 can use these, but you need to convert them,
especially if you want to use any backends other than YAML or JSON. Version 4 and version 5 formats are similar.

Consider this example of a version 4 hiera.yaml file:

/etc/puppetlabs/code/environments/production/hiera.yaml

version: 4
datadir: data
hierarchy:
 - name: "Nodes"
 backend: yaml
 path: "nodes/%{trusted.certname}"

 - name: "Exported JSON nodes"
 backend: json
 paths:
 - "nodes/%{trusted.certname}"
 - "insecure_nodes/%{facts.networking.fqdn}"

 - name: "virtual/%{facts.virtual}"
 backend: yaml

 - name: "common"
 backend: yaml

To convert to version 5, make the following changes:

1. Change the value of the version key to 5.

2. Add a file extension to every file path — use "common.yaml", not "common".

3. If any hierarchy levels are missing a path, add one. In version 5, path no longer defaults to the value of name

4. If there is a top-level datadir key, change it to a defaults key. Set a default backend. For example:

defaults:
 datadir: data
 data_hash: yaml_data

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 454

5. In each hierarchy level, delete the backend key and replace it with a data_hash key. (If you set a default
backend in the defaults key, you can omit it here.)

v4 backend v5 equivalent

backend: yaml data_hash: yaml_data

backend: json data_hash: json_data

6. Delete the environment_data_provider and data_provider settings, which enabled Puppet lookup
for an environment or module.

You’ll find these settings in the following locations:

• environment_data_provider in puppet.conf.
• environment_data_provider in environment.conf.
• data_provider in a module’s metadata.json.

After being converted to version 5, the example looks like this:

/etc/puppetlabs/code/environments/production/hiera.yaml

version: 5
defaults:
 datadir: data # Datadir has moved into `defaults`.
 data_hash: yaml_data # Default backend: New feature in v5.
hierarchy:
 - name: "Nodes" # Can omit `backend` if using the default.
 path: "nodes/%{trusted.certname}.yaml" # Add file extension!

 - name: "Exported JSON nodes"
 data_hash: json_data # Specifying a non-default backend.
 paths:
 - "nodes/%{trusted.certname}.json"
 - "insecure_nodes/%{facts.networking.fqdn}.json"

 - name: "Virtualization platform"
 path: "virtual/%{facts.virtual}.yaml" # Name and path are now
 separated.

 - name: "common"
 path: "common.yaml"

For full syntax details, see the hiera.yaml version 5 reference.

Related information
Config file syntax on page 418
The hiera.yaml file is a YAML file, containing a hash with up to four top-level keys.

Custom backends overview on page 438
A backend is a custom Puppet function that accepts a particular set of arguments and whose return value obeys a
particular format. The function can do whatever is necessary to locate its data.

Convert experimental data provider functions to a Hiera 5 data_hash backend
Puppet lookup had experimental custom backend support, where you could set data_provider = function
and create a function with a name that returned a hash. If you used that, you can convert your function to a Hiera 5
data_hash backend.

1. Your original function took no arguments. Change its signature to accept two arguments: a Hash and a
Puppet::LookupContext object. You do not have to do anything with these - just add them. For more
information, see the documentation for data hash backends.

2. Delete the data_provider setting, which enabled Puppet lookup for a module. You can find this setting in a
module’s metadata.json.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 455

3. Create a version 5 hiera.yaml file for the affected environment or module, and add a hierarchy level as
follows:

- name: <ARBITRARY NAME>
 data_hash: <NAME OF YOUR FUNCTION>

It does not need a path, datadir, or any other options.

Updated classic Hiera function calls
The hiera, hiera_array, hiera_hash, and hiera_include functions are all deprecated. The lookup
function is a complete replacement for all of these.

Hiera function Equivalent lookup call

hiera('secure_server') lookup('secure_server')

hiera_array('ntp::servers') lookup('ntp::servers', {merge =>
unique})

hiera_hash('users') lookup('users', {merge => hash}) or
lookup('users', {merge => deep})

hiera_include('classes') lookup('classes', {merge =>
unique}).include

To prepare for deprecations in future Puppet versions, it's best to revise your Puppet modules to replace the hiera_*
functions with lookup. However, you can adopt all of Hiera 5's new features without updating these function calls.
While you're revising, consider refactoring code to use automatic class parameter lookup instead of manual lookup
calls. Because automatic lookups can now do unique and hash merges, the use of manual lookup in the form of
hiera_array and hiera_hash are not as important as they used to be. Instead of changing those manual Hiera
calls to be calls to the lookup function, use Automatic Parameter Lookup (API).

Related information
The Puppet lookup function on page 434
The lookup function uses Hiera to retrieve a value for a given key.

Merge behaviors on page 425
There are four merge behaviors to choose from: first, unique, hash, and deep.

Adding Hiera data to a module
Modules need default values for their class parameters. Before, the preferred way to do this was the “params.pp”
pattern. With Hiera 5, you can use the “data in modules” approach instead. The following example shows how to
replace params.pp with the new approach.

Note: The params.pp pattern is still valid, and the features it relies on remain in Puppet. But if you want to use
Hiera data instead, you now have that option.

Note: You must fully qualify Hiera variables for modules in your YAML file. See Module data with YAML data
files on page 457.

Module data with the params.pp pattern
The params.pp pattern takes advantage of the Puppet class inheritance behavior.

One class in your module does nothing but set variables for the other classes. This class is called
<MODULE>::params. This class uses Puppet code to construct values; it uses conditional logic based on the target
operating system. The rest of the classes in the module inherit from the params class. In their parameter lists, you can
use the params class's variables as default values.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 456

When using params.pp pattern, the values set in the params.pp defined class cannot be used in lookup merges
and Automatic Parameter Lookup (APL) - when using this pattern these are only used for defaults when there are no
values found in Hiera.

An example params class:

ntp/manifests/params.pp
class ntp::params {
 $autoupdate = false,
 $default_service_name = 'ntpd',

 case $facts['os']['family'] {
 'AIX': {
 $service_name = 'xntpd'
 }
 'Debian': {
 $service_name = 'ntp'
 }
 'RedHat': {
 $service_name = $default_service_name
 }
 }
}

A class that inherits from the params class and uses it to set default parameter values:

class ntp (
 $autoupdate = $ntp::params::autoupdate,
 $service_name = $ntp::params::service_name,
) inherits ntp::params {
 ...
}

Module data with a one-off custom Hiera backend
With Hiera 5's custom backend system, you can convert and existing params class to a hash-based Hiera backend.

To create a Hiera backend, create a function written in the Puppet language that returns a hash.

Using the params class as a starting point:

ntp/functions/params.pp
function ntp::params(
 Hash $options, # We ignore both of these arguments, but
 Puppet::LookupContext $context, # the function still needs to accept them.
) {
 $base_params = {
 'ntp::autoupdate' => false,
 # Keys have to start with the module's namespace, which in this case
 is `ntp::`.
 'ntp::service_name' => 'ntpd',
 # Use key names that work with automatic class parameter lookup. This
 # key corresponds to the `ntp` class's `$service_name` parameter.
 }

 $os_params = case $facts['os']['family'] {
 'AIX': {
 { 'ntp::service_name' => 'xntpd' }
 }
 'Debian': {
 { 'ntp::service_name' => 'ntp' }
 }
 default: {
 {}

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 457

 }
 }

 # Merge the hashes, overriding the service name if this platform uses a
 non-standard one:
 $base_params + $os_params
}

Note: The hash merge operator (+) is useful in these functions.

After you have a function, tell Hiera to use it by adding it to the module layer hiera.yaml. A simple backend
like this one doesn’t require path, datadir, or options keys. You have a choice of adding it to the
default_hierarch if you want the exact same behaviour as with the earlier params.pp pattern, and use
the regular hierarchy if you want the values to be merged with values of higher priority when a merging
lookup is specified. You can split up the key-values so that some are in the hierarchy, and some in the
default_hierarchy, depending on whether it makes sense to merge a value or not.

Here we add it to the regular hierarchy:

ntp/hiera.yaml

version: 5
hierarchy:
 - name: "NTP class parameter defaults"
 data_hash: "ntp::params"
 # We only need one hierarchy level, because one function provides all the
 data.

With Hiera-based defaults, you can simplify your module’s main classes:

• They do not need to inherit from any other class.
• You do not need to explicitly set a default value with the = operator.
• Instead APL comes into effect for each parameter without a given value. In the example, the function

ntp::params is called to get the default params, and those can then be either overridden or merged, just as with
all values in Hiera.

ntp/manifests/init.pp
class ntp (
 # default values are in ntp/functions/params.pp
 $autoupdate,
 $service_name,
) {
 ...
}

Module data with YAML data files
You can also manage your module's default data with basic Hiera YAML files,

Set up a hierarchy in your module layer hiera.yaml file:

ntp/hiera.yaml

version: 5
defaults:
 datadir: data
 data_hash: yaml_data
hierarchy:
 - name: "OS family"
 path: "os/%{facts.os.family}.yaml"

 - name: "common"

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 458

 path: "common.yaml"

Then, put the necessary data files in the data directory:

ntp/data/common.yaml

ntp::autoupdate: false
ntp::service_name: ntpd

ntp/data/os/AIX.yaml

ntp::service_name: xntpd

ntp/data/os/Debian.yaml
ntp::service_name: ntp

You can also use any other Hiera backend to provide your module’s data. If you want to use a custom backend that is
distributed as a separate module, you can mark that module as a dependency.

For more information, see class inheritance, conditional logic, write functions in the Puppet language, hash merge
operator.

Related information
The Puppet lookup function on page 434
The lookup function uses Hiera to retrieve a value for a given key.

Hiera configuration layers on page 413
Hiera uses three independent layers of configuration. Each layer has its own hierarchy, and they’re linked into one
super-hierarchy before doing a lookup.

Environments
Environments are isolated groups of agent nodes.

• About environments on page 458
An environment is a branch that gets turned into a directory on your primary server.
• Creating environments on page 460
An environment is a branch that gets turned into a directory on your primary Puppet server. Environments are turned
on by default.
• Environment isolation on page 464
Environment isolation prevents resource types from leaking between your various environments.

About environments
An environment is a branch that gets turned into a directory on your primary server.

A primary server serves each environment with its own main manifest and module path. This lets you use different
versions of the same modules for different groups of nodes, which is useful for testing changes to your code before
implementing them on production machines.

Related topics: main manifests, module paths.

Look up which environment a node is in
If you need to determine which environment a certain node is part of, look it up using the puppet node find
command.

To look up which environment a node is in, run puppet node find <node> on the Puppet Server host node,
replacing <node> with the node's exact name.

Alternatively, run puppet node find <node> --render_as json | jq .environment to render
the output as JSON and return only the environment name.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 459

Note: The node name must exactly match the name in the node's certificate, including capitalization. By default,
a node's name is its fully qualified domain name, but the node's name can be changed by using the certname and
node_name_value settings on the node itself.

Access environment name in manifests
If you want to share code across environments, use the $environment variable in your manifests.

To get the name of the current environment:

1. Use the $environment variable, which is set by the primary server.

Environment scenarios
The main uses for environments fall into three categories: permanent test environments, temporary test environments,
and divided infrastructure.

Permanent test environments

In a permanent test environment, there is a stable group of test nodes where all changes must succeed before they can
be merged into the production code. The test nodes are a smaller version of the whole production infrastructure. They
are either short-lived cloud instances or longer-lived virtual machines (VMs) in a private cloud. These nodes stay in
the test environment for their whole lifespan.

Temporary test environments

In a temporary test environment, you can test a single change or group of changes by checking the changes out of
version control into the $codedir/environments directory, where it is detected as a new environment. A
temporary test environment can either have a descriptive name or use the commit ID from the version that it is based
on. Temporary environments are good for testing individual changes, especially if you need to iterate quickly while
developing them. When you’re done with a temporary environment, you can delete it. The nodes in a temporary
environment are short-lived cloud instances or VMs, which are destroyed when the environment ends.

Divided infrastructure

If parts of your infrastructure are managed by different teams that do not need to coordinate their code, you can split
them into environments.

Environments limitations
Environments have limitations, including leakage and conflicts with exported resources.

Plugins can leak between environments

Environment leakage occurs when different versions of Ruby files, such as resource types, exist in multiple
environments. When these files are loaded on the primary server, the first version loaded is treated as global.
Subsequent requests in other environments get that first loaded version. Environment leakage does not affect the
agent, as agents are only in one environment at any given time. For more information, see below for troubleshooting
environment leakage.

Exported resources can conflict or cross over

Nodes in one environment can collect resources that were exported from another environment, which causes
problems — either a compilation error due to identically titled resources, or creation and management of unintended
resources. The solution is to run separate primary servers for each environment if you use exported resources.

Troubleshoot environment leakage
Environment leakage is one of the limitations of environments.

Use one of the following methods to avoid environmental leakage:

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 460

• For resource types, you can avoid environment leaks with the the puppet generate types command as
described in environment isolation documentation. This command generates resource type metadata files to ensure
that each environment uses the right version of each type.

• This issue occurs only with the Puppet::Parser::Functions API. To fix this, rewrite functions with the
modern functions API, which is not affected by environment leakage. You can include helper code in the function
definition, but if helper code is more complex, package it as a gem and install for all environments.

• Report processors and indirector termini are still affected by this problem, so put them in your global Ruby
directories rather than in your environments. If they are in your environments, you must ensure they all have the
same content.

Creating environments
An environment is a branch that gets turned into a directory on your primary Puppet server. Environments are turned
on by default.

Environment structure
The structure of an environment follows several conventions.

When you create an environment, you give it the following structure:

• It contains a modules directory, which becomes part of the environment’s default module path.
• It contains a manifests directory, which is the environment’s default main manifest.
• If you are using Puppet 5, it can optionally contain a hiera.yaml file.
• It can optionally contain an environment.conf file, which can locally override configuration settings,

including modulepath and manifest.

Note: Environment names can contain lowercase letters, numbers, and underscores. They must match
the following regular expression rule: \A[a-z0-9_]+\Z. If you are using Puppet 5, remove the
environment_data_provider setting.

Environment resources
An environment specifies resources that the primary server uses when compiling catalogs for agent nodes.
The modulepath, the main manifest, Hiera data, and the config version script, can all be specified in
environment.conf.

The modulepath

The modulepath is the list of directories Puppet loads modules from. By default, Puppet loads modules first from
the environment’s directory, and second from the primary server's puppet.conf file’s basemodulepath
setting, which can be multiple directories. If the modules directory is empty or absent, Puppet only uses modules from
directories in the basemodulepath.

Related topics: module path.

The main manifest

The main manifest is the starting point for compiling a catalog. Unless you say otherwise in environment.conf,
an environment uses the global default_manifest setting to determine its main manifest. The value of this
setting can be an absolute path to a manifest that all environments share, or a relative path to a file or directory inside
each environment.

The default value of default_manifest is ./manifests — the environment’s own manifests directory. If
the file or directory specified by default_manifest is empty or absent, Puppet does not fall back to any other
manifest. Instead, it behaves as if it is using a blank main manifest. If you specify a value for this setting, the global
manifest setting from puppet.conf is not be used by an environment.

Related topics: main manifest, environment.conf, default_manifest setting, puppet.conf.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 461

Hiera data

Each environment can use its own Hiera hierarchy and provide its own data.

Related topics: Hiera config file syntax.

The config version script

Puppet automatically adds a config version to every catalog it compiles, as well as to messages in reports. The version
is an arbitrary piece of data that can be used to identify catalogs and events. By default, the config version is the time
at which the catalog was compiled (as the number of seconds since January 1, 1970).

The environment.conf file

An environment can contain an environment.conf file, which can override values for certain settings.

The environment.conf file overrides these settings:

• modulepath

• manifest

• config_version

• environment_timeout

Related topics: environment.conf

Create an environment
Create an environment by adding a new directory of configuration data.

1. Inside your code directory, create a directory called environments.

2. Inside the environments directory, create a directory with the name of your new environment using the
structure: $codedir/environments/

3. Create a modules directory and a manifests directory. These two directories contain your Puppet code.

4. Configure a modulepath:

a) Set modulepath in its environment.conf file . If you set a value for this setting, the global
modulepath setting from puppet.conf is not used by an environment.

b) Check the modulepath by specifying the environment when requesting the setting value:

$ sudo puppet config print modulepath --section server --environment
 test /etc/puppetlabs/code/environments/test/modules:/etc/puppetlabs/code/
modules:/opt/puppetlabs/puppet/modules.

Note: In Puppet Enterprise (PE), every environment must include /opt/puppetlabs/puppet/modules in
its modulepath, because PE uses modules in that directory to configure its own infrastructure.

5. Configure a main manifest:

a) Set manifest in its environment.conf file. As with the global default_manifest setting, you can
specify a relative path (to be resolved within the environment’s directory) or an absolute path.

b) Lock all environments to a single global manifest with the disable_per_environment_manifest
setting — preventing any environment setting its own main manifest.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 462

6. To specify an executable script that determines an environment’s config version:

a) Specify a path to the script in the config_version setting in its environment.conf file. Puppet runs
this script when compiling a catalog for a node in the environment, and uses its output as the config version.
If you specify a value here, the global config_version setting from puppet.conf is not used by an
environment.

Note: If you’re using a system binary like git rev-parse, specify the absolute path to it. If
config_version is set to a relative path, Puppet looks for the binary in the environment, not in the system’s
PATH.

Related topics: Deploying environments with r10k, Code Manager control repositories,
disable_per_environment_manifest

Assign nodes to environments via an ENC
You can assign agent nodes to environments by using an external node classifier (ENC). By default, all nodes are
assigned to a default environment named production.

The interface to set the environment for a node is different for each ENC. Some ENCs cannot manage environments.
When writing an ENC:

1. Ensure that the environment key is set in the YAML output that the ENC returns. If the environment key isn’t set
in the ENC’s YAML output, the primary server uses the environment requested by the agent.

Note: The value from the ENC is authoritative, if it exists. If the ENC doesn’t specify an environment, the node’s
config value is used.

Related topics: writing ENCs.

Assign nodes to environments via the agent's config file
You can assign agent nodes to environments by using the agent’s config file. By default, all nodes are assigned to a
default environment named production.

To configure an agent to use an environment:

1. Open the agent's puppet.conf file in an editor.

2. Find the environment setting in either the agent or main section.

3. Set the value of the environment setting to the name of the environment you want the agent to be assigned to.

When that node requests a catalog from the primary server, it requests that environment. If you are using an ENC and
it specifies an environment for that node, it overrides whatever is in the config file.

Note: Nodes cannot be assigned to unconfigured environments. If a node is assigned to an environment that does not
exist — no directory of that name in any of the environment path directories — the primary server fails to compile
its catalog. The one exception to this is if the default production environment does not exist. In this case, the agent
successfully retrieves an empty catalog.

Global settings for configuring environments
The settings in the primary server's puppet.conf file configure how Puppet finds and uses environments.

environmentpath

The environmentpath setting is the list of directories where Puppet looks for environments. The default value
for environmentpath is $codedir/environments. If you have more than one directory, separate them by
colons and put them in order of precedence.

In this example, temp_environments is searched before environments:

$codedir/temp_environments:$codedir/environments

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pe/2017.3/code_management/r10k_deploy_env.html
https://puppet.com/docs/pe/2017.3/code_management/control_repo.html

Puppet | The Puppet platform | 463

If environments with the same name exist in both paths, Puppet uses the first environment with that name that it
encounters.

Put the environmentpath setting in the main section of the puppet.conf file.

basemodulepath

The basemodulepath setting lists directories of global modules that all environments can access by default. Some
modules can be made available to all environments. The basemodulepath setting configures the global module
directories.

By default, it includes $codedir/modules for user-accessible modules and /opt/puppetlabs/puppet/
modules for system modules.

Add additional directories containing global modules by setting your own value for basemodulepath.

Related topics: modulepath.

environment_timeout

The environment_timeout setting sets how often the primary server refreshes information about environments.
It can be overridden per-environment.

This setting defaults to 0 (caching disabled), which lowers the performance of your primary server but makes it easy
for new users to deploy updated Puppet code. After your code deployment process is mature, change this setting to
unlimited.

All code in Ruby and Puppet loaded from the environment is cached. Inputs to compilation (for example, facts and
looked up values) and the resulting catalog, are not cached.

disable_per_environment_manifest

The disable_per_environment_manifest setting lets you specify that all environments use a shared main
manifest.

When disable_per_environment_manifest is set to true, Puppet uses the same global manifest for every
environment. If an environment specifies a different manifest in environment.conf, Puppet does not compile
catalogs nodes in that environment, to avoid serving catalogs with potentially wrong contents.

If this setting is set to true, the default_manifest value must be an absolute path.

default_manifest

The default_manifest setting specifies the main manifest for any environment that doesn’t set a manifest value
in environment.conf. The default value of default_manifest is ./manifests — the environment’s
own manifests directory.

The value of this setting can be:

• An absolute path to one manifest that all environments share.
• A relative path to a file or directory inside each environment’s directory.

Related topics: default_manifest setting.

Configure the environment timeout setting
The enviroment_timeout setting determines how often the primary Puppet server caches the data it loads from
an environment. For best performance, change the settings after you have a mature code deployment process.

1. Set environment_timeout = unlimited in puppet.conf.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 464

2. Change your code deployment process to refresh the primary server whenever you deploy updated code. For
example, set a postrun command in your r10k config or add a step to your continuous integration job.

• With Puppet Server, refresh environments by calling the environment-cache API endpoint. Ensure you
have write access to the puppet-admin section of the puppetserver.conf file.

• With a Rack primary server, restart the web server or the application server. Passenger lets you touch a
restart.txt file to refresh an application without restarting Apache. See the Passenger docs for details.

The environment-timeout setting can be overridden per-environment in environment.conf.

Note: Only use the value 0 or unlimited. Most primary servers use a pool of Ruby interpreters, which all have their
own cache timers. When these timers are out of sync, agents can be served inconsistent catalogs. To avoid that
inconsistency, refresh the primary server when deploying.

Environment isolation
Environment isolation prevents resource types from leaking between your various environments.

If you use multiple environments with Puppet, you might encounter issues with multiple versions of the same
resource type leaking between your various environments on the primary server. This doesn’t happen with built-in
resource types, but it can happen with any other resource types.

This problem occurs because Ruby resource type bindings are global in the Ruby runtime. The first loaded version
of a Ruby resource type takes priority, and then subsequent requests to compile in other environments get that first-
loaded version. Environment isolation solves this issue by generating and using metadata that describes the resource
type implementation, instead of using the Ruby resource type implementation, when compiling catalogs.

Note: Other environment isolation problems, such as external helper logic issues or varying versions of required
gems, are not solved by the generated metadata approach. This fixes only resource type leaking. Resource type
leaking is a problem that affects only primary servers, not agents.

Enable environment isolation with Puppet
To use environment isolation, generate metadata files that Puppet can use instead of the default Ruby resource type
implementations.

1. On the command line, run puppet generate types --environment <ENV_NAME> for each of your
environments. For example, to generate metadata for your production environment, run: puppet generate
types --environment production

2. Whenever you deploy a new version of Puppet, overwrite previously generated metadata by running puppet
generate types --environment <ENV_NAME> --force

Enable environment isolation with r10k
To use environment isolation with r10k, generate types for each environment every time r10k deploys new code.

1. To generate types with r10k, use one of the following methods:

• Modify your existing r10k hook to run the generate types command after code deployment.
• Create and use a script that first runs r10k for an environment, and then runs generate types as a post run

command.

2. If you have enabled environment-level purging in r10k, allow the resource_types folder so that r10k does
not purge it.

Note: In Puppet Enterprise (PE), environment isolation is provided by Code Manager. Environment isolation is not
supported for r10k with PE.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 465

Troubleshoot environment isolation
If the generate types command cannot generate certain types, if the type generated has missing or inaccurate
information, or if the generation itself has errors or fails, you get a catalog compilation error of “type not
found” or “attribute not found.”

1. To fix catalog compilation errors:

a) Ensure that your Puppet resource types are correctly implemented. In addition to implementation errors, check
for types with title patterns that contain a proc or a lambda, as these types cannot be generated. Refactor any
problem resource types.

b) Regenerate the metadata by removing the environment’s .resource_types directory and running the
generate types command again.

c) If you continue to get catalog compilation errors, disable environment isolation to help you isolate the error.

2. To disable environment isolation in open source Puppet:

a) Remove the generate types command from any r10k hooks.
b) Remove the .resource_types directory.

3. To disable environment isolation in Puppet Enterprise (PE):

a) In /etc/puppetlabs/puppetserver/conf.d/pe-puppet-server.conf, remove the pre-
commit-hook-commands setting.

b) In Hiera, set
puppet_enterprise::server::puppetserver::pre_commit_hook_commands: []

c) On the command line, run service pe-puppetserver reload
d) Delete the .resource_types directories from your staging code directory, /etc/puppetlabs/code-

staging

e) Deploy the environments.

The generate types command
When you run the generate types command, it scans the entire environment for resource type implementations,
excluding core Puppet resource types.

The generate types command accepts the following options:

• --environment <ENV_NAME>: The environment for which to generate metadata. If you do not specify this
argument, the metadata is generated for the default environment (production).

• --force: Use this flag to overwrite all previously generated metadata.

For each resource type implementation it finds, the command generates a corresponding metadata file, named
after the resource type, in the <env-root>/.resource_types directory. It also syncs the files in the
.resource_types directory so that:

• Types that have been removed in modules are removed from resource_types.
• Types that have been added are added to resource_types.
• Types that have not changed (based on timestamp) are kept as is.
• Types that have changed (based on timestamp) are overwritten with freshly generated metadata.

The generated metadata files, which have a .pp extension, exist in the code directory. If you are using Puppet
Enterprise with Code Manager and file sync, these files appear in both the staging and live code directories. The
generated files are read-only. Do not delete them, modify them, or use expressions from them in manifests.

Important directories and files
Puppet consists of a number of directories and files, and each one has an important role ranging from Puppet code
storage and configuration files to manifests and module paths.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 466

• Code and data directory (codedir) on page 466
The codedir is the main directory for Puppet code and data. It is used by the primary Puppet server and Puppet apply,
but not by Puppet agent. It contains environments (which contain your manifests and modules), a global modules
directory for all environments, and your Hiera data and configuration.
• Config directory (confdir) on page 467
Puppet’s confdir is the main directory for the Puppet configuration. It contains configuration files and the SSL
data.
• Main manifest directory on page 468
Puppet starts compiling a catalog either with a single manifest file or with a directory of manifests that are treated like
a single file. This starting point is called the main manifest or site manifest.
• The modulepath on page 469
The primary server service and the puppet apply command load most of their content from modules found in one
or more directories. The list of directories where Puppet looks for modules is called the modulepath. The modulepath
is set by the current node's environment.
• SSL directory (ssldir) on page 471
Puppet stores its certificate infrastructure in the SSL directory (ssldir) which has a similar structure on all Puppet
nodes, whether they are agent nodes, primary Puppet servers, or the certificate authority (CA) server.
• Cache directory (vardir) on page 472
As part of its normal operations, Puppet generates data which is stored in a cache directory called vardir. You can
mine the data in vardir for analysis, or use it to integrate other tools with Puppet.

Code and data directory (codedir)
The codedir is the main directory for Puppet code and data. It is used by the primary Puppet server and Puppet apply,
but not by Puppet agent. It contains environments (which contain your manifests and modules), a global modules
directory for all environments, and your Hiera data and configuration.

Location

The codedir is located in one of the following locations:

• *nix: /etc/puppetlabs/code
• *nix non-root users: ~/.puppetlabs/etc/code
• Windows: %PROGRAMDATA%\PuppetLabs\code (usually C:\ProgramData\PuppetLabs\code)

When Puppet is running as root, as a Windows user with administrator privileges, or as the puppet user, it uses a
system-wide codedir. When running as a non-root user, it uses a codedir in that user's home directory.

When running Puppet commands and services as root or puppet, use the system codedir. To use the same codedir
as the Puppet agent, or the primary server, run admin commands such as puppet module with sudo.

To configure the location of the codedir, set the codedir setting in your puppet.conf file, such as:

codedir = /etc/puppetlabs/code

Important: Puppet Server doesn't use the codedir setting in puppet.conf, and instead uses the jruby-
puppet.master-code-dir setting in puppetserver.conf . When using a non-default codedir, you must
change both settings.

Interpolation of $codedir

The value of the codedir is discovered before other settings, so you can refer to it in other puppet.conf settings by
using the $codedir variable in the value. For example, the $codedir variable is used as part of the value for the
environmentpath setting:

[server]
 environmentpath = $codedir/override_environments:$codedir/environments

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/latest/config_file_puppetserver.html

Puppet | The Puppet platform | 467

This allows you to avoid absolute paths in your settings and keep your Puppet-related files together.

Contents

The codedir contains environments, including manifests and modules, a global modules directory for all
environments, and Hiera data.

The code and data directories are:

• environments : Contains alternate versions of the modules and manifests directories, to enable code
changes to be tested on smaller sets of nodes before entering production.

• modules : The main directory for modules.

Config directory (confdir)
Puppet’s confdir is the main directory for the Puppet configuration. It contains configuration files and the SSL
data.

Location

The confdir is located in one of the following locations:

• *nix root users: /etc/puppetlabs/puppet
• Non-root users: ~/.puppetlabs/etc/puppet
• Windows: %PROGRAMDATA%\PuppetLabs\puppet\etc (usually C:\ProgramData\PuppetLabs

\puppet\etc)

When Puppet is running as root, a Windows user with administrator privileges, or the puppet user, it uses a
system-wide confdir. When running as a non-root user, it uses a confdir in that user's home directory.

When running Puppet commands and services as root or puppet, usually you want to use the system codedir. To
use the same codedir as the Puppet agent or the primary Puppet server, run admin commands with sudo.

Puppet’s confdir can’t be set in the puppet.conf, because Puppet needs the confdir to locate that config file.
Instead, run commands with the --confdir parameter to specify the confdir. If --confdir isn’t specified when a
Puppet application is started, the command uses the default confdir location.

Puppet Server uses the jruby-puppet.server-conf-dir setting in puppetserver.conf to configure its
confdir. If you are using a non-default confdir, you must specify --confdir when you run commands like puppet
module to ensure they use the same directories as Puppet Server.

Interpolation of $confdir

The value of the confdir is discovered before other settings, so you can reference it, using the $confdir variable, in
the value of any other setting in puppet.conf.

If you need to set nonstandard values for some settings, using the $confdir variable allows you to avoid absolute
paths and keep your Puppet-related files together.

Contents

The confdir contains several config files and the SSL data. You can change their locations, but unless you have
a technical reason that prevents it, use the default structure. Click the links to see documentation for the files and
directories in the codedir.

On all nodes, agent and primary server, the confdir contains the following directories and config files:

• ssl directory: contains each node’s certificate infrastructure.
• puppet.conf: Puppet’s main config file.
• csr_attributes.yaml: Optional data to be inserted into new certificate requests.

On primary server nodes, and sometimes standalone nodes that run Puppet apply, the confdir also contains:

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/latest/config_file_puppetserver.html

Puppet | The Puppet platform | 468

• auth.conf: Access control rules for the primary server's network services.
• fileserver.conf: Configuration for additional fileserver mount points.
• hiera.yaml: The global configuration for Hiera data lookup. Environments and modules can also have their

own hiera.yaml files.

Note: To provide backward compatibility for some existing Puppet 4 installations, if a hiera.yaml file
exists in the codedir, it takes precedence over hiera.yaml in the confdir. To ensure that Puppet honors the
configuration in the confdir, remove any hiera.yaml file that is present in the codedir.

• routes.yaml : Advanced configuration of indirector behavior.

On certificate authority servers, the confdir also contains:

• autosign.conf : List of pre-approved certificate requests.

On nodes that are acting as a proxy for configuring network devices, the confdir also contains:

• device.conf: Configuration for network devices managed by the puppet device command.

Main manifest directory
Puppet starts compiling a catalog either with a single manifest file or with a directory of manifests that are treated like
a single file. This starting point is called the main manifest or site manifest.

For more information about how the site manifest is used in catalog compilation, see Catalog compilation.

Specifying the manifest for Puppet apply

The puppet apply command uses the manifest you pass to it as an argument on the command line:

puppet apply /etc/puppetlabs/code/environments/production/manifests/site.pp

You can pass Puppet apply either a single .pp file or a directory of .pp files. Puppet apply uses the manifest you
pass it, not an environment's manifest.

Specifying the manifest for primary Puppet server

The primary Puppet server uses the main manifest set by the current node's environment, whether that manifest is a
single file or a directory of .pp files.

By default, the main manifest for an environment is <ENVIRONMENTS DIRECTORY>/<ENVIRONMENT>/
manifests, for example /etc/puppetlabs/code/environments/production/manifests. You can
configure the manifest per-environment, and you can also configure the default for all environments.

To determine its main manifest, an environment uses the manifest setting in environment.conf. This can be
an absolute path or a path relative to the environment’s main directory.

If the environment.confmanifest setting is absent, it uses the value of the default_manifest setting
from the puppet.conf file. The default_manifest setting defaults to ./manifests. Similar to the
environment's manifest setting, the value of default_manifest can be an absolute path or a path relative to
the environment’s main directory.

To force all environments to ignore their own manifest setting and use the default_manifest setting instead,
set disable_per_environment_manifest = true in puppet.conf.

To check which manifest your primary server uses for a given environment, run:

puppet config print manifest --section server --environment <ENVIRONMENT>

For more information, see Creating environments, and Checking values of configuration settings.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/latest/config_file_auth.html

Puppet | The Puppet platform | 469

Manifest directory behavior

When the main manifest is a directory, Puppet parses every .pp file in the directory in alphabetical order and
evaluates the combined manifest. It descends into all subdirectories of the manifest directory and loads files in depth-
first order. For example, if the manifest directory contains a directory named 01, and a file named 02.pp, it parses
the files in 01 before it parses 02.pp.

Puppet treats the directory as one manifest, so, for example, a variable assigned in the file 01_all_nodes.pp is
accessible in node_web01.pp.

Note: Puppet does not follow symlinks when the manifest setting refers to a directory.

The modulepath
The primary server service and the puppet apply command load most of their content from modules found in one
or more directories. The list of directories where Puppet looks for modules is called the modulepath. The modulepath
is set by the current node's environment.

The modulepath is an ordered list of directories, with earlier directories having priority over later ones. Use the
system path separator character to separate the directories in the modulepath list. On *nix systems, use a colon (:); on
Windows use a semi-colon (;).

For example, on *nix:

/etc/puppetlabs/code/environments/production/modules:/etc/puppetlabs/code/
modules:/opt/puppetlabs/puppet/modules

On Windows:

C:/ProgramData/PuppetLabs/code/environments/production/modules;C:/
ProgramData/PuppetLabs/code/modules

Each directory in the modulepath must contain only valid Puppet modules, and the names of those modules must
follow the modules naming rules. Dashes and periods in module names cause errors. For more information, see
Modules fundamentals.

By default, the modulepath is set by the current node's environment in environment.conf. For example, using
*nix paths:

modulepath = site:dist:modules:$basemodulepath

To see what the modulepath is for an environment, run:

sudo puppet config print modulepath --section server --environment
 <ENVIRONMENT_NAME>

For more information about environments, see Environments.

Setting the modulepath and base modulepath

Each environment sets its full modulepath in the environment.conf file with the modulepath setting.
The modulepath setting can only be set in environment.conf. It configures the entire modulepath for that
environment.

The modulepath can include relative paths, such as ./modules or ./site. Puppet looks for these paths inside the
environment’s directory.

The default modulepath value for an environment is the environment’s modules directory, plus the base modulepath.
On *nix, this is ./modules:$basemodulepath.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/5.5/config_file_environment.html
https://puppet.com/docs/puppet/5.5/config_file_environment.html

Puppet | The Puppet platform | 470

The base modulepath is a list of global module directories for use with all environments. You can configure it with
the basemodulepath setting in the puppet.conf file, but its default value is probably suitable. The default on
*nix:

$codedir/modules:/opt/puppetlabs/puppet/modules

On Windows:

$codedir\modules

If you want an environment to have access to the global module directories, include $basemodulepath in the
environment's modulepath setting:

modulepath = site:dist:modules:$basemodulepath

Using the --modulepath option with Puppet apply

When running Puppet apply on the command line, you can optionally specify a modulepath with the --
modulepath option, which overrides the modulepath from the current environment.

Absent, duplicate, and conflicting content from modules

Puppet uses modules it finds in every directory in the modulepath. Directories in the modulepath can be empty or
absent. This is not an error; Puppet does not attempt to load modules from those directories. If no modules are present
across the entire modulepath, or if modules are present but none of them contains a lib directory, the agent logs an
error when attempting to sync plugins from the primary server. This error is benign and doesn't prevent the rest of the
run.

If the modulepath contains multiple modules with the same name, Puppet uses the version from the directory that
comes earliest in the modulepath. Modules in directories earlier in the modulepath override those in later directories.

For most content, this earliest-module-wins behavior is on an all-or-nothing, per-module basis — all of the
manifests, files, and templates in the first-encountered version are available for use, and none of the content from any
subsequent versions is available. This behavior covers:

• Puppet code (from manifests).
• Files (from files).
• Templates (from templates).
• External facts (from facts.d).
• Ruby plugins synced to agent nodes (from lib).

CAUTION: Puppet sometimes displays unexpected behavior with Ruby plugins that are loaded directly
from modules. This includes:

• Plugins used by the primary server (custom resource types, custom functions).
• Plugins used by puppet apply.
• Plugins present in the agent’s modulepath (which is usually empty but night not be when running an agent

on a node that is also a primary server).

In this case, the plugins are handled on a per-file basis instead of per-module. If a duplicate module in an later
directory has additional plugin files that don’t exist in the first instance of the module, those extra files are
loaded, and Puppet uses a a mixture of files from both versions of the module.

If you refactor a module’s Ruby plugins, and maintain two versions of that module in your modulepath, it can
have unexpected results.

This is a byproduct of how Ruby works and is not intentional or controllable by Puppet; a fix is not expected.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 471

SSL directory (ssldir)
Puppet stores its certificate infrastructure in the SSL directory (ssldir) which has a similar structure on all Puppet
nodes, whether they are agent nodes, primary Puppet servers, or the certificate authority (CA) server.

Location

By default, the ssldir is a subdirectory of the confdir.

You can change its location using the ssldir setting in the puppet.conf file. See the Configuration reference for
more information.

Note: The content of the ssldir is generated, grows over time, and is relatively difficult to replace. Some third-
party Puppet packages for Linux place the ssldir in the cache directory (vardir) instead of the confdir. When a distro
changes the ssldir location, it sets ssldir in the $confdir/puppet.conf file, usually in the [main] section.

To see the location of the ssldir on one of your nodes, run: puppet config print ssldir

Contents

The ssldir contains Puppet certificates, private keys, certificate signing requests (CSRs), and other cryptographic
documents.

The ssldir on an agent or primary server contains:

• A private key: private_keys/<certname>.pem
• A signed certificate: certs/<certname>.pem
• A copy of the CA certificate: certs/ca.pem
• A copy of the certificate revocation list (CRL): crl.pem
• A copy of its sent CSR: certificate_requests/<certname>.pem

Tip: Puppet does not save its public key to disk, because the public key is derivable from its private key and is
contained in its certificate. If you need to extract the public key, use $ openssl rsa -in $(puppet config
print hostprivkey) -pubout

If these files don’t exist on a node, it's because they are generated locally or requested from the CA server.

Agent and primary server credentials are identified by certname, so an agent process and a primary server process
running on the same server can use the same credentials.

The ssldir for the Puppet CA, which runs on the CA server, contains similar credentials: private and public keys, a
certificate, and a primary server copy of the CRL. It maintains a list of all signed certificates in the deployment, a
copy of each signed certificate, and an incrementing serial number for new certificates. To keep it separated from
general Puppet credentials on the same server, all of the CA’s data is stored in the ca subdirectory.

The ssldir directory structure

All of the files and directories in the ssldir directory have corresponding Puppet settings, which can be used to
change their locations. Generally, though, don't change the default values unless you have a specific problem to work
around.

Ensure the permissions mode of the ssldir is 0771. The directory and each file in it is owned by the user that Puppet
runs as: root or Administrator on agents, and defaulting to puppet or pe-puppet on a primary server. Set up
automated management for ownership and permissions on the ssldir.

The ssldir has the following structure. See the Configuration reference for details about each puppet.conf setting
listed:

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/5.5/configuration.html

Puppet | The Puppet platform | 472

• ca directory (on the CA server only): Contains the files used by Puppet’s certificate authority. Mode: 0755.
Setting: cadir.

• ca_crl.pem: The primary server copy of the certificate revocation list (CRL) managed by the CA. Mode:
0644. Setting: cacrl.

• ca_crt.pem: The CA’s self-signed certificate. This cannot be used as a primary server or agent certificate; it
can only be used to sign certificates. Mode: 0644. Setting: cacert.

• ca_key.pem: The CA’s private key, and one of the most security-critical files in the Puppet certificate
infrastructure. Mode: 0640. Setting: cakey.

• ca_pub.pem: The CA’s public key. Mode: 0644. Setting: capub.
• inventory.txt: A list of the certificates the CA signed, along with their serial numbers and validity

periods. Mode: 0644. Setting: cert_inventory.
• requests (directory): Contains the certificate signing requests (CSRs) that have been received but not yet

signed. The CA deletes CSRs from this directory after signing them. Mode: 0755. Setting: csrdir.

• <name>.pem: CSR files awaiting signing.
• serial: A file containing the serial number for the next certificate the CA signs. This is incremented with

each new certificate signed. Mode: 0644. Setting: serial.
• signed (directory): Contains copies of all certificates the CA has signed. Mode: 0755. Setting: signeddir.

• <name>.pem: Signed certificate files.
• certificate_requests (directory): Contains CSRs generated by this node in preparation for submission

to the CA. CSRs stay in this directory even after they have been submitted and signed. Mode: 0755. Setting:
requestdir.

• <certname>.pem: This node’s CSR. Mode: 0644. Setting: hostcsr.
• certs (directory): Contains signed certificates present on the node. This includes the node’s own certificate, and

a copy of the CA certificate for validating certificates presented by other nodes. Mode: 0755. Setting: certdir.

• <certname>.pem: This node’s certificate. Mode: 0644. Setting: hostcert.
• ca.pem: A local copy of the CA certificate. Mode: 0644. Setting: localcacert.

• crl.pem: A copy of the certificate revocation list (CRL) retrieved from the CA, for use by agents or primary
servers. Mode: 0644. Setting: hostcrl.

• private (directory): Usually, does not contain any files. Mode: 0750. Setting: privatedir.

• password: The password to a node’s private key. Usually not present. The conditions in which this file
would exist are not defined. Mode: 0640. Setting: passfile.

• private_keys (directory): Contains the node's private key and, on the CA, private keys created by the
puppetserver ca generate command. It never contains the private key for the CA certificate. Mode:
0750. Setting: privatekeydir.

• <certname>.pem: This node’s private key. Mode: 0600. Setting: hostprivkey.
• public_keys (directory): Contains public keys generated by this node in preparation for generating a CSR.

Mode: 0755. Setting: publickeydir.

• <certname>.pem: This node’s public key. Mode: 0644. Setting: hostpubkey.

Cache directory (vardir)
As part of its normal operations, Puppet generates data which is stored in a cache directory called vardir. You can
mine the data in vardir for analysis, or use it to integrate other tools with Puppet.

Location

The cache directory for Puppet Server defaults to /opt/puppetlabs/server/data/puppetserver.

The cache directory for the Puppet agent and Puppet apply can be found at one of the following locations:

• *nix systems: /opt/puppetlabs/puppet/cache.
• Non-root users: ~/.puppetlabs/opt/puppet/cache.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 473

• Windows: %PROGRAMDATA%\PuppetLabs\puppet\cache (usually C:\Program Data\PuppetLabs
\puppet\cache).

When Puppet is running as root, a Windows user with administrator privileges, or the puppet user, uses a system-
wide cache directory. When running as a non-root user, it uses a cache directory in the user’s home directory.

Because you usually run Puppet’s commands and services as root or puppet, the system cache directory is what you
usually want to use.

Important: To use the same directories as the agent or primary server, admin commands like puppetserver ca,
must run with sudo.

Note: When the primary server is running as a Rack application, the config.ru file must explicitly set --
vardir to the system cache directory. The example config.ru file provided with the Puppet source does this.

You can specify Puppet’s cache directory on the command line by using the --vardir option, but you can’t set it in
puppet.conf. If --vardir isn’t specified when a Puppet application is started, it uses the default cache directory
location.

To configure the Puppet Server cache directory, use the jruby-puppet.server-var-dir setting in
puppetserver.conf .

Interpolation of $vardir

The value of the vardir is discovered before other settings, so you can reference it using the $vardir variable in the
value of any other setting in puppet.conf or on the command line.

For example:

[main]
 ssldir = $vardir/ssl

If you need to set nonstandard values for some settings, using the $vardir variable allows you to avoid absolute
paths and keep your Puppet-related files together.

Contents

The vardir contains several subdirectories. Most of these subdirectories contain a variable amount of generated data,
some contain notable individual files, and some directories are used only by agent or primary server processes.

To change the locations of specific vardir files and directories, edit the settings in puppet.conf. For more
information about each item below, see the Configuration reference.

Directory name Config setting Notes

bucket bucketdir

client_data client_datadir

clientbucket clientbucketdir

client_yaml clientyamldir

devices devicedir

lib/facter factpath

facts factpath

facts.d pluginfactdest

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/latest/config_file_puppetserver.html
https://puppet.com/docs/puppetserver/latest/config_file_puppetserver.html

Puppet | The Puppet platform | 474

Directory name Config setting Notes

lib libdir, plugindest Puppet uses this as a cache for
plugins (custom facts, types and
providers, functions) synced from
a primary server. Do not change its
contents. If you delete it, the plugins
are restored on the next Puppet run.

puppet-module module_working_dir

puppet-module/skeleton module_skeleton_dir

reports reportdir When the option to store reports
is enabled, a primary server stores
reports received from agents as
YAML files in this directory. You
can mine these reports for analysis.

server_data serverdatadir

state statedir See table below for more details
about the state directory contents.

yaml yamldir

The state directory contains the following files and directories:

File or directory name Config setting Notes

agent_catalog_run.lock agent_catalog_run_lockfile

agent_disabled.lock agent_disabled_lockfile

classes.txt classfile This file is useful for external
integration. It lists all of the classes
assigned to this agent node.

graphs directory graphdir When graphing is enabled, agent
nodes write a set of .dot graph
files to this directory. Use these
graphs to diagnose problems with the
catalog application, or visualizing the
configuration catalog.

last_run_summary.yaml lastrunfile

last_run_report.yaml lastrunreport

resources.txt resourcefile

state.yaml statefile

Puppet services and tools
Puppet provides a number of core services and administrative tools to manage systems with or without a primary
Puppet server, and to compile configurations for Puppet agents.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 475

• Puppet commands on page 475
Puppet’s command line interface (CLI) consists of a single puppet command with many subcommands.
• Running Puppet commands on Windows on page 477
Puppet was originally designed to run on *nix systems, so its commands generally act the way *nix admins expect.
Because Windows systems work differently, there are a few extra things to keep in mind when using Puppet
commands.
• Puppet agent on *nix systems on page 483
Puppet agent is the application that manages the configurations on your nodes. It requires a Puppet primary server to
fetch configuration catalogs from.
• Puppet agent on Windows on page 486
Puppet agent is the application that manages configurations on your nodes. It requires a Puppet primary server to
fetch configuration catalogs.
• Puppet apply on page 490
Puppet apply is an application that compiles and manages configurations on nodes. It acts like a self-contained
combination of the Puppet primary server and Puppet agent applications.
• Puppet device on page 492
With Puppet device, you can manage network devices, such as routers, switches, firewalls, and Internet of Things
(IOT) devices, without installing a Puppet agent on them. Devices that cannot run Puppet applications require a
Puppet agent to act as a proxy. The proxy manages certificates, collects facts, retrieves and applies catalogs, and
stores reports on behalf of a device.

Puppet commands
Puppet’s command line interface (CLI) consists of a single puppet command with many subcommands.

Puppet Server and Puppet’s companion utilities Facter and Hiera , have their own CLI.

Puppet agent

Puppet agent is a core service that manages systems, with the help of a Puppet primary server. It requests a
configuration catalog from a Puppet primary server server, then ensures that all resources in that catalog are in their
desired state.

For more information, see:

• Overview of Puppet’s architecture
• Puppet Agent on *nix systems
• Puppet Agent on Windows systems
• Puppet Agent’s man page

Puppet Server

Using Puppet code and various other data sources, Puppet Server compiles configurations for any number of Puppet
agents.

Puppet Server is a core service and has its own subcommand, puppetserver, which isn’t prefaced by the usual
puppet subcommand.

For more information, see:

• Overview of Puppet’s architecture
• Puppet Server
• Puppet Server subcommands

Puppet apply

Puppet apply is a core command that manages systems without contacting a Puppet primary server. Using Puppet
modules and various other data sources, it compiles its own configuration catalog, and then immediately applies the
catalog.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/facter/3.11/index.html
https://puppet.com/docs/puppetserver/latest/services_master_puppetserver.html
https://puppet.com/docs/puppetserver/latest/subcommands.html

Puppet | The Puppet platform | 476

For more information, see:

• Overview of Puppet’s architecture
• Puppet apply
• Puppet apply’s man page

Puppet ssl

Puppet ssl is a command for managing SSL keys and certificates for Puppet SSL clients needing to communicate with
your Puppetinfrastructure.

Puppet ssl usage: puppet ssl <action> [--certname <name>]

Possible actions:

• submit request: Generate a certificate signing request (CSR) and submit it to the CA. If a private and public
key pair already exist, they are used to generate the CSR. Otherwise, a new key pair is generated. If a CSR has
already been submitted with the given certname, then the operation fails.

• download_cert: Download a certificate for this host. If the current private key matches the downloaded
certificate, then the certificate is saved and used for subsequent requests. If there is already an existing certificate,
it is overwritten.

• verify: Verify that the private key and certificate are present and match. Verify the certificate is issued by a
trusted CA, and check the revocation status

• bootstrap: Perform all of the steps necessary to request and download a client certificate. If autosigning is
disabled, then puppet will wait every waitforcert seconds for its certificate to be signed. To only attempt
once and never wait, specify a time of 0. Since waitforcert is a Puppet setting, it can be specified as a time
interval, such as 30s, 5m, 1h.

For more information, see the SSL man page.

Puppet module

Puppet module is a multi-purpose administrative tool for working with Puppet modules. It can install and upgrade
new modules from the Puppet Forge, help generate new modules, and package modules for public release.

For more information, see:

• Module fundamentals
• Installing modules
• Publishing modules on the Puppet Forge
• Puppet Module’s man page

Puppet resource

Puppet resource is an administrative tool that lets you inspect and manipulate resources on a system. It can work with
any resource type Puppet knows about. For more information, see PuppetResource’s man page.

Puppet config

Puppet config is an administrative tool that lets you view and change Puppet settings.

For more information, see:

• About Puppet’s settings
• Checking values of settings
• Editing settings on the command line
• Short list of important settings
• Puppet Config’s man page

© 2024 Puppet, Inc., a Perforce company

https://forge.puppetlabs.com/

Puppet | The Puppet platform | 477

Puppet parser

Puppet parser lets you validate Puppet code to make sure it contains no syntax errors. It can be a useful part of your
continuous integration toolchain. For more information, see PuppetParser’s man page.

Puppet help and Puppet man

Puppet help and Puppet man can display online help for Puppet’s other subcommands.

For more information, see:

• Puppet help’s man page
• Puppet man’s man page

Full list of subcommands

For a full list of Puppet subcommands, see Puppet’s subcommands.

Running Puppet commands on Windows
Puppet was originally designed to run on *nix systems, so its commands generally act the way *nix admins expect.
Because Windows systems work differently, there are a few extra things to keep in mind when using Puppet
commands.

Supported commands

Not all Puppet commands work on Windows. Notably, Windows nodes can’t run the puppet server or
puppetserver ca commands.

The following commands are designed for use on Windows:

• puppet agent

• puppet apply

• puppet module

• puppet resource

• puppet config

• puppet lookup

• puppet help

• puppet man

Running Puppet's commands

The installer adds Puppet commands to the PATH. After installing, you can run them from any command prompt
(cmd.exe) or PowerShell prompt.

Open a new command prompt after installing. Any processes that were already running before you ran the installer do
not pick up the changed PATH value.

Running with administrator privileges

You usually want to run Puppet’s commands with administrator privileges.

Puppet has two privilege modes:

• Run with limited privileges, only manage certain resource types, and use a user-specific confdir and codedir
• Run with administrator privileges, manage the whole system, and use the system confdir and codedir

On *nix systems, Puppet defaults to running with limited privileges, when not run by root, but can have its
privileges raised with the standard sudo command.

Windows systems don’t use sudo, so escalating privileges works differently.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 478

Newer versions of Windows manage security with User Account Control (UAC), which was added in Windows
2008 and Windows Vista. With UAC, most programs run by administrators still have limited privileges. To get
administrator privileges, the process has to request those privileges when it starts.

To run Puppet's commands in adminstrator mode, you must first start a Powershell command prompt with
administrator privileges.

Right-click the Start (or apps screen tile) -> Run as administrator:

Click Yes to allow the command prompt to run with elevated privaleges:

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 479

The title bar on the comand prompt window begins with Administrator. This means Puppet commands that run from
that window can manage the whole system.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 480

The Puppet Start menu items
Puppet’s installer adds a folder of shortcut items to the Start Menu.

These items aren’t necessary for working with Puppet, because Puppet agent runs a normal Windows service and the
Puppet commands work from any command or PowerShell prompt. They’re provided solely as conveniences.

The Start menu items do the following:

Run Facter

This shortcut requests UAC elevation and, using the CLI, runs Facter with administrator privileges.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/facter/

Puppet | The Puppet platform | 481

Run Puppet agent

This shortcut requests UAC elevation and, using the CLI, performs a single Puppet agent command with
administrator privileges.

Start Command Prompt with Puppet

This shortcut starts a normal command prompt with the working directory set to Puppet's program directory.
The CLI window icon is also set to the Puppet logo. This shortcut was particularly useful in previous versions of
Puppet, before Puppet's commands were added to the PATH at installation time.

Note: This shortcut does not automatically request UAC elevation; just like with a normal command prompt,
you'll need to right-click the icon and choose Run as administrator.

Configuration settings
Configuration settings can be viewed and modified using the CLI.

To get configuration settings, run: puppet agent --configprint <SETTING>

To set configuration settings, run: puppet config set <SETTING VALUE> --section <SECTION>

When running Puppet commands on Windows, note the following:

• The location of puppet.conf depends on whether the process is running as an administrator or not.
• Specifying file owner, group, or mode for file-based settings is not supported on Windows.
• The puppet.conf configuration file supports Windows-style CRLF line endings as well as *nix-style LF line

endings. It does not support Byte Order Mark (BOM). The file encoding must either be UTF-8 or the current
Windows encoding, for example, Windows-1252 code page.

• Common configuration settings are certname, server, and runinterval.
• You must restart the Puppet agent service after making any changes to Puppet’s runinterval config file

setting.

primary Puppet server

About Puppet Server

Puppet is configured in an agent-server architecture, in which a primary server node manages the configuration
information for a fleet of agent nodes. Puppet Server acts as the primary server node. Puppet Server is a Ruby and
Clojure application that runs on the Java Virtual Machine (JVM). Puppet Server runs Ruby code for compiling Puppet
catalogs and for serving files in several JRuby interpreters. It also provides a certificate authority through Clojure.

This page describes the general requirements and the run environment for Puppet Server.

Puppet Server releases

Puppet Server and Puppet share the same major release (Puppet Server 6.x and Puppet 6.x). However, they are
versioned separately and might have different minor or patch versions (Puppet Server 6.5 versus Puppet 6.8). For a
list of the maintained versions of Puppet and Puppet Server, visit Puppet releases and lifecycles.

Controlling the Service

The Puppet Server service name is puppetserver. To start and stop the service, use commands such as service
puppetserver restart, service puppetserver status for your OS.

Puppet Server's Run Environment

Puppet Server consists of several related services. These services share state and route requests among themselves.
The services run inside a single JVM process, using the Trapperkeeper service framework.

Embedded Web Server

Puppet Server uses a Jetty-based web server embedded in the service's JVM process. No additional or unique actions
are required to configure and enable the web server. You can modify the web server's settings in webserver.conf on
page 152. You might need to edit this file if you use an external CA or run Puppet on a non-standard port.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/platform_lifecycle.html

Puppet | The Puppet platform | 482

Puppet API Service

Puppet Server provides APIs that are used by the Puppet agent to manage the configuration of your nodes. Visit
Puppet V3 HTTP API on page 275 for more information on the basic APIs.

Certificate Authority Service

Puppet Server includes a certificate authority (CA) service that:

• Accepts certificate signing requests (CSRs) from nodes.
• Serves certificates and a certificate revocation list (CRL) to nodes.
• Optionally accepts commands to sign or revoke certificates.

Signing and revoking certificates over the network is disabled by default. You can use the auth.conf file to allow
specific certificate owners the ability to issue commands.

The CA service uses .pem files to stores credentials. You can use the puppetserver ca command to interact
with these credentials, including listing, signing, and revoking certificates. See CA V1 HTTP API on page 277 for
more information on these APIs.

Admin API Service

Puppet Server includes an administrative API for triggering maintenance tasks. The most common task refreshes
Puppet’s environment cache, which causes all of your Puppet code to reload without the requirement to restart the
service. Consequently, you can deploy new code to long-timeout environments without executing a full restart of the
service. g For API docs, visit:

• Environment cache on page 326.
• JRuby pool on page 326.

For details about environment caching, visit:

• About environments.

JRuby Interpreters

Most of Puppet Server's work is done by Ruby code running in JRuby. JRuby is an implementation of the Ruby
interpreter that runs on the JVM. Note that you can’t use the system gem command to install Ruby Gems for the
Puppet primary server. Instead, Puppet Server includes a separate puppetserver gem command for installing any
libraries your Puppet extensions might require. Visit Using Ruby gems on page 241 for details.

If you want to test or debug code to be used by the Puppet Server, you can use the puppetserver ruby and
puppetserver irb commands to execute Ruby code in a JRuby environment.

To handle parallel requests from agent nodes, Puppet Server maintains separate JRuby interpreters. These JRuby
interpreters individually run Puppet's application code, and distribute agent requests among them. You can configure
the JRuby interpreters in the jruby-puppet section of puppetserver.conf on page 144.

Tuning Guide

You can maximize Puppet Server's performance by tuning your JRuby configuration. To learn more, visit the Puppet
Server Tuning guide on page 257.

User

If you are running Puppet Enterprise:

• Puppet Server user runs as pe-puppet.
• You must specify the user in /etc/sysconfig/pe-puppetserver.

If you are running open source Puppet:

• Puppet Server needs to run as the user puppet.
• You must specify the user in /etc/sysconfig/puppetserver.

All of the Puppet Server's files and directories must be readable and writable by this user. Note that Puppet Server
ignores the user and group settings from puppet.conf.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/environments_about.html#environments-limitations

Puppet | The Puppet platform | 483

Ports

By default, Puppet's HTTPS traffic uses port 8140. The OS and firewall must allow Puppet Server's JVM process to
accept incoming connections on port 8140. If necessary, you can change the port in webserver.conf. See the
webserver.conf on page 152 page for details.

Logging

All of Puppet Server's logging is routed through the JVM Logback library. By default, it logs to /var/log/
puppetlabs/puppetserver/puppetserver.log. The default log level is 'INFO'. By default, Puppet
Server sends nothing to syslog. All log messages follow the same path, including HTTP traffic, catalog
compilation, certificate processing, and all other parts of Puppet Server's work.

Puppet Server also relies on Logback to manage, rotate, and archive Server log files. Logback archives Server logs
when they exceed 200MB. Also, when the total size of all Server logs exceeds 1GB, Logback automatically deletes
the oldest logs. Logback is heavily configurable. If you need something more specialized than a unified log file, it
may be possible to obtain. Visit Logging on page 143 for more details.

Finally, any errors that cause the logging system to die or occur before logging is set up, display in journalctl.

SSL Termination

By default, Puppet Server handles SSL termination automatically. For network configurations that require external
SSL termination (e.g. with a hardware load balancer), additional configuration is required. See the External SSL
termination on page 246 page for details. In summary, you must:

• Configure Puppet Server to use HTTP instead of HTTPS.
• Configure Puppet Server to accept SSL information via insecure HTTP headers.
• Secure your network so that Puppet Server cannot be directly reached by any untrusted clients.
• Configure your SSL terminating proxy to set the following HTTP headers:

• X-Client-Verify (mandatory).
• X-Client-DN (mandatory for client-verified requests).
• X-Client-Cert (optional; required for trusted facts).

Configuring Puppet Server

Puppet Server uses a combination of Puppet's configuration files along with its own separate configuration files,
which are located in the conf.d directory. Refer to the Config directory for a list of Puppet's configuration files. For
detailed information about Puppet Server settings and the conf.d directory, refer to the Configuring Puppet Server
on page 142 page.

Puppet agent on *nix systems
Puppet agent is the application that manages the configurations on your nodes. It requires a Puppet primary server to
fetch configuration catalogs from.

Depending on your infrastructure and needs, you can manage systems with Puppet agent as a service, as a cron job, or
on demand.

For more information about running the puppet agent command, see the puppet agent man page.

Puppet agent's run environment
Puppet agent runs as a specific user, (usually root) and initiates outbound connections on port 8140.

Ports

Puppet’s HTTPS traffic uses port 8140. Your operating system and firewall must allow Puppet agent to initiate
outbound connections on this port.

If you want to use a non-default port, you have to change the serverport setting on all agent nodes, and ensure that
you change your primary Puppet server’s port as well.

© 2024 Puppet, Inc., a Perforce company

http://logback.qos.ch/
https://puppet.com/docs/puppet/latest/lang_facts_and_builtin_vars.html
https://puppet.com/docs/puppet/latest/dirs_confdir.html

Puppet | The Puppet platform | 484

User

Puppet agent runs as root, which lets it manage the configuration of the entire system.

Puppet agent can also run as a non-root user, as long as it is started by that user. However, this restricts the resources
that Puppet agent can manage, and requires you to run Puppet agent as a cron job instead of a service.

If you need to install packages into a directory controlled by a non-root user, use an exec to unzip a tarball or use a
recursive file resource to copy a directory into place.

When running without root permissions, most of Puppet’s resource providers cannot use sudo to elevate
permissions. This means Puppet can only manage resources that its user can modify without using sudo.

Out of the core resource types listed in the resource type reference, only the following types are available to non-root
agents:

Resource type Details

augeas

cron Only non-root cron jobs can be viewed or set.

exec Cannot run as another user or group.

file Only if the non-root user has read/write privileges.

notify

schedule

service For services that don’t require root. You can also use the
start, stop, and status attributes to specify how
non-root users can control the service.

ssh_authorized_key

ssh_key

Manage systems with Puppet agent
In a standard Puppet configuration, each node periodically does configuration runs to revert unwanted changes and to
pick up recent updates.

On *nix nodes, there are three main ways to do this:

Run Puppet agent as a service.

The easiest method. The Puppet agent daemon does configuration runs at a set interval, which can be configured.

Make a cron job that runs Puppet agent.

Requires more manual configuration, but a good choice if you want to reduce the number of persistent processes
on your systems.

Only run Puppet agent on demand.

You can also deploy MCollective to run on demand on many nodes.

Choose whichever one works best for your infrastructure and culture.

Run Puppet agent as a service
The puppet agent command can start a long-lived daemon process that does configuration runs at a set interval.

Note: If you are running Puppet agent as a non-root user, use a cron job instead.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/mcollective

Puppet | The Puppet platform | 485

1. Start the service.

The best method is with Puppet agent’s init script / service configuration. When you install Puppet with packages,
included is an init script or service configuration for controlling Puppet agent, usually with the service name
puppet (for both open source and Puppet Enterprise).

In open source Puppet, enable the service by running this command:

sudo puppet resource service puppet ensure=running enable=true

You can also run the sudo puppet agent command with no additional options which causes the Puppet
agent to start running and daemonize, however you won’t have an interface for restarting or stopping it. To stop
the daemon, use the process ID from the agent’s pidfile :

sudo kill $(puppet config print pidfile --section agent)

2. (Optional) Configure the run interval.

The Puppet agent service defaults to doing a configuration run every 30 minutes. You can configure this with the
runinterval setting in puppet.conf :

/etc/puppetlabs/puppet/puppet.conf
[agent]
 runinterval = 2h

If you don’t need frequent configuration runs, a longer run interval lets your primary Puppet server handle many
more agent nodes.

Run Puppet agent as a cron job
Run Puppet agent as a cron job when running as a non-root user.

If the onetime setting is set to true, the Puppet agent command does one configuration run and then quits.
If the daemonize setting is set to false, the command stays in the foreground until the run is finished. If set to
true, it does the run in the background.

This behavior is good for building a cron job that does configuration runs. You can use the splay and
splaylimit settings to keep the primaryPuppet server from getting overwhelmed, because the system time is
probably synchronized across all of your agent nodes.

To set up a cron job, run the puppet resource command:

sudo puppet resource cron puppet-agent ensure=present user=root minute=30
 command='/opt/puppetlabs/bin/puppet agent --onetime --no-daemonize --splay
 --splaylimit 60'

The above example runs Puppet one time every hour.

Run Puppet agent on demand
Some sites prefer to run Puppet agent on-demand, and others use scheduled runs along with the occasional on-
demand run.

You can start Puppet agent runs while logged in to the target system, or remotely with Bolt or MCollective.

Run Puppet agent on one machine, using SSH to log into it:

ssh ops@magpie.example.com sudo puppet agent --test

To run remotely on multiple machines, you need some form of orchestration or parallel execution tool, such as Bolt or
MCollective with the puppet agent plugin.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/5.5/config_file_main.html
https://puppet.com/docs/bolt/
https://puppet.com/docs/mcollective/
https://github.com/puppetlabs/mcollective-puppet-agent

Puppet | The Puppet platform | 486

Note: As of Puppet agent 5.5.4, MCollective is deprecated and will be removed in a future version of Puppet agent.
If you use Puppet Enterprise, consider migrating from MCollective to Puppetorchestrator. If you use open source
Puppet, migrate MCollective agents and filters using tools like Bolt and PuppetDB’s Puppet Query Language.

Disable and re-enable Puppet runs
Whether you’re troubleshooting errors, working in a maintenance window, or developing in a sandbox environment,
you might need to temporarily disable the Puppet agent from running.

1. To disable the agent, run:

sudo puppet agent --disable "<MESSAGE>"

2. To enable the agent, run:

sudo puppet agent --enable

Configuring Puppet agent
The Puppet agent comes with a default configuration that you might want to change.

Configure Puppet agent with puppet.conf using the [agent] section, the [main] section, or both. For information
on settings relevant to Puppet agent, see important settings.

Logging for Puppet agent on *nix systems

When running as a service, Puppet agent logs messages to syslog. Your syslog configuration determines where these
messages are saved, but the default location is /var/log/messages on Linux, /var/log/system.log on
Mac OS X, and /var/adm/messages on Solaris.

You can adjust how verbose the logs are with the log_level setting, which defaults to notice.

When running in the foreground with the --verbose, --debug, or --test options, Puppet agent logs directly to
the terminal instead of to syslog.

When started with the --logdest <FILE> option, Puppet agent logs to the file specified by <FILE>.

Reporting for Puppet agent on *nix systems

In addition to local logging, Puppet agent submits a report to the primary Puppet server after each run. This can be
disabled by setting report = false in puppet.conf.)

Puppet agent on Windows
Puppet agent is the application that manages configurations on your nodes. It requires a Puppet primary server to
fetch configuration catalogs.

For more information about invoking the Puppet agent command, see the puppet agent man page.

Puppet agent's run environment
Puppet agent runs as a specific user, by default LocalSystem, and initiates outbound connections on port 8140.

Ports

By default, Puppet’s HTTPS traffic uses port 8140. Your operating system and firewall must allow Puppet agent to
initiate outbound connections on this port.

If you want to use a non-default port, change the serverport setting on all agent nodes, and ensure that you
change your Puppet primary server’s port as well.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pe/2018.1/migrating_from_mcollective_to_orchestrator.html
https://puppet.com/docs/bolt/
https://puppet.com/docs/puppetdb/

Puppet | The Puppet platform | 487

User

Puppet agent runs as the LocalSystem user, which lets it manage the configuration of the entire system, but
prevents it from accessing files on UNC shares.

Puppet agent can also run as a different user. You can change the user in the Service Control Manager (SCM). To
start the SCM, click Start -> Run… and then enter Services.msc.

You can also specify a different user when installing Puppet. To do this, install using the CLI and specify the
required MSI properties: PUPPET_AGENT_ACCOUNT_USER,PUPPET_AGENT_ACCOUNT_PASSWORD, and
PUPPET_AGENT_ACCOUNT_DOMAIN.

Puppet agent’s user can be a local or domain user. If this user isn’t already a local administrator, the Puppet installer
adds it to the Administrators group. The installer also grants Logon as Service to the user.

Managing systems with Puppet agent
In a normal Puppet configuration, every node periodically does configuration runs to revert unwanted changes and to
pick up recent updates.

On Windows nodes, there are two main ways to do this:

Run Puppet as a service.

The easiest method. The Puppet agent service does configuration runs at a set interval, which can be configured.

Run Puppet agent on demand.

You can also use Bolt or deployMCollective to run on demand on many nodes.

Because the Windows version of the Puppet agent service is much simpler than the *nix version, there’s no real
performance to be gained by running Puppet as a scheduled task. If you want scheduled configuration runs, use the
Windows service.

Running Puppet agent as a service
The Puppet installer configures Puppet agent to run as a Windows service and starts it. No further action is needed.
Puppet agent does configuration runs at a set interval.

Configuring the run interval

The Puppet agent service defaults to doing a configuration run every 30 minutes. If you don’t need frequent
configuration runs, a longer run interval lets your Puppet primary servers handle many more agent nodes.

You can configure this with the runinterval setting in puppet.conf:

C:\ProgramData\PuppetLabs\puppet\etc\puppet.conf
[agent]
 runinterval = 2h

After you change the run interval, the next run happens on the previous schedule, and subsequent runs happen on the
new schedule.

Configuring the service start up type

The Puppet agent service defaults to starting automatically. If you want to start it manually or disable it, you can
configure this during installation.

To do this, install using the CLI and specify the PUPPET_AGENT_STARTUP_MODE MSI property.

You can also configure this after installation with the Service Control Manager (SCM). To start the SCM, click Start
-> Run... and enter Services.msc.

You can also configure agent service with the sc.exe command. To prevent the service from starting on boot, run
the following command from the Command Prompt (cmd.exe):

sc config puppet start= demand

© 2024 Puppet, Inc., a Perforce company

http://msdn.microsoft.com/en-us/library/ms813948.aspx
https://www.puppet.com/docs/bolt/
https://puppet.com/docs/mcollective/

Puppet | The Puppet platform | 488

Important: The space after start= is mandatory and must be run in cmd.exe. This command won’t work from
PowerShell.

To stop and restart the service, run the following commands:

sc stop puppet
sc start puppet

To change the arguments used when triggering a Puppet agent run, add flags to the command:

sc start puppet --debug --logdest eventlog

This example changes the level of detail that gets written to the Event Log.

Running Puppet agent on demand
Some sites prefer to run Puppet agent on demand, and others occasionally need to do an on-demand run.

You can start Puppet agent runs while logged in to the target system, or remotely with Bolt or MCollective.

While logged in to the target system

On Windows, log in as an administrator, and start the configuration run by selecting Start -> Run Puppet Agent.
If Windows prompts for User Account Control confirmation, click Yes. The status result of the run is shown in a
command prompt window.

Running other Puppet commands

To run other Puppet-related commands, start a command prompt with administrative privileges. You can do so by
right-clicking the Command Prompt or Start Command Prompts with Puppet program and clicking Run as
administrator. Click Yes if the system asks for UAC confirmation.

Remotely

Open source Puppet users can use Bolt to run tasks and commands on remote systems.

Alternatively, you can install MCollective and the puppet agent plugin to get similar capabilities, but Puppet doesn't
provide standalone MCollective packages for Windows.

Important: As of Puppet agent 5.5.4, MCollective is deprecated and will be removed in a future version of
Puppet agent. If you use Puppet Enterprise, consider migrating from MCollective to Puppet orchestrator. If you use
open source Puppet, migrate MCollective agents and filters using tools like Bolt and the PuppetDB Puppet Query
Language.

Disabling and re-enabling Puppet runs
Whether you’re troubleshooting errors, working in a maintenance window, or developing in a sandbox environment,
you might need to temporarily disable the Puppet agent from running.

1. Start a command prompt with Run as administrator.

2. To disable the agent, run:

puppet agent --disable "<MESSAGE>"

3. To enable the agent, run:

puppet agent --enable

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/bolt
https://github.com/puppetlabs/mcollective-puppet-agent
https://puppet.com/docs/pe/2018.1/migrating_from_mcollective_to_orchestrator.html
https://puppet.com/docs/bolt
https://puppet.com/docs/puppetdb
https://puppet.com/docs/puppetdb

Puppet | The Puppet platform | 489

Configuring Puppet agent on Windows
The Puppet agent comes with a default configuration that you might want to change.

Configure Puppet agent with puppet.conf, using the [agent] section, the [main] section, or both. For more
information on which settings are relevant to Puppet agent, see important settings.

Logging for Puppet agent on Windows systems

When running as a service, Puppet agent logs messages to the Windows Event Log. You can view its logs by
browsing the Event Viewer. Click Control Panel -> System and Security -> Administrative Tools -> Event
Viewer.

By default, Puppet logs to the Application event log. However, you can configure Puppet to log to a separate
Puppet log instead.

To enable the Puppet log, create the requisite registry key by opening a command prompt and running one of the
following commands:

Bash:

reg add HKLM\System\CurrentControlSet\Services\EventLog\Puppet
\Puppet /v EventMessageFile /t REG_EXPAND_SZ /d "%SystemRoot%
\System32\EventCreate.exe"

PowerShell and the New-EventLog cmdlet:

if ([System.Diagnostics.Eventlog]::SourceExists("puppet")) { Remove-EventLog
 -Source 'puppet' } & New-EventLog -Source puppet -LogName Puppet

Note that for agents older than 5.5.17 on the 5.5.x stream, 6.4.4 on the 6.4.x stream and 6.8.0 on the primary server
stream, use the same Bash command listed above, but the following PowerShell command instead:

if ([System.Diagnostics.Eventlog]::SourceExists("puppet")) { Remove-EventLog
 -Source 'puppet' } & New-EventLog -Source puppet -LogName Puppet -
MessageResource "%SystemRoot%\System32\EventCreate.exe"

After you add the registry key, you need to reboot your machine for the logging to be redirected.

Note: If you are using an older version of Puppet, double check that you have the most up to date path to
EventCreate.exe.

For existing agents, these commands can be placed in an exec resource to configure agents going forward.

Note: Any previously recorded event log messages are not moved; only new messages are recorded in the newly
created Puppet log.

You can adjust how verbose the logs are with the log_level setting, which defaults to notice.

When running in the foreground with the --verbose, --debug, or --test options, Puppet agent logs directly to
the terminal.

When started with the --logdest <FILE> option, Puppet agent logs to the file specified by <FILE>. Note that
there are no file size checks for the --logdest <FILE> option.

Reporting for Puppet agent on Windows systems

In addition to local logging, Puppet agent submits a report to the primary server after each run. This can be disabled
by setting report = false in puppet.conf.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 490

Setting Puppet agent CPU priority

When CPU usage is high, lower the priority of the Puppet agent service by using the process priority setting, a cross
platform configuration option. Process priority can also be set in the primary server configuration.

Puppet apply
Puppet apply is an application that compiles and manages configurations on nodes. It acts like a self-contained
combination of the Puppet primary server and Puppet agent applications.

For details about invoking the puppet apply command, see the puppet apply man page.

Supported platforms

Puppet apply runs similarly on *nix and Windows systems. Not all operating systems can manage the same resources
with Puppet; some resource types are OS-specific, and others have OS-specific features. For more information, see
the resource type reference.

Puppet apply's run environment
Unlike Puppet agent, Puppet apply never runs as a daemon or service. It runs as a single task in the foreground, which
compiles a catalog, applies it, files a report, and exits.

By default, it never initiates outbound network connections, although it can be configured to do so, and it never
accepts inbound network connections.

Main manifest

Like the primary Puppet server application, Puppet apply uses its settings (such as basemodulepath) and the
configured environments to locate the Puppet code and configuration data it uses when compiling a catalog.

The one exception is the main manifest. Puppet apply always requires a single command line argument, which acts as
its main manifest. It ignores the main manifest from its environment.

Alternatively, you can write a main manifest directly using the command line, with the -e option. For more
information, see the puppet apply man page.

User

Puppet apply runs as whichever user executed the Puppet apply command.

To manage a complete system, run Puppet apply as:

• root on *nix systems.
• Either LocalService or a member of the Administrators group on Windows systems.

Puppet apply can also run as a non-root user. When running without root permissions, most of Puppet’s resource
providers cannot use sudo to elevate permissions. This means Puppet can only manage resources that its user can
modify without using sudo.

Of the core resource types listed in the resource type reference, the following are available to non-root agents:

Resource type Details

augeas

cron Only non-root cron jobs can be viewed or set.

exec Cannot run as another user or group.

file Only if the non-root user has read/write privileges.

notify

schedule

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 491

Resource type Details

service For services that don’t require root. You can also use
the start, stop, and status attributes to specify
how non-root users can control the service. For more
information, see tips and examples for the service
type.

ssh_authorized_key

ssh_key

To install packages into a directory controlled by a non-root user, you can either use an exec to unzip a tarball or use
a recursive file resource to copy a directory into place.

Network access

By default, Puppet apply does not communicate over the network. It uses its local collection of modules for any file
sources, and does not submit reports to a central server.

Depending on your system and the resources you are managing, it might download packages from your configured
package repositories or access files on UNC shares.

If you have configured an external node classifier (ENC), your ENC script might create an outbound HTTP
connection. Additionally, if you’ve configured the HTTP report processor, Puppet agent sends reports via HTTP or
HTTPS.

If you have configured PuppetDB, Puppet apply creates outbound HTTPS connections to PuppetDB.

Logging

Puppet apply logs directly to the terminal, which is good for interactive use, but less so when running as a scheduled
task or cron job.

You can adjust how verbose the logs are with the log_level setting, which defaults to notice. Setting it to
info is equivalent to running with the --verbose option, and setting it to debug is equivalent to --debug. You
can also make logs quieter by setting it to warning or lower.

When started with the --logdest syslog option, Puppet apply logs to the *nix syslog service. Your syslog
configuration dictates where these messages are saved, but the default location is /var/log/messages on Linux,
and /var/log/system.logon Mac OS X.

When started with the --logdest eventlog option, it logs to the Windows Event Log. You can view its logs
by browsing the Event Viewer. Click Control Panel -> System and Security -> Administrative Tools -> Event
Viewer.

When started with the --logdest <FILE> option, it logs to the file specified by <FILE>.

Reporting

In addition to local logging, Puppet apply processes a report using its configured report handlers, like a primary
Puppet server does. Using the reports setting, you can enable different reports. For more information, see see
the list of available reports. For information about reporting, see the reporting documentation.

To disable reporting and avoid taking up disk space with the store report handler, you can set report = false
in puppet.conf.

Managing systems with Puppet apply
In a typical site, every node periodically does a Puppet run, to revert unwanted changes and to pick up recent updates.

Puppet apply doesn’t run as a service, so you must manually create a scheduled task or cron job if you want it to run
on a regular basis, instead of using Puppet agent.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/5.5/configuration.html
https://puppet.com/docs/puppet/5.5/configuration.html

Puppet | The Puppet platform | 492

On *nix, you can use the puppet resource command to set up a cron job.

This example runs Puppet one time per hour, with Puppet Enterprise paths:

sudo puppet resource cron puppet-apply ensure=present user=root minute=60
 command='/opt/puppetlabs/bin/puppet apply /etc/puppetlabs/puppet/manifests
 --logdest syslog'

Configuring Puppet apply
Configure Puppet apply in the puppet.conf file, using the [user] section, the [main] section, or both.

For information on which settings are relevant to puppet apply, see important settings.

Puppet device
With Puppet device, you can manage network devices, such as routers, switches, firewalls, and Internet of Things
(IOT) devices, without installing a Puppet agent on them. Devices that cannot run Puppet applications require a
Puppet agent to act as a proxy. The proxy manages certificates, collects facts, retrieves and applies catalogs, and
stores reports on behalf of a device.

Puppet device runs on both *nix and Windows. The Puppet device application combines some of the functionality of
the Puppet apply and Puppet resource applications. For details about running the Puppet device application, see the
puppet device man page.

Note: If you are writing a module for a remote resource, we recommend using transports instead of devices.
Transports have extended functionality and can be used with other workflows, such as with Bolt . For more
information on transports and how to port your existing code, see Resource API Transports.

The Puppet device model
In a typical deployment model, a Puppet agent is installed on each system managed by Puppet. However, not all
systems can have agents installed on them.

For these devices, you can configure a Puppet agent on another system which connects to the API or CLI of the
device, and acts as a proxy between the device and the primaryPuppet server.

In the diagram below, Puppet device is on a proxy Puppet agent (agent.example.com) and is being used to manage an
F5 load balancer (f5.example.com) and a Cisco switch (cisco.example.com).

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/bolt/latest/bolt.html

Puppet | The Puppet platform | 493

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 494

Puppet device’s run environment
Puppet device runs as a single process in the foreground that manages devices, rather than as a daemon or service like
a Puppet agent.

User

The puppet device command runs with the privileges of the user who runs it.

Run Puppet device as:

• Root on *nix
• Either LocalService or a member of the Administrators group on Windows

Logging

By default, Puppet device outputs directly to the terminal, which is valuable for interactive use. When you run it as a
cron job or scheduled task, use the logdest option to direct the output to a file.

On *nix, run Puppet device with the --logdest syslog option to log to the *nix syslog service:

puppet device --verbose --logdest syslog

Your syslog configuration determines where these messages are saved, but the default location is /var/log/
messages on Linux, and /var/log/system.log on Mac OS X. For example, to view these logs on Linux, run:

tail /var/log/messages

On Windows, run Puppet device with the --logdest eventlog option, which logs to the Windows Event Log,
for example:

puppet device --verbose --logdest eventlog

To view these logs on Windows, click Control Panel # System and Security # Administrative Tools # Event
Viewer.

To specify a particular file to send Puppet device log messages to, use the --logdest <FILE> option, which
logs to the file specified by <FILE>, for example:

puppet device --verbose --logdest /var/log/puppetlabs/puppet/device.log

You can increase the logging level with the --debug and --verbose options.

In addition to local logging, Puppet device submits reports to the primary Puppet server after each run. These reports
contain standard data from the Puppet run, including any corrective changes.

Network access

Puppet device creates outbound network connections to the devices it manages. It requires network connectivity to the
devices via their API or CLI. It never accepts inbound network connections.

Installing device modules
You need to install the device module for each device you want to manage on the primary Puppet server.

For example, to install the f5 and cisco_ios device modules on the primary server, run the following commands:

$ sudo puppet module install f5-f5

$ sudo puppet module install puppetlabs-cisco_ios

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/f5
https://github.com/puppetlabs/cisco_ios

Puppet | The Puppet platform | 495

Configuring Puppet device on the proxy Puppet agent
You can specify multiple devices in device.conf, which is configurable with the deviceconfig setting on the
proxy agent.

For example, to configure an F5 and a Cisco IOS device, add the following lines to the device.conf file:

[f5.example.com]
type f5
url https://username:password@f5.example.com

[cisco.example.com]
type cisco_ios
url file:///etc/puppetlabs/puppet/devices/cisco.example.com.yaml

The string in the square brackets is the device’s certificate name — usually the hostname or FQDN. The certificate
name is how Puppet identifies the device.

For the url, specify the device’s connection string. The connection string varies by device module. In the first
example above, the F5 device connection credentials are included in the url device.conf file, because that is
how the F5 module stores credentials. However, the Cisco IOS module uses the Puppet Resource API, which stores
that information in a separate credentials file. So, Cisco IOS devices would also have a /etc/puppetlabs/
puppet/devices/<device cert name>.conf file similar to the following content:

{
"address": "cisco.example.com"
"port": 22
"username": "username"
"password": "password"
"enable_password": "password"
}
}

For more information, see device.conf.

Classify the proxy Puppet agent for the device
Some device modules require the proxy Puppet agent to be classified with the base class of the device module to
install or configure resources required by the module. Refer to the specific device module README for details.

To classify proxy Puppet agent:

1. Classify the agent with the base class of the device module, for each device it manages in the manifest. For
example:

node 'agent.example.com' {
 include cisco_ios
 include f5
}

2. Apply the classification by running puppet agent -t on the proxy Puppet agent.

Classify the device
Classify the device with resources to manage its configuration.

The examples below manage DNS settings on an F5 and a Cisco IOS device.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 496

1. In the site.pp manifest, declare DNS resources for the devices. For example:

node 'f5.example.com' {
 f5_dns{ '/Common/dns':
 name_servers => ['4.2.2.2.', '8.8.8.8"],
 same => ['localhost",' example.com'],
 }
}

node 'cisco.example.com' {
 network_dns { 'default':
 servers => [4.2.2.2', '8.8.8.8'],
 search => ['localhost",'example.com'],
 }
}

2. Apply the manifest by running puppet device -v on the proxy Puppet agent.

Note: Resources vary by device module. Refer to the specific device module README for details.

Get and set data using Puppet device
The traditional Puppet apply and Puppet resource applications cannot target device resources: running puppet
resource --target <DEVICE> does not return data from the target device. Instead, use Puppet device to get
data from devices, and to set data on devices. The following are optional parameters.

Get device data with the resource parameter

Syntax:

puppet device --resource <RESOURCE> --target <DEVICE>

Use the resource parameter to retrieve resources from the target device. For example, to return the DNS values for
example F5 and Cisco IOS devices:

sudo puppet device --resource f5_dns --target f5.example.com
sudo puppet device --resource network_dns --target cisco.example.com

Set device data with the apply parameter

Syntax:

puppet device --verbose --apply <FILE> --target <DEVICE>

Use the --apply parameter to set a local manifest to manage resources on a remote device. For example, to apply a
Puppet manifest to the F5 and Cisco devices:

sudo puppet device --verbose --apply manifest.pp --target f5.example.com
sudo puppet device --verbose --apply manifest.pp --target cisco.example.com

View device facts with the facts parameter

Syntax:

puppet device --verbose --facts --target <DEVICE>

Use the --facts parameter to display the facts of a remote target. For example, to display facts on a device:

sudo puppet device --verbose --facts --target f5.example.com

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 497

Managing devices using Puppet device
Running the puppet device or puppet-device command (without --resource or --apply options)
tells the proxy agent to retrieve catalogs from the primary server and apply them to the remote devices listed in the
device.conf file.

To run Puppet device on demand and for all of the devices in device.conf , run:

sudo puppet device --verbose

To run Puppet device for only one of the multiple devices in the device.conf file, specify a --target option:

$ sudo puppet device -verbose --target f5.example.com

To run Puppet device on a specific group of devices, as opposed to all devices in the device.conf file,
create a separate configuration file containing the devices you want to manage, and specify the file with the --
deviceconfig option:

$ sudo puppet device --verbose --deviceconfig /path/to/custom-device.conf

To set up a cron job to run Puppet device on a recurring schedule, run:

$ sudo puppet resource cron puppet-device ensure=present user=root minute=30
 command='/opt/puppetlabs/bin/puppet device --verbose --logdest syslog'

Example

Follow the steps below to run Puppet device in a production environment, using cisco_ios as an example.

1. Install the module on the primary Puppet server: sudo puppet module install puppetlabs-
cisco_ios.

2. Include the module on the proxy Puppet agent by adding the following line to the primary server’s site.pp file:

include cisco_ios

3. Edit device.conf on the proxy Puppet agent:

[cisco.example.com]
type cisco_ios
url file:///etc/puppetlabs/puppet/devices/cisco.example.com.yaml

4. Create the cisco.example.com credentials file required by modules that use the Puppet Resource API:

{
 "address": "cisco.example.com"
 "port": 22
 "username": "username"
 "password": "password"
 "enable_password": "password"
}

5. Request a certificate on the proxy Puppet agent: sudo puppet device --verbose --waitforcert 0
--target cisco.example.com

6. Sign the certificate on the primary server: sudo puppetserver ca sign cisco.example.com
7. Run puppet device on the proxy Puppet agent to test the credentials: sudo puppet device --target

cisco.example.com

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 498

Automating device management using the puppetlabs device_manager module
The puppetlabs-device_manager module manages the configuration files used by the Puppet device
application, applies the base class of configured device modules, and provides additional resources for scheduling and
orchestrating Puppet device runs on proxy Puppet agents.

For more information, see the module README.

Troubleshooting Puppet device
These options are useful for troubleshooting Puppet device command results.

--debug or -d Enables debugging

--trace or -t Enables stack tracing if Ruby fails

--verbose or -v Enables detailed reporting

Custom functions
Use the Puppet language, or the Ruby API to create custom functions.

For built-in Puppet functions, see the Functions reference.

• Custom functions overview on page 498
Puppet includes many built-in functions, and more are available in modules on the Forge. You can also write your
own custom functions.
• Writing custom functions in the Puppet language on page 499
You can write simple custom functions in the Puppet language, to transform data and construct values. A function can
optionally take one or more parameters as arguments. A function returns a calculated value from its final expression.
• Writing custom functions in Ruby on page 504
You can write powerful and flexible functions using Ruby.
• Deferring a function on page 516
Deferring a function allows you to run code on the agent during a Puppet run.

Custom functions overview
Puppet includes many built-in functions, and more are available in modules on the Forge. You can also write your
own custom functions.

Functions are plugins used during catalog compilation. When a Puppet manifest calls a function, that function runs
and returns a value. Most functions only produce values, but functions can also:

• Cause side effects that modify a catalog. For example, the include function adds classes to a catalog.
• Evaluate a provided block of Puppet code, using arguments to determine how that code runs.

Functions usually take one or more arguments, which determine the return value and the behavior of any side effects.

If you need to manipulate data or communicate with third-party services during catalog compilation, and if the built-
in functions, or functions from Forge modules, aren’t sufficient, you can write custom functions for Puppet.

Custom functions work just like Puppet’s built-in functions: you can call them during catalog compilation to produce
a value or cause side effects. You can use your custom functions locally, and you can share them with other users.

To make a custom function available to Puppet, you must put it in a module or an environment, in the specific
locations where Puppet expects to find functions.

Puppet offers two interfaces for writing custom functions:

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/device_manager
https://puppet.com/docs/puppet/latest/function.html

Puppet | The Puppet platform | 499

Interface Description

The Puppet language To write functions in the Puppet language, you don't
need to know any Ruby. However, it’s less powerful
than the Ruby API. Puppet functions can have only one
signature per function, and can’t take a lambda (a block
of Puppet code) as an argument.

The Ruby functions API The more powerful and flexible way to write functions.
This method requires some knowledge of Ruby. You can
use Ruby to write iterative functions.

Guidelines for writing custom functions

Whenever possible, avoid causing side effects. Side effects are any change other than producing a value, such as
modifying the catalog by adding classes or resources to it.

In Ruby functions, it’s possible to change the values of existing variables. Never do this, because Puppet relies on
those variables staying the same.

Documenting functions

For information about documenting your functions, see Puppet Strings .

Related topics: Function calls, Environments, Modules, Puppet Forge, Iterative functions.

Writing custom functions in the Puppet language
You can write simple custom functions in the Puppet language, to transform data and construct values. A function can
optionally take one or more parameters as arguments. A function returns a calculated value from its final expression.

Note: While many functions can be written in the Puppet language, it doesn’t support all of the same features as pure
Ruby. For information about writing Ruby functions, which can perform more complex work, see Writing functions
in Ruby. For information about iterative functions, which can be invoked by, but not written exclusively with, Puppet
code, see Writing iterative functions.

Syntax of functions

function <MODULE NAME>::<NAME>(<PARAMETER LIST>) >> <RETURN TYPE> {
 ... body of function ...
 final expression, which is the returned value of the function
}

The general form of a function written in Puppet language is:

• The keyword function.
• The namespace of the function. This must match the name of the module the function is contained in.
• The namespace separator, a double colon ::
• The name of the function.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/

Puppet | The Puppet platform | 500

• An optional parameter list, which consists of:

• An opening parenthesis (
• A comma-separated list of parameters (for example, String $myparam = "default value"). Each

parameter consists of:

• An optional data type, which restricts the allowed values for the parameter (defaults to Any).
• A variable name to represent the parameter, including the $ prefix.
• An optional equals sign = and default value, which must match the data type, if one was specified.

• An optional trailing comma after the last parameter.
• A closing parenthesis)

• An optional return type, which consists of:

• Two greater-than signs >>
• A data type that matches every value the function could return.

• An opening curly brace {
• A block of Puppet code, ending with an expression whose value is returned.
• A closing curly brace }

For example:

function apache::bool2http(Variant[String, Boolean] $arg) >> String {
 case $arg {
 false, undef, /(?i:false)/ : { 'Off' }
 true, /(?i:true)/ : { 'On' }
 default : { "$arg" }
 }
}

Order and optional parameters

Puppet passes arguments by parameter position. This means that the order of parameters is important. Parameter
names do not affect the order in which they are passed.

If a parameter has a default value, then it’s optional to pass a value for it when you're calling the function. If the caller
doesn’t pass in an argument for that parameter, the function uses the default value. However, because parameters are
passed by position, when you write the function, you must list optional parameters after all required parameters. If
you put a required parameter after an optional one, it causes an evaluation error.

Variables in default parameters values

If you reference a variable as a default value for a parameter, Puppet starts looking for that variable at top scope.
For example, if you use $fqdn as a variable, but then call the function from a class that overrides $fqdn, the
parameter’s default value is the value from top scope, not the value from the class. You can reference qualified
variable names in a function default value, but compilation fails if that class isn't declared by the time the function is
called.

The extra arguments parameter

You can specify that a function's last parameter is an extra arguments parameter. The extra arguments parameter
collects an unlimited number of extra arguments into an array. This is useful when you don’t know in advance how
many arguments the caller provides.

To specify that the parameter must collect extra arguments, start its name with an asterisk *, for example *$others.
The asterisk is valid only for the last parameter.

Tip: An extra argument's parameter is always optional.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 501

The value of an extra argument’s parameter is an array, containing every argument in excess of the earlier parameters.
You can give it a default value, which has some automatic array wrapping for convenience:

• If the provided default is a non-array value, the real default is a single-element array containing that value.
• If the provided default is an array, the real default is that array.

If there are no extra arguments and there is no default value, it's an empty array.

An extra arguments parameter can also have a data type. Puppet uses this data type to validate the elements of
the array. That is, if you specify a data type of String, the real data type of the extra arguments parameter is
Array[String].

Return types

Between the parameter list and the function body, you can use >> and a data type to specify the type of the values the
function returns. For example, this function only returns strings:

function apache::bool2http(Variant[String, Boolean] $arg) >> String {
 ...
}

The return type serves two purposes:

• Documentation. Puppet Strings includes information about the return value of a function.
• Insurance. If something goes wrong and your function returns the wrong type (such as undef when a string is

expected), it fails early with an informative error instead of allowing compilation to continue with an incorrect
value.

The function body

In the function body, put the code required to compute the return value you want, given the arguments passed in.
Avoid declaring resources in the body of your function. If you want to create resources based on inputs, use defined
types instead.

The final expression in the function body determines the value that the function returns when called. Most conditional
expressions in the Puppet language have values that work in a similar way, so you can use an if statement or a
case statement as the final expression to give different values based on different numbers or types of inputs. In the
following example, the case statement serves as both the body of the function, and its final expression.

function apache::bool2http(Variant[String, Boolean] $arg) >> String {
 case $arg {
 false, undef, /(?i:false)/ : { 'Off' }
 true, /(?i:true)/ : { 'On' }
 default : { "$arg" }
 }
}

Locations

Store the functions you write in a module's functions folder, which is a top-level directory (a sibling of
manifests and lib). Define only one function per file, and name the file to match the name of the function being
defined. Puppet is automatically aware of functions in a valid module and autoloads them by name.

Avoid storing functions in the main manifest. Functions in the main manifest override any function of the same name
in all modules (except built-in functions).

Names

Give your function a name that clearly reveals what it does. For more information about names, including restrictions
and reserved words, see Puppet naming conventions.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 502

Related topics: Arrays, Classes, Data types, Conditional expressions, Defined types, Namespaces and autoloading,
Variables.

Calling a function

A call to a custom function behaves the same as a call to any built-in Puppet function, and resolves to the function's
returned value.

After a function is written and available in a module where the autoloader can find it, you can call that function, either
from a Puppet manifest that lists the containing module as a dependency, or from your main manifest.

Any arguments you pass to the function are mapped to the parameters defined in the function’s definition. You must
pass arguments for the mandatory parameters, but you can choose whether you want to pass in arguments for optional
parameters.

Functions are autoloaded and are available to other modules unless those modules have specified dependencies.
If a module has a list of dependencies in its metadata.json file, only custom functions from those specific
dependencies are loaded.

Related topics: namespaces and autoloading, module metadata, main manifest directory

Complex example of a function

The following code example is a re-written version of a Ruby function from the postgresql module into Puppet
code. This function translates the IPv4 and IPv6 Access Control Lists (ACLs) format into a resource suitable for
create_resources. In this case, the filename would be acls_to_resource_hash.pp, and it would be
saved in a folder named functions in the top-level directory of the postgresql module.

function postgresql::acls_to_resource_hash(Array $acls, String $id, Integer
 $offset) {

 $func_name = "postgresql::acls_to_resources_hash()"

 # The final hash is constructed as an array of individual hashes
 # (using the map function), the result of that
 # gets merged at the end (using reduce).
 #
 $resources = $acls.map |$index, $acl| {
 $parts = $acl.split('\s+')
 unless $parts =~ Array[Data, 4] {
 fail("${func_name}: acl line $index does not have enough parts")
 }

 # build each entry in the final hash
 $resource = { "postgresql class generated rule ${id} ${index}" =>
 # The first part is the same for all entries
 {
 'type' => $parts[0],
 'database' => $parts[1],
 'user' => $parts[2],
 'order' => sprintf("'%03d'", $offset + $index)
 }
 # The rest depends on if first part is 'local',
 # the length of the parts, and the value in $parts[4].
 # Using a deep matching case expression is a good way
 # to untangle if-then-else spaghetti.
 #
 # The conditional part is merged with the common part
 # using '+' and the case expression results in a hash
 #
 +
 case [$parts[0], $parts, $parts[4]] {

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 503

 ['local', Array[Data, 5], default] : {
 { 'auth_method' => $parts[3],
 'auth_option' => $parts[4, -1].join(" ")
 }
 }

 ['local', default, default] : {
 { 'auth_method' => $parts[3] }
 }

 [default, Array[Data, 7], /^\d/] : {
 { 'address' => "${parts[3]} ${parts[4]}",
 'auth_method' => $parts[5],
 'auth_option' => $parts[6, -1].join(" ")
 }
 }

 [default, default, /^\d/] : {
 { 'address' => "${parts[3]} ${parts[4]}",
 'auth_method' => $parts[5]
 }
 }

 [default, Array[Data, 6], default] : {
 { 'address' => $parts[3],
 'auth_method' => $parts[4],
 'auth_option' => $parts[5, -1].join(" ")
 }
 }

 [default, default, default] : {
 { 'address' => $parts[3],
 'auth_method' => $parts[4]
 }
 }
 }
 }
 $resource
 }
 # Merge the individual resource hashes into one
 $resources.reduce({}) |$result, $resource| { $result + $resource }
}

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 504

Writing custom functions in Ruby
You can write powerful and flexible functions using Ruby.

• Custom functions in Ruby overview on page 504
Get started with an overview of Ruby custom functions.
• Ruby function signatures on page 506
Functions can specify how many arguments they expect, and a data type for each argument. The rule set for a
function’s arguments is called a signature.
• Using special features in implementation methods on page 510
For the most part, implementation methods are normal Ruby. However, there are some special features available for
accessing Puppet variables, working with provided blocks of Puppet code, and calling other functions.
• Iterative functions on page 511
You can use iterative types to write efficient iterative functions, or to chain together the iterative functions built into
Puppet.
• Refactoring legacy 3.x functions on page 514
If you have Ruby functions written with the legacy 3.x API, refactor them to ensure that they work correctly with
current versions of Puppet.

Custom functions in Ruby overview
Get started with an overview of Ruby custom functions.

Syntax of Ruby functions

To write a new function in Ruby, use the Puppet::Functions.create_function method. You don’t need
to require any Puppet libraries. Puppet handle libraries automatically when it loads the function.

Puppet::Functions.create_function(:<FUNCTION NAME>) do
 dispatch :<METHOD NAME> do
 param '<DATA TYPE>', :<ARGUMENT NAME (displayed in docs/errors)>
 ...
 end

 def <METHOD NAME>(<ARGUMENT NAME (for local use)>, ...)
 <IMPLEMENTATION>
 end
end

The create_function method requires:

• A function name.
• A block of code (which takes no arguments). This block contains:

• One or more signatures to configure the function’s arguments.
• An implementation method for each signature. The return value of the implementation method is the return

value of the function.

For example:

/etc/puppetlabs/code/environments/production/modules/mymodule/lib/puppet/
functions/mymodule/upcase.rb
Puppet::Functions.create_function(:'mymodule::upcase') do
 dispatch :up do
 param 'String', :some_string
 end

 def up(some_string)
 some_string.upcase
 end
end

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 505

Location

Place a Ruby function in its own file, in the lib/puppet/functions directory of either a module or an
environment. The filename must match the name of the function, and have the .rb extension. For namespaced
functions, each segment prior to the final one must be a subdirectory of functions, and the final segment must be
the filename.

Function name File location

upcase <MODULES DIR>/mymodule/lib/puppet/
functions/upcase.rb

upcase /etc/puppetlabs/code/environments/
production/lib/puppet/functions/
upcase.rb

mymodule::upcase <MODULES DIR>/mymodule/lib/puppet/
functions/mymodule/upcase.rb

environment::upcase /etc/puppetlabs/code/environments/
production/lib/puppet/functions/
environment/upcase.rb

Functions are autoloaded and made available to other modules unless those modules specify dependencies. After
a function is written and available (in a module where the autoloader can find it), you can call that function in any
Puppet manifest that lists the containing module as a dependency, and also from your main manifest. If a module has
a list of dependencies in its metadata.json file, it loads custom functions only from those specific dependencies.

Names

Function names are similar to class names. They consist of one or more segments. Each segment must start with a
lowercase letter, and can include:

• Lowercase letters
• Numbers
• Underscores

If a name has multiple segments, separate them with a double-colon (::) namespace separator.

Match each segment with this regular expression:

\A[a-z][a-z0-9_]*\Z

Match the full name with this regular expression:

\A([a-z][a-z0-9_]*)(::[a-z][a-z0-9_]*)*\Z

Function names can be either global or namespaced:

• Global names have only one segment (str2bool), and can be used in any module or environment. Global names
are shorter, but they’re not guaranteed to be unique — if you use a function name that is already in use by another
module, Puppet might load the wrong module when you call it.

• Namespaced names have multiple segments (stdlib::str2bool), and are guaranteed to be unique. The first
segment is dictated by the function’s location:

• In an environment, use environment (environment::str2bool).
• In a module, use the module’s name (stdlib::str2bool for a function stored in the stdlib module).

Most functions have two name segments, although it’s legal to use more.

Examples of legal function names:

• num2bool (a function that could come from anywhere)
• postgresql::acls_to_resource_hash (a function in the postgresql module)

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 506

• environment::hash_from_api_call (a function in an environment)

Examples of illegal function names:

• 6_pack (must start with a letter)
• _hash_from_api_call (must start with a letter)
• Find-Resource (can only contain lowercase letters, numbers, and underscores)

Passing names to create_function as symbols

When you call the Puppet::Functions.create_function method, pass the function’s name to it as a Ruby
symbol.

To turn a function name into a symbol:

• If the name is global, prefix it with a colon (:str2bool).
• If it’s namespaced: put the name in quotation marks, and prefix the full quoted string with a colon

(:'stdlib::str2bool').

Related topics: Puppet modules, Environments, Main manifest, Module metadata, Ruby symbols.

Ruby function signatures
Functions can specify how many arguments they expect, and a data type for each argument. The rule set for a
function’s arguments is called a signature.

Because Puppet functions support more advanced argument checking than Ruby does, the Ruby functions API uses a
lightweight domain-specific language (DSL) to specify signatures.

Ruby functions can have multiple signatures. Using multiple signatures is an easy way to have a function behave
differently when passed by different types or quantities of arguments. Instead of writing complex logic to decide what
to do, you can write separate implementations and let Puppet select the correct signature.

If a function has multiple signatures, Puppet uses its data type system to check each signature in order, comparing
the allowed arguments to the arguments that were actually passed. As soon as Puppet finds a signature that can
accept the provided arguments, it calls the associated implementation method, passing the arguments to that method.
When the method finishes running and returns a value, Puppet uses that as the function’s return value. If none of the
function’s signatures match the provided arguments, Puppet fails compilation and logs an error message describing
the mismatch between the provided and expected arguments.

Conversion of Puppet and Ruby data types

When function arguments are passed to a Ruby method, they’re converted to Ruby objects. Similarly, when the
Puppet manifest regains control, it converts the method’s return value into a Puppet data type.

Puppet converts data types between the Puppet language and Ruby as follows:

Puppet Ruby

Boolean Boolean

Undef NilClass (value nil)

String String

Number subtype of Numeric

Array Array

Hash Hash

Default Symbol (value :default)

Regexp Regexp

© 2024 Puppet, Inc., a Perforce company

https://ruby-doc.org/core-2.5.3/Symbol.html

Puppet | The Puppet platform | 507

Puppet Ruby

Resource reference Puppet::Pops::Types::PResourceType, or
Puppet::Pops::Types::PHostClassType

Lambda (code block) Puppet::Pops::Evaluator::Closure

Data type (Type) A type class under
Puppet::Pops::Types. For example,
Puppet::Pops::Types::PIntegerType

Tip: When writing iterative functions, use iterative types instead of Puppet types.

Writing signatures with dispatch

To write a signature, use the dispatch method.

The dispatch method takes:

• The name of an implementation method, provided as a Ruby symbol. The corresponding method must be defined
somewhere in the create_function block, usually after all the signatures.

• A block of code which only contains calls to the parameter and return methods.

A signature that takes a single string argument
 dispatch :camelcase do
 param 'String', :input_string
 return_type 'String' # optional
 end

Using parameter methods

In the code block of a dispatch statement, you can specify arguments with special parameter methods. All of these
methods take two arguments:

• The allowed data type for the argument, as a string. Types are specified using Puppet’s data type syntax.
• A user-facing name for the argument, as a symbol. This name is only used in documentation and error messages;

it doesn’t have to match the argument names in the implementation method.

The order in which you call these methods is important: the function’s first argument goes first, followed by the
second, and so on. The following parameter methods are available:

Model name Description

param or required_param A mandatory argument. You can use any number of
these.

Position: All mandatory arguments must come first.

optional_param An argument that can be omitted. You can use any
number of these. When there are multiple optional
arguments, users can only pass latter ones if they also
provide values for the prior ones. This also applies to
repeated arguments.

Position: Must come after any required arguments.

repeated_param or
optional_repeated_param

A repeatable argument, which can receive zero or
more values. A signature can only use one repeatable
argument.

Position: Must come after any non-repeating arguments.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 508

Model name Description

required_repeated_param A repeatable argument, which must receive one or
more values. A signature can only use one repeatable
argument.

Position: Must come after any non-repeating arguments.

block_param or required_block_param A mandatory lambda (block of Puppet code). A signature
can only use one block.

Position: Must come after all other arguments.

optional_block_param An optional lambda. A signature can only use one block.

Position: Must come after all other arguments.

When specifying a repeatable argument, note that:

• In your implementation method, the repeatable argument appears as an array, which contains all the provided
values that weren’t assigned to earlier, non-repeatable arguments.

• The specified data type is matched against each value for the repeatable argument, not the
repeatable argument as a whole. For example, if you want to accept any number of numbers, specify
repeated_param 'Numeric', :values_to_average, not repeated_param
'Array[Numeric]', :values_to_average.

For lambdas, note that:

• The data type for a block argument is Callable, or a Variant that only contains Callables.
• The Callable type can optionally specify the type and quantity of parameters that the lambda accepts. For

example, Callable[String, String] matches any lambda that can be called with a pair of strings.

Matching arguments with implementation methods

The implementation method that corresponds to a signature must be able to accept any combination of arguments that
the signature might allow.

If the signature has optional arguments, the corresponding method arguments need default values. Otherwise, the
function fails if the arguments are omitted. For example:

dispatch :epp do
 required_param 'String', :template_file
 optional_param 'Hash', :parameters_hash
end

def epp(template_file, parameters_hash = {})
 # Note that parameters_hash defaults to an empty hash.
end

If the signature has a repeatable argument, the method must use a splat parameter (*args) as its final argument. For
example:

dispatch :average do
 required_repeated_param 'Numeric', :values_to_average
end

def average(*values)
 # Inside the method, the `values` variable is an array of numbers.
end

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 509

Using the return_type method

After specifying a signature’s arguments, you can use the return_type method to specify the data type of its
return value. This method takes one argument: a Puppet data type, specified as a string.

dispatch :camelcase do
 param 'String', :input_string
 return_type 'String'
end

The return type serves two purposes: documentation, and insurance.

• Puppet Strings can include information about the return value of a function.
• If something goes wrong and your function returns the wrong type (like nil when a string is expected), it fails

early with an informative error instead of allowing compilation to continue with an incorrect value.

Specifying aliases using local_types

If you're using complicated abstract data types to validate arguments, and you're using these data types in multiple
signatures, they can become difficult to work with and maintain. In these cases, you can specify short aliases for your
complex data types and use the aliases in your signatures.

To specify aliases, use the local_types method:

• You must call local_types only one time, before any signatures.
• The local_types method takes a lambda, which only contains calls to the type method.
• The type method takes a single string argument, in the form '<NAME> = <TYPE>'.

• Capitalize the name, camel case word (PartColor), similar to a Ruby class name or the existing Puppet data
types.

• The type is a valid Puppet data type.

Example:

local_types do
 type 'PartColor = Enum[blue, red, green, mauve, teal, white, pine]'
 type 'Part = Enum[cubicle_wall, chair, wall, desk, carpet]'
 type 'PartToColorMap = Hash[Part, PartColor]'
end

dispatch :define_colors do
 param 'PartToColorMap', :part_color_map
end

def define_colors(part_color_map)
 # etc
end

Using automatic signatures

If your function only needs one signature, and you’re willing to skip the API’s data type checking, you can use an
automatic signature. Be aware that there are some drawbacks to using automatic signatures.

Although functions with automatic signatures are simpler to write, they give worse error messages when called
incorrectly. You'll get a useful error if you call the function with the wrong number of arguments, but if you
give the wrong type of argument, you’ll get something unhelpful. For example, if you pass the function above a
number instead of a string, it reports Error: Evaluation Error: Error while evaluating a
Function Call, undefined method 'split' for 5:Fixnum at /Users/nick/Desktop/
test2.pp:7:8 on node magpie.lan.

If it's possible that your function will be used by anyone other than yourself, support your users by writing a signature
with dispatch.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 510

To use an automatic signature:

• Do not write a dispatch block.
• Define one implementation method whose name matches the final namespace segment of the function’s name.

Puppet::Functions.create_function(:'stdlib::camelcase') do
 def camelcase(str)
 str.split('_').map{|e| e.capitalize}.join
 end
end

In this case, because the last segment of stdlib::camelcase is camelcase, we must define a method named
camelcase.

Related topics: Ruby symbols, Abstract data types.

Using special features in implementation methods
For the most part, implementation methods are normal Ruby. However, there are some special features available for
accessing Puppet variables, working with provided blocks of Puppet code, and calling other functions.

Accessing Puppet variables

We recommend that most functions only use the arguments they are passed. However, you also have the option of
accessing globally-reachable Puppet variables. The main use case for this is accessing facts, trusted data, or server
data.

Remember: Functions cannot access local variables in the scope from which they were called. They can only access
global variables or fully-qualified class variables.

To access variables, use the special closure_scope method, which takes no arguments and returns a
Puppet::Parser::Scope object.

Use #[](varname) to call on a scope object, which returns the value of the specified variable. Make sure to
exclude the $ from the variable name. For example:

Puppet::Functions.create_function(:'mymodule::fqdn_rand') do
 dispatch :fqdn do
 # no arguments
 end

 def fqdn()
 scope = closure_scope
 fqdn = scope['facts']['networking']['fqdn']
 # ...
 end
end

Working with lambdas (code blocks)

If their signatures allow it, functions can accept lambdas (blocks of Puppet code). If a function has a lambda, it
generally needs to execute it. To do this, use Ruby’s normal block calling conventions.

Convention Description

block_given? If your signature specified an optional code block, your
implementation method can check for its presence with
the block_given? method. This is true if a block
was provided, false if not.

© 2024 Puppet, Inc., a Perforce company

https://ruby-doc.org/core-2.5.3/Symbol.html

Puppet | The Puppet platform | 511

Convention Description

yield() When you know a block was provided, you can execute
it any number of times with the yield() method.

The arguments to yield are passed as arguments to the
lambda. If your signature specified the number and type
of arguments the lambda expects, you can call it with
confidence. The return value of the yield call is the
return value of the provided lambda.

If you need to introspect a provided lambda, or pass it on to some other method, an implementation method can
capture it as a Proc by specifying an extra argument with an ampersand (&) flag. This works the same way as
capturing a Ruby block as a Proc. After you capture the block, you can execute it with #call instead of yield.
You can also use any other Proc instance methods to examine it.

def implementation(arg1, arg2, *splat_arg, &block)
 # Now the `block` variable has the provided lambda, as a Proc.
 block.call(arg1, arg2, splat_arg)
end

Calling other functions

If you want to call another Puppet function (like include) from inside a function, use the special
call_function(name, *args, &block) method.

Flatten an array of arrays of strings, then pass it to include:
def include_nested(array_of_arrays)
 call_function('include', *array_of_arrays.flatten)
end

• The first argument must be the name of the function to call, as a string.
• The next arguments can be any data type that the called function accepts. They are passed as arguments to the

called function.
• The last argument can be a Ruby Proc, or a Puppet lambda previously captured as a Proc. You can also provide

a block of Ruby code using the normal block syntax.

def my_function1(a, b, &block)
 # passing given Proc
 call_function('my_other_function', a, b, &block)
end

def my_function2(a, b)
 # using a Ruby block
 call_function('my_other_function', a, b) { |x| ... }
end

Related topics: Proc , yield , block_given? , Puppet variables, Lambdas, Facts and built-in variables.

Iterative functions
You can use iterative types to write efficient iterative functions, or to chain together the iterative functions built into
Puppet.

Iterative functions include Iterable and Iterator types, as well as other types you can iterate over, such as
arrays and hashes. For example, an Array[Integer] is also an Iterable[Integer].

© 2024 Puppet, Inc., a Perforce company

https://ruby-doc.com/core/Proc.html
https://ruby-doc.com/core/Proc.html#method-i-yield
https://ruby-doc.com/core-2.5.2/Kernel.html#method-i-block_given-3F

Puppet | The Puppet platform | 512

Tip: Iterable and Iterator types are used internally by Puppet to efficiently chain the results of its built-in
iterative functions. You can’t write iterative functions solely in the Puppet language. For help writing less complex
functions in Puppet code, see Writing functions in Puppet.

Iterable and Iterator type design

The Iterable type represents all things an iterative function can iterate over. Before this type was introduced in
Puppet 4.4, if you wanted to design working iterative functions, you'd have to write code that accommodated all
relevant types, such as Array, Hash, Integer, and Type[Integer].

Signatures of iterative functions accept an Iterable type argument. This means that you no longer have to design
iterative functions to check against every type. This behavior does not affect how the Puppet code that invokes
these functions works, but does change the errors you see if you try to iterate over a value that does not have the
Iterable type.

The Iterator type, which is a subtype of Iterable, is a special algorithm-based Iterable not backed by
a concrete data type. When asked to produce a value, an Iterator produces the next value from its input, and
then either yields a transformation of this value, or takes its input and yields each value from a formula based on
that value. For example, the step function produces consecutive values but does not need to first produce an array
containing all of the values.

Writing iterative functions

Remember: You can’t write iterative functions solely in the Puppet language.

When writing iterative functions, use the Iterable type instead of the more specific, individual types. The
Iterable type has a type parameter that describes the type that is yielded in each iteration. For example, an
Array[Integer] is also an Iterable[Integer].

When writing a function that returns an Iterator, declare the return type as Iterable. This is the most flexible
way to handle an Iterator.

For best practices on implementing iterative functions, examine existing iterative functions in Puppet and read
the Ruby documentation for the helper classes these functions use. See the implementations of each and map for
functions that always produce a new result, and reverse_each and step for new iterative functions that return an
Iterable when called without a block.

For example, this is the Ruby code for the step function:

Puppet::Functions.create_function(:step) do
 dispatch :step do
 param 'Iterable', :iterable
 param 'Integer[1]', :step
 end

 dispatch :step_block do
 param 'Iterable', :iterable
 param 'Integer[1]', :step
 block_param 'Callable[1,1]', :block
 end

 def step(iterable, step)
 # produces an Iterable
 Puppet::Pops::Types::Iterable.asserted_iterable(self,
 iterable).step(step)
 end

 def step_block(iterable, step, &block)
 Puppet::Pops::Types::Iterable.asserted_iterable(self,
 iterable).step(step, &block)

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppet/tree/master/lib/puppet/functions

Puppet | The Puppet platform | 513

 nil
 end
end

Efficiently chaining iterative functions

Iterative functions are often used in chains, where the result of one function is used as the next function’s parameter.
A typical example is a map/reduce function, where values are first modified, and then an aggregate value is
computed. For example, this use of reverse_each and reduce:

[1,2,3].reverse_each.reduce |$result, $x| { $result - $x }

The reverse_each function iterates over the Array to reverse the order of its values from [1,2,3] to
[3,2,1]. The reduce function iterates over the Array, subtracting each value from the previous value. The
$result is 0, because 3 - 2 - 1 = 0.

Iterable types allow functions like these to execute more efficiently in a chain of calls, because they eliminate each
function’s need to create an intermediate copy of the mapped values in the appropriate type. In the above example, the
mapped values would be the array [3,2,1] produced by the reverse_each function. The first time the reduce
function is called, it receives the values 3 and 2 — the value 1 has not yet been computed. In the next iteration,
reduce receives the value 1, and the chain ends because there are no more values in the array.

Limitations and workarounds

When you use it last in a chain, you can assign a value of Iterator[T] (where T is a data type) to a variable and
pass it on. However, you cannot assign an Iterator to a parameter value. It's also not possible to call legacy 3.x
functions with an Iterator.

If you assign an Iterator to a resource attribute, you get an error. This is because the Iterator type is a special
algorithm-based Iterable that is not backed by a concrete data type. In addition, parameters in resources are
serialized, and Puppet cannot serialize a temporary algorithmic result.

For example, if you used the following Puppet code:

notify { 'example1':
 message => [1,2,3].reverse_each,
}

You would recieve the following error:

Error while evaluating a '=>' expression, Use of an Iterator is not
 supported here

Puppet needs a concrete data type for serialization, but the result of [1,2,3].reverse_each is only a temporary
Iterator value. To convert the Iterator-typed value to an Array, map the value.

This example results in an array by chaining the map function:

notify { 'mapped_iterator':
 message => [1,2,3].reverse_each.map |$x| { $x },
}

You can also use the splat operator * to convert the value into an array.

notify { 'mapped_iterator':
 message => *[1,2,3].reverse_each,
}

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 514

Both of these examples result in a notice containing [3,2,1]. If you use * in a context where it also unfolds, the
result is the same as unfolding an array: each value of the array becomes a separate value, which results in separate
arguments in a function call.

Related topics: functions

Refactoring legacy 3.x functions
If you have Ruby functions written with the legacy 3.x API, refactor them to ensure that they work correctly with
current versions of Puppet.

Refactoring legacy functions improves functionality and prevents errors. At minimum, refactor any extra methods in
your 3.x functions, because these no longer work in Puppet.

Extra methods

Legacy functions that contain methods defined inside the function body or outside of the function return an error,
such as:

raise SecurityError, _("Illegal method definition of method '%{method_name}'
 on line %{line}' in legacy function") % { method_name: mname, line: mline }

To fix these errors, refactor your 3.x functions to the 4.x function API, where defining multiple methods is permitted.

For example, the legacy function below has been refactored into the modern API, with the following changes:

• Documentation for the function is now a comment before the call to create_function.

• The default dispatcher dispatches all given arguments to a method with the same name as the function.
• The extra_method has not been moved, but is legal in the modern API.
• Not visible in the code sample, the function has been moved from lib/puppet/parser/functions to

lib/puppet/functions.

3.x API function:

module Puppet::Parser::Functions
 newfunction(:sample, :type => :rvalue, :doc => <<-EOS
 The function's documentation
 EOS
) do |arguments|
 "the returned value"
 end

 def extra_method()
 end
end

4.x API function:

The function's documentation
Puppet::Functions.create_function(:sample) do

 def sample(*arguments)
 "the returned value"
 end

 def extra_method()
 end
end

Function call forms

Change all function calls from the form function_*** to use the method call_function(name, args).

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 515

The function_*** form applies only to functions implemented in the 3.x API, so function with calls in that form
can not call any function that has moved to the 4.x API.

For example, a 3.x function:

function_sprintf("%s", "example")

The refactored 4.x function:

call_function('sprintf', "%s", "example")

:rvalue specification

The 3.x API differentiated between functions returning a value (:type => :rvalue) and functions that did not
return a value (:type => :statement). In the 4.x API, there is no such distinction. If you are refactoring a
function where :rvalue => true, you do not need to make any changes. If you are refactoring a function where
:rvalue => false, make sure the function returns nil.

Data values

The 4.x function API allows certain data values, such as Regexp, Timespan, and Timestamp. However, the 3.x
API transformed these and similar data values into strings.

Review the logic in your refactored function with this in mind: instead of checking for empty strings, the function
checks for nil. The function uses neither empty strings nor the :undef symbol in returned values to denote
undef; again, use nil instead.

For String, Integer, Float, Array, Hash, and Boolean values, you do not need to make changes to your
3.x functions.

Documentation

The 4.x API supports Markdown and Puppet Strings documentation tags to document functions, including individual
parameters and returned values. See the Strings documentation page for details about the correct format and style for
documentation comments.

Namespacing

Namespace your function to the module in which it is defined, and update manifests that use it.

The function name is in the format module_name::function_name. For example, if the module name is
mymodule:

The function's documentation
Puppet::Functions.create_function(:'mymodule::sample') do

 def sample(*arguments)
 "the returned value"
 end

 def extra_method()
 end
end

The default dispatch uses the last part of the name when dispatching to a method in the function, so you only have to
change the module namespace in the function's full name. You must also move the file containing the function to the
correct location for 4.x API functions, mymodule/lib/puppet/functions.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 516

Deferring a function
Deferring a function allows you to run code on the agent during a Puppet run.

• Deferred functions overview on page 516
Defer a function to retrieve a value on the agent.
• Using a template with Deferred values on page 517
Templates are rendered on the primary server during catalog compilation. However, this won't work with deferred
functions because their values aren't known at compile time. Instead, you need to defer the template rendering.
• Write a deferred function to store secrets on page 518
Use the Deferred type to create a function that you add to a module to redact sensitive information.
• Integrations with secret stores on page 519
The Forge already hosts some community modules that provide integrations with secret stores.

Deferred functions overview
Defer a function to retrieve a value on the agent.

The Deferred type instructs agents to execute a function locally to retrieve a data value at the time of catalog
application. When compiling catalogs, functions are normally executed on the primary server, with results entered
into the catalog directly. The complete and fully resolved catalog is then sent to the agent for application. You can
choose to defer the function call until the agent applies the catalog, meaning the agent calls the function on the agent
instead of on the primary server. This way, agents can use a function to fetch data directly, rather than having the
primary server act as an intermediary.

The two most common reasons for deferring functions are:

• To retrieve a value on the agent that the primary server doesn’t have access to, including sensitive information like
passwords from a secrets store.

• To use as a placeholder to describe intent and make your desired state as descriptive as possible.

Deferred function example

The following example shows a file with a template on the agent that defers two functions — the Vault password
lookup and the epp template compilation.

The password lookup is deferred to run on the agent so that the primary server does not need to know the secret, and
the epp() function is deferred to render the template after the password value is available.

$variables = {
 'password' => Deferred('vault_lookup::lookup',
 ["secret/test", 'https://vault.docker:8200']),
}

compile the template source into the catalog
file { '/etc/secrets.conf':
 ensure => file,
 content => Deferred('inline_epp',
 ['PASSWORD=<%= $password.unwrap %>', $variables]),
}

The Deferred object initialization signature returns an object that you can assign to a variable, pass to a function, or
use like any other Puppet object. For example:

Deferred(<name of function to invoke>, [array, of, arguments])

This object compiles directly into the catalog and its function is invoked as the first part of enforcing a catalog. It will
be replaced by whatever it returns, similar to string interpolation. The catalog looks like the JSON hash below.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 517

The password key is replaced with the results of the vault_lookup::lookup invocation, and then the content
key is replaced with the results of the inline_epp invocation. Puppet can then manage the contents of the file
without the primary server ever knowing the secret.

$ jq '.resources[] | select(.type == "File" and .title == "/etc/
secrets.conf")' catalog.json
{
 "type": "File",
 "title": "/etc/secrets.conf",
 "parameters": {
 "ensure": "file",
 "owner": "root",
 "group": "root",
 "mode": "0600",
 "content": {
 "__ptype": "Deferred",
 "name": "inline_epp",
 "arguments": [
 "PASSWORD=$password\n",
 {
 "password": {
 "__ptype": "Deferred",
 "name": "vault_lookup::lookup",
 "arguments": ["secret/test", "https://vault.docker:8200"]
 }
 }
]
 },
 "backup": false
 }
}

Note:

When using deferred functions, take note of the following:

• If an agent is applying a cached catalog, the Deferred function is still called at application time, and the value
returned at that time is the value that is used.

• It is the responsibility of the function to handle edge cases such as providing default or cached values in cases
where a remote store is unavailable.

• Deferred supports only the Puppet function API for Ruby.
• If a function called on the agent side does not return Sensitive, you can wrap the value

returned by Deferred in a Sensitive type if a sensitive value is desired. For example: $d =
Sensitive(Deferred("myupcase", ["example value"]))

• Deferred functions can only use types that are built into Puppet (for example String). They cannot use types
from modules like stdlib because Puppet does not plugin-sync these types to the agent.

• Do not use the Deferred object as a variable in a string. When compiled, these variables are interpolated, so the
stringified version of the object would be passed to the agent, instead of the object itself.

Using a template with Deferred values
Templates are rendered on the primary server during catalog compilation. However, this won't work with deferred
functions because their values aren't known at compile time. Instead, you need to defer the template rendering.

To defer the template rendering, you need to compile the template source into the catalog, and then render the string
using the inline_epp() function. The template source must be in the files directory of your module for it to be
accessible to the file() function.

 $variables = {
 'password' => Deferred('vault_lookup::lookup',

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 518

 ["secret/test", 'https://vault.docker:8200']),
 }

 # compile the template source into the catalog
 file { '/etc/secrets.conf':
 ensure => file,
 content => Deferred('inline_epp',
 [file('mymodule/secrets.conf.epp'), $variables]),
 }

Note: You cannot defer .erb style templates like this because of the way they use scope. Use .epp templates
instead.

Write a deferred function to store secrets
Use the Deferred type to create a function that you add to a module to redact sensitive information.

These instructions use Puppet Development Kit (PDK), our recommended tool for creating modules. The steps are
also based on RHEL 7 OS.

1. Install PDK using the command appropriate to your system.

You might have to restart your command-line interface for pdk commands to be in your path.

2. From a working directory, run the following commands. You can accept the default answers to the questions for
the steps.

a) pdk new module mymodule

b) cd mymodule

c) pdk new class mymodule

d) mkdir -p lib/puppet/functions

3. Paste this code into manifests/init.pp.

This is a simple example of calling a function at catalog apply time.
#
@summary Demonstrates calling a Deferred function that is housed with
 this module in lib/puppet/functions/myupcase.rb
#
@example
puppet apply manifests/init.pp
class mymodule {
 $d = Deferred("mymodule::myupcase", ["mysecret"])

 notify { example :
 message => $d
 }
}

class { 'mymodule': }

4. Paste this code into lib/puppet/functions/mymodule/myupcase.rb

Puppet::Functions.create_function(:'mymodule::myupcase') do
 dispatch :up do
 param 'String', :some_string
 end

 def up(some_string)
 Puppet::Pops::Types::PSensitiveType::Sensitive.new(some_string.upcase)
 end
end

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pdk/1.x/pdk_install.html

Puppet | The Puppet platform | 519

5. Run /opt/puppetlabs/bin/puppet apply manifests/init.pp. This outputs a notice.

The use of Sensitive in the up function tells the agent not to store the cleartext value in logs or reports. On the
command line and in the Puppet Enterprise console, sensitive data appears as [redacted].

Note: The workflow using Deferred functions is the same module adoption workflow that you already use for
other modules; you can package functions in a module that are synced down to agents. In most cases, you add the
new module to your Puppetfile.

Integrations with secret stores
The Forge already hosts some community modules that provide integrations with secret stores.

Modules with secret store integrations:

• Azure Key Vault: works on the primary server.
• Cyberark Conjur: works on the primary server.
• Hashicorp Vault: works on the agent.
• Consul Data: works on both the agent and the primary server.

Classifying nodes
You can classify nodes using an external node classifier (ENC), which is a script or application that tells Puppet
which classes a node must have. It can replace or work in concert with the node definitions in the main site manifest
(site.pp).

The external_nodes script receives the name of the node to classify as its first argument, which is usually the
node's fully qualified domain name. For more information, see the configuration reference.

Depending on the external data sources you use in your infrastructure, building an external node classifier can be a
valuable way to extend Puppet.

Note: You can use an ENC instead of or in combination with node definitions.

External node classifiers

An external node classifier is an executable that Puppet Server or puppet apply can call; it doesn’t have to
be written in Ruby. Its only argument is the name of the node to be classified, and it returns a YAML document
describing the node.

Inside the ENC, you can reference any data source you want, including PuppetDB. From Puppet’s perspective, the
ENC submits a node name and gets back a hash of information.

External node classifiers can co-exist with standard node definitions in site.pp; the classes declared in each source
are merged together.

Merging classes from multiple sources

Every node always gets a node object from the configured node terminus. The node object might be empty, or it
might contain classes, parameters, and an environment. The node terminus setting, node_terminus, takes effect
where the catalog is compiled, on Puppet Server when using an agent-server configuration, and on the node itself
when using puppet apply. The default node terminus is plain, which returns an empty node object, leaving
node configuration to the main manifest. The exec terminus calls an ENC script to determine what goes in the node
object. Every node might also get a node definition from the main manifest.

When compiling a node's catalog, Puppet includes all of the following:

• Classes specified in the node object it received from the node terminus.
• Classes or resources that are in the site manifest but outside any node definitions.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/tragiccode/azure_key_vault
https://forge.puppet.com/cyberark/conjur
https://forge.puppet.com/puppet/vault_lookup
https://forge.puppet.com/ploperations/consul_data
https://puppet.com/docs/puppet/latest/configuration.html#external_nodes
https://puppet.com/docs/puppetdb/latest/index.html

Puppet | The Puppet platform | 520

• Classes or resources in the most specific node definition in site.pp that matches the current node (if site.pp
contains any node definitions). The following notes apply:

• If site.pp contains at least one node definition, it must have a node definition that matches the current node;
compilation fails if a match can’t be found.

• If the node name resembles a dot-separated fully qualified domain name, Puppet makes multiple attempts to
match a node definition, removing the right-most part of the name each time. Thus, Puppet would first try
agent1.example.com, then agent1.example, then agent1. This behavior isn’t mimicked when
calling an ENC, which is invoked only once with the agent’s full node name.

• If no matching node definition can be found with the node’s name, Puppet tries one last time with a node name
of default; most users include a node default {} statement in their site.pp file. This behavior isn’t
mimicked when calling an ENC.

Comparing ENCs and node definitions
If you're trying to decide whether to use an ENC or main manifest node definitions (or both), consider the following:

• The YAML returned by an ENC isn’t an exact equivalent of a node definition in site.pp — it can’t declare
individual resources, declare relationships, or do conditional logic. An ENC can only declare classes, assign top-
scope variables, and set an environment. So, an ENC is most effective if you’ve done a good job of separating
your configurations out into classes and modules.

• ENCs can set an environment for a node, overriding whatever environment the node requested.
• Even if you aren’t using node definitions, you can still use site.pp to do things like set global resource

defaults.
• Unlike regular node definitions, where a node can match a less specific definition if an exactly matching definition

isn’t found (depending on Puppet’s strict_hostname_checking setting), an ENC is called only once, with
the node’s full name.

Connect an ENC
Configure two settings to have Puppet Server connect to an external node classifier.

In the primary server's puppet.conf file:

1. Set the node_terminus setting to exec.

2. Set the external_nodes setting to the path to the ENC executable.

For example:

[server]
 node_terminus = exec
 external_nodes = /usr/local/bin/puppet_node_classifier

ENC output format
An ENC must return either nothing or a YAML hash to standard out. The hash must contain at least one of classes
or parameters, or it can contain both. It can also optionally contain an environment key.

ENCs exit with an exit code of 0 when functioning normally, and can exit with a non-zero exit code if you want
Puppet to behave as though the requested node was not found.

If an ENC returns nothing or exits with a non-zero exit code, the catalog compilation fails with a “could not find
node” error, and the node is unable to retrieve configurations.

For information about the YAML format, see yaml.org.

© 2024 Puppet, Inc., a Perforce company

https://yaml.org

Puppet | The Puppet platform | 521

Classes

If present, the value of classes must be either an array of class names or a hash whose keys are class names. That
is, the following are equivalent:

classes:
 - common
 - puppet
 - dns
 - ntp

classes:
 common:
 puppet:
 dns:
 ntp:

If you're specifying parameterized classes, use the hash key syntax, not the array syntax. The value for a
parameterized class is a hash of the class’s parameters and values. Each value can be a string, number, array, or hash.
Put string values in quotation marks, because YAML parsers sometimes treat certain unquoted strings (such as on) as
Booleans. Non-parameterized classes can have empty values.

classes:
 common:
 puppet:
 ntp:
 ntpserver: 0.pool.ntp.org
 aptsetup:
 additional_apt_repos:
 - deb localrepo.example.com/ubuntu lucid production
 - deb localrepo.example.com/ubuntu lucid vendor

Parameters

If present, the value of the parameters key must be a hash of valid variable names and associated values; these are
exposed to the compiler as top-scope variables. Each value can be a string, number, array, or hash.

parameters:
 ntp_servers:
 - 0.pool.ntp.org
 - ntp.example.com
 mail_server: mail.example.com
 iburst: true

Environment

If present, the value of environment must be a string representing the desired environment for this node. This is
the only environment used by the node in its requests for catalogs and files.

environment: production

Complete example

classes:
 common:
 puppet:
 ntp:
 ntpserver: 0.pool.ntp.org

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 522

 aptsetup:
 additional_apt_repos:
 - deb localrepo.example.com/ubuntu lucid production
 - deb localrepo.example.com/ubuntu lucid vendor
parameters:
 ntp_servers:
 - 0.pool.ntp.org
 - ntp.example.com
 mail_server: mail.example.com
 iburst: true
environment: production

Puppet reports
Puppet creates a report about its actions and your infrastructure each time it applies a catalog during a Puppet run.
You can create and use report processors to generate insightful information or alerts from those reports.

• Reporting on page 522
In a client-server configuration, an agent sends its report to the primary server for processing. In a standalone
configuration, the puppet apply command processes the node’s own reports. In both configurations, report
processor plugins handle received reports. If you enable multiple report processors, Puppet runs all of them for each
report.
• Report reference on page 523
Puppet has a set of built-in report processers, which you can configure.
• Writing custom report processors on page 524
Create and use report processors to generate insightful information or alerts from Puppet reports. You can write your
own report processor in Ruby and include it in a Puppet module. Puppet uses the processor to send report data to the
service in the format you defined.
• Report format on page 525
Puppet 6 generates report format 11.

Reporting
In a client-server configuration, an agent sends its report to the primary server for processing. In a standalone
configuration, the puppet apply command processes the node’s own reports. In both configurations, report
processor plugins handle received reports. If you enable multiple report processors, Puppet runs all of them for each
report.

Each processor typically does one of two things with the report:

• It sends some of the report data to another service, such as PuppetDB, that can collate it.
• It triggers alerts on another service if the data matches a specified condition, such as a failed run.

That external service can then provide a way to view the processed report.

Report data

Puppet report processors handle these points of data:

• Metadata about the node, its environment and Puppet version, and the catalog used in the run.
• The status of every resource.
• Actions, also called events, taken during the run.
• Log messages generated during the run.
• Metrics about the run, such as its duration and how many resources were in a given state.

That external service can then provide a way to view the processed report.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 523

Configuring reporting

An agent sends reports to the primary server by default. You can turn off reporting by changing the report setting
in an agent’s puppet.conf file.

On primary servers and on nodes running Puppet apply, you can configure enabled report processors as a comma-
separated list in the reports setting. The default reports value is 'store', which stores reports in the
configured reportdir.

To turn off reports entirely, set reports to 'none'.

For details about configuration settings in Puppet, see the Configuration reference.

Accessing reports

There are multiple ways to access Puppet report data:

• In Puppet Enterprise (PE), view run logs and event reports on the Reports page. See Infrastructure reports.
• In PuppetDB, with its report processor enabled, interface with third-party tools such as Puppetboard or

PuppetExplorer.
• Use one of the built-in report processors. For example, the http processor sends YAML dumps of reports

through POST requests to a designated URL; the log processor saves received logs to a local log file.
• Use a report processor from a module, such as tagmail.
• Query PuppetDB for stored report data and build your own tools to display it. For details about the types of data

that PuppetDB collects and the API endpoints it uses, see the API documentation for the endpoints events,
event-counts, and aggregate-event-counts.

• Write a custom report processor.

Related information
puppet.conf: The main config file on page 131
The puppet.conf file is Puppet’s main config file. It configures all of the Puppet commands and services,
including Puppet agent, the primary Puppet server, Puppet apply, and puppetserver ca. Nearly all of the settings
listed in the configuration reference can be set in puppet.conf.

Writing custom report processors on page 524
Create and use report processors to generate insightful information or alerts from Puppet reports. You can write your
own report processor in Ruby and include it in a Puppet module. Puppet uses the processor to send report data to the
service in the format you defined.

Report format on page 525
Puppet 6 generates report format 11.

Report reference
Puppet has a set of built-in report processers, which you can configure.

Report

By default, after applying a catalog, Puppet generates a report that includes information about the run: events, log
messages, resource statuses, metrics, and metadata. Each host sends its report as a YAML dump.

The agent sends its report to the primary server for processing, whereas agents running puppet apply process
their own reports. Either way, Puppet handles every report with a set of report processors, which are specified in the
reports setting in the agent's puppet.conf file.

By default, Puppet uses the store report processor. You can enable other report processors or disable reporting in
the reports setting.

http

Sends reports via HTTP or HTTPS. This report processor submits reports as POST requests to the address in
the reporturl setting. When you specify an HTTPS URL, the remote server must present a certificate issued

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pe/latest/infrastructure_reports.html
https://puppet.com/docs/puppetdb/7/connect_puppet_server.html
https://github.com/voxpupuli/puppetboard
https://github.com/dalen/puppetexplorer
https://forge.puppetlabs.com/puppetlabs/tagmail
https://puppet.com/docs/puppetdb/latest/api/index.html

Puppet | The Puppet platform | 524

by the Puppet CA or the connection fails validation. The body of each POST request is the YAML dump of a
Puppet::Transaction::Report object, and the content type is set as application/x-yaml.

log

Sends all received logs to the local log destinations. The usual log destination is syslog.

store

Stores the yaml report in the configured reportdir. By default, this is the report processor Puppet uses. These
files collect quickly — one every half hour — so be sure to perform maintenance on them if you use this report.

Writing custom report processors
Create and use report processors to generate insightful information or alerts from Puppet reports. You can write your
own report processor in Ruby and include it in a Puppet module. Puppet uses the processor to send report data to the
service in the format you defined.

A report processor must follow these rules:

• The processor name must be a valid Ruby symbol that starts with a letter and contains only alphanumeric
characters.

• The processor must be in its own Ruby file, <PROCESSOR_NAME>.rb, and stored inside the Puppet module
directory lib/puppet/reports/

• The processor code must start with require 'puppet'
• The processor code must call the method Puppet::Reports.register_report(:NAME) This method

takes the name of the report as a symbol, and a mandatory block of code with no arguments that contains:

• A Markdown-formatted string describing the processor, passed to the desc(<DESCRIPTION>) method.
• An implementation of a method named process that contains the report processor's main functionality.

Puppet lets the process method access a self object, which will be a Puppet::Transaction::Report
object describing a Puppet run.

The processor can access report data by calling accessor methods on self, and it can forward that data to any service
you configure in the report processor. It can also call self.to_yaml to dump the entire report to YAML. Note that
the YAML output isn't a safe, well-defined data format — it's a serialized object.

Example report processor

To use this report processor, include it in the comma-separated list of processors in the Puppet primary server's
reports setting in puppet.conf: reports = store,myreport.

Located in /etc/puppetlabs/puppet/modules/myreport/lib/puppet/reports/
myreport.rb.
require 'puppet'
If necessary, require any other Ruby libraries for this report here.

Puppet::Reports.register_report(:myreport) do
 desc "Process reports via the fictional my_cool_cmdb API."

 # Declare and configure any settings here. We'll pretend this connects to
 our API.
 my_api = MY_COOL_CMD

 # Define and configure the report processor.
 def process
 # Do something that sets up the API we're sending the report to here.
 # For instance, let's check on the node's status using the report object
 (self):
 if self.status != nil then
 status = self.status

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 525

 else
 status = 'undefined'
 end

 # Next, let's do something if the status equals 'failed'.
 if status == 'failed' then
 # Finally, dump the report object to YAML and post it using the API
 object:
 my_api.post(self.to_yaml)
 end
 end
end

To use this report processor, include it in the comma-separated list of processors in the Puppet primary server's
reports setting in puppet.conf:

reports = store,myreport

For more examples using this API, see the built-in reports' source code or one of these custom reports created by a
member of the Puppet community:

• Report failed runs to Jabber/XMPP
• Send metrics to a Ganglia server via gmetric

These community reports aren't provided or supported by Puppet, Inc.

Related information
Report format on page 525
Puppet 6 generates report format 11.

Report format
Puppet 6 generates report format 11.

Puppet::Transaction::Report

Property Type Description

host string The host that generated this report.

time datetime When the Puppet run began.

logs array Zero or more
Puppet::Util::Log objects.

metrics hash Maps from string (metric category) to
Puppet::Util::Metric.

resource_statuses hash Maps from resource name to
Puppet::Resource::Status

configuration_version string or integer The configuration version of
the Puppet run. This is a string
for user-specified versioning
schemes. Otherwise it is an integer
representing seconds since the Unix
epoch.

transaction_uuid string A UUID covering the transaction.
The query parameters for the catalog
retrieval include the same UUID.

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppet/tree/main/lib/puppet/reports
https://github.com/jamtur01/puppet-xmpp
https://github.com/jamtur01/puppet-ganglia

Puppet | The Puppet platform | 526

Property Type Description

code_id string The ID of the code input to the
compiler.

job_id string, or null The ID of the job in which this
transaction occurred.

catalog_uuid string A primary server generated catalog
UUID, useful for connecting a single
catalog to multiple reports.

server_used string The name of the primary server used
to compile the catalog. If failover
occurred, this holds the first primary
server successfully contacted. If
this run had no primary server (for
example, a puppet apply run),
this field is blank.

report_format string or integer "11" or 11

puppet_version string The version of the Puppet agent.

status string The transaction status: failed,
changed, or unchanged.

transaction_completed Boolean Whether the transaction completed.
For instance, if the transaction
had an unrescued exception,
transaction_completed =
false.

noop Boolean Whether the Puppet run was in no-
operation mode when it ran.

noop_pending Boolean Whether there are changes that were
not applied because of no-operation
mode.

environment string The environment that was used for
the Puppet run.

corrective_change Boolean True if a change or no-operation
event in this report was caused by
an unexpected change to the system
between Puppet runs.

cached_catalog_status string The status of the cached catalog
used in the run: not_used,
explicitly_requested, or
on_failure.

Puppet::Util::Log

Property Type Description

file string The path and filename of the
manifest file that triggered the log
message. This property is not always
present.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 527

Property Type Description

line integer The manifest file's line number that
triggered the log message. This
property is not always present.

level symbol The severity level of the message
:debug, :info, :notice,
:warning, :err, :alert,
:emerg, :crit.

message string The text of the message.

source string The origin of the log message. This
could be a resource, a property of a
resource, or the string "Puppet".

tags array Each array element is a string.

time datetime The time at which the message was
sent.

Puppet::Util::Metric

A Puppet::Util::Metric object represents all the metrics in a single category.

Property Type Description

name string Specifies the name of the metric
category. This is the same as
the key associated with this
metric in the metrics hash of the
Puppet::Transaction::Report.

label string The name of the metric formatted
as a title. Underscores are replaced
with spaces and the first word is
capitalized.

values array All the metric values within this
category. Each value is in the form
[name, label, value], where
name is the particular metric as a
string, label is the metric name
formatted as a title, and value is
the metric quantity as an integer or a
float.

The metrics that appear in a report are part of a fixed set and arranged in the following categories:

time

Includes a metric for every resource type for which there is at least one resource in the catalog, plus two
additional metrics: config_retrieval and total. Each value in the time category is a float.

In an inspect report, there is an additional inspect metric.

resources

Includes the metrics failed, out_of_sync, changed, and total. Each value in the resources
category is an integer.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 528

events

Includes up to five metrics: success, failure, audit, noop, and total. total is always present; the
others are present when their values are non-zero. Each value in the events category is an integer.

changes

Includes one metric, total. Its value is an integer.

Note: Failed reports contain no metrics.

Puppet::Resource::Status

A Puppet::Resource::Status object represents the status of a single resource.

Property Type Description

resource_type string The resource type, capitalized.

title title The resource title.

resource string The resource name, in the
form Type[title]. This
is always the same as the
key that corresponds to this
Puppet::Resource::Status
object in the
resource_statuses hash.
Deprecated.

provider_used string The name of the provider used by the
resource.

file string The path and filename of the
manifest file that declared the
resource.

line integer The line number in the manifest file
that declared the resource.

evaluation_time float The amount of time, in seconds,
taken to evaluate the resource. Not
present in inspect reports.

change_count integer The number of properties that
changed. Always 0 in inspect reports.

out_of_sync_count integer The number of properties that were
out of sync. Always 0 in inspect
reports.

tags array The strings with which the resource
is tagged.

time datetime The time at which the resource was
evaluated.

events array The
Puppet::Transaction::Event
objects for the resource.

out_of_sync Boolean True when out_of_sync_count
> 0, otherwise false. Deprecated.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 529

Property Type Description

changed Boolean True when change_count > 0,
otherwise false. Deprecated.

skipped Boolean True when the resource was skipped,
otherwise false.

failed Boolean True when Puppet experienced an
error while evaluating this resource,
otherwise false. Deprecated.

failed_to_restart Boolean True when Puppet experienced an
error while trying to restart this
resource, for example, when a
Service resource has been notified
from another resource.

containment_path array An array of strings; each element
represents a container (type or class)
that, together, make up the path of
the resource in the catalog.

Puppet::Transaction::Event

A Puppet::Transaction::Event object represents a single event for a single resource.

Property Type Description

audited Boolean True when this property is being
audited, otherwise false. True in
inspect reports.

property string The property for which the event
occurred. This value is missing if the
provider errored out before it could
be determined.

previous_value string, array, or hash The value of the property before
the change (if any) was applied.
This value is missing if the provider
errored out before it could be
determined.

desired_value string, array, or hash The value specified in the manifest.
Absent in inspect reports. This value
is missing if the provider errored out
before it could be determined.

historical_value string, array, or hash The audited value from a previous
run of Puppet, if known. Otherwise
nil. Absent in inspect reports. This
value is missing if the provider
errored out before it could be
determined.

message string The log message generated by this
event.

name symbol The name of the event. Absent in
inspect reports.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 530

Property Type Description

status string The event status:

• success: Property was out
of sync and was successfully
changed to be in sync.

• failure: Property was out of
sync and couldn’t be changed to
be in sync due to an error.

• noop: Property was out of sync
but wasn’t changed because the
run was in no-operation mode.

• audit: Property was in sync and
was being audited. Inspect reports
are always in audit status.

redacted Boolean Whether this event has been
redacted.

time datetime The time at which the property was
evaluated.

corrective_change Boolean True if this event was caused by an
unexpected change to the system
between Puppet runs.

Changes since report format 8

Most of report format 11 is backwards compatible with previous versions, but includes the following changes:

• Version 8: transaction_completed was added to Puppet::Transaction::Report
• Version 9: provider_used was added to Puppet::Resource::Status
• Version 10: failed_to_restart was added to Puppet::Resource::Status
• Version 11: server_used was added to Puppet::Transaction::Report

For more information, see the report schema.

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppet/blob/6.x/api/schemas/report.json

Puppet | The Puppet platform | 531

Puppet's internals
Learn the details of Puppet's internals, including how primary servers and agents communicate via host-verified
HTTPS, and about the process of catalog compilation.

• Agent-server HTTPS communications on page 531
The Puppet agent and primary server communicate via mutually authenticated HTTPS using client certificates.
• Catalog compilation on page 533
When configuring a node, the agent uses a document called a catalog, which it downloads from the primary server.
For each resource under management, the catalog describes its desired state and can specify ordered dependency
information.

Agent-server HTTPS communications
The Puppet agent and primary server communicate via mutually authenticated HTTPS using client certificates.

Access to each endpoint is controlled by auth.conf settings. For more information, see Puppet Server
configuration files: auth.conf.

Persistent HTTP and HTTPS connections and Keep-Alive

When acting as an HTTPS client, Puppet reuses connections by sending Connection: Keep-Alive in HTTP
requests. This reduces transport layer security (TLS) overhead, improving performance for runs with dozens of
HTTPS requests.

You can configure the Keep-Alive duration using the http_keepalive_timeout setting, but it must be
shorter than the maximum keepalive allowed by the primary server's web server.

Puppet caches HTTP connections and verified HTTPS connections. If you specify a custom HTTP connection class,
Puppet does not cache the connection.

Puppet always requests that a connection is kept open, but the server can choose to close the connection by sending
Connection: close in the HTTP response. If that occurs, Puppet does not cache the connection and starts a new
connection for its next request.

For more information about the http_keepalive_timeout setting, see the Configuration reference.

For an example of a server disabling persistent connections, see the Apache documentation on KeepAlive.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/latest/config_file_auth.html
https://puppet.com/docs/puppetserver/latest/config_file_auth.html
http://httpd.apache.org/docs/current/mod/core.html#keepalive

Puppet | The Puppet platform | 532

The process of Agent-side checks and HTTPS requests during a single Puppet run.

1. Check for keys and certificates:

a. The agent downloads the CA (Certification Authority) bundle.
b. If certificate revocation is enabled, the agent loads or downloads the Certificate Revocation List (CRL) bundle

using the previous CA bundle to verify the connection.
c. The agent loads or generates a private key. If the agent needs a certificate, it generates a Certificate Signing

Request (CSR), including any dns_alt_names and csr_attributes, and submits the request using
PUT /puppet-ca/v1/certificate_request/:certname.

d. The agent attempts to download the signed certificate using GET /puppet-ca/v1/
certificate/:certname.

• If there is a conflict that must be resolved on the Puppet server, such as cleaning the old CSR or certificate,
the agent sleeps for waitforcert seconds, or exits with 1 if waiting is not allowed, such as when
running puppet agent -t.

Tip: This can happen if the agent's SSL directory is deleted, as the Puppet server still has the valid,
unrevoked certificate.

• If the downloaded certificate fails verification, such as it does not match its private key, then Puppet
discards the certificate. The agent sleeps for waitforcert seconds, or exits with 1 if waiting is not
allowed, such as when running puppet agent -t.

2. Request a node object and switch environments:

• Do a GET request to /puppet/v3/node/<NAME> .

• If the request is successful, read the environment from the node object. If the node object has an
environment, use that environment instead of the one in the agent’s config file in all subsequent requests
during this run.

• If the request is unsuccessful, or if the node object had no environment set, use the environment from the
agent’s config file.

3. If pluginsync is enabled on the agent, fetch plugins from a file server mountpoint that scans the lib directory
of every module:

• Do a GET request to /puppet/v3/file_metadatas/plugins with recurse=true and
links=manage.

• Check whether any of the discovered plugins need to be downloaded. If so, do a GET request to /puppet/
v3/file_content/plugins/<FILE> for each one.

4. Request catalog while submitting facts:

• Do a POST request to /puppet/v3/catalog/<NAME>, where the post data is all of the node’s facts
encoded as JSON. Receive a compiled catalog in return.

Note: Submitting facts isn't logically bound to requesting a catalog. For more information about facts, see
Language: Facts and built-in variables.

© 2024 Puppet, Inc., a Perforce company

Puppet | The Puppet platform | 533

5. Make file source requests while applying the catalog:

File resources can specify file contents as either a content or source attribute. Content attributes go into the
catalog, and the agent needs no additional data. Source attributes put only references into the catalog and might
require additional HTTPS requests.

• If you are using the normal compiler, then for each file source, the agent makes a GET request to /puppet/
v3/file_metadata/<SOMETHING> and compares the metadata to the state of the file on disk.

• If it is in sync, it continues on to the next file source.
• If it is out of sync, it does a GET request to /puppet/v3/file_content/<SOMETHING> for the

content.
• If you are using the static compiler, all file metadata is embedded in the catalog. For each file source, the agent

compares the embedded metadata to the state of the file on disk.

• If it is in sync, it continues on to the next file source.
• If it is out of sync, it does a GET request to /puppet/v3/file_bucket_file/md5/<CHECKSUM>

for the content.

Note: Using a static compiler is more efficient with network traffic than using the normal (dynamic)
compiler. Using the dynamic compiler is less efficient during catalog compilation. Large amounts of files,
especially recursive directories, amplifies either issue.

6. If report is enabled on the agent, submit the report:

• Do a PUT request to /puppet/v3/report/<NAME>. The content of the PUT should be a Puppet report
object in YAML format.

Catalog compilation
When configuring a node, the agent uses a document called a catalog, which it downloads from the primary server.
For each resource under management, the catalog describes its desired state and can specify ordered dependency
information.

Puppet manifests are concise because they can express variation between nodes with conditional logic, templates, and
functions. Puppet resolves these on the primary server and gives the agent a specific catalog.

This allows Puppet to:

• Separate privileges, because each node receives only its own resources.
• Reduce the agent’s CPU and memory consumption.
• Simulate changes by running the agent in no-op mode, checking the agent's current state and reporting what would

have changed without making any changes.
• Query PuppetDB for information about managed resources on any node.

Note: The puppet apply command compiles the catalog on its own node and then applies it, so it plays the role
of both primary server and agent. To compile a catalog on the primary server for testing, run puppet catalog
compile on the puppetserver with access to your environments, modules, manifests, and Hiera data.

For more information about PuppetDB queries, see PuppetDB API.

Puppet compiles a catalog using three sources of configuration information:

• Agent-provided data
• External data
• Manifests and modules, including associated templates and file sources

These sources are used by both agent-server deployments and by stand-alone puppet apply nodes.

Agent-provided data

When an agent requests a catalog, it sends four pieces of information to the primary server:

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetdb/latest/api/index.html

Puppet | The Puppet platform | 534

• The node's name, which is almost always the same as the node's certname and is embedded in the request URL.
For example, /puppet/v3/catalog/web01.example.com?environment=production.

• The node's certificate, which contains its certname and sometimes additional information that can be used for
policy-based autosigning and adding new trusted facts. This is the one item not used by puppet apply.

• The node's facts.
• The node's requested environment, which is embedded in the request URL. For example, /puppet/v3/

catalog/web01.example.com?environment=production. Before requesting a catalog, the agent
requests its environment from the primary server. If the primary server doesn't provide an environment, the
environment information in the agent's config file is used.

For more information about additional data in certs see SSL configuration: CSR attributes and certificate extensions

External data

Puppet uses two main kinds of external data during catalog compilation:

• Data from an external node classifier (ENC) or other node terminus, which is available before compilation starts.
This data is in the form of a node object and can contain any of the following:

• Classes
• Class configuration parameters
• Top-scope variables for the node
• Environment information, which overrides the environment information in the agent's configuration

• Data from other sources, which can be invoked by the main manifest or by classes or defined types in modules.
This kind of data includes:

• Exported resources queried from PuppetDB.
• The results of functions, which can access data sources including Hiera or an external configuration

management database.

For more information about ENCs, see Writing external node classifiers

Manifests and modules

Manifests and modules are at the center of a Puppet deployment, including the main manifest, modules downloaded
from the Forge , and modules written specifically for your site.

For more information about manifests and modules, see The main manifest directory and Module fundamentals.

The catalog compilation process

This simplified description doesn’t delve into the internals of the parser, model, and the evaluator. Some items are
presented out of order for the sake of clarity. This process begins after the catalog request has been received.

Note: For practical purposes, treat puppet apply nodes as a combined agent and primary server.

1. Retrieve the node object.

• After the primary server has received the agent-provided information for this request, it asks its configured
node terminus for a node object.

• By default, the primary server uses the plain node terminus, which returns a blank node object. In this case,
only manifests and agent-provided information are used in compilation.

• The next most common node terminus is the exec node terminus, which requests data from an ENC. This
can return classes, variables, an environment, or a combination of the three, depending on how the ENC is
designed.

• You can also write a custom node terminus that retrieves classes, variables, and environments from an external
system.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/

Puppet | The Puppet platform | 535

2. Set variables from the node object, from facts, and from the certificate.

• All of these variables are available for use by any manifest or template during subsequent stages of
compilation.

• The node’s facts are set as top-scope variables.
• The node’s facts are set in the protected $facts hash, and certain data from the node’s certificate is set in the

protected $trusted hash.
• Any variables provided by the primary server are set.

3. Evaluate the main manifest.

• Puppet parses the main manifest. The node’s environment can specify a main manifest; if it doesn’t, the
primary server uses the main manifest from the agent's config file.

• If there are node definitions in the manifest, Puppet must find one that matches the node’s name. If at least one
node definition is present and Puppet cannot find a match, it fails compilation.

• Code outside of node definitions is evaluated. Resources in the code are added to the are added to the node's
catalog, and any classes declared in the code are loaded and declared.

Note: Classes are usually classes are defined in modules, although the main manifest can also contain class
definitions.

• If a matching node definition is found, the code in it is evaluated at node scope, overriding any top-scope
variables. Resources in the code are added to the are added to the node's catalog, and any classes declared in
the code are loaded and declared.

4. Load and evaluate classes from modules

• If classes were declared in the main manifest and their definitions were not present, Puppet loads the manifests
containing them from its collection of modules. It follows the normal manifest naming conventions to find
the files it should load. The set of locations Puppet loads modules from is called the modulepath. The primary
server serves each environment with its own modulepath. When a class is loaded, the Puppet code in it is
evaluated, and any resources in it are added to the catalog. If it was declared at node scope, it has access to
node-scope variables; otherwise, it has access to only top-scope variables. Classes can also declare other
classes; if they do, Puppet loads and evaluates those in the same way.

5. Evaluate classes from the node object

• Puppet loads from modules and evaluate any classes that were specified by the node object. Resources from
those classes are added to the catalog. If a matching node definition was found when the main manifest
was evaluated, these classes are evaluated at node scope, which means that they can access any node-scope
variables set by the main manifest. If no node definitions were present in the main manifest, they are evaluated
at top scope.

Related information
Classifying nodes on page 519
You can classify nodes using an external node classifier (ENC), which is a script or application that tells Puppet
which classes a node must have. It can replace or work in concert with the node definitions in the main site manifest
(site.pp).

Scope on page 966
A scope is a specific area of code that is partially isolated from other areas of code.

Node definitions on page 842
A node definition, also known as a node statement, is a block of Puppet code that is included only in matching nodes'
catalogs. This allows you to assign specific configurations to specific nodes.

The modulepath on page 469
The primary server service and the puppet apply command load most of their content from modules found in one
or more directories. The list of directories where Puppet looks for modules is called the modulepath. The modulepath
is set by the current node's environment.

Exported resources on page 960

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 536

An exported resource declaration specifies a desired state for a resource, and publishes the resource for use by other
nodes. It does not manage the resource on the target system. Any node, including the node that exports it, can collect
the exported resource and manage its own copy of it.

Developing Puppet code

• The Puppet language on page 536
You'll use Puppet's declarative language to describe the desired state of your system.
• Modules on page 975
Modules manage a specific technology in your infrastructure and serve as the basic building blocks of Puppet desired
state management.
• Designing system configs: roles and profiles on page 1025
Your typical goal with Puppet is to build complete system configurations, which manage all of the software, services,
and configuration that you care about on a given system. The roles and profiles method can help keep complexity
under control and make your code more reusable, reconfigurable, and refactorable.
• Puppet Forge on page 1050
Puppet Forge is a collection of modules and how-to guides developed by Puppet and its community.
• Puppet Development Kit (PDK) on page 1050
You can write your own Puppet code and modules using Puppet Development Kit (PDK), which is a framework to
successfully build, test and validate your modules.
• Puppet VSCode extension on page 1050
Puppet has an extension for Visual Studio Code (VSCode) — Microsoft’s cross-platform source-code editor.

The Puppet language
You'll use Puppet's declarative language to describe the desired state of your system.

You'll describe the desired state of your system in files called manifests. Manifests describe how your network and
operating system resources, such as files, packages, and services, should be configured. Puppet then compiles those
manifests into catalogs, and applies each catalog to its corresponding node to ensure the node is configured correctly,
across your infrastructure.

Several parts of the Puppet language depend on evaluation order. For example, variables must be set before they are
referenced. Throughout the language reference, we call out areas where the order of statements matters.

If you are new to Puppet, start with the Puppet language overview.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 537

• Puppet language overview on page 538
The following overview covers some of the key components of the Puppet language, including catalogs, resources,
classes and manifests.
• Puppet language syntax examples on page 541
A quick reference of syntax examples for the Puppet language.
• The Puppet language style guide on page 546
This style guide promotes consistent formatting in the Puppet language, giving you a common pattern, design, and
style to follow when developing modules. This consistency in code and module structure makes it easier to update
and maintain the code.
• Files and paths on Windows on page 570
Puppet and Windows handle directory separators and line endings in files somewhat differently, so you must be
aware of the differences when you are writing manifests to manage Windows systems.
• Code comments on page 571
To add comments to your Puppet code, use shell-style or hash comments.
• Variables on page 571
Variables store values so that those values can be accessed in code later.
• Resources on page 574
Resources are the fundamental unit for modeling system configurations. Each resource describes the desired state
for some aspect of a system, like a specific service or package. When Puppet applies a catalog to the target system, it
manages every resource in the catalog, ensuring the actual state matches the desired state.
• Resource types on page 582
Every resource (file, user, service, package, and so on) is associated with a resource type within the Puppet language.
The resource type defines the kind of configuration it manages. This section provides information about the resource
types that are built into Puppet.
• Relationships and ordering on page 728
Resources are included and applied in the order they are defined in their manifest, but only if the resource has no
implicit relationship with another resource, as this can affect the declared order. To manage a group of resources
in a specific order, explicitly declare such relationships with relationship metaparameters, chaining arrows, and the
require function.
• Classes on page 733
Classes are named blocks of Puppet code that are stored in modules and applied later when they are invoked by name.
You can add classes to a node’s catalog by either declaring them in your manifests or assigning them from an external
node classifier (ENC). Classes generally configure large or medium-sized chunks of functionality, such as all of the
packages, configuration files, and services needed to run an application.
• Defined resource types on page 740
Defined resource types, sometimes called defined types or defines, are blocks of Puppet code that can be evaluated
multiple times with different parameters.
• Bolt tasks on page 744
Bolt tasks are single actions that you can run on target nodes in your infrastructure, allowing you to make as-
needed changes to remote systems. You can run tasks with the Puppet Enterprise (PE) orchestrator or with Puppet’s
standalone task runner, Bolt.
• Expressions and operators on page 744
Expressions are statements that resolve to values. You can use expressions almost anywhere a value is required.
Expressions can be compounded with other expressions, and the entire combined expression resolves to a single
value.
• Conditional statements and expressions on page 754
Conditional statements let your Puppet code behave differently in different situations. They are most helpful when
combined with facts or with data retrieved from an external source. Puppet supports if and unless statements, case
statements, and selectors.
• Function calls on page 760
Functions are plug-ins, written in Ruby, that you can call during catalog compilation. A call to any function is an
expression that resolves to a value. Most functions accept one or more values as arguments, and return a resulting
value.
• Built-in function reference on page 763

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 538

• Node definitions on page 842
A node definition, also known as a node statement, is a block of Puppet code that is included only in matching nodes'
catalogs. This allows you to assign specific configurations to specific nodes.
• Facts and built-in variables on page 844
Before requesting a catalog for a managed node, or compiling one with puppet apply, Puppet collects system
information, called facts, by using the Facter tool. The facts are assigned as values to variables that you can use
anywhere in your manifests. Puppet also sets some additional special variables, called built-in variables, which
behave a lot like facts.
• Reserved words and acceptable names on page 850
You can use only certain characters for naming variables, modules, classes, defined types, and other custom
constructs. Additionally, some words in the Puppet language are reserved and cannot be used as bare word strings or
names.
• Custom resources on page 855
A resource is the basic unit that is managed by Puppet. Each resource has a set of attributes describing its state. Some
attributes can be changed throughout the lifetime of the resource, whereas others are only reported back but cannot be
changed, and some can only be set one time during initial creation.
• Values, data types, and aliases on page 885
Most of the things you can do with the Puppet language involve some form of data. An individual piece of data is
called a value, and every value has a data type, which determines what kind of information that value can contain and
how you can interact with it.
• Templates on page 934
Templates are written in a specialized templating language that generates text from data. Use templates to manage the
content of your Puppet configuration files via the content attribute of the file resource type.
• Advanced constructs on page 949
Advanced Puppet language constructs help you write simpler and more effective Puppet code by reducing
complexity.
• Details of complex behaviors on page 964
Within Puppet language there are complex behavior patterns regarding classes, defined types, and specific areas of
code called scopes.
• Securing sensitive data in Puppet on page 972
Puppet's catalog contains sensitive information in clear text. Puppet uses the Sensitive data type to mark your
sensitive data — for example secrets, passwords and private keys — with a flag that hides the value from certain parts
of Puppet, such as reports. However, you can still see this information in plain text files in the cached catalog and
other administrative functions.

Related information
Puppet language overview on page 538
The following overview covers some of the key components of the Puppet language, including catalogs, resources,
classes and manifests.

Puppet language syntax examples on page 541
A quick reference of syntax examples for the Puppet language.

The Puppet language style guide on page 546
This style guide promotes consistent formatting in the Puppet language, giving you a common pattern, design, and
style to follow when developing modules. This consistency in code and module structure makes it easier to update
and maintain the code.

Puppet language overview
The following overview covers some of the key components of the Puppet language, including catalogs, resources,
classes and manifests.

The following video gives you an overview of the Puppet language:

Related information
The Puppet language on page 536

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 539

You'll use Puppet's declarative language to describe the desired state of your system.

Puppet language syntax examples on page 541
A quick reference of syntax examples for the Puppet language.

The Puppet language style guide on page 546
This style guide promotes consistent formatting in the Puppet language, giving you a common pattern, design, and
style to follow when developing modules. This consistency in code and module structure makes it easier to update
and maintain the code.

Catalogs
To configure nodes, the primary Puppet server compiles configuration information into a catalog, which describes the
desired state of a specific agent node. Each agent requests and receives its own individual catalog.

The catalog describes the desired state for every resource managed on a single given node. Whereas a manifest can
contain conditional logic to describe specific resource configuration for multiple nodes, a catalog is a static document
that describes all of the resources and and dependencies for only one node.

To create a catalog for a given agent, the primary server compiles:

• Data from the agent, such as facts or certificates.
• External data, such as values from functions or classification information from the PE console.
• Manifests, which can contain conditional logic to describe the desired state of resources for many nodes.

The primary server resolves all of these elements and compiles a specific catalog for each individual agent. After the
agent receives its catalog, it applies any changes needed to bring the agent to the state described in the catalog.

Tip: When you run the puppet apply command on a node, it compiles the catalog locally and applies it
immediately on the node where you ran the command.

Agents cache their most recent catalog. If they request a catalog and the primary server fails to compile one, they fall
back to their cached catalog. For detailed information on the catalog compilation process, see the catalog compilation
system page.

Related information
Catalog compilation on page 533
When configuring a node, the agent uses a document called a catalog, which it downloads from the primary server.
For each resource under management, the catalog describes its desired state and can specify ordered dependency
information.

Resources and classes
A resource describes some aspect of a system, such as a specific service or package. You can group resources
together in classes, which generally configure larger chunks of functionality, such as all of the packages,
configuration files, and services needed to run an application.

The Puppet language is structured around resource declaration. When you declare a resource, you tell Puppet the
desired state for that resource, so that Puppet can add it to the catalog and manage it. Every other part of the Puppet
language exists to add flexibility and convenience to the way you declare resources.

Just as you declare a single resource, you can declare a class to manage many resources at once. Whereas a resource
declaration might manage the state of a single file or package, a class declaration can manage everything needed to
configure an entire service or application, including packages, configuration files, service daemons, and maintenance
tasks. In turn, small classes that manage a few resources can be combined into larger classes that describe entire
custom system roles, such as "database server" or "web application worker."

To add a class's resources to the catalog, either declare the class in a manifest or classify your nodes. Node
classification allows you to assign a different set of classes to each node, based on the node's role in your
infrastructure. You can classify nodes with node definitions or by using node-specific data from outside your
manifests, such as that from an external node classifier or Hiera.

The following video gives you an overview of resources:

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 540

The following video gives you an overview of classes:

Related information
Resources on page 574
Resources are the fundamental unit for modeling system configurations. Each resource describes the desired state
for some aspect of a system, like a specific service or package. When Puppet applies a catalog to the target system, it
manages every resource in the catalog, ensuring the actual state matches the desired state.

Classes on page 733
Classes are named blocks of Puppet code that are stored in modules and applied later when they are invoked by name.
You can add classes to a node’s catalog by either declaring them in your manifests or assigning them from an external
node classifier (ENC). Classes generally configure large or medium-sized chunks of functionality, such as all of the
packages, configuration files, and services needed to run an application.

Manifests
Resources are declared in manifests, Puppet language files that describe how the resources should be configured.
Manifests are a basic building block of Puppet and are kept in a specific file structure called a module. You can write
your own manifests and modules or download them from Puppet or other Puppet users.

Manifests can contain conditional logic and declare resources for multiple agents. The primary server evaluates the
contents of all the relevant manifests, resolves any logic, and compiles catalogs. Each catalog defines state for one
specific node.

Manifests:

• Are text files with a .pp extension.
• Must use UTF-8 encoding.
• Can use Unix (LF) or Windows (CRLF) line breaks.

When compiling the catalog, the primary server always evaluates the main manifest first. This manifest, also known
as the site manifest, defines global system configurations, such as LDAP configuration, DNS servers, or other
configurations that apply to every node. The main manifest can be either a single manifest, usually named site.pp,
or a directory containing several manifests, which Puppet treats as a single file. For more details about the main
manifest, see the main manifest page.

The simplest Puppet deployment consists of a single main manifest file with a few resources. As you're ready, you
can add complexity progressively, by grouping resources into modules and classifying your nodes more granularly.

Manifest example

This short manifest manages NTP. It includes:

• A case statement that sets the name of the NTP service, depending on which operating system is installed on the
agent.

• A package resource that installs the NTP package on the agent.
• A service resource that enables and runs the NTP service. This resource also applies the NTP configuration

settings from ntp.conf to the service.
• A file resource that creates the ntp.conf file on the agent in /etc/ntp.conf. This resource also requires

that the ntp package is installed on the agent. The contents of the ntp.conf file will be taken from the
specified source file, which is contained in the ntp module.

case $operatingsystem {
 centos, redhat: { $service_name = 'ntpd' }
 debian, ubuntu: { $service_name = 'ntp' }
}

package { 'ntp':
 ensure => installed,
}

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 541

service { 'ntp':
 name => $service_name,
 ensure => running,
 enable => true,
 subscribe => File['ntp.conf'],
}

file { 'ntp.conf':
 path => '/etc/ntp.conf',
 ensure => file,
 require => Package['ntp'],
 source => "puppet:///modules/ntp/ntp.conf",
 # This source file would be located on the primary Puppet server at
 # /etc/puppetlabs/code/modules/ntp/files/ntp.conf
}

Puppet language syntax examples
A quick reference of syntax examples for the Puppet language.

Resource examples

Resource declaration

This example resource declaration includes:

• file: The resource type.
• ntp.conf: The resource title.
• path: An attribute.
• '/etc/ntp.conf': The value of an attribute; in this case, a string.
• template('ntp/ntp.conf'): A function call that returns a value; in this case, the template function,

with the name of a template in a module as its argument.

file { 'ntp.conf':
 path => '/etc/ntp.conf',
 ensure => file,
 content => template('ntp/ntp.conf'),
 owner => 'root',
 mode => '0644',
}

For details about resources and resource declaration syntax, see Resources on page 574.

Resource relationship metaparameters

Two resource declarations establishing relationships with the before and subscribe metaparameters, which
accept resource references.

The first declaration ensures that the ntp package is installed before the ntp.conf file is created. The second
declaration ensures that the ntpd service is notified of any changes to the ntp.conf file.

package { 'ntp':
 ensure => installed,
 before => File['ntp.conf'],
}
service { 'ntpd':
 ensure => running,
 subscribe => File['ntp.conf'],
}

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 542

For details about relationships usage and syntax, see Relationships and ordering on page 728. For details about
resource references, see Resource and class references on page 916.

Resource relationship chaining arrows

Chaining arrows forming relationships between three resources, using resource references.In this example, the ntp
package must be installed before the ntp.conf file is created; after the file is created, the ntpd service is notified.

Package['ntp'] -> File['ntp.conf'] ~> Service['ntpd']

For details about relationships usage and syntax, see Relationships and ordering on page 728. For details about
resource references, see Resource and class references on page 916.

Exported resource declaration

An exported resource declaration.

@@nagios_service { "check_zfs${hostname}":
 use => 'generic-service',
 host_name => "$fqdn",
 check_command => 'check_nrpe_1arg!check_zfs',
 service_description => "check_zfs${hostname}",
 target => '/etc/nagios3/conf.d/nagios_service.cfg',
 notify => Service[$nagios::params::nagios_service],
}

For information about declaring and collecting exported resources, see Exported resources.

Resource collector

A resource collector, sometimes called the "spaceship operator." Resource collectors select a group of resources by
searching the attributes of each resource in the catalog.

User <| groups == 'admin' |>

For details about resource collector usage and syntax, see Resource collectors.

Exported resource collector

An exported resource collector, which works with exported resources, which are available for use by other nodes.

Concat::Fragment <<| tag == "bacula-storage-dir-${bacula_director}" |>>

For details about resource collector usage and syntax, see Resource collectors. For information about declaring and
collecting exported resources, see Exported resources.

Resource default for the exec type

A resource default statement set default attribute values for a given resource type. This example specifies defaults for
the exec resource type attributes path, environment, logoutput, and timeout.

Exec {
 path => '/usr/bin:/bin:/usr/sbin:/sbin',
 environment => 'RUBYLIB=/opt/puppetlabs/puppet/lib/ruby/site_ruby/2.1.0/',
 logoutput => true,
 timeout => 180,
}

For details about default statement usage and syntax, see Resource defaults.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 543

Virtual resource

A virtual resource, which is declared in the catalog but isn't applied to a system unless it is explicitly realized.

@user { 'deploy':
 uid => 2004,
 comment => 'Deployment User',
 group => www-data,
 groups => ["enterprise"],
 tag => [deploy, web],
}

For details about virtual resource usage and syntax, see Virtual resources.

Defined resource type examples

Defined resource type definition

Defining a type creates a new defined resource type. The name of this defined type has two namespace segments,
comprising the name of the module containing the defined type, apache, and the name of the defined type itself,
vhost.

define apache::vhost ($port, $docroot, $servername = $title, $vhost_name =
 '*') {
 include apache
 include apache::params
 $vhost_dir = $apache::params::vhost_dir
 file { "${vhost_dir}/${servername}.conf":
 content => template('apache/vhost-default.conf.erb'),
 owner => 'www',
 group => 'www',
 mode => '644',
 require => Package['httpd'],
 notify => Service['httpd'],
 }

For details about defined type usage and syntax, see Defined resource types on page 740.

Defined type resource declaration

Declarations of an instance, or resource, of a defined type are similar to other resource declarations. This example
declares a instance of the apache::vhost defined type, with a title of "homepages" and the port and docroot
attributes specified.

apache::vhost { 'homepages':
 port => 8081,
 docroot => '/var/www-testhost',
}

For details about defined type usage and syntax, see Defined resource types on page 740.

Defined type resource reference

A resource reference to an instance of the apache::vhost defined resource. Every namespace segment in a
resource reference must be capitalized.

Apache::Vhost['homepages']

For details about defined type usage and syntax, see Defined resource types on page 740. For details about
resource references, see Resource and class references on page 916.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 544

Class examples

Class definition

A class definition, which makes a class available for later use.

class ntp {
 package {'ntp':
 ...
 }
 ...
}

For details about class usage and syntax, see Classes on page 733.

Class declaration

Declaring the ntp class in three different ways:

• the include function
• the require function
• the resource-like syntax

Declaring a class causes the resources in it to be managed.

The include function is the standard way to declare classes:

include ntp

The require function declares the class and makes it a dependency of the code container where it is declared:

require ntp

The resource-like syntax declares the class and applies resource-like behavior. Resource-like class declarations
require that you declare a given class only one time.

class {'ntp':}

For details about class usage and syntax, see Classes on page 733.

Variable examples

Variable assigned an array value

A variable being assigned a set of values as an array.

$package_list = ['ntp', 'apache2', 'vim-nox', 'wget']

For details about assigning values to variables, see Variables on page 571.

Variable assigned a hash value

A variable being assigned a set of values as a hash.

$myhash = { key => { subkey => 'b' } }

For details about assigning values to variables, see Variables on page 571.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 545

Interpolated variable

A built-in variable provided by the primary server being interpolated into a double-quoted string.

...
content => "Managed by puppet server version ${serverversion}"

For details about built-in variables usage and syntax, see Facts and built-in variables on page 844. For information
about strings and interpolation, see Strings on page 889.

Conditional statement examples

if statement, using expressions and facts

An if statement, whose conditions are expressions that use facts provided by the agent.

if $is_virtual {
 warning('Tried to include class ntp on virtual machine; this node might
 be misclassified.')
}
elsif $operatingsystem == 'Darwin' {
 warning('This NTP module does not yet work on our Mac laptops.')
else {
 include ntp
}

For details about if statements, see Conditional statements and expressions on page 754.

if statement, with in expression

An if statement using an in expression.

if 'www' in $hostname {
 ...
}

For details about if statements, see Conditional statements and expressions on page 754.

Case statement

A case statement.

case $operatingsystem {
 'Solaris': { include role::solaris }
 'RedHat', 'CentOS': { include role::redhat }
 /^(Debian|Ubuntu)$/:{ include role::debian }
 default: { include role::generic }
}

For details about case statements, see Conditional statements and expressions on page 754.

Selector statement

A selector statement being used to set the value of the $rootgroup variable.

$rootgroup = $osfamily ? {
 'Solaris' => 'wheel',
 /(Darwin|FreeBSD)/ => 'wheel',
 default => 'root',
}

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 546

For details about selector statements, see Conditional statements and expressions on page 754.

Node examples

Node definition

A node definition or node statement is a block of Puppet code that is included only in matching nodes’ catalogs. This
allows you to assign specific configurations to specific nodes.

node 'www1.example.com' {
 include common
 include apache
 include squid
}

Node names in node definitions can also be given as regular expressions.

node /^www\d+$/ {
 include common
}

For details about node definition usage and syntax, see Node definitions on page 842.

The Puppet language style guide
This style guide promotes consistent formatting in the Puppet language, giving you a common pattern, design, and
style to follow when developing modules. This consistency in code and module structure makes it easier to update
and maintain the code.

This style guide applies to Puppet 4 and later. Puppet 3 is no longer supported, but we include some Puppet 3
guidelines in case you're maintaining older code.

Tip: Use puppet-lint and metadata-json-lint to check your module for compliance with the style guide.

No style guide can cover every circumstance you might run into when developing Puppet code. When you need to
make a judgement call, keep in mind a few general principles.

Readability matters

If you have to choose between two equal alternatives, pick the more readable one. This is subjective, but if you
can read your own code three months from now, it's a great start. In particular, code that generates readable diffs
is highly preferred.

Scoping and simplicity are key

When in doubt, err on the side of simplicity. A module should contain related resources that enable it to
accomplish a task. If you describe the function of your module and you find yourself using the word "and,"
consider splitting the module. Have one goal, with all your classes and parameters focused on achieving it.

Your module is a piece of software

At least, we recommend that you treat it that way. When it comes to making decisions, choose the option that is
easier to maintain in the long term.

These guidelines apply to Puppet code, for example, code in Puppet modules or classes. To reduce repetitive
phrasing, we don't include the word 'Puppet' in every description, but you can assume it.

For information about the specific meaning of terms like 'must,' 'must not,' 'required,' 'should,' 'should not,'
'recommend,' 'may,' and 'optional,' see RFC 2119.

© 2024 Puppet, Inc., a Perforce company

http://puppet-lint.com/
https://github.com/voxpupuli/metadata-json-lint
http://www.faqs.org/rfcs/rfc2119.html

Puppet | Developing Puppet code | 547

Module design practices
Consistent module design practices makes module contributions easier.

Spacing, indentation, and whitespace

Module manifests should follow best practices for spacing, indentation, and whitespace.

Manifests:

• Must use two-space soft tabs.
• Must not use literal tab characters.
• Must not contain trailing whitespace.
• Must include trailing commas after all resource attributes and parameter definitions.
• Must end the last line with a new line.
• Must use one space between the resource type and opening brace, one space between the opening brace and the

title, and no spaces between the title and colon.

Good:

file { '/tmp/sample':

Bad: Space between title and colon:

file { '/tmp/sample' :

Bad: No spaces:

file{'/tmp/sample':

Bad: Too many spaces:

file { '/tmp/sample':

• Should not exceed a 140-character line width, except where such a limit would be impractical.
• Should leave one empty line between resources, except when using dependency chains.
• May align hash rockets (=>) within blocks of attributes, one space after the longest resource key, arranging hashes

for maximum readability first.

Arrays and hashes

To increase readability of arrays and hashes, it is almost always beneficial to break up the elements on separate lines.

Use a single line only if that results in overall better readability of the construct where it appears, such as when it is
very short. When breaking arrays and hashes, they should have:

• Each element on its own line.
• Each new element line indented one level.
• First and last lines used only for the syntax of that data type.

Good: Array with multiple elements on multiple lines:

service { 'sshd':
 require => [
 Package['openssh-server'],
 File['/etc/ssh/sshd_config'],
],
}

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 548

Good: Hash with multiple elements on multiple lines:

$myhash = {
 key => 'some value',
 other_key => 'some other value',
}

Bad: Array with multiple elements on same line:

service { 'sshd':
 require => [Package['openssh-server'], File['/etc/ssh/sshd_config'],],
}

Bad: Hash with multiple elements on same line:

$myhash = { key => 'some value', other_key => 'some other value', }

Bad: Array with multiple elements on different lines, but syntax and element share a line:

service { 'sshd':
 require => [Package['openssh-server'],
 File['/etc/ssh/sshd_config'],
],
}

Bad: Hash with multiple elements on different lines, but syntax and element share a line:

$myhash = { key => 'some value',
 other_key => 'some other value',
}

Bad: Array with an indention of elements past two spaces:

service { 'sshd':
 require => [
 Package['openssh-server'],
 File['/etc/ssh/sshd_config'],
],
}

Quoting

As long you are consistent, strings may be enclosed in single or double quotes, depending on your preference.

Regardless of your preferred quoting style, all variables MUST be enclosed in braces when interpolated in a string.

For example:

Good:

"/etc/${file}.conf"

"${facts['operatingsystem']} is not supported by ${module_name}"

Bad:

"/etc/$file.conf"

Option 1: Prefer single quotes

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 549

Modules that adopt this string quoting style MUST enclose all strings in single quotes, except as listed below.

For example:

Good:

owner => 'root'

Bad:

owner => "root"

A string MUST be enclosed in double quotes if it:

• Contains variable interpolations.

• Good:

"/etc/${file}.conf"

• Bad:

'/etc/${file}.conf'

• Contains escaped characters not supported by single-quoted strings.

• Good:

content => "nameserver 8.8.8.8\n"

• Bad:

content => 'nameserver 8.8.8.8\n'

A string SHOULD be enclosed in double quotes if it:

• Contains single quotes.

• Good:

warning("Class['apache'] parameter purge_vdir is deprecated in favor of
 purge_configs")

• Bad:

warning('Class[\'apache\'] parameter purge_vdir is deprecated in favor
 of purge_configs')

Option 2: Prefer double quotes

Modules that adopt this string quoting style MUST enclose all strings in double quotes, except as listed below.

For example:

Good:

owner => "root"

Bad:

owner => 'root'

A string SHOULD be enclosed in single quotes if it does not contain variable interpolations AND it:

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 550

• Contains double quotes.

• Good:

warning('Class["apache"] parameter purge_vdir is deprecated in favor of
 purge_configs')

• Bad:

warning("Class[\"apache\"] parameter purge_vdir is deprecated in favor
 of purge_configs")

• Contains literal backslash characters that are not intended to be part of an escape sequence.

• Good:

path => 'c:\windows\system32'

• Bad:

path => "c:\\windows\\system32"

If a string is a value from an enumerable set of options, such as present and absent, it SHOULD NOT be
enclosed in quotes at all.

For example:

Good:

ensure => present

Bad:

ensure => "present"

Escape characters

Use backslash (\) as an escape character.

For both single- and double-quoted strings, escape the backslash to remove this special meaning: \\ This means that
for every backslash you want to include in the resulting string, use two backslashes. As an example, to include two
literal backslashes in the string, you would use four backslashes in total.

Do not rely on unrecognized escaped characters as a method for including the backslash and the character following
it.

Unicode character escapes using fewer than 4 hex digits, as in \u040, results in a backslash followed by the string
u040. (This also causes a warning for the unrecognized escape.) To use a number of hex digits not equal to 4, use the
longer u{digits} format.

Comments

Comments must be hash comments (# This is a comment). Comments should explain the why, not the how,
of your code.

Do not use /* */ comments in Puppet code.

Good:

Configures NTP
file { '/etc/ntp.conf': ... }

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 551

Bad:

/* Creates file /etc/ntp.conf */
file { '/etc/ntp.conf': ... }

Note: Include documentation comments for Puppet Strings for each of your classes, defined types, functions, and
resource types and providers. If used, documentation comments precede the name of the element. For documentation
recommendations, see the Modules section of this guide.

Functions

Avoid the inline_template() and inline_epp() functions for templates of more than one line, because
these functions don’t permit template validation. Instead, use the template() and epp() functions to read a
template from the module. This method allows for syntax validation.

You should avoid using calls to Hiera functions in modules meant for public consumption, because not all users have
implemented Hiera. Instead, we recommend using parameters that can be overridden with Hiera.

Improving readability when chaining functions

In most cases, especially if blocks are short, we recommend keeping functions on the same line. If you have a
particularly long chain of operations or block that you find difficult to read, you can break it up on multiples lines to
improve readability. As long as your formatting is consistent throughout the chain, it is up to your own judgment.

For example, this:

$foodgroups.fruit.vegetables

Is better than this:

 $foodgroups
 .fruit
 .vegetables

But, this:

$foods = {
 "avocado" => "fruit",
 "eggplant" => "vegetable",
 "strawberry" => "fruit",
 "raspberry" => "fruit",
}

$berries = $foods.filter |$name, $kind| {
 # Choose only fruits
 $kind == "fruit"
}.map |$name, $kind| {
 # Return array of capitalized fruits
 String($name, "%c")
}.filter |$fruit| {
 # Only keep fruits named "berry"
 $fruit =~ /berry$/
}

Is better than this:

$foods = {
 "avocado" => "fruit",
 "eggplant" => "vegetable",
 "strawberry" => "fruit",

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 552

 "raspberry" => "fruit",
}

$berries = $foods.filter |$name, $kind| { $kind == "fruit" }.map |$name,
 $kind| { String($name, "%c") }.filter |$fruit| { $fruit =~ /berry$/ }

Related information
Modules on page 567
Develop your module using consistent code and module structures to make it easier to update and maintain.

Resources
Resources are the fundamental unit for modeling system configurations. Resource declarations have a lot of possible
features, so your code's readability is crucial.

Resource names

All resource names or titles must be quoted. If you are using an array of titles you must quote each title in the array,
but cannot quote the array itself.

Good:

package { 'openssh': ensure => present }

Bad:

package { openssh: ensure => present }

These quoting requirements do not apply to expressions that evaluate to strings.

Arrow alignment

To align hash rockets (=>) in a resource's attribute/value list or in a nested block, place the hash rocket one space
ahead of the longest attribute name. Indent the nested block by two spaces, and place each attribute on a separate line.
Declare very short or single purpose resource declarations on a single line.

Good:

exec { 'hambone':
 path => '/usr/bin',
 cwd => '/tmp',
}

exec { 'test':
 subscribe => File['/etc/test'],
 refreshonly => true,
}

myresource { 'test':
 ensure => present,
 myhash => {
 'myhash_key1' => 'value1',
 'key2' => 'value2',
 },
}

notify { 'warning': message => 'This is an example warning' }

Bad:

exec { 'hambone':
path => '/usr/bin',

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 553

cwd => '/tmp',
}

file { "/path/to/my-filename.txt":
 ensure => file, mode => $mode, owner => $owner, group => $group,
 source => 'puppet:///modules/my-module/productions/my-filename.txt'
}

Attribute ordering

If a resource declaration includes an ensure attribute, it should be the first attribute specified so that a user can
quickly see if the resource is being created or deleted.

Good:

file { '/tmp/readme.txt':
 ensure => file,
 owner => '0',
 group => '0',
 mode => '0644',
}

When using the special attribute * (asterisk or splat character) in addition to other attributes, splat should be ordered
last so that it is easy to see. You may not include multiple splats in the same body.

Good:

$file_ownership = {
 'owner' => 'root',
 'group' => 'wheel',
 'mode' => '0644',
}

file { '/etc/passwd':
 ensure => file,
 * => $file_ownership,
}

Resource arrangement

Within a manifest, resources should be grouped by logical relationship to each other, rather than by resource type.

Good:

file { '/tmp/dir':
 ensure => directory,
}

file { '/tmp/dir/a':
 content => 'a',
}

file { '/tmp/dir2':
 ensure => directory,
}

file { '/tmp/dir2/b':
 content => 'b',
}

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 554

Bad:

file { '/tmp/dir':
 ensure => directory,
}

file { '/tmp/dir2':
 ensure => directory,
}

file { '/tmp/dir/a':
 content => 'a',
}

file { '/tmp/dir2/b':
 content => 'b',
}

Use semicolon-separated multiple resource bodies only in conjunction with a local default body.

Good:

$defaults = { < hash of defaults > }

file {
 default:
 * => $defaults,;

 '/tmp/testfile':
 content => 'content of the test file',
}

Good: Repeated pattern with defaults:

$defaults = { < hash of defaults > }

file {
 default:
 * => $defaults,;

 '/tmp/motd':
 content => 'message of the day',;

 '/tmp/motd_tomorrow':
 content => 'tomorrows message of the day',;
}

Bad: Unrelated resources grouped:

file {
 '/tmp/testfile':
 owner => 'admin',
 mode => '0644',
 contents => 'this is the content',;

 '/opt/myapp':
 owner => 'myapp-admin',
 mode => '0644',
 source => 'puppet://<someurl>',;

 # etc
}

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 555

You cannot set any attribute more than one time for a given resource; if you try, Puppet raises a compilation error.
This means:

• If you use a hash to set attributes for a resource, you cannot set a different, explicit value for any of those
attributes. For example, if mode is present in the hash, you can’t also set mode => "0644" in that resource
body.

• You can’t use the * attribute multiple times in one resource body, because * itself acts like an attribute.
• To use some attributes from a hash and override others, either use a hash to set per-expression defaults, or use the

+ (merging) operator to combine attributes from two hashes (with the right-hand hash overriding the left-hand
one).

Symbolic links

Declare symbolic links with an ensure value of ensure => link. To inform the user that you are creating a link,
specify a value for the target attribute.

Good:

file { '/var/log/syslog':
 ensure => link,
 target => '/var/log/messages',
}

Bad:

file { '/var/log/syslog':
 ensure => '/var/log/messages',
}

File modes

• POSIX numeric notation must be represented as 4 digits.
• POSIX symbolic notation must be a string.
• You should not use file mode with Windows; instead use the acl module.
• You should use numeric notation whenever possible.
• The file mode attribute should always be a quoted string or (unquoted) variable, never an integer.

Good:

file { '/var/log/syslog':
 ensure => file,
 mode => '0644',
}

Bad:

file { '/var/log/syslog':
 ensure => present,
 mode => 644,
}

Multiple resources

Multiple resources declared in a single block should be used only when there is also a default set of options for the
resource type.

Good:

file {

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/acl

Puppet | Developing Puppet code | 556

 default:
 ensure => 'file',
 mode => '0666',;

 '/owner':
 user => 'owner',;

 '/staff':
 user => 'staff',;
}

Good: Give the defaults a name if used several times:

$our_default_file_attributes = {
 'ensure' => 'file',
 'mode' => '0666',
}

file {
 default:
 * => $our_default_file_attributes,;

 '/owner':
 user => 'owner',;

 '/staff':
 user => 'staff',;
}

Good: Spell out 'magic' iteration:

['/owner', '/staff'].each |$path| {
 file { $path:
 ensure => 'file',
 }
}

Good: Spell out 'magic' iteration:

$array_of_paths.each |$path| {
 file { $path:
 ensure => 'file',
 }
}

Bad:

file {
 '/owner':
 ensure => 'file',
 user => owner,
 mode => '0666',;

 '/staff':
 ensure => 'file',
 user => staff,
 mode => '0774',;
}

file { ['/owner', '/staff']:
 ensure => 'file',
}

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 557

file { $array_of_paths:
 ensure => 'file',
}

Legacy style defaults

Avoid legacy style defaults. If you do use them, they should occur only at top scope in your site manifest. This is
because resource defaults propagate through dynamic scope, which can have unpredictable effects far away from
where the default was declared.

Acceptable: site.pp:

Package {
 provider => 'zypper',
}

Bad: /etc/puppetlabs/puppet/modules/apache/manifests/init.pp:

File {
 owner => 'nobody',
 group => 'nogroup',
 mode => '0600',
}

concat { $config_file_path:
 notify => Class['Apache::Service'],
 require => Package['httpd'],
}

Attribute alignment

Resource attributes must be uniformly indented in two spaces from the title.

Good:

file { '/owner':
 ensure => 'file',
 owner => 'root',
}

Bad: Too many levels of indentation:

file { '/owner':
 ensure => 'file',
 owner => 'root',
}

Bad: No indentation:

file { '/owner':
ensure => 'file',
owner => 'root',
}

Bad: Improper and non-uniform indentation:

file { '/owner':
 ensure => 'file',
 owner => 'root',

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 558

}

Bad: Indented the wrong direction:

 file { '/owner':
ensure => 'file',
owner => 'root',
 }

For multiple bodies, each title should be on its own line, and be indented. You may align all arrows across the bodies,
but arrow alignment is not required if alignment per body is more readable.

file {
 default:
 * => $local_defaults,;

 '/owner':
 ensure => 'file',
 owner => 'root',
}

Defined resource types

Because defined resource types can have multiple instances, resource names must have a unique variable to avoid
duplicate declarations.

Good: Template uses $listen_addr_port:

define apache::listen {
 $listen_addr_port = $name

 concat::fragment { "Listen ${listen_addr_port}":
 ensure => present,
 target => $::apache::ports_file,
 content => template('apache/listen.erb'),
 }
}

Bad: Template uses $name:

define apache::listen {

 concat::fragment { 'Listen port':
 ensure => present,
 target => $::apache::ports_file,
 content => template('apache/listen.erb'),
 }
}

Classes and defined types
Classes and defined types should follow scope and organization guidelines.

Separate files

Put all classes and resource type definitions (defined types) as separate files in the manifests directory of the
module. Each file in the manifest directory should contain nothing other than the class or resource type definition.

Good: etc/puppetlabs/puppet/modules/apache/manifests/init.pp:

class apache { }

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 559

Good: etc/puppetlabs/puppet/modules/apache/manifests/ssl.pp:

class apache::ssl { }

Good: etc/puppetlabs/puppet/modules/apache/manifests/virtual_host.pp:

define apache::virtual_host () { }

Separating classes and defined types into separate files is functionally identical to declaring them in init.pp, but
has the benefit of highlighting the structure of the module and making the function and structure more legible.

When a resource or include statement is placed outside of a class, node definition, or defined type, it is included in all
catalogs. This can have undesired effects and is not always easy to detect.

Good: manifests/init.pp:

class ntp
class ntp {
 ntp::install
}
end of file

Bad: manifests/init.pp:

class ntp {
 #...
}
ntp::install

Internal organization of classes and defined types

Structure classes and defined types to accomplish one task.

Documentation comments for Puppet Strings should be included for each class or defined type. If used,
documentation comments must precede the name of the element. For complete documentation recommendations, see
the Modules section.

Put the lines of code in the following order:

1. First line: Name of class or type.
2. Following lines, if applicable: Define parameters. Parameters should be typed.
3. Next lines: Includes and validation come after parameters are defined. Includes may come before or after

validation, but should be grouped separately, with all includes and requires in one group and all validations in
another. Validations should validate any parameters and fail catalog compilation if any parameters are invalid. See
puppetlabs-ntp for an example.

4. Next lines, if applicable: Should declare local variables and perform variable munging.
5. Next lines: Should declare resource defaults.
6. Next lines: Should override resources if necessary.

The following example follows the recommended style.

In init.pp:

• The myservice class installs packages, ensures the state of myservice, and creates a tempfile with given
content. If the tempfile contains digits, they are filtered out.

• @param service_ensure the wanted state of services.
• @param package_list the list of packages to install, at least one must be given, or an error of unsupported

OS is raised.

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppetlabs-ntp/blob/3.3.0/manifests/init.pp#init

Puppet | Developing Puppet code | 560

• @param tempfile_contents the text to be included in the tempfile, all digits are filtered out if present.

class myservice (
 Enum['running', 'stopped'] $service_ensure,
 String $tempfile_contents,
 Optional[Array[String[1]]] $package_list = undef,
) {

• Rather than just saying that there was a type mismatch for $package_list, this example includes an additional
assertion with an improved error message. The list can be "not given", or have an empty list of packages to install.
An assertion is made that the list is an array of at least one String, and that the String is at least one character long.

 assert_type(Array[String[1], 1], $package_list) |$expected, $actual| {
 fail("Module ${module_name} does not support ${facts['os']['name']} as
 the list of packages is of type ${actual}")
 }

 package { $package_list:
 ensure => present,
 }

 file { "/tmp/${variable}":
 ensure => present,
 contents => regsubst($tempfile_contents, '\d', '', 'G'),
 owner => '0',
 group => '0',
 mode => '0644',
 }

 service { 'myservice':
 ensure => $service_ensure,
 hasstatus => true,
 }

 Package[$package_list] -> Service['myservice']
}

In hiera.yaml: The default values can be merged if you want to extend with additional packages. If not, use
default_hierarchy instead of hierarchy.

version: 5
defaults:
 data_hash: yaml_data

hierarchy:
- name: 'Per Operating System'
 path: "os/%{os.name}.yaml"
- name: 'Common'
 path: 'common.yaml'

In data/common.yaml:

myservice::service_ensure: running

In data/os/centos.yaml:

myservice::package_list:
- 'myservice-centos-package'

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 561

In data/os/solaris.yaml:

myservice::package_list:
- 'myservice-solaris-package1'
- 'myservice-solaris-package2'

Public and private

Split your module into public and private classes and defined types where possible. Public classes or defined types
should contain the parts of the module meant to be configured or customized by the user, while private classes should
contain things you do not expect the user to change via parameters. Separating into public and private classes or
defined types helps build reusable and readable code.

Help indicate to the user which classes are which by making sure all public classes have complete comments and
denoting public and private classes in your documentation. Use the documentation tags “@api private” and “@api
public” to make this clear. For complete documentation recommendations, see the Modules section.

Chaining arrow syntax

Most of the time, use relationship metaparameters rather than chaining arrows. When you have many interdependent
or order-specific items, chaining syntax may be used. A chain operator should appear on the same line as its right-
hand operand. Chaining arrows must be used left to right.

Good: Points left to right:

Package['httpd'] -> Service['httpd']

Good: On the line of the right-hand operand:

Package['httpd']
-> Service['httpd']

Bad: Arrows are not all pointing to the right:

Service['httpd'] <- Package['httpd']

Bad: Must be on the right-hand operand's line:

Package['httpd'] ->
Service['httpd']

Nested classes or defined types

Don't define classes and defined resource types within other classes or defined types. Declare them as close to node
scope as possible. If you have a class or defined type which requires another class or defined type, put graceful
failures in place if those required classes or defined types are not declared elsewhere.

Bad:

class apache {
 class ssl { ... }
}

Bad:

class apache {
 define config() { ... }
}

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppetlabs-mysql/blob/3.1.0/manifests/server.pp#server
https://github.com/puppetlabs/puppetlabs-mysql/blob/3.1.0/manifests/server.pp#server

Puppet | Developing Puppet code | 562

Display order of parameters

In parameterized class and defined resource type definitions, you can list required parameters before optional
parameters (that is, parameters with defaults). Required parameters are parameters that are not set to anything,
including undef. For example, parameters such as passwords or IP addresses might not have reasonable default
values.

You can also group related parameters, order them alphabetically, or in the order you encounter them in the code.
How you order parameters is personal preference.

Note that treating a parameter like a namevar and defaulting it to $title or $name does not make it a required
parameter. It should still be listed following the order recommended here.

Good:

class dhcp (
 $dnsdomain,
 $nameservers,
 $default_lease_time = 3600,
 $max_lease_time = 86400,
) {}

Bad:

class ntp (
 $options = "iburst",
 $servers,
 $multicast = false,
) {}

Parameter defaults

Adding default values to the parameters in classes and defined types makes your module easier to use. Use Hiera
data in your module to set parameter defaults. See Defining classes on page 733 for details about setting parameter
defaults with Hiera data. In simple cases, you can also specify the default values directly in the class or defined type.

Be sure to declare the data type of parameters, as this provides automatic type assertions.

Good: Parameter defaults set in the class with references to Hiera data:

class my_module (
 String $source,
 String $config,
) {
 # body of class
}

A hiera.yaml in the root of the module sets the hierarchy for assigning defaults:

version: 5
default_hierarchy:
- name: 'defaults'
 path: 'defaults.yaml'
 data_hash: yaml_data

And the file data/defaults.yaml specifies the actual default values:

my_module::source: 'default source value'
my_module::config: 'default config value'

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 563

This example places the values in the defaults hierarchy, which means that the defaults are not merged into overriding
values. To merge the defaults into those values, change the default_hierarchy to hierarchy.

If you are maintaining old code created prior to Puppet 4.9, you might encounter the use of a params.pp pattern.
This pattern makes maintenance and troubleshooting difficult — refactor such code to use the Hiera data-in-modules
pattern instead. See Adding Hiera data to a module on page 455 for a detailed example showing how to replace
params.pp with data.

Bad: params.pp

class my_module (
 String $source = $my_module::params::source,
 String $config = $my_module::params::config,
) inherits my_module::params {
 # body of class
}

Exported resources

Exported resources should be opt-in rather than opt-out. Your module should not be written to use exported resources
to function by default unless it is expressly required.

When using exported resources, name the property collect_exported.

Exported resources should be exported and collected selectively using a search expression, ideally allowing user-
defined tags as parameters so tags can be used to selectively collect by environment or custom fact.

Good:

define haproxy::frontend (
 $ports = undef,
 $ipaddress = [$::ipaddress],
 $bind = undef,
 $mode = undef,
 $collect_exported = false,
 $options = {
 'option' => [
 'tcplog',
],
 },
) {
 # body of define
}

Parameter indentation and alignment

Parameters to classes or defined types must be uniformly indented in two spaces from the title. The equals sign should
be aligned.

Good:

class profile::myclass (
 $var1 = 'default',
 $var2 = 'something else',
 $another = 'another default value',
) {

}

Good:

class ntp (

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 564

 Boolean $broadcastclient = false,
 Optional[Stdlib::Absolutepath] $config_dir = undef,
 Enum['running', 'stopped'] $service_ensure = 'running',
 String $package_ensure = 'present',
 # ...
) {
...
}

Bad: Too many level of indentation:

class profile::myclass (
 $var1 = 'default',
 $var2 = 'something else',
 $another = 'another default value',
) {

}

Bad: No indentation:

class profile::myclass (
$var1 = 'default',
$var2 = 'something else',
$another = 'another default value',
) {

}

Bad: Misaligned equals sign:

class profile::myclass (
 $var1 = 'default',
 $var2 = 'something else',
 $another = 'another default value',
) {

}

Class inheritance

In addition to scope and organization, there are some additional guidelines for handling classes in your module.

Don't use class inheritance; use data binding instead of params.pp pattern. Inheritance is used only for
params.pp, which is not recommended in Puppet 4.

If you use inheritance for maintaining older modules, do not use it across module namespaces. To satisfy cross-
module dependencies in a more portable way, include statements or relationship declarations. Only use class
inheritance for myclass::params parameter defaults. Accomplish other use cases by adding parameters or
conditional logic.

Good:

class ssh { ... }

class ssh::client inherits ssh { ... }

class ssh::server inherits ssh { ... }

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 565

Bad:

class ssh inherits server { ... }

class ssh::client inherits workstation { ... }

class wordpress inherits apache { ... }

Public modules

When declaring classes in publicly available modules, use include, contain, or require rather than class
resource declaration. This avoids duplicate class declarations and vendor lock-in.

Type signatures

We recommend always using type signatures for class and defined type parameters. Keep the parameters and = signs
aligned.

When dealing with very long type signatures, you can define type aliases and use short definitions. Good naming of
aliases can also serve as documentation, making your code easier to read and understand. Or, if necessary, you can
turn the 140 line character limit off. For more information on type signatures, see the Type data type.

Related information
Modules on page 567
Develop your module using consistent code and module structures to make it easier to update and maintain.

Variables
Reference variables in a clear, unambiguous way that is consistent with the Puppet style.

Referencing facts

When referencing facts, prefer the $facts hash to plain top-scope variables (such as $::operatingsystem).

Although plain top-scope variables are easier to write, the $facts hash is clearer, easier to read, and distinguishes
facts from other top-scope variables.

Namespacing variables

When referencing top-scope variables other than facts, explicitly specify absolute namespaces for clarity and
improved readability. This includes top-scope variables set by the node classifier and in the main manifest.

This is not necessary for:

• the $facts hash.
• the $trusted hash.
• the $server_facts hash.

These special variable names are protected; because you cannot create local variables with these names, they always
refer to top-scope variables.

Good:

$facts['operatingsystem']

Bad:

$::operatingsystem

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 566

Very bad:

$operatingsystem

Variable format

When defining variables you must only use numbers, lowercase letters, and underscores. Do not use upper-case letters
within a word, such as “CamelCase”, as it introduces inconsistency in style. You must not use dashes, as they are not
syntactically valid.

Good:

$server_facts
$total_number_of_entries
$error_count123

Bad:

$serverFacts
$totalNumberOfEntries
$error-count123

Conditionals
Conditional statements should follow Puppet code guidelines.

Simple resource declarations

Avoid mixing conditionals with resource declarations. When you use conditionals for data assignment, separate
conditional code from the resource declarations.

Good:

$file_mode = $facts['operatingsystem'] ? {
 'debian' => '0007',
 'redhat' => '0776',
 default => '0700',
}

file { '/tmp/readme.txt':
 ensure => file,
 content => "Hello World\n",
 mode => $file_mode,
}

Bad:

file { '/tmp/readme.txt':
 ensure => file,
 content => "Hello World\n",
 mode => $facts['operatingsystem'] ? {
 'debian' => '0777',
 'redhat' => '0776',
 default => '0700',
 }
}

Defaults for case statements and selectors

Case statements must have default cases. If you want the default case to be "do nothing," you must include it as an
explicit default: {} for clarity's sake.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 567

Case and selector values must be enclosed in quotation marks.

Selectors should omit default selections only if you explicitly want catalog compilation to fail when no value
matches.

Good:

case $facts['operatingsystem'] {
 'centos': {
 $version = '1.2.3'
 }
 'solaris': {
 $version = '3.2.1'
 }
 default: {
 fail("Module ${module_name} is not supported on ${::operatingsystem}")
 }
}

When setting the default case, keep in mind that the default case should cause the catalog compilation to fail if the
resulting behavior cannot be predicted on the platforms the module was built to be used on.

Conditional statement alignment

When using if/else statements, align in the following way:

if $something {
 $var = 'hour'
} elsif $something_else {
 $var = 'minute'
} else {
 $var = 'second'
}

For more information on if/else statements, see Conditional statements and expressions.

Modules
Develop your module using consistent code and module structures to make it easier to update and maintain.

Versioning

Your module must be versioned, and have metadata defined in the metadata.json file.

We recommend semantic versioning.

Semantic versioning, or SemVer, means that in a version number given as x.y.z:

• An increase in 'x' indicates major changes: backwards incompatible changes or a complete rewrite.
• An increase in 'y' indicates minor changes: the non-breaking addition of new features.
• An increase in 'z' indicates a patch: non-breaking bug fixes.

Module metadata

Every module must have metadata defined in the metadata.json file.

Your metadata should follow the following format:

{
 "name": "examplecorp-mymodule",
 "version": "0.1.0",
 "author": "Pat",
 "license": "Apache-2.0",
 "summary": "A module for a thing",

© 2024 Puppet, Inc., a Perforce company

http://semver.org/

Puppet | Developing Puppet code | 568

 "source": "https://github.com/examplecorp/examplecorp-mymodule",
 "project_page": "https://github.com/examplecorp/examplecorp-mymodule",
 "issues_url": "https://github.com/examplecorp/examplecorp-mymodules/
issues",
 "tags": ["things", "stuff"],
 "operatingsystem_support": [
 {
 "operatingsystem":"RedHat",
 "operatingsystemrelease": [
 "5.0",
 "6.0"
]
 },
 {
 "operatingsystem": "Ubuntu",
 "operatingsystemrelease": [
 "12.04",
 "10.04"
]
 }
],
 "dependencies": [
 { "name": "puppetlabs/stdlib", "version_requirement": ">= 3.2.0
 <5.0.0" },
 { "name": "puppetlabs/firewall", "version_requirement": ">= 0.4.0
 <5.0.0" },
]
}

For additional information regarding the metadata.json format, see Adding module metadata in metadata.json.

Dependencies

Hard dependencies must be declared explicitly in your module’s metadata.json file.

Soft dependencies should be called out in the README.md, and must not be enforced as a hard requirement in your
metadata.json. A soft dependency is a dependency that is only required in a specific set of use cases. For an example,
see the rabbitmq module.

Your hard dependency declarations should not be unbounded.

README

Your module should have a README in .md (or .markdown) format. READMEs help users of your module get
the full benefit of your work.

The Puppet README template offers a basic format you can use. If you create modules with Puppet Development
Kit or the puppet module generate command, the generated README includes the template. Using
the .md/.markdown format allows your README to be parsed and displayed by Puppet Strings, GitHub, and the
Puppet Forge.

You can find thorough, detailed information on writing a great README in Documenting modules on page 1001,
but in general your README should:

• Summarize what your module does.
• Note any setup requirements or limitations, such as "This module requires the puppetlabs-apache module

and only works on Ubuntu."
• Note any part of a user’s system the module might impact (for example, “This module overwrites everything in

animportantfile.conf.”).
• Describe how to customize and configure the module.
• Include usage examples and code samples for the common use cases for your module.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/rabbitmq#module-dependencies
https://github.com/puppetlabs/pdk-templates/blob/master/moduleroot_init/README.md.erb

Puppet | Developing Puppet code | 569

Documenting Puppet code

Use Puppet Strings code comments to document your Puppet classes, defined types, functions, and resource
types and providers. Strings processes the README and comments from your code into HTML or JSON format
documentation. This allows you and your users to generate detailed documentation for your module.

Include comments for each element (classes, functions, defined types, parameters, and so on) in your module. If used,
comments must precede the code for that element. Comments should contain the following information, arranged in
this order:

• A description giving an overview of what the element does.
• Any additional information about valid values that is not clear from the data type. For example, if the data type is

[String], but the value must specifically be a path.
• The default value, if any, for that element,

Multiline descriptions must be uniformly indented by at least one space:

@param config_epp Specifies a file to act as a EPP template for the config
 file.
Valid options: a path (absolute, or relative to the module path). Example
 value:
'ntp/ntp.conf.epp'. A validation error is thrown if you supply both this
 param **and**
the `config_template` param.

If you use Strings to document your module, include information about Strings in the Reference section of your
README so that your users know how to generate the documentation. See Puppet Strings documentation for details
on usage, installation, and correctly writing documentation comments.

If you do not include Strings code comments, you should include a Reference section in your README with a
complete list of all classes, types, providers, defined types, and parameters that the user can configure. Include a brief
description, the valid options, and the default values (if any).

For example, this is a parameter for the ntp module’s ntp class: package_ensure:

Data type: String.

Whether to install the NTP package, and what version to install. Values:
 'present', 'latest', or a specific version number.

Default value: 'present'.

For more details and examples, see the module documentation guide.

CHANGELOG

Your module should include a change log file called CHANGELOG.md or .markdown. Your change log should:

• Have entries for each release.
• List bugfixes and features included in the release.
• Specifically call out backwards-incompatible changes.

Examples

In the /examples directory, include example manifests that demonstrate major use cases for your module.

modulepath/apache/examples/{usecase}.pp

The example manifest should provide a clear example of how to declare the class or defined resource type. It
should also declare any classes required by the corresponding class to ensure puppet apply works in a limited,
standalone manner.

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppet-strings
https://github.com/puppetlabs/puppet-strings

Puppet | Developing Puppet code | 570

Testing

Use one or more of the following community tools for testing your code and style:

• puppet-lint tests your code for adherence to the style guidelines.
• metadata-json-lint tests your metadata.json for adherence to the style guidelines.
• For testing your module, we recommend rspec. rspec-puppet can help you write rspec tests for Puppet.

Files and paths on Windows
Puppet and Windows handle directory separators and line endings in files somewhat differently, so you must be
aware of the differences when you are writing manifests to manage Windows systems.

Directory separators in file paths

Several resource types (including file, exec, and package) take file paths as values for various attributes.
The Puppet language uses the backslash (\) as an escape character in quoted strings. However, Windows also uses
the backslash to separate directories in file paths, such as C:\Program Files\PuppetLabs. Additionally,
Windows file system APIs accept both backslashes and forward slashes in file paths, but some Windows programs
accept only backslashes.

Generally, if Puppet itself is interpreting the file path, or if the file path is meant for the primary server, use forward
slashes. If the file path is being passed directly to a Windows program, use backslashes. The following table lists
common directory path uses and what kind of slashes are required by each.

File path usage Slash type

Template paths, such as template('my_module/
content.erb').

Forward slash (/)

puppet:/// URLs. Forward slash (/)

The path attribute or title of a file resource. Forward slash (/) or backslash (\)

The source attribute of a package resource. Forward slash (/) or backslash (\)

Local paths in a file resource's source attribute. Forward slash (/) or backslash (\)

The command of an exec resource. However, some
executables, such as cmd.exe, require backslashes.

Forward slash (/) or backslash (\)

Any file paths included in the command of a
scheduled_task resource.

Backslash (\)

Any file paths included in the install_options of a
package resource.

Backslash (\)

Any file paths used for Windows PowerShell DSC
resources. For these resources, single quote strings
whenever possible.

Backslash (\)

Line endings in files

Windows uses CRLF line endings instead of *nix's LF line endings. Be aware of the following issues:

• If you specify the contents of a file with the content attribute, Puppet writes the content in binary mode. To
create files with CRLF line endings, specify the \r\n escape sequence as part of the content.

• When downloading a file to a Windows node with the source attribute, Puppet transfers the file in binary mode,
leaving the original newlines untouched.

• If you are using version control, such as Git, ensure that it is configured to use CRLF line endings.

© 2024 Puppet, Inc., a Perforce company

http://puppet-lint.com/
https://github.com/voxpupuli/metadata-json-lint
https://github.com/rodjek/rspec-puppet/#rspec-tests-for-your-puppet-manifests--modules

Puppet | Developing Puppet code | 571

• Non-file resource types that make partial edits to a system file, such as the host resource type, which
manages the %windir%\system32\drivers\etc\hosts file, manage their files in text mode and
automatically translate between Windows and *nix line endings.

Note: When writing your own resource types, you can get this behavior by using the flat file type.

Related information
Templates on page 934
Templates are written in a specialized templating language that generates text from data. Use templates to manage the
content of your Puppet configuration files via the content attribute of the file resource type.

Strings on page 889
Strings are unstructured text fragments of any length. They’re a common and useful data type.

Code comments
To add comments to your Puppet code, use shell-style or hash comments.

Hash comments begin with a hash symbol (#) and continue to the end of a line. You can start comments either at the
beginning of a line or partway through a line that began with code.

This is a comment
file {'/etc/ntp.conf': # This is another comment
 ensure => file,
 owner => root,
}

Variables
Variables store values so that those values can be accessed in code later.

After you've assigned a variable a value, you cannot reassign it. Variables depend on order of evaluation: you must
assign a variable a value before it can be resolved.

The following video gives you an overview of variables:

Note: Puppet contains built-in variables that you can use in your manifests. For a list of these, see the page on facts
and built-in variables.

Assigning variables

Prefix variable names with a dollar sign ($). Assign values to variables with the equal sign (=) assignment operator.

Variables accept values of any data type. You can assign literal values, or you can assign any statement that resolves
to a normal value, including expressions, functions, and other variables. The variable then contains the value that the
statement resolves to, rather than a reference to the statement.

$content = "some content\n"

Assign variables using their short name within their own scope. You cannot assign values in one scope from another
scope. For example, you can assign a value to the apache::params class's $vhostdir variable only from
within the apache::params class.

You can assign multiple variables at the same time from an array or hash.

To assign multiple variables from an array, you must specify an equal number of variables and values. If the number
of variables and values do not match, the operation fails. You can also use nested arrays. For example, all of the
variable assignments shown below are valid.

[$a, $b, $c] = [1,2,3] # $a = 1, $b = 2, $c = 3
[$a, [$b, $c]] = [1,[2,3]] # $a = 1, $b = 2, $c = 3

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/host_core

Puppet | Developing Puppet code | 572

[$a, $b] = [1, [2]] # $a = 1, $b = [2]
[$a, [$b]] = [1, [2]] # $a = 1, $b = 2

When you assign multiple variables with a hash, list the variables in an array on the left side of the assignment
operator, and list the hash on the right. Hash keys must match their corresponding variable name. This example
assigns a value of 10 to the $a variable and a value of 20 to the $b variable.

[$a, $b] = {a => 10, b => 20} # $a = 10, $b = 20

You can include extra key-value pairs in the hash, but all variables to the left of the operator must have a
corresponding key in the hash:

[$a, $c] = {a => 5, b => 10, c => 15, d => 22} # $a = 5, $c = 15

Puppet allows a given variable to be assigned a value only one time within a given scope. This is a little different
from most programming languages. You cannot change the value of a variable, but you can assign a different value to
the same variable name in a new scope:

scope-example.pp
Run with puppet apply --certname www1.example.com scope-example.pp
$myvar = "Top scope value"
node 'www1.example.com' {
 $myvar = "Node scope value"
 notice("from www1: $myvar")
 include myclass
}
node 'db1.example.com' {
 notice("from db1: $myvar")
 include myclass
}
class myclass {
 $myvar = "Local scope value"
 notice("from myclass: $myvar")
}

Resolution

You can use the name of a variable in any place where a value of the variable's data type would be accepted,
including expressions, functions, and resource attributes. Puppet replaces the name of the variable with its value. By
default, unassigned variables have a value of undef. See the section about unassigned variables and strict mode for
more details.

In these examples, the content parameter value resolves to whatever value has been assigned to the $content
variable. The $address_array variable resolves to an array of the values assigned to the $address1,
$address2, and $address3 variables:

file {'/tmp/testing':
 ensure => file,
 content => $content,
}

$address_array = [$address1, $address2, $address3]

Interpolation

Puppet can resolve variables that are included in double-quoted strings; this is called interpolation. Inside a double-
quoted string, surround the name of the variable (the portion after the $) with curly braces, such as ${var_name}.
This syntax is optional, but it helps to avoid ambiguity and allows variables to be placed directly next to non-
whitespace characters. These optional curly braces are permitted only inside strings.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 573

For example, the curly braces make it easier to quickly identify the variable $homedir.

$rule = "Allow * from $ipaddress"
file { "${homedir}/.vim":
 ensure => directory,
 ...
}

Scope

The area of code where a given variable is visible is dictated by its scope. Variables in a given scope are available
only within that scope and its child scopes, and any local scope can locally override the variables it receives from its
parents. See the section on scope for complete details.

You can access out-of-scope variables from named scopes by using their qualified names, which include
namespaces representing the variable's scope. The scope is where the variable is defined and assigned a value. For
example, the qualified name of this $vhost variable shows that the variable is found and assigned a value in the
apache::params class:

$vhostdir = $apache::params::vhostdir

Variables can be assigned outside of any class, type, or node definition. These top scope variables have an empty
string as their first namespace segment, so that the qualified name of a top scope variable begins with a double colon,
such as $::osfamily.

Unassigned variables and strict mode

By default, you can access variables that have never had values assigned to them. If you do, their value is undef.
This can be a problem, because an unassigned variable is often an accident or a typo. To make unassigned variable
usage return an error, so that you can find and fix the problem, enable strict mode by setting strict_variables
= true strict_variables in the puppet.conf file on your primary server and on any nodes that run puppet
apply. For details about this setting, see the configuration page.

Related information
Expressions and operators on page 744
Expressions are statements that resolve to values. You can use expressions almost anywhere a value is required.
Expressions can be compounded with other expressions, and the entire combined expression resolves to a single
value.

Function calls on page 760
Functions are plug-ins, written in Ruby, that you can call during catalog compilation. A call to any function is an
expression that resolves to a value. Most functions accept one or more values as arguments, and return a resulting
value.

Naming variables

Some variable names are reserved; for detailed information, see the reserved name page.

Variable names

Variable names are case-sensitive and must begin with a dollar sign ($). Most variable names must start with a
lowercase letter or an underscore. The exception is regex capture variables, which are named with only numbers.

Variable names can include:

• Uppercase and lowercase letters
• Numbers
• Underscores (_). If the first character is an underscore, access that variable only from its own local scope.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 574

Qualified variable names are prefixed with the name of their scope and the double colon (::) namespace
separator. For example, the $vhostdir variable from the apache::params class would be
$apache::params::vhostdir.

Optionally, the name of the very first namespace can be empty, representing the top namespace. The main reason
to namespace this way is to indicate to anyone reading your code that you're accessing a top-scope variable, such as
$::is_virtual.

You can also use a regular expression for variable names. Short variable names match the following regular
expression:

\A\$[a-z0-9_][a-zA-Z0-9_]*\Z

Qualified variable names match the following regular expression:

\A\$([a-z][a-z0-9_]*)?(::[a-z][a-z0-9_]*)*::[a-z0-9_][a-zA-Z0-9_]*\Z

Resources
Resources are the fundamental unit for modeling system configurations. Each resource describes the desired state
for some aspect of a system, like a specific service or package. When Puppet applies a catalog to the target system, it
manages every resource in the catalog, ensuring the actual state matches the desired state.

The following video gives you an overview of resources:

Resources contained in classes and defined types share the relationships of those classes and defined types. Resources
are not subject to scope: a resource in any area of code can be referenced from any other area of code.

A resource declaration adds a resource to the catalog and tells Puppet to manage that resource's state.

When Puppet applies the compiled catalog, it:

1. Reads the actual state of the resource on the target system.
2. Compares the actual state to the desired state.
3. If necessary, changes the system to enforce the desired state.
4. Logs any changes made to the resource. These changes appear in Puppet agent's log and in the run report, which is

sent to the primary server and forwarded to any specified report processors.

If the catalog doesn't contain a particular resource, Puppet does nothing with whatever that resource described. If you
remove a package resource from your manifests, Puppet doesn't uninstall the package; instead, it just ignores it. To
remove a package, manage it as a resource and set ensure => absent.

You can delay adding resources to the catalog. For example, classes and defined types can contain groups of
resources. These resources are managed only if you add that class or defined resource to the catalog. Virtual resources
are added to the catalog only after they are realized.

Resource declarations

At minimum, every resource declaration has a resource type, a title, and a set of attributes:

<TYPE> { '<TITLE>': <ATTRIBUTE> => <VALUE>, }

The resource title and attributes are called the resource body. A resource declaration can have one resource body or
multiple resource bodies of the same resource type.

Resource declarations are expressions in the Puppet language — they always have a side effect of adding a resource
to the catalog, but they also resolve to a value. The value of a resource declaration is an array of resource references,
with one reference for each resource the expression describes.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 575

A resource declaration has extremely low precedence; in fact, it's even lower than the variable assignment operator
(=). This means that if you use a resource declaration for its value, you must surround it with parentheses to associate
it with the expression that uses the value.

If a resource declaration includes more than one resource body, it declares multiple resources of that resource type.
The resource body is a title and a set of attributes; each body must be separated from the next one with a semicolon.
Each resource in a declaration is almost completely independent of the others, and they can have completely different
values for their attributes. The only connections between resources that share an expression are:

• They all have the same resource type.
• They can all draw from the same pool of default values, if a resource body with the title default is present.

Resource uniqueness

Each resource must be unique; Puppet does not allow you to declare the same resource twice. This is to prevent
multiple conflicting values from being declared for the same attribute. Puppet uses the resource title and the
name attribute or namevar to identify duplicate resources — if either the title or the name is duplicated within a
given resource type, catalog compilation fails. See the page about resource syntax for details about resource titles and
namevars. To provide the same resource for multiple classes, use a class or a virtual resource to add it to the catalog
in multiple places without duplicating it. See classes and virtual resources for more information.

Relationships and ordering

By default, Puppet applies unrelated resources in the order in which they're written in the manifest. If a resource
must be applied before or after some other resource, declare a relationship between them to show that their order
isn't coincidental. You can also make changes in one resource cause a refresh of some other resource. See the
Relationships and ordering page for more information.

Otherwise, you can customize the default order in which Puppet applies resources with the ordering setting. See the
configuration page for details about this setting.

Resource types

Every resource is associated with a resource type, which determines the kind of configuration it manages. Puppet has
built-in resource types such as file, service, and package. See the resource type reference for a complete list
and information about the built-in resource types.

You can also add new resource types to Puppet:

• Defined types are lightweight resource types written in the Puppet language.
• Custom resource types are written in Ruby and have the same capabilities as Puppet's built-in types.

Title

A resource's title is a string that uniquely identifies the resource to Puppet. In a resource declaration, the title is the
identifier after the first curly brace and before the colon. For example, in this file resource declaration, the title is /
etc/passwd:

file { '/etc/passwd':
 owner => 'root',
 group => 'root',
}

Titles must be unique per resource type. You can have both a package and a service titled "ntp," but you can only
have one service titled "ntp." Duplicate titles cause compilation to fail.

The title of a resource differs from the namevar of the resource. Whereas the title identifies the resource to Puppet
itself, the namevar identifies the resource to the target system and is usually specified by the resource's name
attribute. The resource title doesn't have to match the namevar, but you'll often want it to: the value of the namevar
attribute defaults to the title, so using the name in the title can save you some typing.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 576

If a resource type has multiple namevars, the type specifies whether and how the title maps to those namevars. For
example, the package type uses the provider attribute to help determine uniqueness, but that attribute has no
special relationship with the title. See each type's documentation for details about how it maps title to namevars.

Attributes

Attributes describe the desired state of the resource; each attribute handles some aspect of the resource. For example,
the file type has a mode attribute that specifies the permissions for the file.

Each resource type has its own set of available attributes; see the resource type reference for a complete list. Most
resource types have a handful of crucial attributes and a larger number of optional ones. Attributes accept certain data
types, such as strings, numbers, hashes, or arrays. Each attribute that you declare must have a value. Most attributes
are optional, which means they have a default value, so you do not have to assign a value. If an attribute has no
default, it is considered required, and you must assign it a value.

Most resource types contain an ensure attribute. This attribute generally manages the most basic state of the
resource on the target system, such as whether a file exists, whether a service is running or stopped, or whether a
package is installed or uninstalled. The values accepted for the ensure attribute vary by resource type. Most accept
present and absent, but there are variations. Check the reference for each resource type you are working with.

Tip: Resource and type attributes are sometimes referred to as parameters. Puppet also has properties, which are
slightly different from parameters: properties correspond to something measurable on the target system, whereas
parameters change how Puppet manages a resource. A property always represents a concrete state on the target
system. When talking about resource declarations in Puppet, parameter is a synonym for attribute.

Namevars and name

Every resource on a target system must have a unique identity; you cannot have two services, for example, with the
same name. This identifying attribute in Puppet is known as the namevar.

Each resource type has an attribute that is designated to serve as the namevar. For most resource types, this is the
name attribute, but some types use other attributes, such as the file type, which uses path, the file's location
on disk, for its namevar. If a type's namevar is an attribute other than name, this is listed in the type reference
documentation.

Most types have only one namevar. With a single namevar, the value must be unique per resource type. There are a
few rare exceptions to this rule, such as the exec type, where the namevar is a command. However, some resource
types, such as package, have multiple namevar attributes that create a composite namevar. For example, both the
yum provider and the gem provider have mysql packages, so both the name and the provider attributes are
namevars, and Puppet uses both to identify the resource.

The namevar differs from the resource's title, which identifies a resource to Puppet's compiler rather than to the target
system. In practice, however, a resource's namevar and the title are often the same, because the namevar usually
defaults to the title. If you don't specify a value for a resource's namevar when you declare the resource, Puppet uses
the resource's title.

You might want to specify different a namevar that is different from the title when you want a consistently titled
resource to manage something that has different names on different platforms. For example, the NTP service might be
ntpd on Red Hat systems, but ntp on Debian and Ubuntu. You might title the service "ntp," but set its namevar ---
the name attribute --- according to the operating system. Other resources can then form relationships to the resource
without the title changing.

Metaparameters

Some attributes in Puppet can be used with every resource type. These are called metaparameters. These don't map
directly to system state. Instead, metaparameters affect Puppet's behavior, usually specifying the way in which
resources relate to each other.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 577

The most commonly used metaparameters are for specifying order relationships between resources. See the
documentation on relationships and ordering for details about those metaparameters. See the full list of available
metaparameters in the metaparameter reference.

Resource syntax
You can accomplish a lot with just a few resource declaration features, or you can create more complex declarations
that do more.

Basic syntax

The simplified form of a resource declaration includes:

• The resource type, which is a word with no quotes.
• An opening curly brace {.
• The title, which is a string.
• A colon (:).
• Optionally, any number of attribute and value pairs, each of which consists of:

• An attribute name, which is a lowercase word with no quotes.
• A => (called an arrow, "fat comma," or "hash rocket").
• A value, which can have any [data type][datatype].
• A trailing comma.

• A closing curly brace (}).

You can use any amount of whitespace in the Puppet language.

This example declares a file resource with the title /etc/passwd. This declaration's ensure attribute ensures that
the specified file is created, if it does not already exist on the node. The rest of the declaration sets values for the file's
owner, group, and mode attributes.

file { '/etc/passwd':
 ensure => file,
 owner => 'root',
 group => 'root',
 mode => '0600',
}

Complete syntax

By creating more complex resource declarations, you can:

• Describe many resources at once.
• Set a group of attributes from a hash with the * attribute.
• Set default attributes.
• Specify an abstract resource type.
• Amend or override attributes after a resource is already declared.

The complete generalized form of a resource declaration expression is:

• The resource type, which can be one of:

• A lowercase word with no quotes, such as file.
• A resource type data type, such as File, Resource[File], or Resource['file']. It must have a type

but not a title.
• An opening curly brace ({).

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 578

• One or more resource bodies, separated with semicolons (;). Each resource body consists of:

• A title, which can be one of:

• A string.
• An array of strings, which declares multiple resources.
• The special value default, which sets default attribute values for other resource bodies in the same

expression.
• A colon (:).
• Optionally, any number of attribute and value pairs, separated with commas (,). Each attribute/value pair

consists of:

• An attribute name, which can be one of:

• A lowercase word with no quotes.
• The special attribute *, called a "splat," which takes a hash and sets other attributes.
• A =>, called an arrow, a "fat comma," or a "hash rocket".
• A value, which can have any data type.

• Optionally, a trailing comma after the last attribute/value pair.
• Optionally, a trailing semicolon after the last resource body.
• A closing curly brace (})

<TYPE> { default: * => <HASH OF ATTRIBUTE/VALUE PAIRS>, <ATTRIBUTE> =>
 <VALUE>, ; '<TITLE>': * => <HASH OF ATTRIBUTE/VALUE PAIRS>, <ATTRIBUTE> =>
 <VALUE>, ; '<NEXT TITLE>': ... ; ['<TITLE'>, '<TITLE>', '<TITLE>']: ... ;

Resource declaration default attributes

If a resource declaration includes a resource body with a title of default, Puppet doesn't create a new resource
named "default." Instead, every other resource in that declaration uses attribute values from the default body if it
doesn't have an explicit value for one of those attributes. This is also known as "per-expression defaults."

Resource declaration defaults are useful because it lets you set many attributes at once, but you can still override
some of them.

This example declares several different files, all using the default values set in the default
resource body. However, the mode value for the the files in the last array (['ssh_config',
'ssh_host_dsa_key.pub'....) is set explicitly instead of using the default.

file {
 default:
 ensure => file,
 owner => "root",
 group => "wheel",
 mode => "0600",
 ;
 ['ssh_host_dsa_key', 'ssh_host_key', 'ssh_host_rsa_key']:
 # use all defaults
 ;
 ['ssh_config', 'ssh_host_dsa_key.pub', 'ssh_host_key.pub',
 'ssh_host_rsa_key.pub', 'sshd_config']:
 # override mode
 mode => "0644",
 ;
}

The position of the default body in a resource declaration doesn't matter; resources above and below it all use the
default attributes if applicable.You can only have one default resource body per resource declaration.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 579

Setting attributes from a hash

You can set attributes for a resource by using the splat attribute, which uses the splat or asterisk character *, in the
resource body.

The value of the splat (*) attribute must be a hash where:

• Each key is the name of a valid attribute for that resource type, as a string.
• Each value is a valid value for the attribute it's assigned to.

This sets values for that resource's attributes, using every attribute and value listed in the hash.

For example, the splat attribute in this declaration sets the owner, group, and mode settings for the file resource.

$file_ownership = {
 "owner" => "root",
 "group" => "wheel",
 "mode" => "0644",
}

file { "/etc/passwd":
 ensure => file,
 * => $file_ownership,
}

You cannot set any attribute more than once for a given resource; if you try, Puppet raises a compilation error. This
means that:

• If you use a hash to set attributes for a resource, you cannot set a different, explicit value for any of those
attributes. For example, if mode is present in the hash, you can't also set mode => "0644" in that resource
body.

• You can't use the * attribute multiple times in one resource body, since the splat itself is an attribute.

To use some attributes from a hash and override others, either use a hash to set per-expression defaults, as described
in the section on resource declaration defaults, or use the merging operator, + to combine attributes from two hashes,
with the right-hand hash overriding the left-hand one.

Abstract resource types

Because a resource declaration can accept a resource type data type as its resource type , you can use a
Resource[<TYPE>] value to specify a non-literal resource type, where the <TYPE> portion can be read from a
variable.That is, the following three examples are equivalent to each other:

file { "/tmp/foo": ensure => file, } File { "/tmp/foo": ensure => file, }
 Resource[File] { "/tmp/foo": ensure => file, }

$mytype = File
Resource[$mytype] { "/tmp/foo": ensure => file, }

$mytypename = "file"
Resource[$mytypename] { "/tmp/foo": ensure => file, }

This lets you declare resources without knowing in advance what type of resources they'll be, which can enable
transformations of data into resources.

Arrays of titles

If you specify an array of strings as the title of a resource body, Puppet creates multiple resources with the same set of
attributes. This is useful when you have many resources that are nearly identical.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 580

For example:

$rc_dirs = [
 '/etc/rc.d', '/etc/rc.d/init.d','/etc/rc.d/rc0.d',
 '/etc/rc.d/rc1.d', '/etc/rc.d/rc2.d', '/etc/rc.d/rc3.d',
 '/etc/rc.d/rc4.d', '/etc/rc.d/rc5.d', '/etc/rc.d/rc6.d',
]

file { $rc_dirs:
 ensure => directory,
 owner => 'root',
 group => 'root',
 mode => '0755',
}

If you do this, you must let the namevar attributes of these resources default to their titles. You can't specify an
explicit value for the namevar, because it applies to all of the resources.

Adding or modifying attributes

Although you cannot declare the same resource twice, you can add attributes to an resource that has already been
declared. In certain circumstances, you can also override attributes. You can amend attributes with either a resource
reference, a collector, or from a hash using the splat (*) attribute.

To amend attributes with the splat attribute, see the section about setting attributes from a hash.

To amend attributes with a resource reference, add a resource reference attribute block to the resource that's already
declared. Normally, you can only use resource reference blocks to add previously unmanaged attributes to a resource;
it cannot override already-specified attributes. The general form of a resource reference attribute block is:

• A resource reference to the resource in question
• An opening curly brace
• Any number of attribute => value pairs
• A closing curly brace

For example, this resource reference attribute block amends values for the owner, group, and mode attributes:

file {'/etc/passwd':
 ensure => file,
}

File['/etc/passwd'] {
 owner => 'root',
 group => 'root',
 mode => '0640',
}

You can also amend attributes with a collector.

The general form of a collector attribute block is:

• A resource collector that matches any number of resources
• An opening curly brace
• Any number of attribute => value (or attribute +> value) pairs
• A closing curly brace

For resource attributes that accept multiple values in an array, such as the relationship metaparameters, you can add
to the existing values instead of replacing them by using the "plusignment" (+>) keyword instead of the usual hash
rocket (=>). For details, see appending to attributes in the classes documentation.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 581

This example amends the owner, group, and mode attributes of any resources that match the collector:

class base::linux {
 file {'/etc/passwd':
 ensure => file,
 }
 ...}

include base::linux

File <| tag == 'base::linux' |> {
 owner => 'root',
 group => 'root',
 mode => '0640',
}

CAUTION: Be very careful when amending attributes with a collector. Test with --noop to see what
changes your code would make.

• It can override other attributes you've already specified, regardless of class inheritance.
• It can affect large numbers of resources at one time.
• It implicitly realizes any virtual resources the collector matches.
• Because it ignores class inheritance, it can override the same attribute more than one time, which results in

an evaluation order race where the last override wins.

Local resource defaults

Because resource default statements are subject to dynamic scope, you can't always tell what areas of code will be
affected. Generally, do not include classic resource default statements anywhere other than in your site manifest
(site.pp). See the resource defaults documentation for details. Whenever possible, use resource declaration
defaults, also known as per-expression defaults.

However, resource default statements can be powerful, allowing you to set important defaults, such as file
permissions, across resources. Setting local resource defaults is a way to protect your classes and defined types from
accidentally inheriting defaults from classic resource default statements.

To set local resource defaults, define your defaults in a variable and re-use them in multiple places, by combining
resource declaration defaults and setting attributes from a hash.

This example defines defaults in a $file_defaults variable, and then includes the variable in a resource
declaration default with a hash.

class mymodule::params {
 $file_defaults = {
 mode => "0644",
 owner => "root",
 group => "root",
 }
 # ...
}

class mymodule inherits mymodule::params {
 file { default: *=> $mymodule::params::file_defaults;
 "/etc/myconfig":
 ensure => file,
 ;
 }
}

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 582

Resource types
Every resource (file, user, service, package, and so on) is associated with a resource type within the Puppet language.
The resource type defines the kind of configuration it manages. This section provides information about the resource
types that are built into Puppet.

• Resource Type Reference (Single-Page) on page 582
• Core types cheat sheet on page 645
This page provides a reference guide for the core Puppet types: package, file, service, notify, exec,
cron, user, and group.
• Optional resource types for Windows on page 650
In addition to the resource types included with Puppet, you can install custom resource types as modules from the
Forge. This is especially useful when managing Windows systems, because there are several important Windows-
specific resource types that are developed as modules rather than as part of core Puppet.
• Resource Type: exec on page 651
• Using exec on Windows on page 657
Puppet uses the same exec resource type on both *nix and Windows systems, and there are a few Windows-specific
best practices and tips to keep in mind.
• Resource Type: file on page 658
• Using file on Windows on page 670
Use Puppet's built-in file resource type to manage files and directories on Windows, including ownership, group,
permissions, and content, with the following Windows-specific notes and tips.
• Resource Type: filebucket on page 672
• Resource Type: group on page 673
• Using user and group on Windows on page 677
Use the built-in user and group resource types to manage user and group accounts on Windows.
• Resource types overview on page 679
• Resource Type: notify on page 681
• Resource Type: package on page 682
• Using package on Windows on page 697
The built-in package resource type handles many different packaging systems on many operating systems, so not
all features are relevant everywhere. This page offers guidance and tips for working with package on Windows.
• Resource Type: resources on page 700
• Resource Type: schedule on page 701
• Resource Type: service on page 703
• Using service on page 713
Puppet can manage services on nearly all operating systems.This page offers operating system-specific advice and
best practices for working with service.
• Resource Type: stage on page 714
• Resource Type: tidy on page 715
• Resource Type: user on page 717

Resource Type Reference (Single-Page)

NOTE: This page was generated from the Puppet source code on 2022-02-07 10:11:20 -0800

About resource types
Built-in types and custom types

This is the documentation for Puppet's built-in resource types and providers. Additional resource types are distributed
in Puppet modules.

You can find and install modules by browsing the Puppet Forge. See each module's documentation for information on
how to use its custom resource types. For more information about creating custom types, see Custom resources.

As of Puppet 6.0, some resource types were removed from Puppet and repackaged as individual modules.
These supported type modules are still included in the puppet-agent package, so you don't have to

© 2024 Puppet, Inc., a Perforce company

http://forge.puppet.com

Puppet | Developing Puppet code | 583

download them from the Forge. See the complete list of affected types in the supported type modules
section.

Declaring resources

To manage resources on a target system, declare them in Puppet manifests. For more details, see the resources page of
the Puppet language reference.

You can also browse and manage resources interactively using the puppet resource subcommand; run puppet
resource --help for more information.

Namevars and titles

All types have a special attribute called the namevar. This is the attribute used to uniquely identify a resource on the
target system.

Each resource has a specific namevar attribute, which is listed on this page in each resource's reference. If you don't
specify a value for the namevar, its value defaults to the resource's title.

Example of a title as a default namevar:

file { '/etc/passwd':
 owner => 'root',
 group => 'root',
 mode => '0644',
}

In this code, /etc/passwd is the title of the file resource.

The file type's namevar is path. Because we didn't provide a path value in this example, the value defaults to the
title, /etc/passwd.

Example of a namevar:

file { 'passwords':
 path => '/etc/passwd',
 owner => 'root',
 group => 'root',
 mode => '0644',

This example is functionally similar to the previous example. Its path namevar attribute has an explicitly set value
separate from the title, so its name is still /etc/passwd.

Other Puppet code can refer to this resource as File['/etc/passwd'] to declare relationships.

Attributes, parameters, properties

The attributes (sometimes called parameters) of a resource determine its desired state. They either directly modify
the system (internally, these are called "properties") or they affect how the resource behaves (for instance, adding a
search path for exec resources or controlling directory recursion on file resources).

Providers

Providers implement the same resource type on different kinds of systems. They usually do this by calling out to
external commands.

Although Puppet automatically selects an appropriate default provider, you can override the default with the
provider attribute. (For example, package resources on Red Hat systems default to the yum provider, but you
can specify provider => gem to install Ruby libraries with the gem command.)

Providers often specify binaries that they require. Fully qualified binary paths indicate that the binary must exist at
that specific path, and unqualified paths indicate that Puppet searches for the binary using the shell path.

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#supported-type-modules-in-puppet-agent

Puppet | Developing Puppet code | 584

Features

Features are abilities that some providers might not support. Generally, a feature corresponds to some allowed values
for a resource attribute.

This is often the case with the ensure attribute. In most types, Puppet doesn't create new resources when omitting
ensure but still modifies existing resources to match specifications in the manifest. However, in some types this
isn't always the case, or additional values provide more granular control. For example, if a package provider
supports the purgeable feature, you can specify ensure => purged to delete configuration files installed by
the package.

Resource types define the set of features they can use, and providers can declare which features they provide.

Puppet 6.0 type changes

In Puppet 6.0, we removed some of Puppet's built-in types and moved them into individual modules.

Supported type modules in puppet-agent

The following types are included in supported modules on the Forge. However, they are also included in the
puppet-agent package, so you do not have to install them separately. See each module's README for detailed
information about that type.

• augeas

• cron

• host

• mount

• scheduled_task

• selboolean

• selmodule

• ssh_authorized_key

• sshkey

• yumrepo

• zfs

• zone

• zpool

Type modules available on the Forge

The following types are contained in modules that are maintained, but are not repackaged into Puppet agent. If you
need to use them, you must install the modules separately.

• k5login

• mailalias

• maillist

Deprecated types

The following types were deprecated with Puppet 6.0.0. They are available in modules, but are not updated. If you
need to use them, you must install the modules separately.

• computer

• interface (Use the updated cisco_ios module instead.
• macauthorization

• mcx

• The Nagios types
• router (Use the updated cisco_ios module instead.
• vlan (Use the updated cisco_ios module instead.

Puppet core types

For a list of core Puppet types, see the core types cheat sheet.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/augeas_core
https://forge.puppet.com/puppetlabs/cron_core
https://forge.puppet.com/puppetlabs/host_core
https://forge.puppet.com/puppetlabs/mount_core
https://forge.puppet.com/puppetlabs/scheduled_task
https://forge.puppet.com/puppetlabs/selinux_core
https://forge.puppet.com/puppetlabs/selinux_core
https://forge.puppet.com/puppetlabs/sshkeys_core
https://forge.puppet.com/puppetlabs/sshkeys_core
https://forge.puppet.com/puppetlabs/yumrepo_core
https://forge.puppet.com/puppetlabs/zfs_core
https://forge.puppet.com/puppetlabs/zone_core
https://forge.puppet.com/puppetlabs/zfs_core
https://forge.puppet.com/puppetlabs/k5login_core
https://forge.puppet.com/puppetlabs/mailalias_core
https://forge.puppet.com/puppetlabs/maillist_core
https://forge.puppet.com/puppetlabs/macdslocal_core
https://github.com/puppetlabs/puppetlabs-network_device_core
https://forge.puppet.com/puppetlabs/cisco_ios/readme
https://forge.puppet.com/puppetlabs/macdslocal_core
https://forge.puppet.com/puppetlabs/macdslocal_core
https://forge.puppet.com/puppetlabs/nagios_core
https://github.com/puppetlabs/puppetlabs-network_device_core
https://forge.puppet.com/puppetlabs/cisco_ios/readme
https://github.com/puppetlabs/puppetlabs-network_device_core
https://forge.puppet.com/puppetlabs/cisco_ios/readme

Puppet | Developing Puppet code | 585

exec

• Attributes
• Providers

Description

Executes external commands.

Any command in an exec resource must be able to run multiple times without causing harm --- that is, it must be
idempotent. There are three main ways for an exec to be idempotent:

• The command itself is already idempotent. (For example, apt-get update.)
• The exec has an onlyif, unless, or creates attribute, which prevents Puppet from running the command

unless some condition is met. The onlyif and unless commands of an exec are used in the process of
determining whether the exec is already in sync, therefore they must be run during a noop Puppet run.

• The exec has refreshonly => true, which allows Puppet to run the command only when some other
resource is changed. (See the notes on refreshing below.)

The state managed by an exec resource represents whether the specified command needs to be executed during the
catalog run. The target state is always that the command does not need to be executed. If the initial state is that the
command does need to be executed, then successfully executing the command transitions it to the target state.

The unless, onlyif, and creates properties check the initial state of the resource. If one or more of these
properties is specified, the exec might not need to run. If the exec does not need to run, then the system is already in
the target state. In such cases, the exec is considered successful without actually executing its command.

A caution: There's a widespread tendency to use collections of execs to manage resources that aren't covered by an
existing resource type. This works fine for simple tasks, but once your exec pile gets complex enough that you really
have to think to understand what's happening, you should consider developing a custom resource type instead, as it is
much more predictable and maintainable.

Duplication: Even though command is the namevar, Puppet allows multiple exec resources with the same
command value.

Refresh: exec resources can respond to refresh events (via notify, subscribe, or the ~> arrow). The refresh
behavior of execs is non-standard, and can be affected by the refresh and refreshonly attributes:

• If refreshonly is set to true, the exec runs only when it receives an event. This is the most reliable way to use
refresh with execs.

• If the exec has already run and then receives an event, it runs its command up to two times. If an onlyif,
unless, or creates condition is no longer met after the first run, the second run does not occur.

• If the exec has already run, has a refresh command, and receives an event, it runs its normal command. Then,
if any onlyif, unless, or creates conditions are still met, the exec runs its refresh command.

• If the exec has an onlyif, unless, or creates attribute that prevents it from running, and it then receives an
event, it still will not run.

• If the exec has noop => true, would otherwise have run, and receives an event from a non-noop resource, it
runs once. However, if it has a refresh command, it runs that instead of its normal command.

In short: If there's a possibility of your exec receiving refresh events, it is extremely important to make sure the run
conditions are restricted.

Autorequires: If Puppet is managing an exec's cwd or the executable file used in an exec's command, the exec
resource autorequires those files. If Puppet is managing the user that an exec should run as, the exec resource
autorequires that user.

Attributes

exec { 'resource title':
 command => # (namevar) The actual command to execute. Must either
 be...
 creates => # A file to look for before running the command...
 cwd => # The directory from which to run the command. If

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-providers
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attribute-command
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attribute-creates
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attribute-cwd

Puppet | Developing Puppet code | 586

 environment => # An array of any additional environment variables
 group => # The group to run the command as. This seems to...
 logoutput => # Whether to log command output in addition to...
 onlyif => # A test command that checks the state of the...
 path => # The search path used for command execution...
 provider => # The specific backend to use for this `exec...
 refresh => # An alternate command to run when the `exec...
 refreshonly => # The command should only be run as a refresh...
 returns => # The expected exit code(s). An error will be...
 timeout => # The maximum time the command should take. If...
 tries => # The number of times execution of the command...
 try_sleep => # The time to sleep in seconds between...
 umask => # Sets the umask to be used while executing this...
 unless => # A test command that checks the state of the...
 user => # The user to run the command as. > **Note:*...
 # ...plus any applicable metaparameters.
}

command

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The actual command to execute. Must either be fully qualified or a search path for the command must be provided. If
the command succeeds, any output produced will be logged at the instance's normal log level (usually notice), but
if the command fails (meaning its return code does not match the specified code) then any output is logged at the err
log level.

Multiple exec resources can use the same command value; Puppet only uses the resource title to ensure execs are
unique.

On *nix platforms, the command can be specified as an array of strings and Puppet will invoke it using the more
secure method of parameterized system calls. For example, rather than executing the malicious injected code, this
command will echo it out:

command => ['/bin/echo', 'hello world; rm -rf /']

(# Back to exec attributes)

creates

A file to look for before running the command. The command will only run if the file doesn't exist.

This parameter doesn't cause Puppet to create a file; it is only useful if the command itself creates a file.

exec { 'tar -xf /Volumes/nfs02/important.tar':
 cwd => '/var/tmp',
 creates => '/var/tmp/myfile',
 path => ['/usr/bin', '/usr/sbin',],
}

In this example, myfile is assumed to be a file inside important.tar. If it is ever deleted, the exec will bring it
back by re-extracting the tarball. If important.tar does not actually contain myfile, the exec will keep running
every time Puppet runs.

(# Back to exec attributes)

cwd

The directory from which to run the command. If this directory does not exist, the command will fail.

(# Back to exec attributes)

environment

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attribute-environment
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attribute-group
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attribute-logoutput
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attribute-onlyif
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attribute-path
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attribute-provider
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attribute-refresh
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attribute-refreshonly
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attribute-returns
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attribute-timeout
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attribute-tries
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attribute-try_sleep
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attribute-umask
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attribute-unless
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attribute-user
https://puppet.com/docs/puppet/latest/metaparameter.html
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attributes

Puppet | Developing Puppet code | 587

An array of any additional environment variables you want to set for a command, such as ['HOME=/root',
'MAIL=root@example.com']. Note that if you use this to set PATH, it will override the path attribute.
Multiple environment variables should be specified as an array.

(# Back to exec attributes)

group

The group to run the command as. This seems to work quite haphazardly on different platforms -- it is a platform
issue not a Ruby or Puppet one, since the same variety exists when running commands as different users in the shell.

(# Back to exec attributes)

logoutput

Whether to log command output in addition to logging the exit code. Defaults to on_failure, which only logs the
output when the command has an exit code that does not match any value specified by the returns attribute. As
with any resource type, the log level can be controlled with the loglevel metaparameter.

Valid values are true, false, on_failure.

(# Back to exec attributes)

onlyif

A test command that checks the state of the target system and restricts when the exec can run. If present, Puppet
runs this test command first, and only runs the main command if the test has an exit code of 0 (success). For example:

exec { 'logrotate':
 path => '/usr/bin:/usr/sbin:/bin',
 provider => shell,
 onlyif => 'test `du /var/log/messages | cut -f1` -gt 100000',
}

This would run logrotate only if that test returns true.

Note that this test command runs with the same provider, path, user, cwd, and group as the main command.
If the path isn't set, you must fully qualify the command's name.

Since this command is used in the process of determining whether the exec is already in sync, it must be run during
a noop Puppet run.

This parameter can also take an array of commands. For example:

onlyif => ['test -f /tmp/file1', 'test -f /tmp/file2'],

or an array of arrays. For example:

onlyif => [['test', '-f', '/tmp/file1'], 'test -f /tmp/file2']

This exec would only run if every command in the array has an exit code of 0 (success).

(# Back to exec attributes)

path

The search path used for command execution. Commands must be fully qualified if no path is specified. Paths can be
specified as an array or as a ':' separated list.

(# Back to exec attributes)

provider

The specific backend to use for this exec resource. You will seldom need to specify this --- Puppet will usually
discover the appropriate provider for your platform.

Available providers are:

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attributes

Puppet | Developing Puppet code | 588

• posix

• shell

• windows

(# Back to exec attributes)

refresh

An alternate command to run when the exec receives a refresh event from another resource. By default, Puppet runs
the main command again. For more details, see the notes about refresh behavior above, in the description for this
resource type.

Note that this alternate command runs with the same provider, path, user, and group as the main command. If
the path isn't set, you must fully qualify the command's name.

(# Back to exec attributes)

refreshonly

The command should only be run as a refresh mechanism for when a dependent object is changed. It only makes
sense to use this option when this command depends on some other object; it is useful for triggering an action:

Pull down the main aliases file
file { '/etc/aliases':
 source => 'puppet://server/module/aliases',
}

Rebuild the database, but only when the file changes
exec { newaliases:
 path => ['/usr/bin', '/usr/sbin'],
 subscribe => File['/etc/aliases'],
 refreshonly => true,
}

Note that only subscribe and notify can trigger actions, not require, so it only makes sense to use
refreshonly with subscribe or notify.

Valid values are true, false.

(# Back to exec attributes)

returns

(Property: This attribute represents concrete state on the target system.)

The expected exit code(s). An error will be returned if the executed command has some other exit code. Can be
specified as an array of acceptable exit codes or a single value.

On POSIX systems, exit codes are always integers between 0 and 255.

On Windows, most exit codes should be integers between 0 and 2147483647.

Larger exit codes on Windows can behave inconsistently across different tools. The Win32 APIs define exit codes
as 32-bit unsigned integers, but both the cmd.exe shell and the .NET runtime cast them to signed integers. This
means some tools will report negative numbers for exit codes above 2147483647. (For example, cmd.exe reports
4294967295 as -1.) Since Puppet uses the plain Win32 APIs, it will report the very large number instead of the
negative number, which might not be what you expect if you got the exit code from a cmd.exe session.

Microsoft recommends against using negative/very large exit codes, and you should avoid them when possible. To
convert a negative exit code to the positive one Puppet will use, add it to 4294967296.

(# Back to exec attributes)

timeout

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-provider-posix
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-provider-shell
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-provider-windows
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attributes

Puppet | Developing Puppet code | 589

The maximum time the command should take. If the command takes longer than the timeout, the command is
considered to have failed and will be stopped. The timeout is specified in seconds. The default timeout is 300 seconds
and you can set it to 0 to disable the timeout.

(# Back to exec attributes)

tries

The number of times execution of the command should be tried. This many attempts will be made to execute the
command until an acceptable return code is returned. Note that the timeout parameter applies to each try rather than to
the complete set of tries.

(# Back to exec attributes)

try_sleep

The time to sleep in seconds between 'tries'.

(# Back to exec attributes)

umask

Sets the umask to be used while executing this command

(# Back to exec attributes)

unless

A test command that checks the state of the target system and restricts when the exec can run. If present, Puppet
runs this test command first, then runs the main command unless the test has an exit code of 0 (success). For example:

exec { '/bin/echo root >> /usr/lib/cron/cron.allow':
 path => '/usr/bin:/usr/sbin:/bin',
 unless => 'grep root /usr/lib/cron/cron.allow 2>/dev/null',
}

This would add root to the cron.allow file (on Solaris) unless grep determines it's already there.

Note that this test command runs with the same provider, path, user, cwd, and group as the main command.
If the path isn't set, you must fully qualify the command's name.

Since this command is used in the process of determining whether the exec is already in sync, it must be run during
a noop Puppet run.

This parameter can also take an array of commands. For example:

unless => ['test -f /tmp/file1', 'test -f /tmp/file2'],

or an array of arrays. For example:

unless => [['test', '-f', '/tmp/file1'], 'test -f /tmp/file2']

This exec would only run if every command in the array has a non-zero exit code.

(# Back to exec attributes)

user

The user to run the command as.

Note: Puppet cannot execute commands as other users on Windows.

Note that if you use this attribute, any error output is not captured due to a bug within Ruby. If you use Puppet to
create this user, the exec automatically requires the user, as long as it is specified by name.

The $HOME environment variable is not automatically set when using this attribute.

(# Back to exec attributes)

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#exec-attributes

Puppet | Developing Puppet code | 590

Providers
posix

Executes external binaries by invoking Ruby's Kernel.exec. When the command is a string, it will be executed
directly, without a shell, if it follows these rules:

• no meta characters
• no shell reserved word and no special built-in

When the command is an Array of Strings, passed as [cmdname, arg1, ...] it will be executed directly(the
first element is taken as a command name and the rest are passed as parameters to command with no shell expansion)
This is a safer and more predictable way to execute most commands, but prevents the use of globbing and shell built-
ins (including control logic like "for" and "if" statements).

If the use of globbing and shell built-ins is desired, please check the shell provider

• Default for feature == posix.

shell

Passes the provided command through /bin/sh; only available on POSIX systems. This allows the use of shell
globbing and built-ins, and does not require that the path to a command be fully-qualified. Although this can be more
convenient than the posix provider, it also means that you need to be more careful with escaping; as ever, with great
power comes etc. etc.

This provider closely resembles the behavior of the exec type in Puppet 0.25.x.

windows

Execute external binaries on Windows systems. As with the posix provider, this provider directly calls the
command with the arguments given, without passing it through a shell or performing any interpolation. To use shell
built-ins --- that is, to emulate the shell provider on Windows --- a command must explicitly invoke the shell:

exec {'echo foo':
 command => 'cmd.exe /c echo "foo"',
}

If no extension is specified for a command, Windows will use the PATHEXT environment variable to locate the
executable.

Note on PowerShell scripts: PowerShell's default restricted execution policy doesn't allow it to run saved
scripts. To run PowerShell scripts, specify the remotesigned execution policy as part of the command:

exec { 'test':
 path => 'C:/Windows/System32/WindowsPowerShell/v1.0',
 command => 'powershell -executionpolicy remotesigned -file C:/test.ps1',
}

• Default for operatingsystem == windows.

file

• Attributes
• Providers
• Provider Features

Description

Manages files, including their content, ownership, and permissions.

The file type can manage normal files, directories, and symlinks; the type should be specified in the ensure
attribute.

File contents can be managed directly with the content attribute, or downloaded from a remote source using the
source attribute; the latter can also be used to recursively serve directories (when the recurse attribute is set to

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-providers
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-provider-features

Puppet | Developing Puppet code | 591

true or local). On Windows, note that file contents are managed in binary mode; Puppet never automatically
translates line endings.

Autorequires: If Puppet is managing the user or group that owns a file, the file resource will autorequire them. If
Puppet is managing any parent directories of a file, the file resource autorequires them.

Warning: Enabling recurse on directories containing large numbers of files slows agent runs. To manage
file attributes for many files, consider using alternative methods such as the chmod_r, chown_r, or
recursive_file_permissions modules from the Forge.

Attributes

file { 'resource title':
 path => # (namevar) The path to the file to manage.
 Must be fully...
 ensure => # Whether the file should exist, and if so
 what...
 backup => # Whether (and how) file content should be
 backed...
 checksum => # The checksum type to use when determining...
 checksum_value => # The checksum of the source contents. Only
 md5...
 content => # The desired contents of a file, as a
 string...
 ctime => # A read-only state to check the file ctime.
 On...
 force => # Perform the file operation even if it will...
 group => # Which group should own the file. Argument
 can...
 ignore => # A parameter which omits action on files
 matching
 links => # How to handle links during file actions.
 During
 max_files => # In case the resource is a directory and
 the...
 mode => # The desired permissions mode for the file,
 in...
 mtime => # A read-only state to check the file mtime.
 On...
 owner => # The user to whom the file should belong....
 provider => # The specific backend to use for this `file...
 purge => # Whether unmanaged files should be purged.
 This...
 recurse => # Whether to recursively manage the _contents_
 of...
 recurselimit => # How far Puppet should descend into...
 replace => # Whether to replace a file or symlink that...
 selinux_ignore_defaults => # If this is set then Puppet will not ask
 SELinux...
 selrange => # What the SELinux range component of the
 context...
 selrole => # What the SELinux role component of the
 context...
 seltype => # What the SELinux type component of the
 context...
 seluser => # What the SELinux user component of the
 context...
 show_diff => # Whether to display differences when the
 file...
 source => # A source file, which will be copied into
 place...
 source_permissions => # Whether (and how) Puppet should copy owner...
 sourceselect => # Whether to copy all valid sources, or just
 the...

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-path
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-ensure
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-backup
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-checksum
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-checksum_value
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-content
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-ctime
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-force
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-group
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-ignore
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-links
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-max_files
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-mode
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-mtime
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-owner
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-provider
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-purge
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-recurse
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-recurselimit
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-replace
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-selinux_ignore_defaults
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-selrange
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-selrole
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-seltype
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-seluser
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-show_diff
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-source
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-source_permissions
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-sourceselect

Puppet | Developing Puppet code | 592

 staging_location => # When rendering a file first render it to
 this...
 target => # The target for creating a link. Currently...
 type => # A read-only state to check the file...
 validate_cmd => # A command for validating the file's syntax...
 validate_replacement => # The replacement string in a `validate_cmd`
 that...
 # ...plus any applicable metaparameters.
}

path

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The path to the file to manage. Must be fully qualified.

On Windows, the path should include the drive letter and should use / as the separator character (rather than \).

(# Back to file attributes)

ensure

(Property: This attribute represents concrete state on the target system.)

Whether the file should exist, and if so what kind of file it should be. Possible values are present, absent, file,
directory, and link.

• present accepts any form of file existence, and creates a normal file if the file is missing. (The file will have no
content unless the content or source attribute is used.)

• absent ensures the file doesn't exist, and deletes it if necessary.
• file ensures it's a normal file, and enables use of the content or source attribute.
• directory ensures it's a directory, and enables use of the source, recurse, recurselimit, ignore,

and purge attributes.
• link ensures the file is a symlink, and requires that you also set the target attribute. Symlinks are supported

on all Posix systems and on Windows Vista / 2008 and higher. On Windows, managing symlinks requires Puppet
agent's user account to have the "Create Symbolic Links" privilege; this can be configured in the "User Rights
Assignment" section in the Windows policy editor. By default, Puppet agent runs as the Administrator account,
which has this privilege.

Puppet avoids destroying directories unless the force attribute is set to true. This means that if a file is currently
a directory, setting ensure to anything but directory or present will cause Puppet to skip managing the
resource and log either a notice or an error.

There is one other non-standard value for ensure. If you specify the path to another file as the ensure value, it is
equivalent to specifying link and using that path as the target:

Equivalent resources:

file { '/etc/inetd.conf':
 ensure => '/etc/inet/inetd.conf',
}

file { '/etc/inetd.conf':
 ensure => link,
 target => '/etc/inet/inetd.conf',
}

However, we recommend using link and target explicitly, since this behavior can be harder to read and is
deprecated as of Puppet 4.3.0.

Valid values are absent (also called false), file, present, directory, link. Values can match /./.

(# Back to file attributes)

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-staging_location
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-target
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-type
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-validate_cmd
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attribute-validate_replacement
https://puppet.com/docs/puppet/latest/metaparameter.html
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
https://docs.puppet.com/puppet/4.3/deprecated_language.html
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes

Puppet | Developing Puppet code | 593

backup

Whether (and how) file content should be backed up before being replaced. This attribute works best as a resource
default in the site manifest (File { backup => main }), so it can affect all file resources.

• If set to false, file content won't be backed up.
• If set to a string beginning with ., such as .puppet-bak, Puppet will use copy the file in the same directory

with that value as the extension of the backup. (A value of true is a synonym for .puppet-bak.)
• If set to any other string, Puppet will try to back up to a filebucket with that title. See the filebucket resource

type for more details. (This is the preferred method for backup, since it can be centralized and queried.)

Default value: puppet, which backs up to a filebucket of the same name. (Puppet automatically creates a local
filebucket named puppet if one doesn't already exist.)

Backing up to a local filebucket isn't particularly useful. If you want to make organized use of backups, you will
generally want to use the primary Puppet server's filebucket service. This requires declaring a filebucket resource and
a resource default for the backup attribute in site.pp:

/etc/puppetlabs/puppet/manifests/site.pp
filebucket { 'main':
 path => false, # This is required for remote filebuckets.
 server => 'puppet.example.com', # Optional; defaults to the configured
 primary Puppet server.
}

File { backup => main, }

If you are using multiple primary servers, you will want to centralize the contents of the filebucket. Either configure
your load balancer to direct all filebucket traffic to a single primary server, or use something like an out-of-band rsync
task to synchronize the content on all primary servers.

Note: Enabling and using the backup option, and by extension the filebucket resource, requires appropriate
planning and management to ensure that sufficient disk space is available for the file backups. Generally,
you can implement this using one of the following two options:

• Use a find command and crontab entry to retain only the last X days of file backups. For example:

find /opt/puppetlabs/server/data/puppetserver/bucket -type f -mtime +45 -
atime +45 -print0 | xargs -0 rm

• Restrict the directory to a maximum size after which the oldest items are removed.

(# Back to file attributes)

checksum

The checksum type to use when determining whether to replace a file's contents.

The default checksum type is md5.

Valid values are sha256, sha256lite, md5, md5lite, sha1, sha1lite, sha512, sha384, sha224,
mtime, ctime, none.

(# Back to file attributes)

checksum_value

(Property: This attribute represents concrete state on the target system.)

The checksum of the source contents. Only md5, sha256, sha224, sha384 and sha512 are supported when specifying
this parameter. If this parameter is set, source_permissions will be assumed to be false, and ownership and
permissions will not be read from source.

(# Back to file attributes)

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes

Puppet | Developing Puppet code | 594

content

(Property: This attribute represents concrete state on the target system.)

The desired contents of a file, as a string. This attribute is mutually exclusive with source and target.

Newlines and tabs can be specified in double-quoted strings using standard escaped syntax --- \n for a newline, and \t
for a tab.

With very small files, you can construct content strings directly in the manifest...

define resolve($nameserver1, $nameserver2, $domain, $search) {
 $str = "search ${search}
 domain ${domain}
 nameserver ${nameserver1}
 nameserver ${nameserver2}
 "

 file { '/etc/resolv.conf':
 content => $str,
 }
}

...but for larger files, this attribute is more useful when combined with the template or file function.

(# Back to file attributes)

ctime

(Property: This attribute represents concrete state on the target system.)

A read-only state to check the file ctime. On most modern *nix-like systems, this is the time of the most recent
change to the owner, group, permissions, or content of the file.

(# Back to file attributes)

force

Perform the file operation even if it will destroy one or more directories. You must use force in order to:

• purge subdirectories
• Replace directories with files or links
• Remove a directory when ensure => absent

Valid values are true, false, yes, no.

(# Back to file attributes)

group

(Property: This attribute represents concrete state on the target system.)

Which group should own the file. Argument can be either a group name or a group ID.

On Windows, a user (such as "Administrator") can be set as a file's group and a group (such as "Administrators") can
be set as a file's owner; however, a file's owner and group shouldn't be the same. (If the owner is also the group, files
with modes like "0640" will cause log churn, as they will always appear out of sync.)

(# Back to file attributes)

ignore

A parameter which omits action on files matching specified patterns during recursion. Uses Ruby's builtin globbing
engine, so shell metacharacters such as [a-z]* are fully supported. Matches that would descend into the directory
structure are ignored, such as */*.

(# Back to file attributes)

links

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/function.html#template
https://puppet.com/docs/puppet/latest/function.html#file
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes

Puppet | Developing Puppet code | 595

How to handle links during file actions. During file copying, follow will copy the target file instead of the link and
manage will copy the link itself. When not copying, manage will manage the link, and follow will manage the
file to which the link points.

Valid values are follow, manage.

(# Back to file attributes)

max_files

In case the resource is a directory and the recursion is enabled, puppet will generate a new resource for each file file
found, possible leading to an excessive number of resources generated without any control.

Setting max_files will check the number of file resources that will eventually be created and will raise a resource
argument error if the limit will be exceeded.

Use value 0 to log a warning instead of raising an error.

Use value -1 to disable errors and warnings due to max files.

Values can match /^[0-9]+$/, /^-1$/.

(# Back to file attributes)

mode

(Property: This attribute represents concrete state on the target system.)

The desired permissions mode for the file, in symbolic or numeric notation. This value must be specified as a string;
do not use un-quoted numbers to represent file modes.

If the mode is omitted (or explicitly set to undef), Puppet does not enforce permissions on existing files and creates
new files with permissions of 0644.

The file type uses traditional Unix permission schemes and translates them to equivalent permissions for systems
which represent permissions differently, including Windows. For detailed ACL controls on Windows, you can leave
mode unmanaged and use the puppetlabs/acl module.

Numeric modes should use the standard octal notation of <SETUID/SETGID/
STICKY><OWNER><GROUP><OTHER> (for example, "0644").

• Each of the "owner," "group," and "other" digits should be a sum of the permissions for that class of users, where
read = 4, write = 2, and execute/search = 1.

• The setuid/setgid/sticky digit is also a sum, where setuid = 4, setgid = 2, and sticky = 1.
• The setuid/setgid/sticky digit is optional. If it is absent, Puppet will clear any existing setuid/setgid/sticky

permissions. (So to make your intent clear, you should use at least four digits for numeric modes.)
• When specifying numeric permissions for directories, Puppet sets the search permission wherever the read

permission is set.

Symbolic modes should be represented as a string of comma-separated permission clauses, in the form
<WHO><OP><PERM>:

• "Who" should be any combination of u (user), g (group), and o (other), or a (all)
• "Op" should be = (set exact permissions), + (add select permissions), or - (remove select permissions)

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
https://forge.puppetlabs.com/puppetlabs/acl

Puppet | Developing Puppet code | 596

• "Perm" should be one or more of:

• r (read)
• w (write)
• x (execute/search)
• t (sticky)
• s (setuid/setgid)
• X (execute/search if directory or if any one user can execute)
• u (user's current permissions)
• g (group's current permissions)
• o (other's current permissions)

Thus, mode "0664" could be represented symbolically as either a=r,ug+w or ug=rw,o=r. However, symbolic
modes are more expressive than numeric modes: a mode only affects the specified bits, so mode => 'ug+w' will
set the user and group write bits, without affecting any other bits.

See the manual page for GNU or BSD chmod for more details on numeric and symbolic modes.

On Windows, permissions are translated as follows:

• Owner and group names are mapped to Windows SIDs
• The "other" class of users maps to the "Everyone" SID
• The read/write/execute permissions map to the FILE_GENERIC_READ, FILE_GENERIC_WRITE, and

FILE_GENERIC_EXECUTE access rights; a file's owner always has the FULL_CONTROL right
• "Other" users can't have any permissions a file's group lacks, and its group can't have any permissions its owner

lacks; that is, "0644" is an acceptable mode, but "0464" is not.

(# Back to file attributes)

mtime

(Property: This attribute represents concrete state on the target system.)

A read-only state to check the file mtime. On *nix-like systems, this is the time of the most recent change to the
content of the file.

(# Back to file attributes)

owner

(Property: This attribute represents concrete state on the target system.)

The user to whom the file should belong. Argument can be a user name or a user ID.

On Windows, a group (such as "Administrators") can be set as a file's owner and a user (such as "Administrator") can
be set as a file's group; however, a file's owner and group shouldn't be the same. (If the owner is also the group, files
with modes like "0640" will cause log churn, as they will always appear out of sync.)

(# Back to file attributes)

provider

The specific backend to use for this file resource. You will seldom need to specify this --- Puppet will usually
discover the appropriate provider for your platform.

Available providers are:

• posix

• windows

(# Back to file attributes)

purge

Whether unmanaged files should be purged. This option only makes sense when ensure => directory and
recurse => true.

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-provider-posix
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-provider-windows
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes

Puppet | Developing Puppet code | 597

• When recursively duplicating an entire directory with the source attribute, purge => true will
automatically purge any files that are not in the source directory.

• When managing files in a directory as individual resources, setting purge => true will purge any files that
aren't being specifically managed.

If you have a filebucket configured, the purged files will be uploaded, but if you do not, this will destroy data.

Unless force => true is set, purging will not delete directories, although it will delete the files they contain.

If recurselimit is set and you aren't using force => true, purging will obey the recursion limit; files in any
subdirectories deeper than the limit will be treated as unmanaged and left alone.

Valid values are true, false, yes, no.

(# Back to file attributes)

recurse

Whether to recursively manage the contents of a directory. This attribute is only used when ensure =>
directory is set. The allowed values are:

• false --- The default behavior. The contents of the directory will not be automatically managed.
• remote --- If the source attribute is set, Puppet will automatically manage the contents of the source directory

(or directories), ensuring that equivalent files and directories exist on the target system and that their contents
match.

Using remote will disable the purge attribute, but results in faster catalog application than recurse =>
true.

The source attribute is mandatory when recurse => remote.
• true --- If the source attribute is set, this behaves similarly to recurse => remote, automatically

managing files from the source directory.

This also enables the purge attribute, which can delete unmanaged files from a directory. See the description of
purge for more details.

The source attribute is not mandatory when using recurse => true, so you can enable purging in
directories where all files are managed individually.

By default, setting recurse to remote or true will manage all subdirectories. You can use the recurselimit
attribute to limit the recursion depth.

Valid values are true, false, remote.

(# Back to file attributes)

recurselimit

How far Puppet should descend into subdirectories, when using ensure => directory and either recurse
=> true or recurse => remote. The recursion limit affects which files will be copied from the source
directory, as well as which files can be purged when purge => true.

Setting recurselimit => 0 is the same as setting recurse => false --- Puppet will manage the directory,
but all of its contents will be treated as unmanaged.

Setting recurselimit => 1 will manage files and directories that are directly inside the directory, but will not
manage the contents of any subdirectories.

Setting recurselimit => 2 will manage the direct contents of the directory, as well as the contents of the first
level of subdirectories.

This pattern continues for each incremental value of recurselimit.

Values can match /^[0-9]+$/.

(# Back to file attributes)

replace

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes

Puppet | Developing Puppet code | 598

Whether to replace a file or symlink that already exists on the local system but whose content doesn't match what
the source or content attribute specifies. Setting this to false allows file resources to initialize files without
overwriting future changes. Note that this only affects content; Puppet will still manage ownership and permissions.

Valid values are true, false, yes, no.

(# Back to file attributes)

selinux_ignore_defaults

If this is set then Puppet will not ask SELinux (via matchpathcon) to supply defaults for the SELinux attributes
(seluser, selrole, seltype, and selrange). In general, you should leave this set at its default and only set it to true when
you need Puppet to not try to fix SELinux labels automatically.

Valid values are true, false.

(# Back to file attributes)

selrange

(Property: This attribute represents concrete state on the target system.)

What the SELinux range component of the context of the file should be. Any valid SELinux range component is
accepted. For example s0 or SystemHigh. If not specified it defaults to the value returned by matchpathcon for
the file, if any exists. Only valid on systems with SELinux support enabled and that have support for MCS (Multi-
Category Security).

(# Back to file attributes)

selrole

(Property: This attribute represents concrete state on the target system.)

What the SELinux role component of the context of the file should be. Any valid SELinux role component is
accepted. For example role_r. If not specified it defaults to the value returned by matchpathcon for the file, if any
exists. Only valid on systems with SELinux support enabled.

(# Back to file attributes)

seltype

(Property: This attribute represents concrete state on the target system.)

What the SELinux type component of the context of the file should be. Any valid SELinux type component is
accepted. For example tmp_t. If not specified it defaults to the value returned by matchpathcon for the file, if any
exists. Only valid on systems with SELinux support enabled.

(# Back to file attributes)

seluser

(Property: This attribute represents concrete state on the target system.)

What the SELinux user component of the context of the file should be. Any valid SELinux user component is
accepted. For example user_u. If not specified it defaults to the value returned by matchpathcon for the file, if any
exists. Only valid on systems with SELinux support enabled.

(# Back to file attributes)

show_diff

Whether to display differences when the file changes, defaulting to true. This parameter is useful for files that may
contain passwords or other secret data, which might otherwise be included in Puppet reports or other insecure outputs.
If the global show_diff setting is false, then no diffs will be shown even if this parameter is true.

Valid values are true, false, yes, no.

(# Back to file attributes)

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes

Puppet | Developing Puppet code | 599

source

A source file, which will be copied into place on the local system. This attribute is mutually exclusive with content
and target. Allowed values are:

• puppet: URIs, which point to files in modules or Puppet file server mount points.
• Fully qualified paths to locally available files (including files on NFS shares or Windows mapped drives).
• file: URIs, which behave the same as local file paths.
• http(s): URIs, which point to files served by common web servers.

The normal form of a puppet: URI is:

puppet:///modules/<MODULE NAME>/<FILE PATH>

This will fetch a file from a module on the Puppet master (or from a local module when using Puppet apply).
Given a modulepath of /etc/puppetlabs/code/modules, the example above would resolve to /etc/
puppetlabs/code/modules/<MODULE NAME>/files/<FILE PATH>.

Unlike content, the source attribute can be used to recursively copy directories if the recurse attribute is set
to true or remote. If a source directory contains symlinks, use the links attribute to specify whether to recreate
links or follow them.

HTTP URIs cannot be used to recursively synchronize whole directory trees. You cannot use
source_permissions values other than ignore because HTTP servers do not transfer any metadata that
translates to ownership or permission details.

Puppet determines if file content is synchronized by computing a checksum for the local file and comparing it against
the checksum_value parameter. If the checksum_value parameter is not specified for puppet and file
sources, Puppet computes a checksum based on its Puppet[:digest_algorithm]. For http(s) sources,
Puppet uses the first HTTP header it recognizes out of the following list: X-Checksum-Sha256, X-Checksum-
Sha1, X-Checksum-Md5 or Content-MD5. If the server response does not include one of these headers, Puppet
defaults to using the Last-Modified header. Puppet updates the local file if the header is newer than the modified
time (mtime) of the local file.

HTTP URIs can include a user information component so that Puppet can retrieve file metadata
and content from HTTP servers that require HTTP Basic authentication. For example https://
<user>:<pass>@<server>:<port>/path/to/file.

When connecting to HTTPS servers, Puppet trusts CA certificates in the puppet-agent certificate
bundle and the Puppet CA. You can configure Puppet to trust additional CA certificates using the
Puppet[:ssl_trust_store] setting.

Multiple source values can be specified as an array, and Puppet will use the first source that exists. This can be
used to serve different files to different system types:

file { '/etc/nfs.conf':
 source => [
 "puppet:///modules/nfs/conf.${host}",
 "puppet:///modules/nfs/conf.${operatingsystem}",
 'puppet:///modules/nfs/conf'
]
}

Alternately, when serving directories recursively, multiple sources can be combined by setting the sourceselect
attribute to all.

(# Back to file attributes)

source_permissions

Whether (and how) Puppet should copy owner, group, and mode permissions from the source to file resources
when the permissions are not explicitly specified. (In all cases, explicit permissions will take precedence.) Valid
values are use, use_when_creating, and ignore:

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes

Puppet | Developing Puppet code | 600

• ignore (the default) will never apply the owner, group, or mode from the source when managing a file. When
creating new files without explicit permissions, the permissions they receive will depend on platform-specific
behavior. On POSIX, Puppet will use the umask of the user it is running as. On Windows, Puppet will use the
default DACL associated with the user it is running as.

• use will cause Puppet to apply the owner, group, and mode from the source to any files it is managing.
• use_when_creating will only apply the owner, group, and mode from the source when creating a file;

existing files will not have their permissions overwritten.

Valid values are use, use_when_creating, ignore.

(# Back to file attributes)

sourceselect

Whether to copy all valid sources, or just the first one. This parameter only affects recursive directory copies; by
default, the first valid source is the only one used, but if this parameter is set to all, then all valid sources will have
all of their contents copied to the local system. If a given file exists in more than one source, the version from the
earliest source in the list will be used.

Valid values are first, all.

(# Back to file attributes)

staging_location

When rendering a file first render it to this location. The default location is the same path as the desired location with
a unique filename. This parameter is useful in conjuction with validate_cmd to test a file before moving the file to
it's final location. WARNING: File replacement is only guaranteed to be atomic if the staging location is on the same
filesystem as the final location.

(# Back to file attributes)

target

(Property: This attribute represents concrete state on the target system.)

The target for creating a link. Currently, symlinks are the only type supported. This attribute is mutually exclusive
with source and content.

Symlink targets can be relative, as well as absolute:

(Useful on Solaris)
file { '/etc/inetd.conf':
 ensure => link,
 target => 'inet/inetd.conf',
}

Directories of symlinks can be served recursively by instead using the source attribute, setting ensure to
directory, and setting the links attribute to manage.

Valid values are notlink. Values can match /./.

(# Back to file attributes)

type

(Property: This attribute represents concrete state on the target system.)

A read-only state to check the file type.

(# Back to file attributes)

validate_cmd

A command for validating the file's syntax before replacing it. If Puppet would need to rewrite a file due to new
source or content, it will check the new content's validity first. If validation fails, the file resource will fail.

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes

Puppet | Developing Puppet code | 601

This command must have a fully qualified path, and should contain a percent (%) token where it would expect an
input file. It must exit 0 if the syntax is correct, and non-zero otherwise. The command will be run on the target
system while applying the catalog, not on the primary Puppet server.

Example:

file { '/etc/apache2/apache2.conf':
 content => 'example',
 validate_cmd => '/usr/sbin/apache2 -t -f %',
}

This would replace apache2.conf only if the test returned true.

Note that if a validation command requires a % as part of its text, you can specify a different placeholder token with
the validate_replacement attribute.

(# Back to file attributes)

validate_replacement

The replacement string in a validate_cmd that will be replaced with an input file name.

(# Back to file attributes)

Providers
posix

Uses POSIX functionality to manage file ownership and permissions.

• Supported features: manages_symlinks.

windows

Uses Microsoft Windows functionality to manage file ownership and permissions.

• Supported features: manages_symlinks.

Provider Features

Available features:

• manages_symlinks --- The provider can manage symbolic links.

Provider support:

• posix - manages symlinks
• windows - manages symlinks

filebucket

• Attributes

Description

A repository for storing and retrieving file content by MD5 checksum. Can be local to each agent node, or centralized
on a primary Puppet server. All puppet servers provide a filebucket service that agent nodes can access via HTTP, but
you must declare a filebucket resource before any agents will do so.

Filebuckets are used for the following features:

• Content backups. If the file type's backup attribute is set to the name of a filebucket, Puppet will back up the
old content whenever it rewrites a file; see the documentation for the file type for more details. These backups
can be used for manual recovery of content, but are more commonly used to display changes and differences in a
tool like Puppet Dashboard.

To use a central filebucket for backups, you will usually want to declare a filebucket resource and a resource default
for the backup attribute in site.pp:

/etc/puppetlabs/puppet/manifests/site.pp

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#file-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#filebucket-attributes

Puppet | Developing Puppet code | 602

filebucket { 'main':
 path => false, # This is required for remote filebuckets.
 server => 'puppet.example.com', # Optional; defaults to the configured
 primary server.
}

File { backup => main, }

Puppet master servers automatically provide the filebucket service, so this will work in a default configuration. If you
have a heavily restricted auth.conf file, you may need to allow access to the file_bucket_file endpoint.

Attributes

filebucket { 'resource title':
 name => # (namevar) The name of the...
 path => # The path to the _local_ filebucket; defaults to...
 port => # The port on which the remote server is...
 server => # The server providing the remote filebucket...
 # ...plus any applicable metaparameters.
}

name

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The name of the filebucket.

(# Back to filebucket attributes)

path

The path to the local filebucket; defaults to the value of the clientbucketdir setting. To use a remote filebucket,
you must set this attribute to false.

(# Back to filebucket attributes)

port

The port on which the remote server is listening.

This setting is only consulted if the path attribute is set to false.

If this attribute is not specified, the first entry in the server_list configuration setting is used, followed by the
value of the serverport setting if server_list is not set.

(# Back to filebucket attributes)

server

The server providing the remote filebucket service.

This setting is only consulted if the path attribute is set to false.

If this attribute is not specified, the first entry in the server_list configuration setting is used, followed by the
value of the server setting if server_list is not set.

(# Back to filebucket attributes)

group

• Attributes
• Providers
• Provider Features

Description

Manage groups. On most platforms this can only create groups. Group membership must be managed on individual
users.

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#filebucket-attribute-name
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#filebucket-attribute-path
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#filebucket-attribute-port
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#filebucket-attribute-server
https://puppet.com/docs/puppet/latest/metaparameter.html
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#filebucket-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#filebucket-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#filebucket-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#filebucket-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-providers
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-provider-features

Puppet | Developing Puppet code | 603

On some platforms such as OS X, group membership is managed as an attribute of the group, not the user record.
Providers must have the feature 'manages_members' to manage the 'members' property of a group record.

Attributes

group { 'resource title':
 name => # (namevar) The group name. While naming
 limitations vary by
 ensure => # Create or remove the group. Valid values are...
 allowdupe => # Whether to allow duplicate GIDs. Valid
 values...
 attribute_membership => # AIX only. Configures the behavior of the...
 attributes => # Specify group AIX attributes, as an array of...
 auth_membership => # Configures the behavior of the `members...
 forcelocal => # Forces the management of local accounts when...
 gid => # The group ID. Must be specified numerically....
 ia_load_module => # The name of the I&A module to use to manage
 this
 members => # The members of the group. For platforms or...
 provider => # The specific backend to use for this `group...
 system => # Whether the group is a system group with
 lower...
 # ...plus any applicable metaparameters.
}

name

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The group name. While naming limitations vary by operating system, it is advisable to restrict names to the lowest
common denominator, which is a maximum of 8 characters beginning with a letter.

Note that Puppet considers group names to be case-sensitive, regardless of the platform's own rules; be sure to always
use the same case when referring to a given group.

(# Back to group attributes)

ensure

(Property: This attribute represents concrete state on the target system.)

Create or remove the group.

Valid values are present, absent.

(# Back to group attributes)

allowdupe

Whether to allow duplicate GIDs.

Valid values are true, false, yes, no.

(# Back to group attributes)

attribute_membership

AIX only. Configures the behavior of the attributes parameter.

• minimum (default) --- The provided list of attributes is partial, and Puppet ignores any attributes that aren't listed
there.

• inclusive --- The provided list of attributes is comprehensive, and Puppet purges any attributes that aren't
listed there.

Valid values are inclusive, minimum.

(# Back to group attributes)

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attribute-name
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attribute-ensure
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attribute-allowdupe
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attribute-attribute_membership
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attribute-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attribute-auth_membership
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attribute-forcelocal
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attribute-gid
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attribute-ia_load_module
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attribute-members
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attribute-provider
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attribute-system
https://puppet.com/docs/puppet/latest/metaparameter.html
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attributes

Puppet | Developing Puppet code | 604

attributes

(Property: This attribute represents concrete state on the target system.)

Specify group AIX attributes, as an array of 'key=value' strings. This parameter's behavior can be configured
with attribute_membership.

Requires features manages_aix_lam.

(# Back to group attributes)

auth_membership

Configures the behavior of the members parameter.

• false (default) --- The provided list of group members is partial, and Puppet ignores any members that aren't
listed there.

• true --- The provided list of of group members is comprehensive, and Puppet purges any members that aren't
listed there.

Valid values are true, false, yes, no.

(# Back to group attributes)

forcelocal

Forces the management of local accounts when accounts are also being managed by some other Name Switch Service
(NSS). For AIX, refer to the ia_load_module parameter.

This option relies on your operating system's implementation of luser* commands, such as luseradd ,
lgroupadd, and lusermod. The forcelocal option could behave unpredictably in some circumstances. If the
tools it depends on are not available, it might have no effect at all.

Valid values are true, false, yes, no.

Requires features manages_local_users_and_groups.

(# Back to group attributes)

gid

(Property: This attribute represents concrete state on the target system.)

The group ID. Must be specified numerically. If no group ID is specified when creating a new group, then one will be
chosen automatically according to local system standards. This will likely result in the same group having different
GIDs on different systems, which is not recommended.

On Windows, this property is read-only and will return the group's security identifier (SID).

(# Back to group attributes)

ia_load_module

The name of the I&A module to use to manage this group. This should be set to files if managing local groups.

Requires features manages_aix_lam.

(# Back to group attributes)

members

(Property: This attribute represents concrete state on the target system.)

The members of the group. For platforms or directory services where group membership is stored in the group
objects, not the users. This parameter's behavior can be configured with auth_membership.

Requires features manages_members.

(# Back to group attributes)

provider

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attributes

Puppet | Developing Puppet code | 605

The specific backend to use for this group resource. You will seldom need to specify this --- Puppet will usually
discover the appropriate provider for your platform.

Available providers are:

• aix

• directoryservice

• groupadd

• ldap

• pw

• windows_adsi

(# Back to group attributes)

system

Whether the group is a system group with lower GID.

Valid values are true, false, yes, no.

(# Back to group attributes)

Providers
aix

Group management for AIX.

• Required binaries: /usr/bin/chgroup, /usr/bin/mkgroup, /usr/sbin/lsgroup, /usr/sbin/
rmgroup.

• Default for operatingsystem == aix.
• Supported features: manages_aix_lam, manages_local_users_and_groups, manages_members.

directoryservice

Group management using DirectoryService on OS X.

• Required binaries: /usr/bin/dscl.
• Default for operatingsystem == darwin.
• Supported features: manages_members.

groupadd

Group management via groupadd and its ilk. The default for most platforms.

To use the forcelocal parameter, you need to install the libuser package (providing /usr/sbin/
lgroupadd and /usr/sbin/luseradd).

• Required binaries: groupadd, groupdel, groupmod, lgroupadd, lgroupdel, lgroupmod.
• Supported features: system_groups.

ldap

Group management via LDAP.

This provider requires that you have valid values for all of the LDAP-related settings in puppet.conf, including
ldapbase. You will almost definitely need settings for ldapuser and ldappassword in order for your clients
to write to LDAP.

Note that this provider will automatically generate a GID for you if you do not specify one, but it is a potentially
expensive operation, as it iterates across all existing groups to pick the appropriate next one.

pw

Group management via pw on FreeBSD and DragonFly BSD.

• Required binaries: pw.
• Default for operatingsystem == freebsd, dragonfly.

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-provider-aix
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-provider-directoryservice
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-provider-groupadd
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-provider-ldap
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-provider-pw
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-provider-windows_adsi
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#group-attributes

Puppet | Developing Puppet code | 606

• Supported features: manages_members.

windows_adsi

Local group management for Windows. Group members can be both users and groups. Additionally, local groups can
contain domain users.

• Default for operatingsystem == windows.
• Supported features: manages_members.

Provider Features

Available features:

• manages_aix_lam --- The provider can manage AIX Loadable Authentication Module (LAM) system.
• manages_local_users_and_groups --- Allows local groups to be managed on systems that also use some

other remote Name Switch Service (NSS) method of managing accounts.
• manages_members --- For directories where membership is an attribute of groups not users.
• system_groups --- The provider allows you to create system groups with lower GIDs.

Provider support:

• aix - manages aix lam, manages local users and groups, manages members
• directoryservice - manages members
• groupadd - system groups, libuser
• ldap - No supported Provider features
• pw - manages members
• windows_adsi - manages members

notify

• Attributes

Description

Sends an arbitrary message, specified as a string, to the agent run-time log. It's important to note that the notify
resource type is not idempotent. As a result, notifications are shown as a change on every Puppet run.

Attributes

notify { 'resource title':
 name => # (namevar) An arbitrary tag for your own reference; the...
 message => # The message to be sent to the log. Note that the
 withpath => # Whether to show the full object path. Valid...
 # ...plus any applicable metaparameters.
}

name

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

An arbitrary tag for your own reference; the name of the message.

(# Back to notify attributes)

message

(Property: This attribute represents concrete state on the target system.)

The message to be sent to the log. Note that the value specified must be a string.

(# Back to notify attributes)

withpath

Whether to show the full object path.

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#notify-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#notify-attribute-name
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#notify-attribute-message
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#notify-attribute-withpath
https://puppet.com/docs/puppet/latest/metaparameter.html
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#notify-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#notify-attributes

Puppet | Developing Puppet code | 607

Valid values are true, false.

(# Back to notify attributes)

package

• Attributes
• Providers
• Provider Features

Description

Manage packages. There is a basic dichotomy in package support right now: Some package types (such as yum and
apt) can retrieve their own package files, while others (such as rpm and sun) cannot. For those package formats that
cannot retrieve their own files, you can use the source parameter to point to the correct file.

Puppet will automatically guess the packaging format that you are using based on the platform you are on, but you
can override it using the provider parameter; each provider defines what it requires in order to function, and you
must meet those requirements to use a given provider.

You can declare multiple package resources with the same name as long as they have unique titles, and specify
different providers and commands.

Note that you must use the title to make a reference to a package resource; Package[<NAME>] is not a synonym
for Package[<TITLE>] like it is for many other resource types.

Autorequires: If Puppet is managing the files specified as a package's adminfile, responsefile, or source,
the package resource will autorequire those files.

Attributes

package { 'resource title':
 name => # (namevar) The package name. This is the name
 that the...
 command => # (namevar) The targeted command to use when
 managing a...
 provider => # (namevar) The specific backend to use for this
 `package...
 ensure => # What state the package should be in. On...
 adminfile => # A file containing package defaults for...
 allow_virtual => # Specifies if virtual package names are
 allowed...
 allowcdrom => # Tells apt to allow cdrom sources in the...
 category => # A read-only parameter set by the...
 configfiles => # Whether to keep or replace modified config
 files
 description => # A read-only parameter set by the...
 enable_only => # Tells `dnf module` to only enable a specific...
 flavor => # OpenBSD and DNF modules support 'flavors',
 which
 install_only => # It should be set for packages that should
 only...
 install_options => # An array of additional options to pass when...
 instance => # A read-only parameter set by the...
 mark => # Set to hold to tell Debian apt/Solaris pkg to...
 package_settings => # Settings that can change the contents or...
 platform => # A read-only parameter set by the...
 reinstall_on_refresh => # Whether this resource should respond to
 refresh...
 responsefile => # A file containing any necessary answers to...
 root => # A read-only parameter set by the...
 source => # Where to find the package file. This is
 mostly...
 status => # A read-only parameter set by the...
 uninstall_options => # An array of additional options to pass when...

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#notify-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-providers
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-features
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-name
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-command
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-provider
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-ensure
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-adminfile
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-allow_virtual
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-allowcdrom
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-category
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-configfiles
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-description
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-enable_only
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-flavor
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-install_only
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-install_options
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-instance
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-mark
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-package_settings
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-platform
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-reinstall_on_refresh
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-responsefile
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-root
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-source
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-status
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-uninstall_options

Puppet | Developing Puppet code | 608

 vendor => # A read-only parameter set by the...
 # ...plus any applicable metaparameters.
}

name

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The package name. This is the name that the packaging system uses internally, which is sometimes (especially on
Solaris) a name that is basically useless to humans. If a package goes by several names, you can use a single title and
then set the name conditionally:

In the 'openssl' class
$ssl = $operatingsystem ? {
 solaris => SMCossl,
 default => openssl
}

package { 'openssl':
 ensure => installed,
 name => $ssl,
}

...

$ssh = $operatingsystem ? {
 solaris => SMCossh,
 default => openssh
}

package { 'openssh':
 ensure => installed,
 name => $ssh,
 require => Package['openssl'],
}

(# Back to package attributes)

command

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The targeted command to use when managing a package:

package { 'mysql': provider => gem, }

package { 'mysql-opt': name => 'mysql', provider => gem, command => '/opt/ruby/bin/gem', }

Each provider defines a package management command; and uses the first instance of the command found in the
PATH.

Providers supporting the targetable feature allow you to specify the absolute path of the package management
command; useful when multiple instances of the command are installed, or the command is not in the PATH.

Requires features targetable.

(# Back to package attributes)

provider

(Secondary namevar: This resource type allows you to manage multiple resources with the same name as long as
their providers are different.)

The specific backend to use for this package resource. You will seldom need to specify this --- Puppet will usually
discover the appropriate provider for your platform.

Available providers are:

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attribute-vendor
https://puppet.com/docs/puppet/latest/metaparameter.html
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes

Puppet | Developing Puppet code | 609

• aix

• appdmg

• apple

• apt

• aptitude

• aptrpm

• blastwave

• dnf

• dnfmodule

• dpkg

• fink

• freebsd

• gem

• hpux

• macports

• nim

• openbsd

• opkg

• pacman

• pip2

• pip3

• pip

• pkg

• pkgdmg

• pkgin

• pkgng

• pkgutil

• portage

• ports

• portupgrade

• puppet_gem

• puppetserver_gem

• rpm

• rug

• sun

• sunfreeware

• tdnf

• up2date

• urpmi

• windows

• yum

• zypper

(# Back to package attributes)

ensure

(Property: This attribute represents concrete state on the target system.)

What state the package should be in. On packaging systems that can retrieve new packages on their own, you can
choose which package to retrieve by specifying a version number or latest as the ensure value. On packaging
systems that manage configuration files separately from "normal" system files, you can uninstall config files by
specifying purged as the ensure value. This defaults to installed.

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-aix
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-appdmg
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-apple
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-apt
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-aptitude
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-aptrpm
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-blastwave
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-dnf
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-dnfmodule
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-dpkg
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-fink
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-freebsd
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-gem
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-hpux
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-macports
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-nim
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-openbsd
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-opkg
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-pacman
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-pip2
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-pip3
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-pip
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-pkg
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-pkgdmg
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-pkgin
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-pkgng
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-pkgutil
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-portage
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-ports
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-portupgrade
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-puppet_gem
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-puppetserver_gem
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-rpm
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-rug
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-sun
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-sunfreeware
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-tdnf
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-up2date
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-urpmi
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-windows
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-yum
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-provider-zypper
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes

Puppet | Developing Puppet code | 610

Version numbers must match the full version to install, including release if the provider uses a release moniker.
For example, to install the bash package from the rpm bash-4.1.2-29.el6.x86_64.rpm, use the string
'4.1.2-29.el6'.

On supported providers, version ranges can also be ensured. For example, inequalities: <2.0.0, or intersections:
>1.0.0 <2.0.0.

Valid values are present (also called installed), absent, purged, held, disabled, latest. Values can
match /./.

(# Back to package attributes)

adminfile

A file containing package defaults for installing packages.

This attribute is only used on Solaris. Its value should be a path to a local file stored on the target system. Solaris's
package tools expect either an absolute file path or a relative path to a file in /var/sadm/install/admin.

The value of adminfile will be passed directly to the pkgadd or pkgrm command with the -a <ADMINFILE>
option.

(# Back to package attributes)

allow_virtual

Specifies if virtual package names are allowed for install and uninstall.

Valid values are true, false, yes, no.

Requires features virtual_packages.

(# Back to package attributes)

allowcdrom

Tells apt to allow cdrom sources in the sources.list file. Normally apt will bail if you try this.

Valid values are true, false.

(# Back to package attributes)

category

A read-only parameter set by the package.

(# Back to package attributes)

configfiles

Whether to keep or replace modified config files when installing or upgrading a package. This only affects the apt
and dpkg providers.

Valid values are keep, replace.

(# Back to package attributes)

description

A read-only parameter set by the package.

(# Back to package attributes)

enable_only

Tells dnf module to only enable a specific module, instead of installing its default profile.

Modules with no default profile will be enabled automatically without the use of this parameter.

Conflicts with the flavor property, which selects a profile to install.

Valid values are true, false, yes, no.

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes

Puppet | Developing Puppet code | 611

(# Back to package attributes)

flavor

(Property: This attribute represents concrete state on the target system.)

OpenBSD and DNF modules support 'flavors', which are further specifications for which type of package you want.

Requires features supports_flavors.

(# Back to package attributes)

install_only

It should be set for packages that should only ever be installed, never updated. Kernels in particular fall into this
category.

Valid values are true, false, yes, no.

Requires features install_only.

(# Back to package attributes)

install_options

An array of additional options to pass when installing a package. These options are package-specific, and should be
documented by the software vendor. One commonly implemented option is INSTALLDIR:

package { 'mysql':
 ensure => installed,
 source => 'N:/packages/mysql-5.5.16-winx64.msi',
 install_options => ['/S', { 'INSTALLDIR' => 'C:\mysql-5.5' }],
}

Each option in the array can either be a string or a hash, where each key and value pair are interpreted in a provider
specific way. Each option will automatically be quoted when passed to the install command.

With Windows packages, note that file paths in an install option must use backslashes. (Since install options are
passed directly to the installation command, forward slashes won't be automatically converted like they are in file
resources.) Note also that backslashes in double-quoted strings must be escaped and backslashes in single-quoted
strings can be escaped.

Requires features install_options.

(# Back to package attributes)

instance

A read-only parameter set by the package.

(# Back to package attributes)

mark

(Property: This attribute represents concrete state on the target system.)

Set to hold to tell Debian apt/Solaris pkg to hold the package version

Valid values are: hold/none Default is "none". Mark can be specified with or without ensure, if ensure is missing
will default to "present".

Mark cannot be specified together with "purged", "absent" or "held" values for ensure.

Valid values are hold, none.

Requires features holdable.

(# Back to package attributes)

package_settings

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes

Puppet | Developing Puppet code | 612

(Property: This attribute represents concrete state on the target system.)

Settings that can change the contents or configuration of a package.

The formatting and effects of package_settings are provider-specific; any provider that implements them must explain
how to use them in its documentation. (Our general expectation is that if a package is installed but its settings are out
of sync, the provider should re-install that package with the desired settings.)

An example of how package_settings could be used is FreeBSD's port build options --- a future version of the
provider could accept a hash of options, and would reinstall the port if the installed version lacked the correct settings.

package { 'www/apache22':
 package_settings => { 'SUEXEC' => false }
}

Again, check the documentation of your platform's package provider to see the actual usage.

Requires features package_settings.

(# Back to package attributes)

platform

A read-only parameter set by the package.

(# Back to package attributes)

reinstall_on_refresh

Whether this resource should respond to refresh events (via subscribe, notify, or the ~> arrow) by reinstalling
the package. Only works for providers that support the reinstallable feature.

This is useful for source-based distributions, where you may want to recompile a package if the build options change.

If you use this, be careful of notifying classes when you want to restart services. If the class also contains a
refreshable package, doing so could cause unnecessary re-installs.

Valid values are true, false.

(# Back to package attributes)

responsefile

A file containing any necessary answers to questions asked by the package. This is currently used on Solaris and
Debian. The value will be validated according to system rules, but it should generally be a fully qualified path.

(# Back to package attributes)

root

A read-only parameter set by the package.

(# Back to package attributes)

source

Where to find the package file. This is mostly used by providers that don't automatically download packages from a
central repository. (For example: the yum provider ignores this attribute, apt provider uses it if present and the rpm
and dpkg providers require it.)

Different providers accept different values for source. Most providers accept paths to local files stored on the target
system. Some providers may also accept URLs or network drive paths. Puppet will not automatically retrieve source
files for you, and usually just passes the value of source to the package installation command.

You can use a file resource if you need to manually copy package files to the target system.

(# Back to package attributes)

status

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes

Puppet | Developing Puppet code | 613

A read-only parameter set by the package.

(# Back to package attributes)

uninstall_options

An array of additional options to pass when uninstalling a package. These options are package-specific, and should be
documented by the software vendor. For example:

package { 'VMware Tools':
 ensure => absent,
 uninstall_options => [{ 'REMOVE' => 'Sync,VSS' }],
}

Each option in the array can either be a string or a hash, where each key and value pair are interpreted in a provider
specific way. Each option will automatically be quoted when passed to the uninstall command.

On Windows, this is the only place in Puppet where backslash separators should be used. Note that backslashes in
double-quoted strings must be double-escaped and backslashes in single-quoted strings may be double-escaped.

Requires features uninstall_options.

(# Back to package attributes)

vendor

A read-only parameter set by the package.

(# Back to package attributes)

Providers
aix

Installation from an AIX software directory, using the AIX installp command. The source parameter is
required for this provider, and should be set to the absolute path (on the puppet agent machine) of a directory
containing one or more BFF package files.

The installp command will generate a table of contents file (named .toc) in this directory, and the name
parameter (or resource title) that you specify for your package resource must match a package name that exists in
the .toc file.

Note that package downgrades are not supported; if your resource specifies a specific version number and there is
already a newer version of the package installed on the machine, the resource will fail with an error message.

• Required binaries: /usr/bin/lslpp, /usr/sbin/installp.
• Default for operatingsystem == aix.
• Supported features: installable, uninstallable, upgradeable, versionable.

appdmg

Package management which copies application bundles to a target.

• Required binaries: /usr/bin/curl, /usr/bin/ditto, /usr/bin/hdiutil.
• Supported features: installable.

apple

Package management based on OS X's built-in packaging system. This is essentially the simplest and least functional
package system in existence -- it only supports installation; no deletion or upgrades. The provider will automatically
add the .pkg extension, so leave that off when specifying the package name.

• Required binaries: /usr/sbin/installer.
• Supported features: installable.

apt

Package management via apt-get.

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#package-attributes

Puppet | Developing Puppet code | 614

This provider supports the install_options attribute, which allows command-line flags to be passed to apt-get.
These options should be specified as an array where each element is either a string or a hash.

• Required binaries: /usr/bin/apt-cache, /usr/bin/apt-get, /usr/bin/apt-mark, /usr/bin/
debconf-set-selections.

• Default for osfamily == debian.
• Supported features: holdable, install_options, installable, purgeable, uninstallable,

upgradeable, versionable, virtual_packages.

aptitude

Package management via aptitude.

• Required binaries: /usr/bin/apt-cache, /usr/bin/aptitude.
• Supported features: holdable, installable, purgeable, uninstallable, upgradeable,

versionable.

aptrpm

Package management via apt-get ported to rpm.

• Required binaries: apt-cache, apt-get, rpm.
• Supported features: installable, purgeable, uninstallable, upgradeable, versionable.

blastwave

Package management using Blastwave.org's pkg-get command on Solaris.

• Required binaries: pkg-get.
• Supported features: installable, uninstallable, upgradeable.

dnf

Support via dnf.

Using this provider's uninstallable feature will not remove dependent packages. To remove dependent packages
with this provider use the purgeable feature, but note this feature is destructive and should be used with the utmost
care.

This provider supports the install_options attribute, which allows command-line flags to be passed to dnf.
These options should be specified as an array where each element is either a string or a hash.

• Required binaries: dnf, rpm.
• Default for operatingsystem == fedora. Default for osfamily == redhat.
• Supported features: install_only, install_options, installable, purgeable,

uninstallable, upgradeable, versionable, virtual_packages.

dnfmodule

• Required binaries: /usr/bin/dnf.
• Supported features: disableable, installable, purgeable, supports_flavors,

uninstallable, upgradeable, versionable.

dpkg

Package management via dpkg. Because this only uses dpkg and not apt, you must specify the source of any
packages you want to manage.

• Required binaries: /usr/bin/dpkg-deb, /usr/bin/dpkg-query, /usr/bin/dpkg.
• Supported features: holdable, installable, purgeable, uninstallable, upgradeable,

virtual_packages.

fink

Package management via fink.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 615

• Required binaries: /sw/bin/apt-cache, /sw/bin/apt-get, /sw/bin/dpkg-query, /sw/bin/
fink.

• Supported features: holdable, installable, purgeable, uninstallable, upgradeable,
versionable.

freebsd

The specific form of package management on FreeBSD. This is an extremely quirky packaging system, in that it
freely mixes between ports and packages. Apparently all of the tools are written in Ruby, so there are plans to rewrite
this support to directly use those libraries.

• Required binaries: /usr/sbin/pkg_add, /usr/sbin/pkg_delete, /usr/sbin/pkg_info.
• Supported features: installable, purgeable, uninstallable, upgradeable.

gem

Ruby Gem support. If a URL is passed via source, then that URL is appended to the list of remote gem repositories;
to ensure that only the specified source is used, also pass --clear-sources via install_options. If source
is present but is not a valid URL, it will be interpreted as the path to a local gem file. If source is not present, the gem
will be installed from the default gem repositories. Note that to modify this for Windows, it has to be a valid URL.

This provider supports the install_options and uninstall_options attributes, which allow command-line
flags to be passed to the gem command. These options should be specified as an array where each element is either a
string or a hash.

• Required binaries: gem.
• Supported features: install_options, installable, targetable, uninstall_options,

uninstallable, upgradeable, version_ranges, versionable.

hpux

HP-UX's packaging system.

• Required binaries: /usr/sbin/swinstall, /usr/sbin/swlist, /usr/sbin/swremove.
• Default for operatingsystem == hp-ux.
• Supported features: installable, uninstallable.

macports

Package management using MacPorts on OS X.

Supports MacPorts versions and revisions, but not variants. Variant preferences may be specified using the MacPorts
variants.conf file.

When specifying a version in the Puppet DSL, only specify the version, not the revision. Revisions are only used
internally for ensuring the latest version/revision of a port.

• Required binaries: /opt/local/bin/port.
• Supported features: installable, uninstallable, upgradeable, versionable.

nim

Installation from an AIX NIM LPP source. The source parameter is required for this provider, and should specify
the name of a NIM lpp_source resource that is visible to the puppet agent machine. This provider supports the
management of both BFF/installp and RPM packages.

Note that package downgrades are not supported; if your resource specifies a specific version number and there is
already a newer version of the package installed on the machine, the resource will fail with an error message.

• Required binaries: /usr/bin/lslpp, /usr/sbin/nimclient, rpm.
• Supported features: installable, uninstallable, upgradeable, versionable.

openbsd

OpenBSD's form of pkg_add support.

© 2024 Puppet, Inc., a Perforce company

http://guide.macports.org/chunked/internals.configuration-files.html#internals.configuration-files.variants-conf
http://guide.macports.org/chunked/internals.configuration-files.html#internals.configuration-files.variants-conf

Puppet | Developing Puppet code | 616

This provider supports the install_options and uninstall_options attributes, which allow command-line
flags to be passed to pkg_add and pkg_delete. These options should be specified as an array where each element is
either a string or a hash.

• Required binaries: pkg_add, pkg_delete, pkg_info.
• Default for operatingsystem == openbsd.
• Supported features: install_options, installable, purgeable, supports_flavors,

uninstall_options, uninstallable, upgradeable, versionable.

opkg

Opkg packaging support. Common on OpenWrt and OpenEmbedded platforms

• Required binaries: opkg.
• Default for operatingsystem == openwrt.
• Supported features: installable, uninstallable, upgradeable.

pacman

Support for the Package Manager Utility (pacman) used in Archlinux.

This provider supports the install_options attribute, which allows command-line flags to be passed to pacman.
These options should be specified as an array where each element is either a string or a hash.

• Required binaries: /usr/bin/pacman.
• Default for operatingsystem == archlinux, manjarolinux.
• Supported features: install_options, installable, uninstall_options, uninstallable,

upgradeable, virtual_packages.

pip

Python packages via pip.

This provider supports the install_options attribute, which allows command-line flags to be passed to pip.
These options should be specified as an array where each element is either a string or a hash.

• Supported features: install_options, installable, targetable, uninstallable,
upgradeable, version_ranges, versionable.

pip2

Python packages via pip2.

This provider supports the install_options attribute, which allows command-line flags to be passed to pip2.
These options should be specified as an array where each element is either a string or a hash.

• Supported features: install_options, installable, targetable, uninstallable,
upgradeable, versionable.

pip3

Python packages via pip3.

This provider supports the install_options attribute, which allows command-line flags to be passed to pip3.
These options should be specified as an array where each element is either a string or a hash.

• Supported features: install_options, installable, targetable, uninstallable,
upgradeable, versionable.

pkg

OpenSolaris image packaging system. See pkg(5) for more information.

This provider supports the install_options attribute, which allows command-line flags to be passed to pkg.
These options should be specified as an array where each element is either a string or a hash.

• Required binaries: /usr/bin/pkg.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 617

• Default for kernelrelease == 5.11, 5.12 and osfamily == solaris.
• Supported features: holdable, install_options, installable, uninstallable, upgradeable,

versionable.

pkgdmg

Package management based on Apple's Installer.app and DiskUtility.app.

This provider works by checking the contents of a DMG image for Apple pkg or mpkg files. Any number of pkg or
mpkg files may exist in the root directory of the DMG file system, and Puppet will install all of them. Subdirectories
are not checked for packages.

This provider can also accept plain .pkg (but not .mpkg) files in addition to .dmg files.

Notes:

• The source attribute is mandatory. It must be either a local disk path or an HTTP, HTTPS, or FTP URL to the
package.

• The name of the resource must be the filename (without path) of the DMG file.
• When installing the packages from a DMG, this provider writes a file to disk at /var/

db/.puppet_pkgdmg_installed_NAME. If that file is present, Puppet assumes all packages from that
DMG are already installed.

• This provider is not versionable and uses DMG filenames to determine whether a package has been installed.
Thus, to install new a version of a package, you must create a new DMG with a different filename.

• Required binaries: /usr/bin/curl, /usr/bin/hdiutil, /usr/sbin/installer.
• Default for operatingsystem == darwin.
• Supported features: installable.

pkgin

Package management using pkgin, a binary package manager for pkgsrc.

• Required binaries: pkgin.
• Default for operatingsystem == smartos, netbsd.
• Supported features: installable, uninstallable, upgradeable, versionable.

pkgng

A PkgNG provider for FreeBSD and DragonFly.

• Required binaries: /usr/local/sbin/pkg.
• Default for operatingsystem == freebsd, dragonfly.
• Supported features: install_options, installable, uninstallable, upgradeable,

versionable.

pkgutil

Package management using Peter Bonivart's pkgutil command on Solaris.

• Required binaries: pkgutil.
• Supported features: installable, uninstallable, upgradeable.

portage

Provides packaging support for Gentoo's portage system.

This provider supports the install_options and uninstall_options attributes, which allows command-
line flags to be passed to emerge. These options should be specified as an array where each element is either a string
or a hash.

• Required binaries: /usr/bin/eix-update, /usr/bin/eix, /usr/bin/emerge, /usr/bin/qatom.
• Default for osfamily == gentoo.
• Supported features: install_options, installable, purgeable, reinstallable,

uninstall_options, uninstallable, upgradeable, versionable, virtual_packages.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 618

ports

Support for FreeBSD's ports. Note that this, too, mixes packages and ports.

• Required binaries: /usr/local/sbin/pkg_deinstall, /usr/local/sbin/portupgrade, /usr/
local/sbin/portversion, /usr/sbin/pkg_info.

• Supported features: installable, purgeable, uninstallable, upgradeable.

portupgrade

Support for FreeBSD's ports using the portupgrade ports management software. Use the port's full origin as the
resource name. eg (ports-mgmt/portupgrade) for the portupgrade port.

• Required binaries: /usr/local/sbin/pkg_deinstall, /usr/local/sbin/portinstall, /usr/
local/sbin/portupgrade, /usr/local/sbin/portversion, /usr/sbin/pkg_info.

• Supported features: installable, uninstallable, upgradeable.

puppet_gem

Puppet Ruby Gem support. This provider is useful for managing gems needed by the ruby provided in the puppet-
agent package.

• Required binaries: /opt/puppetlabs/puppet/bin/gem.
• Supported features: install_options, installable, uninstall_options, uninstallable,

upgradeable, versionable.

puppetserver_gem

Puppet Server Ruby Gem support. If a URL is passed via source, then that URL is appended to the list of remote
gem repositories which by default contains rubygems.org; To ensure that only the specified source is used also
pass --clear-sources in via install_options; if a source is present but is not a valid URL, it will be
interpreted as the path to a local gem file. If source is not present at all, the gem will be installed from the default gem
repositories.

• Required binaries: /opt/puppetlabs/bin/puppetserver.
• Supported features: install_options, installable, uninstall_options, uninstallable,

upgradeable, versionable.

rpm

RPM packaging support; should work anywhere with a working rpm binary.

This provider supports the install_options and uninstall_options attributes, which allow command-
line flags to be passed to rpm. These options should be specified as an array where each element is either a string or a
hash.

• Required binaries: rpm.
• Supported features: install_only, install_options, installable, uninstall_options,

uninstallable, upgradeable, versionable, virtual_packages.

rug

Support for suse rug package manager.

• Required binaries: /usr/bin/rug, rpm.
• Supported features: installable, uninstallable, upgradeable, versionable.

sun

Sun's packaging system. Requires that you specify the source for the packages you're managing.

This provider supports the install_options attribute, which allows command-line flags to be passed to pkgadd.
These options should be specified as an array where each element is either a string or a hash.

• Required binaries: /usr/bin/pkginfo, /usr/sbin/pkgadd, /usr/sbin/pkgrm.
• Default for osfamily == solaris.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 619

• Supported features: install_options, installable, uninstallable, upgradeable.

sunfreeware

Package management using sunfreeware.com's pkg-get command on Solaris. At this point, support is exactly the
same as blastwave support and has not actually been tested.

• Required binaries: pkg-get.
• Supported features: installable, uninstallable, upgradeable.

tdnf

Support via tdnf.

This provider supports the install_options attribute, which allows command-line flags to be passed to tdnf.
These options should be spcified as a string (e.g. '--flag'), a hash (e.g. {'--flag' => 'value'}), or an array where each
element is either a string or a hash.

• Required binaries: rpm, tdnf.
• Default for operatingsystem == PhotonOS.
• Supported features: install_options, installable, purgeable, uninstallable, upgradeable,

versionable, virtual_packages.

up2date

Support for Red Hat's proprietary up2date package update mechanism.

• Required binaries: /usr/sbin/up2date-nox.
• Default for lsbdistrelease == 2.1, 3, 4 and osfamily == redhat.
• Supported features: installable, uninstallable, upgradeable.

urpmi

Support via urpmi.

• Required binaries: rpm, urpme, urpmi, urpmq.
• Default for operatingsystem == mandriva, mandrake.
• Supported features: installable, purgeable, uninstallable, upgradeable, versionable.

windows

Windows package management.

This provider supports either MSI or self-extracting executable installers.

This provider requires a source attribute when installing the package. It accepts paths to local files, mapped drives,
or UNC paths.

This provider supports the install_options and uninstall_options attributes, which allow command-line
flags to be passed to the installer. These options should be specified as an array where each element is either a string
or a hash.

If the executable requires special arguments to perform a silent install or uninstall, then the appropriate arguments
should be specified using the install_options or uninstall_options attributes, respectively. Puppet will
automatically quote any option that contains spaces.

• Default for operatingsystem == windows.
• Supported features: install_options, installable, uninstall_options, uninstallable,

versionable.

yum

Support via yum.

Using this provider's uninstallable feature will not remove dependent packages. To remove dependent packages
with this provider use the purgeable feature, but note this feature is destructive and should be used with the utmost
care.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 620

This provider supports the install_options attribute, which allows command-line flags to be passed to yum.
These options should be specified as an array where each element is either a string or a hash.

• Required binaries: rpm, yum.
• Default for operatingsystem == amazon. Default for operatingsystemmajrelease == 4, 5, 6,

7 and osfamily == redhat.
• Supported features: install_only, install_options, installable, purgeable,

uninstallable, upgradeable, versionable, virtual_packages.

zypper

Support for SuSE zypper package manager. Found in SLES10sp2+ and SLES11.

This provider supports the install_options attribute, which allows command-line flags to be passed to zypper.
These options should be specified as an array where each element is either a string or a hash.

• Required binaries: /usr/bin/zypper.
• Default for operatingsystem == suse, sles, sled, opensuse.
• Supported features: install_options, installable, uninstallable, upgradeable,

versionable, virtual_packages.

Provider Features

Available features:

• disableable --- The provider can disable packages. This feature is used by specifying disabled as the
desired value for the package.

• holdable --- The provider is capable of placing packages on hold such that they are not automatically upgraded
as a result of other package dependencies unless explicit action is taken by a user or another package.

• install_only --- The provider accepts options to only install packages never update (kernels, etc.)
• install_options --- The provider accepts options to be passed to the installer command.
• installable --- The provider can install packages.
• package_settings --- The provider accepts package_settings to be ensured for the given package. The

meaning and format of these settings is provider-specific.
• purgeable --- The provider can purge packages. This generally means that all traces of the package are

removed, including existing configuration files. This feature is thus destructive and should be used with the utmost
care.

• reinstallable --- The provider can reinstall packages.
• supports_flavors --- The provider accepts flavors, which are specific variants of packages.
• targetable --- The provider accepts a targeted package management command.
• uninstall_options --- The provider accepts options to be passed to the uninstaller command.
• uninstallable --- The provider can uninstall packages.
• upgradeable --- The provider can upgrade to the latest version of a package. This feature is used by specifying

latest as the desired value for the package.
• version_ranges --- The provider can ensure version ranges.
• versionable --- The provider is capable of interrogating the package database for installed version(s), and can

select which out of a set of available versions of a package to install if asked.
• virtual_packages --- The provider accepts virtual package names for install and uninstall.

Provider support:

• aix - installable, uninstallable, upgradeable, versionable
• appdmg - installable
• apple - installable
• apt - holdable, install options, installable, purgeable, uninstallable, upgradeable, versionable, virtual packages
• aptitude - holdable, installable, purgeable, uninstallable, upgradeable, versionable
• aptrpm - installable, purgeable, uninstallable, upgradeable, versionable
• blastwave - installable, uninstallable, upgradeable

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 621

• dnf - install only, install options, installable, purgeable, uninstallable, upgradeable, versionable, virtual packages
• dnfmodule - disableable, installable, purgeable, supports flavors, uninstallable, upgradeable, versionable
• dpkg - holdable, installable, purgeable, uninstallable, upgradeable, virtual packages
• fink - holdable, installable, purgeable, uninstallable, upgradeable, versionable
• freebsd - installable, purgeable, uninstallable, upgradeable
• gem - install options, installable, targetable, uninstall options, uninstallable, upgradeable, version ranges,

versionable
• hpux - installable, uninstallable
• macports - installable, uninstallable, upgradeable, versionable
• nim - installable, uninstallable, upgradeable, versionable
• openbsd - install options, installable, purgeable, supports flavors, uninstall options, uninstallable, upgradeable,

versionable
• opkg - installable, uninstallable, upgradeable
• pacman - install options, installable, uninstall options, uninstallable, upgradeable, virtual packages
• pip - install options, installable, targetable, uninstallable, upgradeable, version ranges, versionable
• pip2 - install options, installable, targetable, uninstallable, upgradeable, versionable
• pip3 - install options, installable, targetable, uninstallable, upgradeable, versionable
• pkg - holdable, install options, installable, uninstallable, upgradeable, versionable
• pkgdmg - installable
• pkgin - installable, uninstallable, upgradeable, versionable
• pkgng - install options, installable, uninstallable, upgradeable, versionable
• pkgutil - installable, uninstallable, upgradeable
• portage - install options, installable, purgeable, reinstallable, uninstall options, uninstallable, upgradeable,

versionable, virtual packages
• ports - installable, purgeable, uninstallable, upgradeable
• portupgrade - installable, uninstallable, upgradeable
• puppet_gem - install options, installable, uninstall options, uninstallable, upgradeable, versionable
• puppetserver_gem - install options, installable, uninstall options, uninstallable, upgradeable, versionable
• rpm - install only, install options, installable, uninstall options, uninstallable, upgradeable, versionable, virtual

packages
• rug - installable, uninstallable, upgradeable, versionable
• sun - install options, installable, uninstallable, upgradeable
• sunfreeware - installable, uninstallable, upgradeable
• tdnf - install options, installable, purgeable, uninstallable, upgradeable, versionable, virtual packages
• up2date - installable, uninstallable, upgradeable
• urpmi - installable, purgeable, uninstallable, upgradeable, versionable
• windows - install options, installable, uninstall options, uninstallable, versionable
• yum - install only, install options, installable, purgeable, uninstallable, upgradeable, versionable, virtual

packages
• zypper - install options, installable, uninstallable, upgradeable, versionable, virtual packages

resources

• Attributes

Description

This is a metatype that can manage other resource types. Any metaparams specified here will be passed on to any
generated resources, so you can purge unmanaged resources but set noop to true so the purging is only logged and
does not actually happen.

Attributes

resources { 'resource title':
 name => # (namevar) The name of the type to be...

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#resources-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#resources-attribute-name

Puppet | Developing Puppet code | 622

 purge => # Whether to purge unmanaged resources. When set...
 unless_system_user => # This keeps system users from being purged. By...
 unless_uid => # This keeps specific uids or ranges of uids from...
 # ...plus any applicable metaparameters.
}

name

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The name of the type to be managed.

(# Back to resources attributes)

purge

Whether to purge unmanaged resources. When set to true, this will delete any resource that is not specified in your
configuration and is not autorequired by any managed resources. Note: The ssh_authorized_key resource type
can't be purged this way; instead, see the purge_ssh_keys attribute of the user type.

Valid values are true, false, yes, no.

(# Back to resources attributes)

unless_system_user

This keeps system users from being purged. By default, it does not purge users whose UIDs are less than the
minimum UID for the system (typically 500 or 1000), but you can specify a different UID as the inclusive limit.

Valid values are true, false. Values can match /^\d+$/.

(# Back to resources attributes)

unless_uid

This keeps specific uids or ranges of uids from being purged when purge is true. Accepts integers, integer strings, and
arrays of integers or integer strings. To specify a range of uids, consider using the range() function from stdlib.

(# Back to resources attributes)

schedule

• Attributes

Description

Define schedules for Puppet. Resources can be limited to a schedule by using the schedule metaparameter.

Currently, schedules can only be used to stop a resource from being applied; they cannot cause a resource to be
applied when it otherwise wouldn't be, and they cannot accurately specify a time when a resource should run.

Every time Puppet applies its configuration, it will apply the set of resources whose schedule does not eliminate them
from running right then, but there is currently no system in place to guarantee that a given resource runs at a given
time. If you specify a very restrictive schedule and Puppet happens to run at a time within that schedule, then the
resources will get applied; otherwise, that work may never get done.

Thus, it is advisable to use wider scheduling (for example, over a couple of hours) combined with periods and
repetitions. For instance, if you wanted to restrict certain resources to only running once, between the hours of two
and 4 AM, then you would use this schedule:

schedule { 'maint':
 range => '2 - 4',
 period => daily,
 repeat => 1,
}

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#resources-attribute-purge
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#resources-attribute-unless_system_user
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#resources-attribute-unless_uid
https://puppet.com/docs/puppet/latest/metaparameter.html
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#resources-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#resources-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#resources-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#resources-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#schedule-attributes
https://puppet.com/docs/puppet/latest/metaparameter.html#schedule

Puppet | Developing Puppet code | 623

With this schedule, the first time that Puppet runs between 2 and 4 AM, all resources with this schedule will get
applied, but they won't get applied again between 2 and 4 because they will have already run once that day, and they
won't get applied outside that schedule because they will be outside the scheduled range.

Puppet automatically creates a schedule for each of the valid periods with the same name as that period (such as
hourly and daily). Additionally, a schedule named puppet is created and used as the default, with the following
attributes:

schedule { 'puppet':
 period => hourly,
 repeat => 2,
}

This will cause resources to be applied every 30 minutes by default.

The statettl setting on the agent affects the ability of a schedule to determine if a resource has already been
checked. If the statettl is set lower than the span of the associated schedule resource, then a resource could be
checked & applied multiple times in the schedule as the information about when the resource was last checked will
have expired from the cache.

Attributes

schedule { 'resource title':
 name => # (namevar) The name of the schedule. This name is used...
 period => # The period of repetition for resources on this...
 periodmatch => # Whether periods should be matched by a numeric...
 range => # The earliest and latest that a resource can be...
 repeat => # How often a given resource may be applied in...
 weekday => # The days of the week in which the schedule...
 # ...plus any applicable metaparameters.
}

name

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The name of the schedule. This name is used when assigning the schedule to a resource with the schedule
metaparameter:

schedule { 'everyday':
 period => daily,
 range => '2 - 4',
}

exec { '/usr/bin/apt-get update':
 schedule => 'everyday',
}

(# Back to schedule attributes)

period

The period of repetition for resources on this schedule. The default is for resources to get applied every time Puppet
runs.

Note that the period defines how often a given resource will get applied but not when; if you would like to restrict
the hours that a given resource can be applied (for instance, only at night during a maintenance window), then use the
range attribute.

If the provided periods are not sufficient, you can provide a value to the repeat attribute, which will cause Puppet to
schedule the affected resources evenly in the period the specified number of times. Take this schedule:

schedule { 'veryoften':

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#schedule-attribute-name
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#schedule-attribute-period
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#schedule-attribute-periodmatch
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#schedule-attribute-range
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#schedule-attribute-repeat
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#schedule-attribute-weekday
https://puppet.com/docs/puppet/latest/metaparameter.html
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#schedule-attributes

Puppet | Developing Puppet code | 624

 period => hourly,
 repeat => 6,
}

This can cause Puppet to apply that resource up to every 10 minutes.

At the moment, Puppet cannot guarantee that level of repetition; that is, the resource can applied up to every 10
minutes, but internal factors might prevent it from actually running that often (for instance, if a Puppet run is still in
progress when the next run is scheduled to start, that next run will be suppressed).

See the periodmatch attribute for tuning whether to match times by their distance apart or by their specific value.

Tip: You can use period => never, to prevent a resource from being applied in the given range.
This is useful if you need to create a blackout window to perform sensitive operations without interruption.

Valid values are hourly, daily, weekly, monthly, never.

(# Back to schedule attributes)

periodmatch

Whether periods should be matched by a numeric value (for instance, whether two times are in the same hour) or by
their chronological distance apart (whether two times are 60 minutes apart).

Valid values are number, distance.

(# Back to schedule attributes)

range

The earliest and latest that a resource can be applied. This is always a hyphen-separated range within a 24 hour
period, and hours must be specified in numbers between 0 and 23, inclusive. Minutes and seconds can optionally be
provided, using the normal colon as a separator. For instance:

schedule { 'maintenance':
 range => '1:30 - 4:30',
}

This is mostly useful for restricting certain resources to being applied in maintenance windows or during off-peak
hours. Multiple ranges can be applied in array context. As a convenience when specifying ranges, you can cross
midnight (for example, range => "22:00 - 04:00").

(# Back to schedule attributes)

repeat

How often a given resource may be applied in this schedule's period. Must be an integer.

(# Back to schedule attributes)

weekday

The days of the week in which the schedule should be valid. You may specify the full day name 'Tuesday', the three
character abbreviation 'Tue', or a number (as a string or as an integer) corresponding to the day of the week where 0 is
Sunday, 1 is Monday, and so on. Multiple days can be specified as an array. If not specified, the day of the week will
not be considered in the schedule.

If you are also using a range match that spans across midnight then this parameter will match the day that it was at the
start of the range, not necessarily the day that it is when it matches. For example, consider this schedule:

schedule { 'maintenance_window':
 range => '22:00 - 04:00',
 weekday => 'Saturday',
}

This will match at 11 PM on Saturday and 2 AM on Sunday, but not at 2 AM on Saturday.

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#schedule-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#schedule-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#schedule-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#schedule-attributes

Puppet | Developing Puppet code | 625

(# Back to schedule attributes)

service

• Attributes
• Providers
• Provider Features

Description

Manage running services. Service support unfortunately varies widely by platform --- some platforms have very little
if any concept of a running service, and some have a very codified and powerful concept. Puppet's service support is
usually capable of doing the right thing, but the more information you can provide, the better behaviour you will get.

Puppet 2.7 and newer expect init scripts to have a working status command. If this isn't the case for any of your
services' init scripts, you will need to set hasstatus to false and possibly specify a custom status command in the
status attribute. As a last resort, Puppet will attempt to search the process table by calling whatever command is
listed in the ps fact. The default search pattern is the name of the service, but you can specify it with the pattern
attribute.

Refresh: service resources can respond to refresh events (via notify, subscribe, or the ~> arrow). If a
service receives an event from another resource, Puppet will restart the service it manages. The actual command
used to restart the service depends on the platform and can be configured:

• If you set hasrestart to true, Puppet will use the init script's restart command.
• You can provide an explicit command for restarting with the restart attribute.
• If you do neither, the service's stop and start commands will be used.

Attributes

service { 'resource title':
 name => # (namevar) The name of the service to run. This name
 is...
 ensure => # Whether a service should be running. Default...
 binary => # The path to the daemon. This is only used for...
 control => # The control variable used to manage services...
 enable => # Whether a service should be enabled to start at...
 flags => # Specify a string of flags to pass to the startup
 hasrestart => # Specify that an init script has a `restart...
 hasstatus => # Declare whether the service's init script has a...
 logonaccount => # Specify an account for service logon Requires
 logonpassword => # Specify a password for service logon. Default...
 manifest => # Specify a command to config a service, or a path
 path => # The search path for finding init scripts....
 pattern => # The pattern to search for in the process table...
 provider => # The specific backend to use for this `service...
 restart => # Specify a *restart* command manually. If left...
 start => # Specify a *start* command manually. Most...
 status => # Specify a *status* command manually. This...
 stop => # Specify a *stop* command...
 timeout => # Specify an optional minimum timeout (in seconds)
 # ...plus any applicable metaparameters.
}

name

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The name of the service to run.

This name is used to find the service; on platforms where services have short system names and long display names,
this should be the short name. (To take an example from Windows, you would use "wuauserv" rather than "Automatic
Updates.")

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#schedule-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-providers
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-features
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attribute-name
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attribute-ensure
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attribute-binary
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attribute-control
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attribute-enable
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attribute-flags
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attribute-hasrestart
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attribute-hasstatus
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attribute-logonaccount
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attribute-logonpassword
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attribute-manifest
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attribute-path
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attribute-pattern
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attribute-provider
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attribute-restart
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attribute-start
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attribute-status
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attribute-stop
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attribute-timeout
https://puppet.com/docs/puppet/latest/metaparameter.html

Puppet | Developing Puppet code | 626

(# Back to service attributes)

ensure

(Property: This attribute represents concrete state on the target system.)

Whether a service should be running. Default values depend on the platform.

Valid values are stopped (also called false), running (also called true).

(# Back to service attributes)

binary

The path to the daemon. This is only used for systems that do not support init scripts. This binary will be used to start
the service if no start parameter is provided.

(# Back to service attributes)

control

The control variable used to manage services (originally for HP-UX). Defaults to the upcased service name plus
START replacing dots with underscores, for those providers that support the controllable feature.

(# Back to service attributes)

enable

(Property: This attribute represents concrete state on the target system.)

Whether a service should be enabled to start at boot. This property behaves differently depending on the platform;
wherever possible, it relies on local tools to enable or disable a given service. Default values depend on the platform.

If you don't specify a value for the enable attribute, Puppet leaves that aspect of the service alone and your
operating system determines the behavior.

Valid values are true, false, manual, mask, delayed.

Requires features enableable.

(# Back to service attributes)

flags

(Property: This attribute represents concrete state on the target system.)

Specify a string of flags to pass to the startup script.

Requires features flaggable.

(# Back to service attributes)

hasrestart

Specify that an init script has a restart command. If this is false and you do not specify a command in the
restart attribute, the init script's stop and start commands will be used.

Valid values are true, false.

(# Back to service attributes)

hasstatus

Declare whether the service's init script has a functional status command. This attribute's default value changed in
Puppet 2.7.0.

The init script's status command must return 0 if the service is running and a nonzero value otherwise. Ideally, these
exit codes should conform to the LSB's specification for init script status actions, but Puppet only considers the
difference between 0 and nonzero to be relevant.

If a service's init script does not support any kind of status command, you should set hasstatus to false and either
provide a specific command using the status attribute or expect that Puppet will look for the service name in the

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attributes
http://refspecs.linuxfoundation.org/LSB_4.1.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html

Puppet | Developing Puppet code | 627

process table. Be aware that 'virtual' init scripts (like 'network' under Red Hat systems) will respond poorly to refresh
events from other resources if you override the default behavior without providing a status command.

Valid values are true, false.

(# Back to service attributes)

logonaccount

(Property: This attribute represents concrete state on the target system.)

Specify an account for service logon

Requires features manages_logon_credentials.

(# Back to service attributes)

logonpassword

Specify a password for service logon. Default value is an empty string (when logonaccount is specified).

Requires features manages_logon_credentials.

(# Back to service attributes)

manifest

Specify a command to config a service, or a path to a manifest to do so.

(# Back to service attributes)

path

The search path for finding init scripts. Multiple values should be separated by colons or provided as an array.

(# Back to service attributes)

pattern

The pattern to search for in the process table. This is used for stopping services on platforms that do not support
init scripts, and is also used for determining service status on those service whose init scripts do not include a status
command.

Defaults to the name of the service. The pattern can be a simple string or any legal Ruby pattern, including regular
expressions (which should be quoted without enclosing slashes).

(# Back to service attributes)

provider

The specific backend to use for this service resource. You will seldom need to specify this --- Puppet will usually
discover the appropriate provider for your platform.

Available providers are:

• base

• bsd

• daemontools

• debian

• freebsd

• gentoo

• init

• launchd

• openbsd

• openrc

• openwrt

• rcng

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-base
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-bsd
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-daemontools
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-debian
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-freebsd
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-gentoo
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-init
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-launchd
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-openbsd
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-openrc
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-openwrt
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-rcng

Puppet | Developing Puppet code | 628

• redhat

• runit

• service

• smf

• src

• systemd

• upstart

• windows

(# Back to service attributes)

restart

Specify a restart command manually. If left unspecified, the service will be stopped and then started.

(# Back to service attributes)

start

Specify a start command manually. Most service subsystems support a start command, so this will not need to be
specified.

(# Back to service attributes)

status

Specify a status command manually. This command must return 0 if the service is running and a nonzero value
otherwise. Ideally, these exit codes should conform to the LSB's specification for init script status actions, but Puppet
only considers the difference between 0 and nonzero to be relevant.

If left unspecified, the status of the service will be determined automatically, usually by looking for the service in the
process table.

(# Back to service attributes)

stop

Specify a stop command manually.

(# Back to service attributes)

timeout

Specify an optional minimum timeout (in seconds) for puppet to wait when syncing service properties

Requires features configurable_timeout.

(# Back to service attributes)

Providers
base

The simplest form of Unix service support.

You have to specify enough about your service for this to work; the minimum you can specify is a binary for starting
the process, and this same binary will be searched for in the process table to stop the service. As with init-style
services, it is preferable to specify start, stop, and status commands.

• Required binaries: kill.
• Supported features: refreshable.

bsd

Generic BSD form of init-style service management with rc.d.

Uses rc.conf.d for service enabling and disabling.

• Supported features: enableable, refreshable.

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-redhat
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-runit
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-service
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-smf
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-src
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-systemd
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-upstart
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-provider-windows
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attributes
http://refspecs.linuxfoundation.org/LSB_4.1.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#service-attributes

Puppet | Developing Puppet code | 629

daemontools

Daemontools service management.

This provider manages daemons supervised by D.J. Bernstein daemontools. When detecting the service directory it
will check, in order of preference:

• /service

• /etc/service

• /var/lib/svscan

The daemon directory should be in one of the following locations:

• /var/lib/service

• /etc

...or this can be overridden in the resource's attributes:

service { 'myservice':
 provider => 'daemontools',
 path => '/path/to/daemons',
}

This provider supports out of the box:

• start/stop (mapped to enable/disable)
• enable/disable
• restart
• status

If a service has ensure => "running", it will link /path/to/daemon to /path/to/service, which will automatically
enable the service.

If a service has ensure => "stopped", it will only shut down the service, not remove the /path/to/
service link.

• Required binaries: /usr/bin/svc, /usr/bin/svstat.
• Supported features: enableable, refreshable.

debian

Debian's form of init-style management.

The only differences from init are support for enabling and disabling services via update-rc.d and the ability to
determine enabled status via invoke-rc.d.

• Required binaries: /usr/sbin/invoke-rc.d, /usr/sbin/service, /usr/sbin/update-rc.d.
• Default for operatingsystem == cumuluslinux and operatingsystemmajrelease == 1, 2.

Default for operatingsystem == debian and operatingsystemmajrelease == 5, 6, 7. Default
for operatingsystem == devuan.

• Supported features: enableable, refreshable.

freebsd

Provider for FreeBSD and DragonFly BSD. Uses the rcvar argument of init scripts and parses/edits rc files.

• Default for operatingsystem == freebsd, dragonfly.
• Supported features: enableable, refreshable.

gentoo

Gentoo's form of init-style service management.

Uses rc-update for service enabling and disabling.

• Required binaries: /sbin/rc-update.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 630

• Supported features: enableable, refreshable.

init

Standard init-style service management.

• Supported features: refreshable.

launchd

This provider manages jobs with launchd, which is the default service framework for Mac OS X (and may be
available for use on other platforms).

For more information, see the launchd man page:

• https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man8/launchd.8.html

This provider reads plists out of the following directories:

• /System/Library/LaunchDaemons

• /System/Library/LaunchAgents

• /Library/LaunchDaemons

• /Library/LaunchAgents

...and builds up a list of services based upon each plist's "Label" entry.

This provider supports:

• ensure => running/stopped,
• enable => true/false
• status
• restart

Here is how the Puppet states correspond to launchd states:

• stopped --- job unloaded
• started --- job loaded
• enabled --- 'Disable' removed from job plist file
• disabled --- 'Disable' added to job plist file

Note that this allows you to do something launchctl can't do, which is to be in a state of "stopped/enabled" or
"running/disabled".

Note that this provider does not support overriding 'restart'

• Required binaries: /bin/launchctl.
• Default for operatingsystem == darwin.
• Supported features: enableable, refreshable.

openbsd

Provider for OpenBSD's rc.d daemon control scripts

• Required binaries: /usr/sbin/rcctl.
• Default for operatingsystem == openbsd.
• Supported features: enableable, flaggable, refreshable.

openrc

Support for Gentoo's OpenRC initskripts

Uses rc-update, rc-status and rc-service to manage services.

• Required binaries: /bin/rc-status, /sbin/rc-service, /sbin/rc-update.
• Default for operatingsystem == gentoo. Default for operatingsystem == funtoo.
• Supported features: enableable, refreshable.

© 2024 Puppet, Inc., a Perforce company

https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man8/launchd.8.html

Puppet | Developing Puppet code | 631

openwrt

Support for OpenWrt flavored init scripts.

Uses /etc/init.d/service_name enable, disable, and enabled.

• Default for operatingsystem == openwrt.
• Supported features: enableable, refreshable.

rcng

RCng service management with rc.d

• Default for operatingsystem == netbsd, cargos.
• Supported features: enableable, refreshable.

redhat

Red Hat's (and probably many others') form of init-style service management. Uses chkconfig for service
enabling and disabling.

• Required binaries: /sbin/chkconfig, /sbin/service.
• Default for osfamily == redhat. Default for operatingsystemmajrelease == 10, 11 and

osfamily == suse.
• Supported features: enableable, refreshable.

runit

Runit service management.

This provider manages daemons running supervised by Runit. When detecting the service directory it will check, in
order of preference:

• /service

• /etc/service

• /var/service

The daemon directory should be in one of the following locations:

• /etc/sv

• /var/lib/service

or this can be overridden in the service resource parameters:

service { 'myservice':
 provider => 'runit',
 path => '/path/to/daemons',
}

This provider supports out of the box:

• start/stop
• enable/disable
• restart
• status
• Required binaries: /usr/bin/sv.
• Supported features: enableable, refreshable.

service

The simplest form of service support.

• Supported features: refreshable.

smf

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 632

Support for Sun's new Service Management Framework.

Starting a service is effectively equivalent to enabling it, so there is only support for starting and stopping services,
which also enables and disables them, respectively.

By specifying manifest => "/path/to/service.xml", the SMF manifest will be imported if it does not
exist.

• Required binaries: /usr/bin/svcs, /usr/sbin/svcadm, /usr/sbin/svccfg.
• Default for osfamily == solaris.
• Supported features: enableable, refreshable.

src

Support for AIX's System Resource controller.

Services are started/stopped based on the stopsrc and startsrc commands, and some services can be refreshed
with refresh command.

Enabling and disabling services is not supported, as it requires modifications to /etc/inittab. Starting and
stopping groups of subsystems is not yet supported.

• Required binaries: /usr/bin/lssrc, /usr/bin/refresh, /usr/bin/startsrc, /usr/bin/
stopsrc, /usr/sbin/chitab, /usr/sbin/lsitab, /usr/sbin/mkitab, /usr/sbin/rmitab.

• Default for operatingsystem == aix.
• Supported features: enableable, refreshable.

systemd

Manages systemd services using systemctl.

Because systemd defaults to assuming the .service unit type, the suffix may be omitted. Other unit types (such
as .path) may be managed by providing the proper suffix.

• Required binaries: systemctl.
• Default for osfamily == archlinux. Default for operatingsystemmajrelease == 7, 8, 9

and osfamily == redhat. Default for operatingsystem == fedora and osfamily == redhat.
Default for osfamily == suse. Default for osfamily == coreos. Default for operatingsystem
== amazon and operatingsystemmajrelease == 2. Default for operatingsystem == debian.
Default for operatingsystem == LinuxMint. Default for operatingsystem == ubuntu. Default for
operatingsystem == cumuluslinux and operatingsystemmajrelease == 3, 4.

• Supported features: enableable, maskable, refreshable.

upstart

Ubuntu service management with upstart.

This provider manages upstart jobs on Ubuntu. For upstart documentation, see http://upstart.ubuntu.com/.

• Required binaries: /sbin/initctl, /sbin/restart, /sbin/start, /sbin/status, /sbin/stop.
• Default for operatingsystem == ubuntu and operatingsystemmajrelease == 10.04, 12.04,

14.04, 14.10. Default for operatingsystem == LinuxMint and operatingsystemmajrelease
== 10, 11, 12, 13, 14, 15, 16, 17.

• Supported features: enableable, refreshable.

windows

Support for Windows Service Control Manager (SCM). This provider can start, stop, enable, and disable services, and
the SCM provides working status methods for all services.

Control of service groups (dependencies) is not yet supported, nor is running services as a specific user.

• Default for operatingsystem == windows.
• Supported features: configurable_timeout, delayed_startable, enableable,

manages_logon_credentials, manual_startable, refreshable.

© 2024 Puppet, Inc., a Perforce company

http://upstart.ubuntu.com/

Puppet | Developing Puppet code | 633

Provider Features

Available features:

• configurable_timeout --- The provider can specify a minumum timeout for syncing service properties
• controllable --- The provider uses a control variable.
• delayed_startable --- The provider can set service to delayed start
• enableable --- The provider can enable and disable the service.
• flaggable --- The provider can pass flags to the service.
• manages_logon_credentials --- The provider can specify the logon credentials used for a service
• manual_startable --- The provider can set service to manual start
• maskable --- The provider can 'mask' the service.
• refreshable --- The provider can restart the service.

Provider support:

• base - refreshable
• bsd - enableable, refreshable
• daemontools - enableable, refreshable
• debian - enableable, refreshable
• freebsd - enableable, refreshable
• gentoo - enableable, refreshable
• init - refreshable
• launchd - enableable, refreshable
• openbsd - enableable, flaggable, refreshable
• openrc - enableable, refreshable
• openwrt - enableable, refreshable
• rcng - enableable, refreshable
• redhat - enableable, refreshable
• runit - enableable, refreshable
• service - refreshable
• smf - enableable, refreshable
• src - enableable, refreshable
• systemd - enableable, maskable, refreshable
• upstart - enableable, refreshable
• windows - configurable timeout, delayed startable, enableable, manages logon credentials, manual startable,

refreshable

stage

• Attributes

Description

A resource type for creating new run stages. Once a stage is available, classes can be assigned to it by declaring them
with the resource-like syntax and using the stage metaparameter.

Note that new stages are not useful unless you also declare their order in relation to the default main stage.

A complete run stage example:

stage { 'pre':
 before => Stage['main'],
}

class { 'apt-updates':
 stage => 'pre',
}

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#stage-attributes
https://puppet.com/docs/puppet/latest/metaparameter.html#stage

Puppet | Developing Puppet code | 634

Individual resources cannot be assigned to run stages; you can only set stages for classes.

Attributes

stage { 'resource title':
 name => # (namevar) The name of the stage. Use this as the value for
 # ...plus any applicable metaparameters.
}

name

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The name of the stage. Use this as the value for the stage metaparameter when assigning classes to this stage.

(# Back to stage attributes)

tidy

• Attributes

Description

Remove unwanted files based on specific criteria. Multiple criteria are OR'd together, so a file that is too large but is
not old enough will still get tidied.

If you don't specify either age or size, then all files will be removed.

This resource type works by generating a file resource for every file that should be deleted and then letting that
resource perform the actual deletion.

Attributes

tidy { 'resource title':
 path => # (namevar) The path to the file or directory to manage....
 age => # Tidy files whose age is equal to or greater than
 backup => # Whether tidied files should be backed up. Any...
 matches => # One or more (shell type) file glob patterns...
 max_files => # In case the resource is a directory and the...
 recurse => # If target is a directory, recursively descend...
 rmdirs => # Tidy directories in addition to files; that is...
 size => # Tidy files whose size is equal to or greater...
 type => # Set the mechanism for determining age. Valid...
 # ...plus any applicable metaparameters.
}

path

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The path to the file or directory to manage. Must be fully qualified.

(# Back to tidy attributes)

age

Tidy files whose age is equal to or greater than the specified time. You can choose seconds, minutes, hours, days, or
weeks by specifying the first letter of any of those words (for example, '1w' represents one week).

Specifying 0 will remove all files.

(# Back to tidy attributes)

backup

Whether tidied files should be backed up. Any values are passed directly to the file resources used for actual file
deletion, so consult the file type's backup documentation to determine valid values.

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#stage-attribute-name
https://puppet.com/docs/puppet/latest/metaparameter.html
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#stage-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#tidy-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#tidy-attribute-path
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#tidy-attribute-age
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#tidy-attribute-backup
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#tidy-attribute-matches
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#tidy-attribute-max_files
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#tidy-attribute-recurse
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#tidy-attribute-rmdirs
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#tidy-attribute-size
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#tidy-attribute-type
https://puppet.com/docs/puppet/latest/metaparameter.html
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#tidy-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#tidy-attributes

Puppet | Developing Puppet code | 635

(# Back to tidy attributes)

matches

One or more (shell type) file glob patterns, which restrict the list of files to be tidied to those whose basenames match
at least one of the patterns specified. Multiple patterns can be specified using an array.

Example:

tidy { '/tmp':
 age => '1w',
 recurse => 1,
 matches => ['[0-9]pub*.tmp', '*.temp', 'tmpfile?'],
}

This removes files from /tmp if they are one week old or older, are not in a subdirectory and match one of the shell
globs given.

Note that the patterns are matched against the basename of each file -- that is, your glob patterns should not have any
'/' characters in them, since you are only specifying against the last bit of the file.

Finally, note that you must now specify a non-zero/non-false value for recurse if matches is used, as matches only
apply to files found by recursion (there's no reason to use static patterns match against a statically determined path).
Requiring explicit recursion clears up a common source of confusion.

(# Back to tidy attributes)

max_files

In case the resource is a directory and the recursion is enabled, puppet will generate a new resource for each file file
found, possible leading to an excessive number of resources generated without any control.

Setting max_files will check the number of file resources that will eventually be created and will raise a resource
argument error if the limit will be exceeded.

Use value 0 to disable the check. In this case, a warning is logged if the number of files exceeds 1000.

Values can match /^[0-9]+$/.

(# Back to tidy attributes)

recurse

If target is a directory, recursively descend into the directory looking for files to tidy.

Valid values are true, false, inf. Values can match /^[0-9]+$/.

(# Back to tidy attributes)

rmdirs

Tidy directories in addition to files; that is, remove directories whose age is older than the specified criteria. This will
only remove empty directories, so all contained files must also be tidied before a directory gets removed.

Valid values are true, false, yes, no.

(# Back to tidy attributes)

size

Tidy files whose size is equal to or greater than the specified size. Unqualified values are in kilobytes, but b, k, m,
g, and t can be appended to specify bytes, kilobytes, megabytes, gigabytes, and terabytes, respectively. Only the first
character is significant, so the full word can also be used.

(# Back to tidy attributes)

type

Set the mechanism for determining age.

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#tidy-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#tidy-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#tidy-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#tidy-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#tidy-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#tidy-attributes

Puppet | Developing Puppet code | 636

Valid values are atime, mtime, ctime.

(# Back to tidy attributes)

user

• Attributes
• Providers
• Provider Features

Description

Manage users. This type is mostly built to manage system users, so it is lacking some features useful for managing
normal users.

This resource type uses the prescribed native tools for creating groups and generally uses POSIX APIs for retrieving
information about them. It does not directly modify /etc/passwd or anything.

Autorequires: If Puppet is managing the user's primary group (as provided in the gid attribute) or any group listed
in the groups attribute then the user resource will autorequire that group. If Puppet is managing any role accounts
corresponding to the user's roles, the user resource will autorequire those role accounts.

Attributes

user { 'resource title':
 name => # (namevar) The user name. While naming
 limitations vary by...
 ensure => # The basic state that the object should be in....
 allowdupe => # Whether to allow duplicate UIDs. Valid
 values...
 attribute_membership => # Whether specified attribute value pairs
 should...
 attributes => # Specify AIX attributes for the user in an
 array...
 auth_membership => # Whether specified auths should be considered
 the
 auths => # The auths the user has. Multiple auths
 should...
 comment => # A description of the user. Generally the
 user's
 expiry => # The expiry date for this user. Provide as
 either
 forcelocal => # Forces the management of local accounts when...
 gid => # The user's primary group. Can be specified...
 groups => # The groups to which the user belongs. The...
 home => # The home directory of the user. The
 directory...
 ia_load_module => # The name of the I&A module to use to manage
 this
 iterations => # This is the number of iterations of a chained...
 key_membership => # Whether specified key/value pairs should be...
 keys => # Specify user attributes in an array of key ...
 loginclass => # The name of login class to which the user...
 managehome => # Whether to manage the home directory when
 Puppet
 membership => # If `minimum` is specified, Puppet will ensure...
 password => # The user's password, in whatever encrypted...
 password_max_age => # The maximum number of days a password may be...
 password_min_age => # The minimum number of days a password must be...
 password_warn_days => # The number of days before a password is going
 to
 profile_membership => # Whether specified roles should be treated as
 the
 profiles => # The profiles the user has. Multiple profiles...

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#tidy-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-providers
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-provider-features
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-name
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-ensure
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-allowdupe
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-attribute_membership
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-auth_membership
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-auths
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-comment
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-expiry
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-forcelocal
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-gid
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-groups
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-home
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-ia_load_module
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-iterations
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-key_membership
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-keys
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-loginclass
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-managehome
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-membership
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-password
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-password_max_age
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-password_min_age
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-password_warn_days
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-profile_membership
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-profiles

Puppet | Developing Puppet code | 637

 project => # The name of the project associated with a user.

 provider => # The specific backend to use for this `user...
 purge_ssh_keys => # Whether to purge authorized SSH keys for this...
 role_membership => # Whether specified roles should be considered
 the
 roles => # The roles the user has. Multiple roles
 should...
 salt => # This is the 32-byte salt used to generate the...
 shell => # The user's login shell. The shell must exist...
 system => # Whether the user is a system user, according
 to...
 uid => # The user ID; must be specified numerically.
 If...
 # ...plus any applicable metaparameters.
}

name

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The user name. While naming limitations vary by operating system, it is advisable to restrict names to the lowest
common denominator, which is a maximum of 8 characters beginning with a letter.

Note that Puppet considers user names to be case-sensitive, regardless of the platform's own rules; be sure to always
use the same case when referring to a given user.

(# Back to user attributes)

ensure

(Property: This attribute represents concrete state on the target system.)

The basic state that the object should be in.

Valid values are present, absent, role.

(# Back to user attributes)

allowdupe

Whether to allow duplicate UIDs.

Valid values are true, false, yes, no.

(# Back to user attributes)

attribute_membership

Whether specified attribute value pairs should be treated as the complete list (inclusive) or the minimum list
(minimum) of attribute/value pairs for the user.

Valid values are inclusive, minimum.

(# Back to user attributes)

attributes

(Property: This attribute represents concrete state on the target system.)

Specify AIX attributes for the user in an array or hash of attribute = value pairs.

For example:

['minage=0', 'maxage=5', 'SYSTEM=compat']

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-project
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-provider
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-purge_ssh_keys
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-role_membership
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-roles
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-salt
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-shell
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-system
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attribute-uid
https://puppet.com/docs/puppet/latest/metaparameter.html
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes

Puppet | Developing Puppet code | 638

or

attributes => { 'minage' => '0', 'maxage' => '5', 'SYSTEM' => 'compat' }

Requires features manages_aix_lam.

(# Back to user attributes)

auth_membership

Whether specified auths should be considered the complete list (inclusive) or the minimum list (minimum) of
auths the user has. This setting is specific to managing Solaris authorizations.

Valid values are inclusive, minimum.

(# Back to user attributes)

auths

(Property: This attribute represents concrete state on the target system.)

The auths the user has. Multiple auths should be specified as an array.

Requires features manages_solaris_rbac.

(# Back to user attributes)

comment

(Property: This attribute represents concrete state on the target system.)

A description of the user. Generally the user's full name.

(# Back to user attributes)

expiry

(Property: This attribute represents concrete state on the target system.)

The expiry date for this user. Provide as either the special value absent to ensure that the account never expires, or
as a zero-padded YYYY-MM-DD format -- for example, 2010-02-19.

Valid values are absent. Values can match /^\d{4}-\d{2}-\d{2}$/.

Requires features manages_expiry.

(# Back to user attributes)

forcelocal

Forces the management of local accounts when accounts are also being managed by some other Name Service Switch
(NSS). For AIX, refer to the ia_load_module parameter.

This option relies on your operating system's implementation of luser* commands, such as luseradd , and
lgroupadd, lusermod. The forcelocal option could behave unpredictably in some circumstances. If the tools
it depends on are not available, it might have no effect at all.

Valid values are true, false, yes, no.

Requires features manages_local_users_and_groups.

(# Back to user attributes)

gid

(Property: This attribute represents concrete state on the target system.)

The user's primary group. Can be specified numerically or by name.

This attribute is not supported on Windows systems; use the groups attribute instead. (On Windows, designating a
primary group is only meaningful for domain accounts, which Puppet does not currently manage.)

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes

Puppet | Developing Puppet code | 639

(# Back to user attributes)

groups

(Property: This attribute represents concrete state on the target system.)

The groups to which the user belongs. The primary group should not be listed, and groups should be identified by
name rather than by GID. Multiple groups should be specified as an array.

(# Back to user attributes)

home

(Property: This attribute represents concrete state on the target system.)

The home directory of the user. The directory must be created separately and is not currently checked for existence.

(# Back to user attributes)

ia_load_module

The name of the I&A module to use to manage this user. This should be set to files if managing local users.

Requires features manages_aix_lam.

(# Back to user attributes)

iterations

(Property: This attribute represents concrete state on the target system.)

This is the number of iterations of a chained computation of the PBKDF2 password hash. This parameter is used in
OS X, and is required for managing passwords on OS X 10.8 and newer.

Requires features manages_password_salt.

(# Back to user attributes)

key_membership

Whether specified key/value pairs should be considered the complete list (inclusive) or the minimum list
(minimum) of the user's attributes.

Valid values are inclusive, minimum.

(# Back to user attributes)

keys

(Property: This attribute represents concrete state on the target system.)

Specify user attributes in an array of key = value pairs.

Requires features manages_solaris_rbac.

(# Back to user attributes)

loginclass

(Property: This attribute represents concrete state on the target system.)

The name of login class to which the user belongs.

Requires features manages_loginclass.

(# Back to user attributes)

managehome

Whether to manage the home directory when Puppet creates or removes the user. This creates the home directory if
Puppet also creates the user account, and deletes the home directory if Puppet also removes the user account.

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
https://en.wikipedia.org/wiki/PBKDF2
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes

Puppet | Developing Puppet code | 640

This parameter has no effect unless Puppet is also creating or removing the user in the resource at the same time. For
instance, Puppet creates a home directory for a managed user if ensure => present and the user does not exist
at the time of the Puppet run. If the home directory is then deleted manually, Puppet will not recreate it on the next
run.

Note that on Windows, this manages creation/deletion of the user profile instead of the home directory. The user
profile is stored in the C:Users<username> directory.

Valid values are true, false, yes, no.

(# Back to user attributes)

membership

If minimum is specified, Puppet will ensure that the user is a member of all specified groups, but will not remove any
other groups that the user is a part of.

If inclusive is specified, Puppet will ensure that the user is a member of only specified groups.

Valid values are inclusive, minimum.

(# Back to user attributes)

password

(Property: This attribute represents concrete state on the target system.)

The user's password, in whatever encrypted format the local system requires. Consult your operating system's
documentation for acceptable password encryption formats and requirements.

• Mac OS X 10.5 and 10.6, and some older Linux distributions, use salted SHA1 hashes. You can use Puppet's
built-in sha1 function to generate a salted SHA1 hash from a password.

• Mac OS X 10.7 (Lion), and many recent Linux distributions, use salted SHA512 hashes. The Puppet Labs stdlib
module contains a str2saltedsha512 function which can generate password hashes for these operating
systems.

• OS X 10.8 and higher use salted SHA512 PBKDF2 hashes. When managing passwords on these systems, the
salt and iterations attributes need to be specified as well as the password.

• Windows passwords can be managed only in cleartext, because there is no Windows API for setting the password
hash.

Enclose any value that includes a dollar sign ($) in single quotes (') to avoid accidental variable interpolation.

To redact passwords from reports to PuppetDB, use the Sensitive data type. For example, this resource protects
the password:

user { 'foo':
 ensure => present,
 password => Sensitive("my secret password")
}

This results in the password being redacted from the report, as in the previous_value, desired_value, and
message fields below.

 events:
 - !ruby/object:Puppet::Transaction::Event
 audited: false
 property: password
 previous_value: "[redacted]"
 desired_value: "[redacted]"
 historical_value:
 message: changed [redacted] to [redacted]
 name: :password_changed
 status: success
 time: 2017-05-17 16:06:02.934398293 -07:00
 redacted: true

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
https://github.com/puppetlabs/puppetlabs-stdlib/

Puppet | Developing Puppet code | 641

 corrective_change: false
 corrective_change: false

Requires features manages_passwords.

(# Back to user attributes)

password_max_age

(Property: This attribute represents concrete state on the target system.)

The maximum number of days a password may be used before it must be changed.

Requires features manages_password_age.

(# Back to user attributes)

password_min_age

(Property: This attribute represents concrete state on the target system.)

The minimum number of days a password must be used before it may be changed.

Requires features manages_password_age.

(# Back to user attributes)

password_warn_days

(Property: This attribute represents concrete state on the target system.)

The number of days before a password is going to expire (see the maximum password age) during which the user
should be warned.

Requires features manages_password_age.

(# Back to user attributes)

profile_membership

Whether specified roles should be treated as the complete list (inclusive) or the minimum list (minimum) of
roles of which the user is a member.

Valid values are inclusive, minimum.

(# Back to user attributes)

profiles

(Property: This attribute represents concrete state on the target system.)

The profiles the user has. Multiple profiles should be specified as an array.

Requires features manages_solaris_rbac.

(# Back to user attributes)

project

(Property: This attribute represents concrete state on the target system.)

The name of the project associated with a user.

Requires features manages_solaris_rbac.

(# Back to user attributes)

provider

The specific backend to use for this user resource. You will seldom need to specify this --- Puppet will usually
discover the appropriate provider for your platform.

Available providers are:

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes

Puppet | Developing Puppet code | 642

• aix

• directoryservice

• hpuxuseradd

• ldap

• openbsd

• pw

• user_role_add

• useradd

• windows_adsi

(# Back to user attributes)

purge_ssh_keys

Whether to purge authorized SSH keys for this user if they are not managed with the ssh_authorized_key
resource type. This parameter is a noop if the ssh_authorized_key type is not available.

Allowed values are:

• false (default) --- don't purge SSH keys for this user.
• true --- look for keys in the .ssh/authorized_keys file in the user's home directory. Purge any keys that

aren't managed as ssh_authorized_key resources.
• An array of file paths --- look for keys in all of the files listed. Purge any keys that aren't managed as

ssh_authorized_key resources. If any of these paths starts with ~ or %h, that token will be replaced with the
user's home directory.

Valid values are true, false.

(# Back to user attributes)

role_membership

Whether specified roles should be considered the complete list (inclusive) or the minimum list (minimum) of
roles the user has.

Valid values are inclusive, minimum.

(# Back to user attributes)

roles

(Property: This attribute represents concrete state on the target system.)

The roles the user has. Multiple roles should be specified as an array.

Requires features manages_roles.

(# Back to user attributes)

salt

(Property: This attribute represents concrete state on the target system.)

This is the 32-byte salt used to generate the PBKDF2 password used in OS X. This field is required for managing
passwords on OS X >= 10.8.

Requires features manages_password_salt.

(# Back to user attributes)

shell

(Property: This attribute represents concrete state on the target system.)

The user's login shell. The shell must exist and be executable.

This attribute cannot be managed on Windows systems.

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-provider-aix
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-provider-directoryservice
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-provider-hpuxuseradd
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-provider-ldap
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-provider-openbsd
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-provider-pw
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-provider-user_role_add
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-provider-useradd
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-provider-windows_adsi
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes

Puppet | Developing Puppet code | 643

Requires features manages_shell.

(# Back to user attributes)

system

Whether the user is a system user, according to the OS's criteria; on most platforms, a UID less than or equal to 500
indicates a system user. This parameter is only used when the resource is created and will not affect the UID when the
user is present.

Valid values are true, false, yes, no.

(# Back to user attributes)

uid

(Property: This attribute represents concrete state on the target system.)

The user ID; must be specified numerically. If no user ID is specified when creating a new user, then one will be
chosen automatically. This will likely result in the same user having different UIDs on different systems, which is
not recommended. This is especially noteworthy when managing the same user on both Darwin and other platforms,
since Puppet does UID generation on Darwin, but the underlying tools do so on other platforms.

On Windows, this property is read-only and will return the user's security identifier (SID).

(# Back to user attributes)

Providers
aix

User management for AIX.

• Required binaries: /bin/chpasswd, /usr/bin/chuser, /usr/bin/mkuser, /usr/sbin/lsuser, /
usr/sbin/rmuser.

• Default for operatingsystem == aix.
• Supported features: manages_aix_lam, manages_expiry, manages_homedir,

manages_local_users_and_groups, manages_password_age, manages_passwords,
manages_shell.

directoryservice

User management on OS X.

• Required binaries: /usr/bin/dscacheutil, /usr/bin/dscl, /usr/bin/dsimport, /usr/bin/
uuidgen.

• Default for operatingsystem == darwin.
• Supported features: manages_password_salt, manages_passwords, manages_shell.

hpuxuseradd

User management for HP-UX. This provider uses the undocumented -F switch to HP-UX's special usermod
binary to work around the fact that its standard usermod cannot make changes while the user is logged in. New
functionality provides for changing trusted computing passwords and resetting password expirations under trusted
computing.

• Required binaries: /usr/sam/lbin/useradd.sam, /usr/sam/lbin/userdel.sam, /usr/sam/
lbin/usermod.sam.

• Default for operatingsystem == hp-ux.
• Supported features: allows_duplicates, manages_homedir, manages_passwords.

ldap

User management via LDAP.

© 2024 Puppet, Inc., a Perforce company

3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes
3601b2d6ccbe96bb20cbf8b21dea3f3d9b3f2395.md#user-attributes

Puppet | Developing Puppet code | 644

This provider requires that you have valid values for all of the LDAP-related settings in puppet.conf, including
ldapbase. You will almost definitely need settings for ldapuser and ldappassword in order for your clients
to write to LDAP.

Note that this provider will automatically generate a UID for you if you do not specify one, but it is a potentially
expensive operation, as it iterates across all existing users to pick the appropriate next one.

• Supported features: manages_passwords, manages_shell.

openbsd

User management via useradd and its ilk for OpenBSD. Note that you will need to install Ruby's shadow password
library (package known as ruby-shadow) if you wish to manage user passwords.

• Required binaries: passwd, useradd, userdel, usermod.
• Default for operatingsystem == openbsd.
• Supported features: manages_expiry, manages_homedir, manages_shell, system_users.

pw

User management via pw on FreeBSD and DragonFly BSD.

• Required binaries: pw.
• Default for operatingsystem == freebsd, dragonfly.
• Supported features: allows_duplicates, manages_expiry, manages_homedir,

manages_passwords, manages_shell.

user_role_add

User and role management on Solaris, via useradd and roleadd.

• Required binaries: passwd, roleadd, roledel, rolemod, useradd, userdel, usermod.
• Default for osfamily == solaris.
• Supported features: allows_duplicates, manages_homedir, manages_password_age,

manages_passwords, manages_roles, manages_shell, manages_solaris_rbac.

useradd

User management via useradd and its ilk. Note that you will need to install Ruby's shadow password library (often
known as ruby-libshadow) if you wish to manage user passwords.

To use the forcelocal parameter, you need to install the libuser package (providing /usr/sbin/
lgroupadd and /usr/sbin/luseradd).

• Required binaries: chage, chpasswd, lchage, luseradd, luserdel, lusermod, useradd, userdel,
usermod.

• Supported features: allows_duplicates, manages_expiry, manages_homedir, manages_shell,
system_users.

windows_adsi

Local user management for Windows.

• Default for operatingsystem == windows.
• Supported features: manages_homedir, manages_passwords, manages_roles.

Provider Features

Available features:

• allows_duplicates --- The provider supports duplicate users with the same UID.
• manages_aix_lam --- The provider can manage AIX Loadable Authentication Module (LAM) system.
• manages_expiry --- The provider can manage the expiry date for a user.
• manages_homedir --- The provider can create and remove home directories.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 645

• manages_local_users_and_groups --- Allows local users to be managed on systems that also use some
other remote Name Service Switch (NSS) method of managing accounts.

• manages_loginclass --- The provider can manage the login class for a user.
• manages_password_age --- The provider can set age requirements and restrictions for passwords.
• manages_password_salt --- The provider can set a password salt. This is for providers that implement

PBKDF2 passwords with salt properties.
• manages_passwords --- The provider can modify user passwords, by accepting a password hash.
• manages_roles --- The provider can manage roles
• manages_shell --- The provider allows for setting shell and validates if possible
• manages_solaris_rbac --- The provider can manage normal users
• system_users --- The provider allows you to create system users with lower UIDs.

Provider support:

• aix - manages aix lam, manages expiry, manages homedir, manages local users and groups, manages password
age, manages passwords, manages shell

• directoryservice - manages password salt, manages passwords, manages shell
• hpuxuseradd - allows duplicates, manages homedir, manages passwords
• ldap - manages passwords, manages shell
• openbsd - manages expiry, manages homedir, manages shell, system users, manages passwords, manages

loginclass
• pw - allows duplicates, manages expiry, manages homedir, manages passwords, manages shell
• user_role_add - allows duplicates, manages homedir, manages password age, manages passwords, manages

roles, manages shell, manages solaris rbac
• useradd - allows duplicates, manages expiry, manages homedir, manages shell, system users, manages

passwords, manages password age, libuser
• windows_adsi - manages homedir, manages passwords, manages roles

Core types cheat sheet
This page provides a reference guide for the core Puppet types: package, file, service, notify, exec,
cron, user, and group.

For detailed information about these types, see the Resource type reference or the other pages in this section.

The trifecta: package, file, and service
Package, file, service: Learn it, live it, love it. Even if this is the only Puppet you know, you can get a lot done.

package { 'openssh-server':
 ensure => installed,
}

file { '/etc/ssh/sshd_config':
 source => 'puppet:///modules/sshd/sshd_config',
 owner => 'root',
 group => 'root',
 mode => '0640',
 notify => Service['sshd'], # sshd restarts whenever you edit this file.
 require => Package['openssh-server'],
}

service { 'sshd':
 ensure => running,
 enable => true,
}

package

Manages software packages.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 646

Attribute Description Notes

name The name of the package, as known
to your packaging system.

Defaults to title.

ensure Whether the package should be
installed, and what version to use.

Allowed values:

• present

• latest (implies present)
• Any version string (implies

present)
• absent

• purged

CAUTION: purged
ensures absent, and
deletes configuration
files and dependencies,
including those that other
packages depend on.
Provider-dependent.

source Where to obtain the package, if your
system’s packaging tools don’t use a
repository.

provider Which packaging system to use (such
as Yum or Rubygems), if a system
has more than one available.

file

Manages files, directories, and symlinks.

Attribute Description Notes

ensure Whether the file should exist, and
what it should be.

Allowed values:

• file

• directory

• link (symlink)
• present (anything)
• absent

path The full path to the file on disk. Defaults to title.

owner By name or UID.

group By name or GID.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 647

Attribute Description Notes

mode Must be specified exactly. Does the
right thing for directories.

For normal files:

source Where to download contents for the file. Usually a
puppet:/// URL.

content The file’s desired contents, as a string. Most useful when
paired with templates, but you can also use the output of
the file function.

For directories:

source Where to download contents for the directory, when
recurse => true.

recurse Whether to recursively manage files in the directory.

purge Whether unmanaged files in the directory should be
deleted, when recurse => true.

For symlinks:

target The symlink target. (Required when ensure =>
link.)

Other notable attributes:

• backup

• checksum

• force

• ignore

• links

• recurselimit

• replace

service

Manages services running on the node. As with packages, some platforms have better tools than others, so read the
relevant documentation before you begin.

You can make services restart whenever a file changes with the subscribe or notify metaparameters. For more
info, see Relationships and ordering.

Attribute Description Notes

name The name of the service to run. Defaults to title.

ensure The desired status of the service. Allowed values:

• running (or true)
• stopped (or false)

enable Whether the service should start on
boot. Doesn’t work on all systems.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 648

Attribute Description Notes

hasrestart Whether to use the init script’s restart
command instead of stop+start.

Defaults to false.

hasstatus Whether to use the init script’s status
command.

Defaults to true.

Other notable attributes:

If a service has a bad init script, you can work around it and manage almost anything using the status, start,
stop, restart, pattern, and binary attributes.

Other core types
Beyond package, file, and service, these core types are among the most useful and commonly used.

notify

Logs an arbitrary message, at the notice log level. This appears in the POSIX syslog or Windows Event Log on the
agent node and is also logged in reports.

notify { "This message is getting logged on the agent node.": }

Attribute Description Notes

message The message to log. Defaults to title.

exec

Executes an arbitrary command on the agent node. When using execs, you must either make sure the command can be
safely run multiple times, or specify that it runs only under certain conditions.

Important attributes Description Notes

command The command to run. If this isn’t a
fully-qualified path, use the path
attribute.

Defaults to title.

path Where to look for executables, as a
colon-separated list or an array.

returns Which exit codes indicate success. Defaults to 0.

environment An array of environment
variables to set (for example,
['MYVAR=somevalue',
'OTHERVAR=othervalue']).

The following attributes limit when a command runs.

creates A file to look for before running the
command. The command only runs if
the file doesn’t exist.

refreshonly If true, the command runs only
if a resource it subscribes to (or
a resource which notifies it) has
changed.

onlyif A command or array of commands; if
any have a non-zero return value, the
command won’t run.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 649

Important attributes Description Notes

unless The opposite of onlyif.

Other notable attributes: cwd, group, logoutput, timeout, tries, try_sleep, user

cron

Manages cron jobs. On Windows, use scheduled_task instead.

cron { 'logrotate':
 command => "/usr/sbin/logrotate",
 user => "root",
 hour => 2,
 minute => 0,
}

Important attributes Description Notes

command The command to execute.

ensure Whether the job should exist. Allowed values:

• present

• absent

hour, minute, month,
monthday, weekday

The timing of the cron job.

Other notable attributes: environment, name, special, target, user

user

Manages user accounts; mostly used for system users.

user { "jane":
 ensure => present,
 uid => '507',
 gid => 'admin',
 shell => '/bin/zsh',
 home => '/home/jane',
 managehome => true,
}

Important Attributes Description Notes

name The name of the user. Defaults to title.

ensure Whether the user should exist. Allowed values:

• present

• absent

• role

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 650

Important Attributes Description Notes

uid The user ID. Must be specified
numerically; chosen automatically if
omitted.

Read-only on Windows.

gid The user’s primary group. Can be
specified numerically or by name.

Not used on Windows; use groups
instead.

groups An array of other groups to which the
user belongs.

Don’t include the group specified as
the gid.

home The user’s home directory.

managehome Whether to manage the home
directory when managing the user.

If you don’t set this to true, you’ll
need to create the user’s home
directory manually.

shell The user’s login shell.

Other notable attributes: comment, expiry, membership, password, password_max_age,
password_min_age, purge_ssh_keys, salt

group

Manages groups.

Important attributes Description Notes

name The name of the group. Defaults to title.

ensure Whether the group should exist. Allowed values:

• present

• absent

gid The group ID; must be specified
numerically, and is chosen
automatically if omitted.

Read-only on Windows.

members Users and groups that are members of
the group.

Only applicable to certain operating
systems; see the full type reference
for details.

Optional resource types for Windows
In addition to the resource types included with Puppet, you can install custom resource types as modules from the
Forge. This is especially useful when managing Windows systems, because there are several important Windows-
specific resource types that are developed as modules rather than as part of core Puppet.

If you’re doing heavy management of Windows systems, the following modules (which are collected in the
puppetlabs/windows module pack) might be helpful:

• puppetlabs/acl: A resource type for managing access control lists (ACLs) on Windows.
• puppetlabs/registry: A resource type for managing arbitrary registry keys.
• puppetlabs/reboot: A resource type for managing conditional reboots, which can be necessary for installing certain

software.
• puppetlabs/dism: A resource type for enabling and disabling Windows features (on Windows 7 or 2008 R2 and

newer).
• puppetlabs/powershell: An alternative exec provider that can directly execute PowerShell commands.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/windows/readme
https://forge.puppet.com/puppetlabs/acl
https://forge.puppet.com/puppetlabs/registry
https://forge.puppet.com/puppetlabs/reboot
https://forge.puppet.com/puppetlabs/dism
https://forge.puppet.com/puppetlabs/powershell

Puppet | Developing Puppet code | 651

Other resource types created by community members are also available on the Forge. The best way to find new
resource types is by searching for “Windows” on the Forge and exploring the results.

Remember: Plugins from the Forge might not have the same amount of quality assurance and test coverage as the
core resource types included in Puppet.

Resource Type: exec

NOTE: This page was generated from the Puppet source code on 2022-02-07 10:11:41 -0800

exec

• Attributes
• Providers

Description

Executes external commands.

Any command in an exec resource must be able to run multiple times without causing harm --- that is, it must be
idempotent. There are three main ways for an exec to be idempotent:

• The command itself is already idempotent. (For example, apt-get update.)
• The exec has an onlyif, unless, or creates attribute, which prevents Puppet from running the command

unless some condition is met. The onlyif and unless commands of an exec are used in the process of
determining whether the exec is already in sync, therefore they must be run during a noop Puppet run.

• The exec has refreshonly => true, which allows Puppet to run the command only when some other
resource is changed. (See the notes on refreshing below.)

The state managed by an exec resource represents whether the specified command needs to be executed during the
catalog run. The target state is always that the command does not need to be executed. If the initial state is that the
command does need to be executed, then successfully executing the command transitions it to the target state.

The unless, onlyif, and creates properties check the initial state of the resource. If one or more of these
properties is specified, the exec might not need to run. If the exec does not need to run, then the system is already in
the target state. In such cases, the exec is considered successful without actually executing its command.

A caution: There's a widespread tendency to use collections of execs to manage resources that aren't covered by an
existing resource type. This works fine for simple tasks, but once your exec pile gets complex enough that you really
have to think to understand what's happening, you should consider developing a custom resource type instead, as it is
much more predictable and maintainable.

Duplication: Even though command is the namevar, Puppet allows multiple exec resources with the same
command value.

Refresh: exec resources can respond to refresh events (via notify, subscribe, or the ~> arrow). The refresh
behavior of execs is non-standard, and can be affected by the refresh and refreshonly attributes:

• If refreshonly is set to true, the exec runs only when it receives an event. This is the most reliable way to use
refresh with execs.

• If the exec has already run and then receives an event, it runs its command up to two times. If an onlyif,
unless, or creates condition is no longer met after the first run, the second run does not occur.

• If the exec has already run, has a refresh command, and receives an event, it runs its normal command. Then,
if any onlyif, unless, or creates conditions are still met, the exec runs its refresh command.

• If the exec has an onlyif, unless, or creates attribute that prevents it from running, and it then receives an
event, it still will not run.

• If the exec has noop => true, would otherwise have run, and receives an event from a non-noop resource, it
runs once. However, if it has a refresh command, it runs that instead of its normal command.

In short: If there's a possibility of your exec receiving refresh events, it is extremely important to make sure the run
conditions are restricted.

© 2024 Puppet, Inc., a Perforce company

9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attributes
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-providers

Puppet | Developing Puppet code | 652

Autorequires: If Puppet is managing an exec's cwd or the executable file used in an exec's command, the exec
resource autorequires those files. If Puppet is managing the user that an exec should run as, the exec resource
autorequires that user.

Attributes

exec { 'resource title':
 command => # (namevar) The actual command to execute. Must either
 be...
 creates => # A file to look for before running the command...
 cwd => # The directory from which to run the command. If
 environment => # An array of any additional environment variables
 group => # The group to run the command as. This seems to...
 logoutput => # Whether to log command output in addition to...
 onlyif => # A test command that checks the state of the...
 path => # The search path used for command execution...
 provider => # The specific backend to use for this `exec...
 refresh => # An alternate command to run when the `exec...
 refreshonly => # The command should only be run as a refresh...
 returns => # The expected exit code(s). An error will be...
 timeout => # The maximum time the command should take. If...
 tries => # The number of times execution of the command...
 try_sleep => # The time to sleep in seconds between 'tries'....
 umask => # Sets the umask to be used while executing this...
 unless => # A test command that checks the state of the...
 user => # The user to run the command as. > **Note:*...
 # ...plus any applicable metaparameters.
}

command

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The actual command to execute. Must either be fully qualified or a search path for the command must be provided. If
the command succeeds, any output produced will be logged at the instance's normal log level (usually notice), but
if the command fails (meaning its return code does not match the specified code) then any output is logged at the err
log level.

Multiple exec resources can use the same command value; Puppet only uses the resource title to ensure execs are
unique.

On *nix platforms, the command can be specified as an array of strings and Puppet will invoke it using the more
secure method of parameterized system calls. For example, rather than executing the malicious injected code, this
command will echo it out:

command => ['/bin/echo', 'hello world; rm -rf /']

(# Back to exec attributes)

creates

A file to look for before running the command. The command will only run if the file doesn't exist.

This parameter doesn't cause Puppet to create a file; it is only useful if the command itself creates a file.

exec { 'tar -xf /Volumes/nfs02/important.tar':
 cwd => '/var/tmp',
 creates => '/var/tmp/myfile',
 path => ['/usr/bin', '/usr/sbin',],
}

© 2024 Puppet, Inc., a Perforce company

9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attribute-command
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attribute-creates
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attribute-cwd
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attribute-environment
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attribute-group
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attribute-logoutput
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attribute-onlyif
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attribute-path
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attribute-provider
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attribute-refresh
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attribute-refreshonly
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attribute-returns
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attribute-timeout
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attribute-tries
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attribute-try_sleep
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attribute-umask
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attribute-unless
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attribute-user
https://puppet.com/docs/puppet/latest/metaparameter.html
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attributes

Puppet | Developing Puppet code | 653

In this example, myfile is assumed to be a file inside important.tar. If it is ever deleted, the exec will bring it
back by re-extracting the tarball. If important.tar does not actually contain myfile, the exec will keep running
every time Puppet runs.

(# Back to exec attributes)

cwd

The directory from which to run the command. If this directory does not exist, the command will fail.

(# Back to exec attributes)

environment

An array of any additional environment variables you want to set for a command, such as ['HOME=/root',
'MAIL=root@example.com']. Note that if you use this to set PATH, it will override the path attribute.
Multiple environment variables should be specified as an array.

(# Back to exec attributes)

group

The group to run the command as. This seems to work quite haphazardly on different platforms -- it is a platform
issue not a Ruby or Puppet one, since the same variety exists when running commands as different users in the shell.

(# Back to exec attributes)

logoutput

Whether to log command output in addition to logging the exit code. Defaults to on_failure, which only logs the
output when the command has an exit code that does not match any value specified by the returns attribute. As
with any resource type, the log level can be controlled with the loglevel metaparameter.

Default: on_failure

Allowed values:

• true

• false

• on_failure

(# Back to exec attributes)

onlyif

A test command that checks the state of the target system and restricts when the exec can run. If present, Puppet
runs this test command first, and only runs the main command if the test has an exit code of 0 (success). For example:

exec { 'logrotate':
 path => '/usr/bin:/usr/sbin:/bin',
 provider => shell,
 onlyif => 'test `du /var/log/messages | cut -f1` -gt 100000',
}

This would run logrotate only if that test returns true.

Note that this test command runs with the same provider, path, user, cwd, and group as the main command.
If the path isn't set, you must fully qualify the command's name.

Since this command is used in the process of determining whether the exec is already in sync, it must be run during
a noop Puppet run.

This parameter can also take an array of commands. For example:

onlyif => ['test -f /tmp/file1', 'test -f /tmp/file2'],

© 2024 Puppet, Inc., a Perforce company

9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attributes
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attributes
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attributes
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attributes
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attributes

Puppet | Developing Puppet code | 654

or an array of arrays. For example:

onlyif => [['test', '-f', '/tmp/file1'], 'test -f /tmp/file2']

This exec would only run if every command in the array has an exit code of 0 (success).

(# Back to exec attributes)

path

The search path used for command execution. Commands must be fully qualified if no path is specified. Paths can be
specified as an array or as a '

(# Back to exec attributes)

provider

The specific backend to use for this exec resource. You will seldom need to specify this --- Puppet will usually
discover the appropriate provider for your platform.

Available providers are:

• posix

• shell

• windows

(# Back to exec attributes)

refresh

An alternate command to run when the exec receives a refresh event from another resource. By default, Puppet runs
the main command again. For more details, see the notes about refresh behavior above, in the description for this
resource type.

Note that this alternate command runs with the same provider, path, user, and group as the main command. If
the path isn't set, you must fully qualify the command's name.

(# Back to exec attributes)

refreshonly

The command should only be run as a refresh mechanism for when a dependent object is changed. It only makes
sense to use this option when this command depends on some other object; it is useful for triggering an action:

Pull down the main aliases file
file { '/etc/aliases':
 source => 'puppet://server/module/aliases',
}

Rebuild the database, but only when the file changes
exec { newaliases:
 path => ['/usr/bin', '/usr/sbin'],
 subscribe => File['/etc/aliases'],
 refreshonly => true,
}

Note that only subscribe and notify can trigger actions, not require, so it only makes sense to use
refreshonly with subscribe or notify.

Allowed values:

• true

• false

(# Back to exec attributes)

returns

© 2024 Puppet, Inc., a Perforce company

9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attributes
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attributes
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-provider-posix
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-provider-shell
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-provider-windows
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attributes
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attributes
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attributes

Puppet | Developing Puppet code | 655

(Property: This attribute represents concrete state on the target system.)

The expected exit code(s). An error will be returned if the executed command has some other exit code. Can be
specified as an array of acceptable exit codes or a single value.

On POSIX systems, exit codes are always integers between 0 and 255.

On Windows, most exit codes should be integers between 0 and 2147483647.

Larger exit codes on Windows can behave inconsistently across different tools. The Win32 APIs define exit codes
as 32-bit unsigned integers, but both the cmd.exe shell and the .NET runtime cast them to signed integers. This
means some tools will report negative numbers for exit codes above 2147483647. (For example, cmd.exe reports
4294967295 as -1.) Since Puppet uses the plain Win32 APIs, it will report the very large number instead of the
negative number, which might not be what you expect if you got the exit code from a cmd.exe session.

Microsoft recommends against using negative/very large exit codes, and you should avoid them when possible. To
convert a negative exit code to the positive one Puppet will use, add it to 4294967296.

Default: 0

(# Back to exec attributes)

timeout

The maximum time the command should take. If the command takes longer than the timeout, the command is
considered to have failed and will be stopped. The timeout is specified in seconds. The default timeout is 300 seconds
and you can set it to 0 to disable the timeout.

Default: 300

(# Back to exec attributes)

tries

The number of times execution of the command should be tried. This many attempts will be made to execute the
command until an acceptable return code is returned. Note that the timeout parameter applies to each try rather than to
the complete set of tries.

Default: 1

(# Back to exec attributes)

try_sleep

The time to sleep in seconds between 'tries'.

Default: 0

(# Back to exec attributes)

umask

Sets the umask to be used while executing this command

(# Back to exec attributes)

unless

A test command that checks the state of the target system and restricts when the exec can run. If present, Puppet
runs this test command first, then runs the main command unless the test has an exit code of 0 (success). For example:

exec { '/bin/echo root >> /usr/lib/cron/cron.allow':
 path => '/usr/bin:/usr/sbin:/bin',
 unless => 'grep root /usr/lib/cron/cron.allow 2>/dev/null',
}

This would add root to the cron.allow file (on Solaris) unless grep determines it's already there.

© 2024 Puppet, Inc., a Perforce company

9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attributes
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attributes
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attributes
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attributes
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attributes

Puppet | Developing Puppet code | 656

Note that this test command runs with the same provider, path, user, cwd, and group as the main command.
If the path isn't set, you must fully qualify the command's name.

Since this command is used in the process of determining whether the exec is already in sync, it must be run during
a noop Puppet run.

This parameter can also take an array of commands. For example:

unless => ['test -f /tmp/file1', 'test -f /tmp/file2'],

or an array of arrays. For example:

unless => [['test', '-f', '/tmp/file1'], 'test -f /tmp/file2']

This exec would only run if every command in the array has a non-zero exit code.

(# Back to exec attributes)

user

The user to run the command as.

Note: Puppet cannot execute commands as other users on Windows.

Note that if you use this attribute, any error output is not captured due to a bug within Ruby. If you use Puppet to
create this user, the exec automatically requires the user, as long as it is specified by name.

The $HOME environment variable is not automatically set when using this attribute.

(# Back to exec attributes)

Providers
posix

Executes external binaries by invoking Ruby's Kernel.exec. When the command is a string, it will be executed
directly, without a shell, if it follows these rules:

• no meta characters
• no shell reserved word and no special built-in

When the command is an Array of Strings, passed as [cmdname, arg1, ...] it will be executed directly(the
first element is taken as a command name and the rest are passed as parameters to command with no shell expansion)
This is a safer and more predictable way to execute most commands, but prevents the use of globbing and shell built-
ins (including control logic like "for" and "if" statements).

If the use of globbing and shell built-ins is desired, please check the shell provider

• Confined to: feature == posix
• Default for: ["feature", "posix"] ==
• Supported features: umask

shell

Passes the provided command through /bin/sh; only available on POSIX systems. This allows the use of shell
globbing and built-ins, and does not require that the path to a command be fully-qualified. Although this can be more
convenient than the posix provider, it also means that you need to be more careful with escaping; as ever, with great
power comes etc. etc.

This provider closely resembles the behavior of the exec type in Puppet 0.25.x.

• Confined to: feature == posix

windows

© 2024 Puppet, Inc., a Perforce company

9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attributes
9ac59158355fa8ca538a327152aa942006f3ef15.md#exec-attributes

Puppet | Developing Puppet code | 657

Execute external binaries on Windows systems. As with the posix provider, this provider directly calls the
command with the arguments given, without passing it through a shell or performing any interpolation. To use shell
built-ins --- that is, to emulate the shell provider on Windows --- a command must explicitly invoke the shell:

exec {'echo foo':
 command => 'cmd.exe /c echo "foo"',
}

If no extension is specified for a command, Windows will use the PATHEXT environment variable to locate the
executable.

Note on PowerShell scripts: PowerShell's default restricted execution policy doesn't allow it to run saved
scripts. To run PowerShell scripts, specify the remotesigned execution policy as part of the command:

exec { 'test':
 path => 'C:/Windows/System32/WindowsPowerShell/v1.0',
 command => 'powershell -executionpolicy remotesigned -file C:/test.ps1',
}

• Confined to: operatingsystem == windows
• Default for: ["operatingsystem", "windows"] ==

Using exec on Windows
Puppet uses the same exec resource type on both *nix and Windows systems, and there are a few Windows-specific
best practices and tips to keep in mind.

Puppet can run binary files (such as exe, com, or bat), and can log the child process output and exit status. To
ensure the resource is idempotent, specify one of the creates, onlyif, or unless attributes.

Command extensions

If a file extension for the command is not specified (for example, ruby instead of ruby.exe), Puppet will use the
PATHEXT environment variable to resolve the appropriate binary. PATHEXT is a Windows-specific variable that lists
the valid file extensions for executables.

Exit codes

On Windows, most exit codes are integers between 0 and 2147483647.

Larger exit codes on Windows behave inconsistently across different tools. The Win32 APIs define exit codes as 32-
bit unsigned integers, but both the cmd.exe shell and the .NET runtime cast them to signed integers. This means some
tools will report negative numbers for exit codes above 2147483647. For example, cmd.exe reports 4294967295 as
-1.

Because Puppet uses the GetExitCodeProcess Win32 API, it reports the very large number instead of the negative
number, which might not be what you expect if you got the exit code from a cmd.exe session.

Microsoft recommends against using negative or very large exit codes, so avoid them.

Tip: To convert a negative exit code to the positive one Puppet will use, subtract it from 4294967296.

Shell built-ins

Puppet does not support a shell provider for Windows, so if you want to execute shell built-ins (such as echo), you
must provide a complete cmd.exe invocation as the command. For example, command => 'cmd.exe /c
echo "hello"'.

When using cmd.exe and specifying a file path in the command line, be sure to use backslashes. For example,
'cmd.exe /c type c:\path\to\file.txt'. If you use forward slashes, cmd.exe returns an error.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 658

Optional PowerShell exec provider

An optional PowerShell exec provider is available as a plug-in and is helpful if you need to run PowerShell
commands from within Puppet. To use it, install puppetlabs/powershell.

Inline PowerShell scripts

If you choose to execute PowerShell scripts using the default Puppet exec provider on Windows, you must specify
the remotesigned execution policy as part of the powershell.exe invocation:

exec { 'test':
 command => 'C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -
executionpolicy remotesigned -file C:\test.ps1',
}

Resource Type: file

NOTE: This page was generated from the Puppet source code on 2022-02-07 10:11:41 -0800

file

• Attributes
• Providers
• Provider Features

Description

Manages files, including their content, ownership, and permissions.

The file type can manage normal files, directories, and symlinks; the type should be specified in the ensure
attribute.

File contents can be managed directly with the content attribute, or downloaded from a remote source using the
source attribute; the latter can also be used to recursively serve directories (when the recurse attribute is set to
true or local). On Windows, note that file contents are managed in binary mode; Puppet never automatically
translates line endings.

Autorequires: If Puppet is managing the user or group that owns a file, the file resource will autorequire them. If
Puppet is managing any parent directories of a file, the file resource autorequires them.

Warning: Enabling recurse on directories containing large numbers of files slows agent runs. To manage
file attributes for many files, consider using alternative methods such as the chmod_r, chown_r, or
recursive_file_permissions modules from the Forge.

Attributes

file { 'resource title':
 path => # (namevar) The path to the file to manage.
 Must be fully...
 ensure => # Whether the file should exist, and if so
 what...
 backup => # Whether (and how) file content should be
 backed...
 checksum => # The checksum type to use when determining...
 checksum_value => # The checksum of the source contents. Only
 md5...
 content => # The desired contents of a file, as a
 string...
 ctime => # A read-only state to check the file ctime.
 On...
 force => # Perform the file operation even if it will...
 group => # Which group should own the file. Argument
 can...

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/powershell
a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-providers
a40a9b70888b61352751494534915904f69564ad.md#file-provider-features
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-path
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-ensure
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-backup
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-checksum
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-checksum_value
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-content
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-ctime
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-force
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-group

Puppet | Developing Puppet code | 659

 ignore => # A parameter which omits action on files
 matching
 links => # How to handle links during file actions.
 During
 max_files => # In case the resource is a directory and
 the...
 mode => # The desired permissions mode for the file,
 in...
 mtime => # A read-only state to check the file mtime.
 On...
 owner => # The user to whom the file should belong....
 provider => # The specific backend to use for this `file...
 purge => # Whether unmanaged files should be purged.
 This...
 recurse => # Whether to recursively manage the _contents_
 of...
 recurselimit => # How far Puppet should descend into...
 replace => # Whether to replace a file or symlink that...
 selinux_ignore_defaults => # If this is set then Puppet will not ask
 SELinux...
 selrange => # What the SELinux range component of the
 context...
 selrole => # What the SELinux role component of the
 context...
 seltype => # What the SELinux type component of the
 context...
 seluser => # What the SELinux user component of the
 context...
 show_diff => # Whether to display differences when the
 file...
 source => # A source file, which will be copied into
 place...
 source_permissions => # Whether (and how) Puppet should copy owner...
 sourceselect => # Whether to copy all valid sources, or just
 the...
 staging_location => # When rendering a file first render it to
 this...
 target => # The target for creating a link. Currently...
 type => # A read-only state to check the file...
 validate_cmd => # A command for validating the file's syntax...
 validate_replacement => # The replacement string in a `validate_cmd`
 that...
 # ...plus any applicable metaparameters.
}

path

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The path to the file to manage. Must be fully qualified.

On Windows, the path should include the drive letter and should use / as the separator character (rather than \).

(# Back to file attributes)

ensure

(Property: This attribute represents concrete state on the target system.)

Whether the file should exist, and if so what kind of file it should be. Possible values are present, absent, file,
directory, and link.

• present accepts any form of file existence, and creates a normal file if the file is missing. (The file will have no
content unless the content or source attribute is used.)

• absent ensures the file doesn't exist, and deletes it if necessary.

© 2024 Puppet, Inc., a Perforce company

a40a9b70888b61352751494534915904f69564ad.md#file-attribute-ignore
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-links
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-max_files
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-mode
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-mtime
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-owner
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-provider
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-purge
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-recurse
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-recurselimit
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-replace
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-selinux_ignore_defaults
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-selrange
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-selrole
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-seltype
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-seluser
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-show_diff
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-source
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-source_permissions
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-sourceselect
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-staging_location
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-target
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-type
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-validate_cmd
a40a9b70888b61352751494534915904f69564ad.md#file-attribute-validate_replacement
https://puppet.com/docs/puppet/latest/metaparameter.html
a40a9b70888b61352751494534915904f69564ad.md#file-attributes

Puppet | Developing Puppet code | 660

• file ensures it's a normal file, and enables use of the content or source attribute.
• directory ensures it's a directory, and enables use of the source, recurse, recurselimit, ignore,

and purge attributes.
• link ensures the file is a symlink, and requires that you also set the target attribute. Symlinks are supported

on all Posix systems and on Windows Vista / 2008 and higher. On Windows, managing symlinks requires Puppet
agent's user account to have the "Create Symbolic Links" privilege; this can be configured in the "User Rights
Assignment" section in the Windows policy editor. By default, Puppet agent runs as the Administrator account,
which has this privilege.

Puppet avoids destroying directories unless the force attribute is set to true. This means that if a file is currently
a directory, setting ensure to anything but directory or present will cause Puppet to skip managing the
resource and log either a notice or an error.

There is one other non-standard value for ensure. If you specify the path to another file as the ensure value, it is
equivalent to specifying link and using that path as the target:

Equivalent resources:

file { '/etc/inetd.conf':
 ensure => '/etc/inet/inetd.conf',
}

file { '/etc/inetd.conf':
 ensure => link,
 target => '/etc/inet/inetd.conf',
}

However, we recommend using link and target explicitly, since this behavior can be harder to read and is
deprecated as of Puppet 4.3.0.

Allowed values:

• absent

• false

• file

• present

• directory

• link

• /./

(# Back to file attributes)

backup

Whether (and how) file content should be backed up before being replaced. This attribute works best as a resource
default in the site manifest (File { backup => main }), so it can affect all file resources.

• If set to false, file content won't be backed up.
• If set to a string beginning with ., such as .puppet-bak, Puppet will use copy the file in the same directory

with that value as the extension of the backup. (A value of true is a synonym for .puppet-bak.)
• If set to any other string, Puppet will try to back up to a filebucket with that title. See the filebucket resource

type for more details. (This is the preferred method for backup, since it can be centralized and queried.)

Default value: puppet, which backs up to a filebucket of the same name. (Puppet automatically creates a local
filebucket named puppet if one doesn't already exist.)

Backing up to a local filebucket isn't particularly useful. If you want to make organized use of backups, you will
generally want to use the primary Puppet server's filebucket service. This requires declaring a filebucket resource and
a resource default for the backup attribute in site.pp:

/etc/puppetlabs/puppet/manifests/site.pp

© 2024 Puppet, Inc., a Perforce company

https://docs.puppet.com/puppet/4.3/deprecated_language.html
a40a9b70888b61352751494534915904f69564ad.md#file-attributes

Puppet | Developing Puppet code | 661

filebucket { 'main':
 path => false, # This is required for remote filebuckets.
 server => 'puppet.example.com', # Optional; defaults to the configured
 primary Puppet server.
}

File { backup => main, }

If you are using multiple primary servers, you will want to centralize the contents of the filebucket. Either configure
your load balancer to direct all filebucket traffic to a single primary server, or use something like an out-of-band rsync
task to synchronize the content on all primary servers.

Note: Enabling and using the backup option, and by extension the filebucket resource, requires appropriate
planning and management to ensure that sufficient disk space is available for the file backups. Generally,
you can implement this using one of the following two options:

• Use a find command and crontab entry to retain only the last X days of file backups. For example:

find /opt/puppetlabs/server/data/puppetserver/bucket -type f -mtime +45 -
atime +45 -print0 | xargs -0 rm

• Restrict the directory to a maximum size after which the oldest items are removed.

Default: puppet

(# Back to file attributes)

checksum

The checksum type to use when determining whether to replace a file's contents.

The default checksum type is md5.

Allowed values:

• Puppet::Util::Checksums.known_checksum_types

(# Back to file attributes)

checksum_value

(Property: This attribute represents concrete state on the target system.)

The checksum of the source contents. Only md5, sha256, sha224, sha384 and sha512 are supported when specifying
this parameter. If this parameter is set, source_permissions will be assumed to be false, and ownership and
permissions will not be read from source.

(# Back to file attributes)

content

(Property: This attribute represents concrete state on the target system.)

The desired contents of a file, as a string. This attribute is mutually exclusive with source and target.

Newlines and tabs can be specified in double-quoted strings using standard escaped syntax --- \n for a newline, and \t
for a tab.

With very small files, you can construct content strings directly in the manifest...

define resolve($nameserver1, $nameserver2, $domain, $search) {
 $str = "search ${search}
 domain ${domain}
 nameserver ${nameserver1}
 nameserver ${nameserver2}
 "

 file { '/etc/resolv.conf':

© 2024 Puppet, Inc., a Perforce company

a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes

Puppet | Developing Puppet code | 662

 content => $str,
 }
}

...but for larger files, this attribute is more useful when combined with the template or file function.

(# Back to file attributes)

ctime

(Property: This attribute represents concrete state on the target system.)

A read-only state to check the file ctime. On most modern *nix-like systems, this is the time of the most recent
change to the owner, group, permissions, or content of the file.

(# Back to file attributes)

force

Perform the file operation even if it will destroy one or more directories. You must use force in order to:

• purge subdirectories
• Replace directories with files or links
• Remove a directory when ensure => absent

Default: false

Allowed values:

• true

• false

• yes

• no

(# Back to file attributes)

group

(Property: This attribute represents concrete state on the target system.)

Which group should own the file. Argument can be either a group name or a group ID.

On Windows, a user (such as "Administrator") can be set as a file's group and a group (such as "Administrators") can
be set as a file's owner; however, a file's owner and group shouldn't be the same. (If the owner is also the group, files
with modes like "0640" will cause log churn, as they will always appear out of sync.)

(# Back to file attributes)

ignore

A parameter which omits action on files matching specified patterns during recursion. Uses Ruby's builtin globbing
engine, so shell metacharacters such as [a-z]* are fully supported. Matches that would descend into the directory
structure are ignored, such as */*.

(# Back to file attributes)

links

How to handle links during file actions. During file copying, follow will copy the target file instead of the link and
manage will copy the link itself. When not copying, manage will manage the link, and follow will manage the
file to which the link points.

Default: manage

Allowed values:

• follow

• manage

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/function.html#template
https://puppet.com/docs/puppet/latest/function.html#file
a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes

Puppet | Developing Puppet code | 663

(# Back to file attributes)

max_files

In case the resource is a directory and the recursion is enabled, puppet will generate a new resource for each file file
found, possible leading to an excessive number of resources generated without any control.

Setting max_files will check the number of file resources that will eventually be created and will raise a resource
argument error if the limit will be exceeded.

Use value 0 to log a warning instead of raising an error.

Use value -1 to disable errors and warnings due to max files.

Default: 0

Allowed values:

• /^[0-9]+$/

• /^-1$/

(# Back to file attributes)

mode

(Property: This attribute represents concrete state on the target system.)

The desired permissions mode for the file, in symbolic or numeric notation. This value must be specified as a string;
do not use un-quoted numbers to represent file modes.

If the mode is omitted (or explicitly set to undef), Puppet does not enforce permissions on existing files and creates
new files with permissions of 0644.

The file type uses traditional Unix permission schemes and translates them to equivalent permissions for systems
which represent permissions differently, including Windows. For detailed ACL controls on Windows, you can leave
mode unmanaged and use the puppetlabs/acl module.

Numeric modes should use the standard octal notation of <SETUID/SETGID/
STICKY><OWNER><GROUP><OTHER> (for example, "0644").

• Each of the "owner," "group," and "other" digits should be a sum of the permissions for that class of users, where
read = 4, write = 2, and execute/search = 1.

• The setuid/setgid/sticky digit is also a sum, where setuid = 4, setgid = 2, and sticky = 1.
• The setuid/setgid/sticky digit is optional. If it is absent, Puppet will clear any existing setuid/setgid/sticky

permissions. (So to make your intent clear, you should use at least four digits for numeric modes.)
• When specifying numeric permissions for directories, Puppet sets the search permission wherever the read

permission is set.

Symbolic modes should be represented as a string of comma-separated permission clauses, in the form
<WHO><OP><PERM>:

• "Who" should be any combination of u (user), g (group), and o (other), or a (all)
• "Op" should be = (set exact permissions), + (add select permissions), or - (remove select permissions)
• "Perm" should be one or more of:

• r (read)
• w (write)
• x (execute/search)
• t (sticky)
• s (setuid/setgid)
• X (execute/search if directory or if any one user can execute)
• u (user's current permissions)
• g (group's current permissions)
• o (other's current permissions)

© 2024 Puppet, Inc., a Perforce company

a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes
https://forge.puppetlabs.com/puppetlabs/acl

Puppet | Developing Puppet code | 664

Thus, mode "0664" could be represented symbolically as either a=r,ug+w or ug=rw,o=r. However, symbolic
modes are more expressive than numeric modes: a mode only affects the specified bits, so mode => 'ug+w' will
set the user and group write bits, without affecting any other bits.

See the manual page for GNU or BSD chmod for more details on numeric and symbolic modes.

On Windows, permissions are translated as follows:

• Owner and group names are mapped to Windows SIDs
• The "other" class of users maps to the "Everyone" SID
• The read/write/execute permissions map to the FILE_GENERIC_READ, FILE_GENERIC_WRITE, and

FILE_GENERIC_EXECUTE access rights; a file's owner always has the FULL_CONTROL right
• "Other" users can't have any permissions a file's group lacks, and its group can't have any permissions its owner

lacks; that is, "0644" is an acceptable mode, but "0464" is not.

(# Back to file attributes)

mtime

(Property: This attribute represents concrete state on the target system.)

A read-only state to check the file mtime. On *nix-like systems, this is the time of the most recent change to the
content of the file.

(# Back to file attributes)

owner

(Property: This attribute represents concrete state on the target system.)

The user to whom the file should belong. Argument can be a user name or a user ID.

On Windows, a group (such as "Administrators") can be set as a file's owner and a user (such as "Administrator") can
be set as a file's group; however, a file's owner and group shouldn't be the same. (If the owner is also the group, files
with modes like "0640" will cause log churn, as they will always appear out of sync.)

(# Back to file attributes)

provider

The specific backend to use for this file resource. You will seldom need to specify this --- Puppet will usually
discover the appropriate provider for your platform.

Available providers are:

• posix

• windows

(# Back to file attributes)

purge

Whether unmanaged files should be purged. This option only makes sense when ensure => directory and
recurse => true.

• When recursively duplicating an entire directory with the source attribute, purge => true will
automatically purge any files that are not in the source directory.

• When managing files in a directory as individual resources, setting purge => true will purge any files that
aren't being specifically managed.

If you have a filebucket configured, the purged files will be uploaded, but if you do not, this will destroy data.

Unless force => true is set, purging will not delete directories, although it will delete the files they contain.

If recurselimit is set and you aren't using force => true, purging will obey the recursion limit; files in any
subdirectories deeper than the limit will be treated as unmanaged and left alone.

Default: false

© 2024 Puppet, Inc., a Perforce company

a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-provider-posix
a40a9b70888b61352751494534915904f69564ad.md#file-provider-windows
a40a9b70888b61352751494534915904f69564ad.md#file-attributes

Puppet | Developing Puppet code | 665

Allowed values:

• true

• false

• yes

• no

(# Back to file attributes)

recurse

Whether to recursively manage the contents of a directory. This attribute is only used when ensure =>
directory is set. The allowed values are:

• false --- The default behavior. The contents of the directory will not be automatically managed.
• remote --- If the source attribute is set, Puppet will automatically manage the contents of the source directory

(or directories), ensuring that equivalent files and directories exist on the target system and that their contents
match.

Using remote will disable the purge attribute, but results in faster catalog application than recurse =>
true.

The source attribute is mandatory when recurse => remote.
• true --- If the source attribute is set, this behaves similarly to recurse => remote, automatically

managing files from the source directory.

This also enables the purge attribute, which can delete unmanaged files from a directory. See the description of
purge for more details.

The source attribute is not mandatory when using recurse => true, so you can enable purging in
directories where all files are managed individually.

By default, setting recurse to remote or true will manage all subdirectories. You can use the recurselimit
attribute to limit the recursion depth.

Allowed values:

• true

• false

• remote

(# Back to file attributes)

recurselimit

How far Puppet should descend into subdirectories, when using ensure => directory and either recurse
=> true or recurse => remote. The recursion limit affects which files will be copied from the source
directory, as well as which files can be purged when purge => true.

Setting recurselimit => 0 is the same as setting recurse => false --- Puppet will manage the directory,
but all of its contents will be treated as unmanaged.

Setting recurselimit => 1 will manage files and directories that are directly inside the directory, but will not
manage the contents of any subdirectories.

Setting recurselimit => 2 will manage the direct contents of the directory, as well as the contents of the first
level of subdirectories.

This pattern continues for each incremental value of recurselimit.

Allowed values:

• /^[0-9]+$/

(# Back to file attributes)

replace

© 2024 Puppet, Inc., a Perforce company

a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes

Puppet | Developing Puppet code | 666

Whether to replace a file or symlink that already exists on the local system but whose content doesn't match what
the source or content attribute specifies. Setting this to false allows file resources to initialize files without
overwriting future changes. Note that this only affects content; Puppet will still manage ownership and permissions.

Default: true

Allowed values:

• true

• false

• yes

• no

(# Back to file attributes)

selinux_ignore_defaults

If this is set then Puppet will not ask SELinux (via matchpathcon) to supply defaults for the SELinux attributes
(seluser, selrole, seltype, and selrange). In general, you should leave this set at its default and only set it to true when
you need Puppet to not try to fix SELinux labels automatically.

Default: false

Allowed values:

• true

• false

(# Back to file attributes)

selrange

(Property: This attribute represents concrete state on the target system.)

What the SELinux range component of the context of the file should be. Any valid SELinux range component is
accepted. For example s0 or SystemHigh. If not specified it defaults to the value returned by matchpathcon for
the file, if any exists. Only valid on systems with SELinux support enabled and that have support for MCS (Multi-
Category Security).

(# Back to file attributes)

selrole

(Property: This attribute represents concrete state on the target system.)

What the SELinux role component of the context of the file should be. Any valid SELinux role component is
accepted. For example role_r. If not specified it defaults to the value returned by matchpathcon for the file, if any
exists. Only valid on systems with SELinux support enabled.

(# Back to file attributes)

seltype

(Property: This attribute represents concrete state on the target system.)

What the SELinux type component of the context of the file should be. Any valid SELinux type component is
accepted. For example tmp_t. If not specified it defaults to the value returned by matchpathcon for the file, if any
exists. Only valid on systems with SELinux support enabled.

(# Back to file attributes)

seluser

(Property: This attribute represents concrete state on the target system.)

What the SELinux user component of the context of the file should be. Any valid SELinux user component is
accepted. For example user_u. If not specified it defaults to the value returned by matchpathcon for the file, if any
exists. Only valid on systems with SELinux support enabled.

© 2024 Puppet, Inc., a Perforce company

a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes

Puppet | Developing Puppet code | 667

(# Back to file attributes)

show_diff

Whether to display differences when the file changes, defaulting to true. This parameter is useful for files that may
contain passwords or other secret data, which might otherwise be included in Puppet reports or other insecure outputs.
If the global show_diff setting is false, then no diffs will be shown even if this parameter is true.

Default: true

Allowed values:

• true

• false

• yes

• no

(# Back to file attributes)

source

A source file, which will be copied into place on the local system. This attribute is mutually exclusive with content
and target. Allowed values are:

• puppet: URIs, which point to files in modules or Puppet file server mount points.
• Fully qualified paths to locally available files (including files on NFS shares or Windows mapped drives).
• file: URIs, which behave the same as local file paths.
• http(s): URIs, which point to files served by common web servers.

The normal form of a puppet: URI is:

puppet:///modules/<MODULE NAME>/<FILE PATH>

This will fetch a file from a module on the Puppet master (or from a local module when using Puppet apply).
Given a modulepath of /etc/puppetlabs/code/modules, the example above would resolve to /etc/
puppetlabs/code/modules/<MODULE NAME>/files/<FILE PATH>.

Unlike content, the source attribute can be used to recursively copy directories if the recurse attribute is set
to true or remote. If a source directory contains symlinks, use the links attribute to specify whether to recreate
links or follow them.

HTTP URIs cannot be used to recursively synchronize whole directory trees. You cannot use
source_permissions values other than ignore because HTTP servers do not transfer any metadata that
translates to ownership or permission details.

Puppet determines if file content is synchronized by computing a checksum for the local file and comparing it against
the checksum_value parameter. If the checksum_value parameter is not specified for puppet and file
sources, Puppet computes a checksum based on its Puppet[:digest_algorithm]. For http(s) sources,
Puppet uses the first HTTP header it recognizes out of the following list: X-Checksum-Sha256, X-Checksum-
Sha1, X-Checksum-Md5 or Content-MD5. If the server response does not include one of these headers, Puppet
defaults to using the Last-Modified header. Puppet updates the local file if the header is newer than the modified
time (mtime) of the local file.

HTTP URIs can include a user information component so that Puppet can retrieve file metadata
and content from HTTP servers that require HTTP Basic authentication. For example https://
<user>:<pass>@<server>:<port>/path/to/file.

When connecting to HTTPS servers, Puppet trusts CA certificates in the puppet-agent certificate
bundle and the Puppet CA. You can configure Puppet to trust additional CA certificates using the
Puppet[:ssl_trust_store] setting.

© 2024 Puppet, Inc., a Perforce company

a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes

Puppet | Developing Puppet code | 668

Multiple source values can be specified as an array, and Puppet will use the first source that exists. This can be
used to serve different files to different system types:

file { '/etc/nfs.conf':
 source => [
 "puppet:///modules/nfs/conf.${host}",
 "puppet:///modules/nfs/conf.${operatingsystem}",
 'puppet:///modules/nfs/conf'
]
}

Alternately, when serving directories recursively, multiple sources can be combined by setting the sourceselect
attribute to all.

(# Back to file attributes)

source_permissions

Whether (and how) Puppet should copy owner, group, and mode permissions from the source to file resources
when the permissions are not explicitly specified. (In all cases, explicit permissions will take precedence.) Valid
values are use, use_when_creating, and ignore:

• ignore (the default) will never apply the owner, group, or mode from the source when managing a file. When
creating new files without explicit permissions, the permissions they receive will depend on platform-specific
behavior. On POSIX, Puppet will use the umask of the user it is running as. On Windows, Puppet will use the
default DACL associated with the user it is running as.

• use will cause Puppet to apply the owner, group, and mode from the source to any files it is managing.
• use_when_creating will only apply the owner, group, and mode from the source when creating a file;

existing files will not have their permissions overwritten.

Default: ignore

Allowed values:

• use

• use_when_creating

• ignore

(# Back to file attributes)

sourceselect

Whether to copy all valid sources, or just the first one. This parameter only affects recursive directory copies; by
default, the first valid source is the only one used, but if this parameter is set to all, then all valid sources will have
all of their contents copied to the local system. If a given file exists in more than one source, the version from the
earliest source in the list will be used.

Default: first

Allowed values:

• first

• all

(# Back to file attributes)

staging_location

When rendering a file first render it to this location. The default location is the same path as the desired location with
a unique filename. This parameter is useful in conjuction with validate_cmd to test a file before moving the file to
it's final location. WARNING: File replacement is only guaranteed to be atomic if the staging location is on the same
filesystem as the final location.

(# Back to file attributes)

© 2024 Puppet, Inc., a Perforce company

a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes

Puppet | Developing Puppet code | 669

target

(Property: This attribute represents concrete state on the target system.)

The target for creating a link. Currently, symlinks are the only type supported. This attribute is mutually exclusive
with source and content.

Symlink targets can be relative, as well as absolute:

(Useful on Solaris)
file { '/etc/inetd.conf':
 ensure => link,
 target => 'inet/inetd.conf',
}

Directories of symlinks can be served recursively by instead using the source attribute, setting ensure to
directory, and setting the links attribute to manage.

Allowed values:

• notlink

• /./

(# Back to file attributes)

type

(Property: This attribute represents concrete state on the target system.)

A read-only state to check the file type.

(# Back to file attributes)

validate_cmd

A command for validating the file's syntax before replacing it. If Puppet would need to rewrite a file due to new
source or content, it will check the new content's validity first. If validation fails, the file resource will fail.

This command must have a fully qualified path, and should contain a percent (%) token where it would expect an
input file. It must exit 0 if the syntax is correct, and non-zero otherwise. The command will be run on the target
system while applying the catalog, not on the primary Puppet server.

Example:

file { '/etc/apache2/apache2.conf':
 content => 'example',
 validate_cmd => '/usr/sbin/apache2 -t -f %',
}

This would replace apache2.conf only if the test returned true.

Note that if a validation command requires a % as part of its text, you can specify a different placeholder token with
the validate_replacement attribute.

(# Back to file attributes)

validate_replacement

The replacement string in a validate_cmd that will be replaced with an input file name.

Default: %

(# Back to file attributes)

Providers
posix

Uses POSIX functionality to manage file ownership and permissions.

© 2024 Puppet, Inc., a Perforce company

a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes
a40a9b70888b61352751494534915904f69564ad.md#file-attributes

Puppet | Developing Puppet code | 670

• Confined to: feature == posix
• Supported features: manages_symlinks

windows

Uses Microsoft Windows functionality to manage file ownership and permissions.

• Confined to: operatingsystem == windows

Provider Features

Available features:

• manages_symlinks --- The provider can manage symbolic links.

Provider support:

• posix - manages symlinks
• windows - No supported Provider features

Using file on Windows
Use Puppet's built-in file resource type to manage files and directories on Windows, including ownership, group,
permissions, and content, with the following Windows-specific notes and tips.

file { 'c:/mysql/my.ini':
 ensure => 'file',
 mode => '0660',
 owner => 'mysql',
 group => 'Administrators',
 source => 'N:/software/mysql/my.ini',
}

Take care with backslashes in file paths

The issue of backslashes and forward-slashes in file paths can get complicated. See Handling file paths on Windows
for more information.

Be consistent with capitalization in file names

If you refer to a file resource in multiple places in a manifest (such as when creating relationships between resources),
be consistent with the capitalization of the file name. If you use my.ini in one place, don’t use MY.INI in another
place.

Windows NTFS filesystems are case-insensitive (albeit case-preserving); Puppet is case-sensitive. Windows itself
won’t be confused by inconsistent case, but Puppet will think you’re referring to different files.

Make sure the Puppet user account has appropriate permissions

To manage files properly, Puppet needs the following Windows privileges:

• Create symbolic links
• Back up files and directories
• Restore files and directories

When Puppet runs as a service, make sure its user account is a member of the local Administrators group. When
you use the PUPPET_AGENT_ACCOUNT_USER parameter with the MSI installer, the user will automatically be
added to the Administrators group.

Before running Puppet interactively (on Windows Vista or 2008 and later versions), start the command prompt
window with elevated privileges by right-clicking on the start menu and choosing “Run as Administrator.”

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 671

Managing file permissions: the mode attribute and the acl module

The permissions models used by *nix and Windows are quite different. When you use the mode attribute, the file
type manages them both like *nix permissions, and translates the mode to roughly equivalent access controls on
Windows. This makes basic controls fairly simple, but doesn’t work for managing complex access rules.

If you need fine-grained Windows access controls, use the puppetlabs/acl module, which provides an optional
acl resource type that manages permissions in a Windows-centric way. Leave mode unspecified and add an acl
resource. See the acl module’s documentation for details.

How *nix modes map to Windows permissions

*nix permissions are expressed as either a quoted octal number (such as "755"), or a string of symbolic modes,
(such as "u=rwx,g=rx,o=rx"). See the reference for the file type’s mode attribute for more details about the
syntax.

These mode expressions generally manage three kinds of permission — read, write, execute — for three kinds of user
— owner, group, other. They translate to Windows permissions as follows:

• The read, write, and execute permissions are interpreted as the FILE_GENERIC_READ,
FILE_GENERIC_WRITE, and FILE_GENERIC_EXECUTE access rights, respectively.

• The Everyone SID is used to represent users other than the owner and group.
• Directories on Windows can have the sticky bit, which makes it so users can delete files only if they own the

containing directory.
• The owner of a file can be a group (for example, owner => 'Administrators') and the group of a file can

be a user (for example, group => 'Administrator').
• While it's possible for the owner and group to be the same, this is strongly discouraged. Doing so can cause

problems when the mode gives different permissions to the owner and group (such as 0750).
• The group can’t have higher permissions than the owner. Other users can’t have higher permissions than the

owner or group. In other words, 0640 and 0755 are supported, but 0460 is not.

Extra behavior when managing permissions with mode

When you manage permissions with the mode attribute, it has the following side effects:

• The owner of a file or directory always has the FULL_CONTROL access right.
• The security descriptor is always set to protected. This prevents the file from inheriting more permissive access

controls from the directory that contains it.

File sources

The source attribute of a file can be a Puppet URL, a local path, a UNC path, or a path to a file on a mapped drive.

Handling line endings

Windows usually uses CRLF line endings, rather than the LF line endings used by *nix. In most cases, Puppet does
not automatically convert line endings when managing files on Windows.

If a file resource uses the content or source attributes, Puppet writes the file in binary mode, using the line
endings that are present in the content. If the manifest, template, or source file is saved with CRLF line endings,
Puppet uses those endings in the destination file.

Non-file resource types that make partial edits to a system file (most notably the host resource type, which
manages the %windir%\system32\drivers\etc\hosts file) manage their files in text mode, and
automatically translate between Windows and *nix line endings.

Note: When writing your own resource types, you can get this same behavior by using the flat file type.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppetlabs.com/puppetlabs/acl

Puppet | Developing Puppet code | 672

Resource Type: filebucket

NOTE: This page was generated from the Puppet source code on 2022-02-07 10:11:41 -0800

filebucket

• Attributes

Description

A repository for storing and retrieving file content by MD5 checksum. Can be local to each agent node, or centralized
on a primary Puppet server. All puppet servers provide a filebucket service that agent nodes can access via HTTP, but
you must declare a filebucket resource before any agents will do so.

Filebuckets are used for the following features:

• Content backups. If the file type's backup attribute is set to the name of a filebucket, Puppet will back up the
old content whenever it rewrites a file; see the documentation for the file type for more details. These backups
can be used for manual recovery of content, but are more commonly used to display changes and differences in a
tool like Puppet Dashboard.

To use a central filebucket for backups, you will usually want to declare a filebucket resource and a resource default
for the backup attribute in site.pp:

/etc/puppetlabs/puppet/manifests/site.pp
filebucket { 'main':
 path => false, # This is required for remote filebuckets.
 server => 'puppet.example.com', # Optional; defaults to the configured
 primary server.
}

File { backup => main, }

Puppet master servers automatically provide the filebucket service, so this will work in a default configuration. If you
have a heavily restricted auth.conf file, you may need to allow access to the file_bucket_file endpoint.

Attributes

filebucket { 'resource title':
 name => # (namevar) The name of the...
 path => # The path to the _local_ filebucket; defaults to...
 port => # The port on which the remote server is...
 server => # The server providing the remote filebucket...
 # ...plus any applicable metaparameters.
}

name

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The name of the filebucket.

(# Back to filebucket attributes)

path

The path to the local filebucket; defaults to the value of the clientbucketdir setting. To use a remote filebucket,
you must set this attribute to false.

(# Back to filebucket attributes)

port

The port on which the remote server is listening.

This setting is only consulted if the path attribute is set to false.

© 2024 Puppet, Inc., a Perforce company

3d81c6777a3d89bf60323fed11db2aaaf0311200.md#filebucket-attributes
3d81c6777a3d89bf60323fed11db2aaaf0311200.md#filebucket-attribute-name
3d81c6777a3d89bf60323fed11db2aaaf0311200.md#filebucket-attribute-path
3d81c6777a3d89bf60323fed11db2aaaf0311200.md#filebucket-attribute-port
3d81c6777a3d89bf60323fed11db2aaaf0311200.md#filebucket-attribute-server
https://puppet.com/docs/puppet/latest/metaparameter.html
3d81c6777a3d89bf60323fed11db2aaaf0311200.md#filebucket-attributes
3d81c6777a3d89bf60323fed11db2aaaf0311200.md#filebucket-attributes

Puppet | Developing Puppet code | 673

If this attribute is not specified, the first entry in the server_list configuration setting is used, followed by the
value of the serverport setting if server_list is not set.

(# Back to filebucket attributes)

server

The server providing the remote filebucket service.

This setting is only consulted if the path attribute is set to false.

If this attribute is not specified, the first entry in the server_list configuration setting is used, followed by the
value of the server setting if server_list is not set.

(# Back to filebucket attributes)

Resource Type: group

NOTE: This page was generated from the Puppet source code on 2022-02-07 10:11:41 -0800

group

• Attributes
• Providers
• Provider Features

Description

Manage groups. On most platforms this can only create groups. Group membership must be managed on individual
users.

On some platforms such as OS X, group membership is managed as an attribute of the group, not the user record.
Providers must have the feature 'manages_members' to manage the 'members' property of a group record.

Attributes

group { 'resource title':
 name => # (namevar) The group name. While naming
 limitations vary by
 ensure => # Create or remove the group. Default: `present`

 allowdupe => # Whether to allow duplicate GIDs. Default...
 attribute_membership => # AIX only. Configures the behavior of the...
 attributes => # Specify group AIX attributes, as an array of...
 auth_membership => # Configures the behavior of the `members...
 forcelocal => # Forces the management of local accounts when...
 gid => # The group ID. Must be specified numerically....
 ia_load_module => # The name of the I&A module to use to manage
 this
 members => # The members of the group. For platforms or...
 provider => # The specific backend to use for this `group...
 system => # Whether the group is a system group with
 lower...
 # ...plus any applicable metaparameters.
}

name

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The group name. While naming limitations vary by operating system, it is advisable to restrict names to the lowest
common denominator, which is a maximum of 8 characters beginning with a letter.

Note that Puppet considers group names to be case-sensitive, regardless of the platform's own rules; be sure to always
use the same case when referring to a given group.

(# Back to group attributes)

© 2024 Puppet, Inc., a Perforce company

3d81c6777a3d89bf60323fed11db2aaaf0311200.md#filebucket-attributes
3d81c6777a3d89bf60323fed11db2aaaf0311200.md#filebucket-attributes
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attributes
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-providers
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-provider-features
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attribute-name
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attribute-ensure
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attribute-allowdupe
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attribute-attribute_membership
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attribute-attributes
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attribute-auth_membership
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attribute-forcelocal
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attribute-gid
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attribute-ia_load_module
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attribute-members
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attribute-provider
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attribute-system
https://puppet.com/docs/puppet/latest/metaparameter.html
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attributes

Puppet | Developing Puppet code | 674

ensure

(Property: This attribute represents concrete state on the target system.)

Create or remove the group.

Default: present

Allowed values:

• present

• absent

(# Back to group attributes)

allowdupe

Whether to allow duplicate GIDs.

Default: false

Allowed values:

• true

• false

• yes

• no

(# Back to group attributes)

attribute_membership

AIX only. Configures the behavior of the attributes parameter.

• minimum (default) --- The provided list of attributes is partial, and Puppet ignores any attributes that aren't listed
there.

• inclusive --- The provided list of attributes is comprehensive, and Puppet purges any attributes that aren't
listed there.

Default: minimum

Allowed values:

• inclusive

• minimum

(# Back to group attributes)

attributes

(Property: This attribute represents concrete state on the target system.)

Specify group AIX attributes, as an array of 'key=value' strings. This parameter's behavior can be configured
with attribute_membership.

Requires features manages_aix_lam.

(# Back to group attributes)

auth_membership

Configures the behavior of the members parameter.

• false (default) --- The provided list of group members is partial, and Puppet ignores any members that aren't
listed there.

• true --- The provided list of of group members is comprehensive, and Puppet purges any members that aren't
listed there.

Default: false

© 2024 Puppet, Inc., a Perforce company

31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attributes
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attributes
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attributes
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attributes

Puppet | Developing Puppet code | 675

Allowed values:

• true

• false

• yes

• no

(# Back to group attributes)

forcelocal

Forces the management of local accounts when accounts are also being managed by some other Name Switch Service
(NSS). For AIX, refer to the ia_load_module parameter.

This option relies on your operating system's implementation of luser* commands, such as luseradd ,
lgroupadd, and lusermod. The forcelocal option could behave unpredictably in some circumstances. If the
tools it depends on are not available, it might have no effect at all.

Default: false

Allowed values:

• true

• false

• yes

• no

Requires features manages_local_users_and_groups.

(# Back to group attributes)

gid

(Property: This attribute represents concrete state on the target system.)

The group ID. Must be specified numerically. If no group ID is specified when creating a new group, then one will be
chosen automatically according to local system standards. This will likely result in the same group having different
GIDs on different systems, which is not recommended.

On Windows, this property is read-only and will return the group's security identifier (SID).

(# Back to group attributes)

ia_load_module

The name of the I&A module to use to manage this group. This should be set to files if managing local groups.

Requires features manages_aix_lam.

(# Back to group attributes)

members

(Property: This attribute represents concrete state on the target system.)

The members of the group. For platforms or directory services where group membership is stored in the group
objects, not the users. This parameter's behavior can be configured with auth_membership.

Requires features manages_members.

(# Back to group attributes)

provider

The specific backend to use for this group resource. You will seldom need to specify this --- Puppet will usually
discover the appropriate provider for your platform.

Available providers are:

© 2024 Puppet, Inc., a Perforce company

31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attributes
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attributes
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attributes
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attributes
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attributes

Puppet | Developing Puppet code | 676

• aix

• directoryservice

• groupadd

• ldap

• pw

• windows_adsi

(# Back to group attributes)

system

Whether the group is a system group with lower GID.

Default: false

Allowed values:

• true

• false

• yes

• no

(# Back to group attributes)

Providers
aix

Group management for AIX.

• Required binaries: /usr/sbin/lsgroup, /usr/bin/mkgroup, /usr/sbin/rmgroup, /usr/bin/
chgroup

• Confined to: operatingsystem == aix
• Default for: ["operatingsystem", "aix"] ==
• Supported features: manages_aix_lam, manages_members, manages_local_users_and_groups

directoryservice

Group management using DirectoryService on OS X.

• Required binaries: /usr/bin/dscl
• Confined to: operatingsystem == darwin
• Default for: ["operatingsystem", "darwin"] ==
• Supported features: manages_members

groupadd

Group management via groupadd and its ilk. The default for most platforms.

To use the forcelocal parameter, you need to install the libuser package (providing /usr/sbin/
lgroupadd and /usr/sbin/luseradd).

• Required binaries: groupadd, groupdel, groupmod

ldap

Group management via LDAP.

This provider requires that you have valid values for all of the LDAP-related settings in puppet.conf, including
ldapbase. You will almost definitely need settings for ldapuser and ldappassword in order for your clients
to write to LDAP.

Note that this provider will automatically generate a GID for you if you do not specify one, but it is a potentially
expensive operation, as it iterates across all existing groups to pick the appropriate next one.

• Confined to: feature == ldap, false == (Puppet[:ldapuser] == "")

© 2024 Puppet, Inc., a Perforce company

31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-provider-aix
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-provider-directoryservice
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-provider-groupadd
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-provider-ldap
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-provider-pw
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-provider-windows_adsi
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attributes
31dafebf1def20d1fa7853803f16b3a0285ab6bf.md#group-attributes

Puppet | Developing Puppet code | 677

pw

Group management via pw on FreeBSD and DragonFly BSD.

• Required binaries: pw
• Confined to: operatingsystem == [:freebsd, :dragonfly]
• Default for: ["operatingsystem", "[:freebsd, :dragonfly]"] ==
• Supported features: manages_members

windows_adsi

Local group management for Windows. Group members can be both users and groups. Additionally, local groups can
contain domain users.

• Confined to: operatingsystem == windows
• Default for: ["operatingsystem", "windows"] ==
• Supported features: manages_members

Provider Features

Available features:

• manages_aix_lam --- The provider can manage AIX Loadable Authentication Module (LAM) system.
• manages_local_users_and_groups --- Allows local groups to be managed on systems that also use some

other remote Name Switch Service (NSS) method of managing accounts.
• manages_members --- For directories where membership is an attribute of groups not users.
• system_groups --- The provider allows you to create system groups with lower GIDs.

Provider support:

• aix - manages aix lam, manages members, manages local users and groups
• directoryservice - manages members
• groupadd - No supported Provider features
• ldap - No supported Provider features
• pw - manages members
• windows_adsi - manages members

Using user and group on Windows
Use the built-in user and group resource types to manage user and group accounts on Windows.

Managing local user and group resources

Puppet uses the user and group resource types to manage local accounts. You can’t write a Puppet resource that
describes a domain user or group. However, a local group resource can manage which domain accounts belong to
the local group.

Managing group membership with Puppet

Windows manages group membership by specifying the groups to which a user belongs, or by specifying the
members of a group. Puppet supports both of these methods.

When Puppet is managing a local user, you can list the groups that the user belongs to. These groups can be a local
group account (such as Administrators) or a domain group account.

When Puppet is managing a local group, you can list the members that belong to the group. Each member can be
a local account (such as Administrator) or a domain account, where each account can be a user or a group
account.

When managing a user, Puppet makes sure that the user belongs to all of the groups listed in the manifest. If the user
belongs to a group not specified in the manifest, Puppet does not remove the user from the group.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 678

If you want to ensure that a user belongs to only the groups listed in the manifest, and no others, specify the
membership attribute for the user. If set to inclusive, Puppet removes the user from any group not listed in the
manifest.

Similarly, when managing a group, Puppet makes sure all of the members listed in the manifest are added to the
group. Existing members of the group who are not listed in the manifest are ignored.

To ensure that a group contains only the members listed in the manifest, and no others, specify the
auth_membership attribute for the group. When this attribute is present and set to true, Puppet removes any
members of the group not listed in the manifest.

Allowed user attributes on Windows

When managing Windows user accounts, you can use the following user resource type attributes:

Attribute Usage notes

name

ensure

comment

groups You cannot use the gid attribute with Windows.

home

managehome

membership

password Passwords must be specified in cleartext, because
Windows does not have an API for setting the password
hash.

auth_membership

uid Read-only. Available for inspecting a user by running
puppet resource user <NAME>. The uid value
will be the user’s SID (see below).

Allowed group attributes on Windows

When managing Windows group accounts, you can use the following group resource type attributes:

Attribute Usage notes

name

ensure

members

auth_membership

gid Read-only. Available for inspecting a group by running
puppet resource group <NAME>. The gid
value will be the group’s SID (see below).

Names and security identifiers (SIDs)

On Windows, user and group account names can take multiple forms, such as:

• Administrators

• <host>\Administrators

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 679

• BUILTIN\Administrators

• S-1-5-32-544

The S-1-5-32-544 name form is called a security identifier (SID). Puppet treats all these forms equally: when
comparing two account names, it transforms account names into their canonical SID form and compares the SIDs.

When you refer to a user or group in multiple places in a manifest (such as when creating relationships between
resources), be consistent with how you capitalize the name. Names are case-sensitive in Puppet manifests, but case-
insensitive on Windows. It’s important that the cases match, however, because autorequire will attempt to match
users with fully qualified names (such as User[BUILTIN\Administrators]) in addition to SIDs (such as
User[S-1-5-32-544]). It might not match in cases where domain accounts and local accounts have the same
name, such as Domain\Bob versus LOCAL\Bob.

Note: When listed for reporting or by puppet resource, groups always return the fully qualified form when
describing a user, such as BUILTIN\Administrators. These fully qualified names might not look the same as in
the names specified in the manifest.

Resource types overview

NOTE: This page was generated from the Puppet source code on 2022-02-07 10:11:41 -0800

List of resource types

• Resource Type: exec on page 651
• Resource Type: file on page 658
• Resource Type: filebucket on page 672
• Resource Type: group on page 673
• Resource Type: notify on page 681
• Resource Type: package on page 682
• Resource Type: resources on page 700
• Resource Type: schedule on page 701
• Resource Type: service on page 703
• Resource Type: stage on page 714
• Resource Type: tidy on page 715
• Resource Type: user on page 717

About resource types
Built-in types and custom types

This is the documentation for Puppet's built-in resource types and providers. Additional resource types are distributed
in Puppet modules.

You can find and install modules by browsing the Puppet Forge. See each module's documentation for information on
how to use its custom resource types. For more information about creating custom types, see Custom resources.

As of Puppet 6.0, some resource types were removed from Puppet and repackaged as individual modules.
These supported type modules are still included in the puppet-agent package, so you don't have to
download them from the Forge. See the complete list of affected types in the supported type modules
section.

Declaring resources

To manage resources on a target system, declare them in Puppet manifests. For more details, see the resources page of
the Puppet language reference.

You can also browse and manage resources interactively using the puppet resource subcommand; run puppet
resource --help for more information.

© 2024 Puppet, Inc., a Perforce company

http://forge.puppet.com
324a10a1b25fd06469ad0956e57e9d05c4188635.md#supported-type-modules-in-puppet-agent

Puppet | Developing Puppet code | 680

Namevars and titles

All types have a special attribute called the namevar. This is the attribute used to uniquely identify a resource on the
target system.

Each resource has a specific namevar attribute, which is listed on this page in each resource's reference. If you don't
specify a value for the namevar, its value defaults to the resource's title.

Example of a title as a default namevar:

file { '/etc/passwd':
 owner => 'root',
 group => 'root',
 mode => '0644',
}

In this code, /etc/passwd is the title of the file resource.

The file type's namevar is path. Because we didn't provide a path value in this example, the value defaults to the
title, /etc/passwd.

Example of a namevar:

file { 'passwords':
 path => '/etc/passwd',
 owner => 'root',
 group => 'root',
 mode => '0644',

This example is functionally similar to the previous example. Its path namevar attribute has an explicitly set value
separate from the title, so its name is still /etc/passwd.

Other Puppet code can refer to this resource as File['/etc/passwd'] to declare relationships.

Attributes, parameters, properties

The attributes (sometimes called parameters) of a resource determine its desired state. They either directly modify
the system (internally, these are called "properties") or they affect how the resource behaves (for instance, adding a
search path for exec resources or controlling directory recursion on file resources).

Providers

Providers implement the same resource type on different kinds of systems. They usually do this by calling out to
external commands.

Although Puppet automatically selects an appropriate default provider, you can override the default with the
provider attribute. (For example, package resources on Red Hat systems default to the yum provider, but you
can specify provider => gem to install Ruby libraries with the gem command.)

Providers often specify binaries that they require. Fully qualified binary paths indicate that the binary must exist at
that specific path, and unqualified paths indicate that Puppet searches for the binary using the shell path.

Features

Features are abilities that some providers might not support. Generally, a feature corresponds to some allowed values
for a resource attribute.

This is often the case with the ensure attribute. In most types, Puppet doesn't create new resources when omitting
ensure but still modifies existing resources to match specifications in the manifest. However, in some types this
isn't always the case, or additional values provide more granular control. For example, if a package provider
supports the purgeable feature, you can specify ensure => purged to delete configuration files installed by
the package.

Resource types define the set of features they can use, and providers can declare which features they provide.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 681

Puppet 6.0 type changes

In Puppet 6.0, we removed some of Puppet's built-in types and moved them into individual modules.

Supported type modules in puppet-agent

The following types are included in supported modules on the Forge. However, they are also included in the
puppet-agent package, so you do not have to install them separately. See each module's README for detailed
information about that type.

• augeas

• cron

• host

• mount

• scheduled_task

• selboolean

• selmodule

• ssh_authorized_key

• sshkey

• yumrepo

• zfs

• zone

• zpool

Type modules available on the Forge

The following types are contained in modules that are maintained, but are not repackaged into Puppet agent. If you
need to use them, you must install the modules separately.

• k5login

• mailalias

• maillist

Deprecated types

The following types were deprecated with Puppet 6.0.0. They are available in modules, but are not updated. If you
need to use them, you must install the modules separately.

• computer

• interface (Use the updated cisco_ios module instead.
• macauthorization

• mcx

• The Nagios types
• router (Use the updated cisco_ios module instead.
• vlan (Use the updated cisco_ios module instead.

Puppet core types

For a list of core Puppet types, see the core types cheat sheet.

Resource Type: notify

NOTE: This page was generated from the Puppet source code on 2022-02-07 10:11:41 -0800

notify

• Attributes

Description

Sends an arbitrary message, specified as a string, to the agent run-time log. It's important to note that the notify
resource type is not idempotent. As a result, notifications are shown as a change on every Puppet run.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/augeas_core
https://forge.puppet.com/puppetlabs/cron_core
https://forge.puppet.com/puppetlabs/host_core
https://forge.puppet.com/puppetlabs/mount_core
https://forge.puppet.com/puppetlabs/scheduled_task
https://forge.puppet.com/puppetlabs/selinux_core
https://forge.puppet.com/puppetlabs/selinux_core
https://forge.puppet.com/puppetlabs/sshkeys_core
https://forge.puppet.com/puppetlabs/sshkeys_core
https://forge.puppet.com/puppetlabs/yumrepo_core
https://forge.puppet.com/puppetlabs/zfs_core
https://forge.puppet.com/puppetlabs/zone_core
https://forge.puppet.com/puppetlabs/zfs_core
https://forge.puppet.com/puppetlabs/k5login_core
https://forge.puppet.com/puppetlabs/mailalias_core
https://forge.puppet.com/puppetlabs/maillist_core
https://forge.puppet.com/puppetlabs/macdslocal_core
https://github.com/puppetlabs/puppetlabs-network_device_core
https://forge.puppet.com/puppetlabs/cisco_ios/readme
https://forge.puppet.com/puppetlabs/macdslocal_core
https://forge.puppet.com/puppetlabs/macdslocal_core
https://forge.puppet.com/puppetlabs/nagios_core
https://github.com/puppetlabs/puppetlabs-network_device_core
https://forge.puppet.com/puppetlabs/cisco_ios/readme
https://github.com/puppetlabs/puppetlabs-network_device_core
https://forge.puppet.com/puppetlabs/cisco_ios/readme
d4a30ae0c64d4158642eaa8bfa251e30855026b5.md#notify-attributes

Puppet | Developing Puppet code | 682

Attributes

notify { 'resource title':
 name => # (namevar) An arbitrary tag for your own reference; the...
 message => # The message to be sent to the log. Note that the
 withpath => # Whether to show the full object path. Default...
 # ...plus any applicable metaparameters.
}

name

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

An arbitrary tag for your own reference; the name of the message.

(# Back to notify attributes)

message

(Property: This attribute represents concrete state on the target system.)

The message to be sent to the log. Note that the value specified must be a string.

(# Back to notify attributes)

withpath

Whether to show the full object path.

Default: false

Allowed values:

• true

• false

(# Back to notify attributes)

Resource Type: package

NOTE: This page was generated from the Puppet source code on 2022-02-07 10:11:41 -0800

package

• Attributes
• Providers
• Provider Features

Description

Manage packages. There is a basic dichotomy in package support right now: Some package types (such as yum and
apt) can retrieve their own package files, while others (such as rpm and sun) cannot. For those package formats that
cannot retrieve their own files, you can use the source parameter to point to the correct file.

Puppet will automatically guess the packaging format that you are using based on the platform you are on, but you
can override it using the provider parameter; each provider defines what it requires in order to function, and you
must meet those requirements to use a given provider.

You can declare multiple package resources with the same name as long as they have unique titles, and specify
different providers and commands.

Note that you must use the title to make a reference to a package resource; Package[<NAME>] is not a synonym
for Package[<TITLE>] like it is for many other resource types.

Autorequires: If Puppet is managing the files specified as a package's adminfile, responsefile, or source,
the package resource will autorequire those files.

© 2024 Puppet, Inc., a Perforce company

d4a30ae0c64d4158642eaa8bfa251e30855026b5.md#notify-attribute-name
d4a30ae0c64d4158642eaa8bfa251e30855026b5.md#notify-attribute-message
d4a30ae0c64d4158642eaa8bfa251e30855026b5.md#notify-attribute-withpath
https://puppet.com/docs/puppet/latest/metaparameter.html
d4a30ae0c64d4158642eaa8bfa251e30855026b5.md#notify-attributes
d4a30ae0c64d4158642eaa8bfa251e30855026b5.md#notify-attributes
d4a30ae0c64d4158642eaa8bfa251e30855026b5.md#notify-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-providers
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-features

Puppet | Developing Puppet code | 683

Attributes

package { 'resource title':
 name => # (namevar) The package name. This is the name
 that the...
 command => # (namevar) The targeted command to use when
 managing a...
 ensure => # What state the package should be in. On...
 adminfile => # A file containing package defaults for...
 allow_virtual => # Specifies if virtual package names are
 allowed...
 allowcdrom => # Tells apt to allow cdrom sources in the...
 category => # A read-only parameter set by the...
 configfiles => # Whether to keep or replace modified config
 files
 description => # A read-only parameter set by the...
 enable_only => # Tells `dnf module` to only enable a specific...
 flavor => # OpenBSD and DNF modules support 'flavors',
 which
 install_only => # It should be set for packages that should
 only...
 install_options => # An array of additional options to pass when...
 instance => # A read-only parameter set by the...
 mark => # Set to hold to tell Debian apt/Solaris pkg to...
 package_settings => # Settings that can change the contents or...
 platform => # A read-only parameter set by the...
 provider => # The specific backend to use for this `package...
 reinstall_on_refresh => # Whether this resource should respond to
 refresh...
 responsefile => # A file containing any necessary answers to...
 root => # A read-only parameter set by the...
 source => # Where to find the package file. This is
 mostly...
 status => # A read-only parameter set by the...
 uninstall_options => # An array of additional options to pass when...
 vendor => # A read-only parameter set by the...
 # ...plus any applicable metaparameters.
}

name

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The package name. This is the name that the packaging system uses internally, which is sometimes (especially on
Solaris) a name that is basically useless to humans. If a package goes by several names, you can use a single title and
then set the name conditionally:

In the 'openssl' class
$ssl = $operatingsystem ? {
 solaris => SMCossl,
 default => openssl
}

package { 'openssl':
 ensure => installed,
 name => $ssl,
}

...

$ssh = $operatingsystem ? {
 solaris => SMCossh,
 default => openssh

© 2024 Puppet, Inc., a Perforce company

cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-name
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-command
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-ensure
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-adminfile
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-allow_virtual
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-allowcdrom
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-category
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-configfiles
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-description
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-enable_only
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-flavor
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-install_only
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-install_options
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-instance
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-mark
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-package_settings
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-platform
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-provider
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-reinstall_on_refresh
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-responsefile
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-root
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-source
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-status
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-uninstall_options
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attribute-vendor
https://puppet.com/docs/puppet/latest/metaparameter.html

Puppet | Developing Puppet code | 684

}

package { 'openssh':
 ensure => installed,
 name => $ssh,
 require => Package['openssl'],
}

(# Back to package attributes)

command

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The targeted command to use when managing a package:

package { 'mysql': provider => gem, }

package { 'mysql-opt': name => 'mysql', provider => gem, command => '/opt/ruby/bin/gem', }

Each provider defines a package management command; and uses the first instance of the command found in the
PATH.

Providers supporting the targetable feature allow you to specify the absolute path of the package management
command; useful when multiple instances of the command are installed, or the command is not in the PATH.

Default: default

Requires features targetable.

(# Back to package attributes)

ensure

(Property: This attribute represents concrete state on the target system.)

What state the package should be in. On packaging systems that can retrieve new packages on their own, you can
choose which package to retrieve by specifying a version number or latest as the ensure value. On packaging
systems that manage configuration files separately from "normal" system files, you can uninstall config files by
specifying purged as the ensure value. This defaults to installed.

Version numbers must match the full version to install, including release if the provider uses a release moniker.
For example, to install the bash package from the rpm bash-4.1.2-29.el6.x86_64.rpm, use the string
'4.1.2-29.el6'.

On supported providers, version ranges can also be ensured. For example, inequalities: <2.0.0, or intersections:
>1.0.0 <2.0.0.

Default: installed

Allowed values:

• present

• absent

• purged

• held

• disabled

• installed

• latest

• /./

(# Back to package attributes)

adminfile

A file containing package defaults for installing packages.

© 2024 Puppet, Inc., a Perforce company

cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes

Puppet | Developing Puppet code | 685

This attribute is only used on Solaris. Its value should be a path to a local file stored on the target system. Solaris's
package tools expect either an absolute file path or a relative path to a file in /var/sadm/install/admin.

The value of adminfile will be passed directly to the pkgadd or pkgrm command with the -a <ADMINFILE>
option.

(# Back to package attributes)

allow_virtual

Specifies if virtual package names are allowed for install and uninstall.

Allowed values:

• true

• false

• yes

• no

Requires features virtual_packages.

(# Back to package attributes)

allowcdrom

Tells apt to allow cdrom sources in the sources.list file. Normally apt will bail if you try this.

Allowed values:

• true

• false

(# Back to package attributes)

category

A read-only parameter set by the package.

(# Back to package attributes)

configfiles

Whether to keep or replace modified config files when installing or upgrading a package. This only affects the apt
and dpkg providers.

Default: keep

Allowed values:

• keep

• replace

(# Back to package attributes)

description

A read-only parameter set by the package.

(# Back to package attributes)

enable_only

Tells dnf module to only enable a specific module, instead of installing its default profile.

Modules with no default profile will be enabled automatically without the use of this parameter.

Conflicts with the flavor property, which selects a profile to install.

Default: false

Allowed values:

© 2024 Puppet, Inc., a Perforce company

cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes

Puppet | Developing Puppet code | 686

• true

• false

• yes

• no

(# Back to package attributes)

flavor

(Property: This attribute represents concrete state on the target system.)

OpenBSD and DNF modules support 'flavors', which are further specifications for which type of package you want.

Requires features supports_flavors.

(# Back to package attributes)

install_only

It should be set for packages that should only ever be installed, never updated. Kernels in particular fall into this
category.

Default: false

Allowed values:

• true

• false

• yes

• no

Requires features install_only.

(# Back to package attributes)

install_options

An array of additional options to pass when installing a package. These options are package-specific, and should be
documented by the software vendor. One commonly implemented option is INSTALLDIR:

package { 'mysql':
 ensure => installed,
 source => 'N:/packages/mysql-5.5.16-winx64.msi',
 install_options => ['/S', { 'INSTALLDIR' => 'C:\\mysql-5.5' }],
}

Each option in the array can either be a string or a hash, where each key and value pair are interpreted in a provider
specific way. Each option will automatically be quoted when passed to the install command.

With Windows packages, note that file paths in an install option must use backslashes. (Since install options are
passed directly to the installation command, forward slashes won't be automatically converted like they are in file
resources.) Note also that backslashes in double-quoted strings must be escaped and backslashes in single-quoted
strings can be escaped.

Requires features install_options.

(# Back to package attributes)

instance

A read-only parameter set by the package.

(# Back to package attributes)

mark

(Property: This attribute represents concrete state on the target system.)

© 2024 Puppet, Inc., a Perforce company

cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes

Puppet | Developing Puppet code | 687

Set to hold to tell Debian apt/Solaris pkg to hold the package version

#{mark_doc} Default is "none". Mark can be specified with or without ensure, if ensure is missing will default to
"present".

Mark cannot be specified together with "purged", "absent" or "held" values for ensure.

Allowed values:

• hold

• none

Requires features holdable.

(# Back to package attributes)

package_settings

(Property: This attribute represents concrete state on the target system.)

Settings that can change the contents or configuration of a package.

The formatting and effects of package_settings are provider-specific; any provider that implements them must explain
how to use them in its documentation. (Our general expectation is that if a package is installed but its settings are out
of sync, the provider should re-install that package with the desired settings.)

An example of how package_settings could be used is FreeBSD's port build options --- a future version of the
provider could accept a hash of options, and would reinstall the port if the installed version lacked the correct settings.

package { 'www/apache22':
 package_settings => { 'SUEXEC' => false }
}

Again, check the documentation of your platform's package provider to see the actual usage.

Requires features package_settings.

(# Back to package attributes)

platform

A read-only parameter set by the package.

(# Back to package attributes)

provider

The specific backend to use for this package resource. You will seldom need to specify this --- Puppet will usually
discover the appropriate provider for your platform.

Available providers are:

• aix

• appdmg

• apple

• apt

• aptitude

• aptrpm

• blastwave

• dnf

• dnfmodule

• dpkg

• fink

• freebsd

• gem

© 2024 Puppet, Inc., a Perforce company

cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-aix
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-appdmg
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-apple
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-apt
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-aptitude
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-aptrpm
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-blastwave
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-dnf
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-dnfmodule
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-dpkg
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-fink
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-freebsd
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-gem

Puppet | Developing Puppet code | 688

• hpux

• macports

• nim

• openbsd

• opkg

• pacman

• pip2

• pip3

• pip

• pkg

• pkgdmg

• pkgin

• pkgng

• pkgutil

• portage

• ports

• portupgrade

• puppet_gem

• puppetserver_gem

• rpm

• rug

• sun

• sunfreeware

• tdnf

• up2date

• urpmi

• windows

• yum

• zypper

(# Back to package attributes)

reinstall_on_refresh

Whether this resource should respond to refresh events (via subscribe, notify, or the ~> arrow) by reinstalling
the package. Only works for providers that support the reinstallable feature.

This is useful for source-based distributions, where you may want to recompile a package if the build options change.

If you use this, be careful of notifying classes when you want to restart services. If the class also contains a
refreshable package, doing so could cause unnecessary re-installs.

Default: false

Allowed values:

• true

• false

(# Back to package attributes)

responsefile

A file containing any necessary answers to questions asked by the package. This is currently used on Solaris and
Debian. The value will be validated according to system rules, but it should generally be a fully qualified path.

(# Back to package attributes)

root

© 2024 Puppet, Inc., a Perforce company

cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-hpux
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-macports
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-nim
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-openbsd
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-opkg
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-pacman
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-pip2
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-pip3
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-pip
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-pkg
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-pkgdmg
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-pkgin
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-pkgng
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-pkgutil
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-portage
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-ports
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-portupgrade
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-puppet_gem
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-puppetserver_gem
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-rpm
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-rug
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-sun
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-sunfreeware
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-tdnf
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-up2date
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-urpmi
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-windows
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-yum
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-provider-zypper
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes

Puppet | Developing Puppet code | 689

A read-only parameter set by the package.

(# Back to package attributes)

source

Where to find the package file. This is mostly used by providers that don't automatically download packages from a
central repository. (For example: the yum provider ignores this attribute, apt provider uses it if present and the rpm
and dpkg providers require it.)

Different providers accept different values for source. Most providers accept paths to local files stored on the target
system. Some providers may also accept URLs or network drive paths. Puppet will not automatically retrieve source
files for you, and usually just passes the value of source to the package installation command.

You can use a file resource if you need to manually copy package files to the target system.

(# Back to package attributes)

status

A read-only parameter set by the package.

(# Back to package attributes)

uninstall_options

An array of additional options to pass when uninstalling a package. These options are package-specific, and should be
documented by the software vendor. For example:

package { 'VMware Tools':
 ensure => absent,
 uninstall_options => [{ 'REMOVE' => 'Sync,VSS' }],
}

Each option in the array can either be a string or a hash, where each key and value pair are interpreted in a provider
specific way. Each option will automatically be quoted when passed to the uninstall command.

On Windows, this is the only place in Puppet where backslash separators should be used. Note that backslashes in
double-quoted strings must be double-escaped and backslashes in single-quoted strings may be double-escaped.

Requires features uninstall_options.

(# Back to package attributes)

vendor

A read-only parameter set by the package.

(# Back to package attributes)

Providers
aix

Installation from an AIX software directory, using the AIX installp command. The source parameter is
required for this provider, and should be set to the absolute path (on the puppet agent machine) of a directory
containing one or more BFF package files.

The installp command will generate a table of contents file (named .toc) in this directory, and the name
parameter (or resource title) that you specify for your package resource must match a package name that exists in
the .toc file.

Note that package downgrades are not supported; if your resource specifies a specific version number and there is
already a newer version of the package installed on the machine, the resource will fail with an error message.

• Required binaries: /usr/bin/lslpp, /usr/sbin/installp
• Confined to: operatingsystem == [:aix]
• Default for: ["operatingsystem", "aix"] ==

© 2024 Puppet, Inc., a Perforce company

cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes
cb922fe12e13df020e0500054e7ecadd581caa0a.md#package-attributes

Puppet | Developing Puppet code | 690

• Supported features: versionable

appdmg

Package management which copies application bundles to a target.

• Required binaries: /usr/bin/hdiutil, /usr/bin/curl, /usr/bin/ditto
• Confined to: operatingsystem == darwin, feature == cfpropertylist

apple

Package management based on OS X's built-in packaging system. This is essentially the simplest and least functional
package system in existence -- it only supports installation; no deletion or upgrades. The provider will automatically
add the .pkg extension, so leave that off when specifying the package name.

• Required binaries: /usr/sbin/installer
• Confined to: operatingsystem == darwin

apt

Package management via apt-get.

This provider supports the install_options attribute, which allows command-line flags to be passed to apt-get.
These options should be specified as an array where each element is either a string or a hash.

• Required binaries: /usr/bin/apt-get, /usr/bin/apt-cache, /usr/bin/apt-mark, /usr/bin/
debconf-set-selections

• Default for: ["osfamily", "debian"] ==
• Supported features: versionable, install_options, virtual_packages

aptitude

Package management via aptitude.

• Required binaries: /usr/bin/aptitude, /usr/bin/apt-cache
• Supported features: versionable

aptrpm

Package management via apt-get ported to rpm.

• Required binaries: apt-get, apt-cache, rpm
• Supported features: versionable

blastwave

Package management using Blastwave.org's pkg-get command on Solaris.

• Required binaries: pkgget
• Confined to: osfamily == solaris

dnf

Support via dnf.

Using this provider's uninstallable feature will not remove dependent packages. To remove dependent packages
with this provider use the purgeable feature, but note this feature is destructive and should be used with the utmost
care.

This provider supports the install_options attribute, which allows command-line flags to be passed to dnf.
These options should be specified as an array where each element is either a string or a hash.

• Required binaries: dnf, rpm
• Default for: ["operatingsystem", "fedora"] == , ["osfamily", "redhat"] ==
• Supported features: install_options, versionable, virtual_packages, install_only

dnfmodule

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 691

• Required binaries: /usr/bin/dnf
• Supported features: installable, uninstallable, versionable, supports_flavors,

disableable

dpkg

Package management via dpkg. Because this only uses dpkg and not apt, you must specify the source of any
packages you want to manage.

• Required binaries: /usr/bin/dpkg, /usr/bin/dpkg-deb, /usr/bin/dpkg-query
• Supported features: holdable, virtual_packages

fink

Package management via fink.

• Required binaries: /sw/bin/fink, /sw/bin/apt-get, /sw/bin/apt-cache, /sw/bin/dpkg-
query

• Supported features: versionable

freebsd

The specific form of package management on FreeBSD. This is an extremely quirky packaging system, in that it
freely mixes between ports and packages. Apparently all of the tools are written in Ruby, so there are plans to rewrite
this support to directly use those libraries.

• Required binaries: /usr/sbin/pkg_info, /usr/sbin/pkg_add, /usr/sbin/pkg_delete
• Confined to: operatingsystem == freebsd

gem

Ruby Gem support. If a URL is passed via source, then that URL is appended to the list of remote gem repositories;
to ensure that only the specified source is used, also pass --clear-sources via install_options. If source
is present but is not a valid URL, it will be interpreted as the path to a local gem file. If source is not present, the gem
will be installed from the default gem repositories. Note that to modify this for Windows, it has to be a valid URL.

This provider supports the install_options and uninstall_options attributes, which allow command-line
flags to be passed to the gem command. These options should be specified as an array where each element is either a
string or a hash.

• Supported features: versionable, install_options, uninstall_options, targetable,
version_ranges

hpux

HP-UX's packaging system.

• Required binaries: /usr/sbin/swinstall, /usr/sbin/swlist, /usr/sbin/swremove
• Confined to: operatingsystem == hp-ux
• Default for: ["operatingsystem", "hp-ux"] ==

macports

Package management using MacPorts on OS X.

Supports MacPorts versions and revisions, but not variants. Variant preferences may be specified using the MacPorts
variants.conf file.

When specifying a version in the Puppet DSL, only specify the version, not the revision. Revisions are only used
internally for ensuring the latest version/revision of a port.

• Confined to: operatingsystem == darwin
• Supported features: installable, uninstallable, upgradeable, versionable

nim

© 2024 Puppet, Inc., a Perforce company

http://guide.macports.org/chunked/internals.configuration-files.html#internals.configuration-files.variants-conf
http://guide.macports.org/chunked/internals.configuration-files.html#internals.configuration-files.variants-conf

Puppet | Developing Puppet code | 692

Installation from an AIX NIM LPP source. The source parameter is required for this provider, and should specify
the name of a NIM lpp_source resource that is visible to the puppet agent machine. This provider supports the
management of both BFF/installp and RPM packages.

Note that package downgrades are not supported; if your resource specifies a specific version number and there is
already a newer version of the package installed on the machine, the resource will fail with an error message.

• Required binaries: /usr/sbin/nimclient, /usr/bin/lslpp, rpm
• Confined to: exists == /etc/niminfo
• Supported features: versionable

openbsd

OpenBSD's form of pkg_add support.

This provider supports the install_options and uninstall_options attributes, which allow command-line
flags to be passed to pkg_add and pkg_delete. These options should be specified as an array where each element is
either a string or a hash.

• Required binaries: pkg_info, pkg_add, pkg_delete
• Confined to: operatingsystem == openbsd
• Default for: ["operatingsystem", "openbsd"] ==
• Supported features: versionable, install_options, uninstall_options, upgradeable,

supports_flavors

opkg

Opkg packaging support. Common on OpenWrt and OpenEmbedded platforms

• Required binaries: opkg
• Confined to: operatingsystem == openwrt
• Default for: ["operatingsystem", "openwrt"] ==

pacman

Support for the Package Manager Utility (pacman) used in Archlinux.

This provider supports the install_options attribute, which allows command-line flags to be passed to pacman.
These options should be specified as an array where each element is either a string or a hash.

• Required binaries: /usr/bin/pacman
• Confined to: operatingsystem == [:archlinux, :manjarolinux]
• Default for: ["operatingsystem", "[:archlinux, :manjarolinux]"] ==
• Supported features: install_options, uninstall_options, upgradeable, virtual_packages

pip

Python packages via pip.

This provider supports the install_options attribute, which allows command-line flags to be passed to pip.
These options should be specified as an array where each element is either a string or a hash.

• Supported features: installable, uninstallable, upgradeable, versionable,
version_ranges, install_options, targetable

pip2

Python packages via pip2.

This provider supports the install_options attribute, which allows command-line flags to be passed to pip2.
These options should be specified as an array where each element is either a string or a hash.

• Supported features: installable, uninstallable, upgradeable, versionable,
install_options, targetable

pip3

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 693

Python packages via pip3.

This provider supports the install_options attribute, which allows command-line flags to be passed to pip3.
These options should be specified as an array where each element is either a string or a hash.

• Supported features: installable, uninstallable, upgradeable, versionable,
install_options, targetable

pkg

OpenSolaris image packaging system. See pkg(5) for more information.

This provider supports the install_options attribute, which allows command-line flags to be passed to pkg.
These options should be specified as an array where each element is either a string or a hash.

• Required binaries: /usr/bin/pkg
• Confined to: osfamily == solaris
• Default for: ["osfamily", "solaris"] == ["kernelrelease", "['5.11', '5.12']"]
• Supported features: versionable, upgradable, holdable, install_options

pkgdmg

Package management based on Apple's Installer.app and DiskUtility.app.

This provider works by checking the contents of a DMG image for Apple pkg or mpkg files. Any number of pkg or
mpkg files may exist in the root directory of the DMG file system, and Puppet will install all of them. Subdirectories
are not checked for packages.

This provider can also accept plain .pkg (but not .mpkg) files in addition to .dmg files.

Notes:

• The source attribute is mandatory. It must be either a local disk path or an HTTP, HTTPS, or FTP URL to the
package.

• The name of the resource must be the filename (without path) of the DMG file.
• When installing the packages from a DMG, this provider writes a file to disk at /var/

db/.puppet_pkgdmg_installed_NAME. If that file is present, Puppet assumes all packages from that
DMG are already installed.

• This provider is not versionable and uses DMG filenames to determine whether a package has been installed.
Thus, to install new a version of a package, you must create a new DMG with a different filename.

• Required binaries: /usr/sbin/installer, /usr/bin/hdiutil, /usr/bin/curl
• Confined to: operatingsystem == darwin, feature == cfpropertylist
• Default for: ["operatingsystem", "darwin"] ==

pkgin

Package management using pkgin, a binary package manager for pkgsrc.

• Required binaries: pkgin
• Default for: ["operatingsystem", "[:smartos, :netbsd]"] ==
• Supported features: installable, uninstallable, upgradeable, versionable

pkgng

A PkgNG provider for FreeBSD and DragonFly.

• Required binaries: /usr/local/sbin/pkg
• Confined to: operatingsystem == [:freebsd, :dragonfly]
• Default for: ["operatingsystem", "[:freebsd, :dragonfly]"] ==
• Supported features: versionable, upgradeable, install_options

pkgutil

Package management using Peter Bonivart's pkgutil command on Solaris.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 694

• Confined to: osfamily == solaris

portage

Provides packaging support for Gentoo's portage system.

This provider supports the install_options and uninstall_options attributes, which allows command-
line flags to be passed to emerge. These options should be specified as an array where each element is either a string
or a hash.

• Confined to: osfamily == gentoo
• Default for: ["osfamily", "gentoo"] ==
• Supported features: install_options, purgeable, reinstallable, uninstall_options,

versionable, virtual_packages

ports

Support for FreeBSD's ports. Note that this, too, mixes packages and ports.

• Required binaries: /usr/local/sbin/portupgrade, /usr/local/sbin/portversion, /usr/
local/sbin/pkg_deinstall, /usr/sbin/pkg_info

portupgrade

Support for FreeBSD's ports using the portupgrade ports management software. Use the port's full origin as the
resource name. eg (ports-mgmt/portupgrade) for the portupgrade port.

• Required binaries: /usr/local/sbin/portupgrade, /usr/local/sbin/portinstall, /usr/
local/sbin/portversion, /usr/local/sbin/pkg_deinstall, /usr/sbin/pkg_info

puppet_gem

Puppet Ruby Gem support. This provider is useful for managing gems needed by the ruby provided in the puppet-
agent package.

• Supported features: versionable, install_options, uninstall_options

puppetserver_gem

Puppet Server Ruby Gem support. If a URL is passed via source, then that URL is appended to the list of remote
gem repositories which by default contains rubygems.org; To ensure that only the specified source is used also
pass --clear-sources in via install_options; if a source is present but is not a valid URL, it will be
interpreted as the path to a local gem file. If source is not present at all, the gem will be installed from the default gem
repositories.

• Confined to: feature == hocon, fips_enabled == false
• Supported features: versionable, install_options, uninstall_options

rpm

RPM packaging support; should work anywhere with a working rpm binary.

This provider supports the install_options and uninstall_options attributes, which allow command-
line flags to be passed to rpm. These options should be specified as an array where each element is either a string or a
hash.

• Required binaries: rpm
• Supported features: versionable, install_options, uninstall_options, virtual_packages,

install_only

rug

Support for suse rug package manager.

• Required binaries: /usr/bin/rug, rpm
• Confined to: operatingsystem == [:suse, :sles]
• Supported features: versionable

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 695

sun

Sun's packaging system. Requires that you specify the source for the packages you're managing.

This provider supports the install_options attribute, which allows command-line flags to be passed to pkgadd.
These options should be specified as an array where each element is either a string or a hash.

• Required binaries: /usr/bin/pkginfo, /usr/sbin/pkgadd, /usr/sbin/pkgrm
• Confined to: osfamily == solaris
• Default for: ["osfamily", "solaris"] ==
• Supported features: install_options

sunfreeware

Package management using sunfreeware.com's pkg-get command on Solaris. At this point, support is exactly the
same as blastwave support and has not actually been tested.

• Required binaries: pkg-get
• Confined to: osfamily == solaris

tdnf

Support via tdnf.

This provider supports the install_options attribute, which allows command-line flags to be passed to tdnf.
These options should be spcified as a string (e.g. '--flag'), a hash (e.g. {'--flag' => 'value'}), or an array where each
element is either a string or a hash.

• Required binaries: tdnf, rpm
• Default for: ["operatingsystem", "PhotonOS"] ==
• Supported features: install_options, versionable, virtual_packages

up2date

Support for Red Hat's proprietary up2date package update mechanism.

• Required binaries: /usr/sbin/up2date-nox
• Confined to: osfamily == redhat
• Default for: ["osfamily", "redhat"] == ["lsbdistrelease", "["2.1", "3", "4"]"]

urpmi

Support via urpmi.

• Required binaries: urpmi, urpmq, rpm, urpme
• Default for: ["operatingsystem", "[:mandriva, :mandrake]"] ==
• Supported features: versionable

windows

Windows package management.

This provider supports either MSI or self-extracting executable installers.

This provider requires a source attribute when installing the package. It accepts paths to local files, mapped drives,
or UNC paths.

This provider supports the install_options and uninstall_options attributes, which allow command-line
flags to be passed to the installer. These options should be specified as an array where each element is either a string
or a hash.

If the executable requires special arguments to perform a silent install or uninstall, then the appropriate arguments
should be specified using the install_options or uninstall_options attributes, respectively. Puppet will
automatically quote any option that contains spaces.

• Confined to: operatingsystem == windows

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 696

• Default for: ["operatingsystem", "windows"] ==
• Supported features: installable, uninstallable, install_options, uninstall_options,

versionable

yum

Support via yum.

Using this provider's uninstallable feature will not remove dependent packages. To remove dependent packages
with this provider use the purgeable feature, but note this feature is destructive and should be used with the utmost
care.

This provider supports the install_options attribute, which allows command-line flags to be passed to yum.
These options should be specified as an array where each element is either a string or a hash.

• Required binaries: yum, rpm
• Default for: ["operatingsystem", "amazon"] == , ["osfamily", "redhat"] ==

["operatingsystemmajrelease", "(4..7).to_a"]

• Supported features: install_options, versionable, virtual_packages, install_only

zypper

Support for SuSE zypper package manager. Found in SLES10sp2+ and SLES11.

This provider supports the install_options attribute, which allows command-line flags to be passed to zypper.
These options should be specified as an array where each element is either a string or a hash.

• Required binaries: /usr/bin/zypper
• Confined to: operatingsystem == [:suse, :sles, :sled, :opensuse]
• Default for: ["operatingsystem", "[:suse, :sles, :sled, :opensuse]"] ==
• Supported features: versionable, install_options, virtual_packages

Provider Features

Available features:

• disableable --- The provider can disable packages. This feature is used by specifying disabled as the
desired value for the package.

• holdable --- The provider is capable of placing packages on hold such that they are not automatically upgraded
as a result of other package dependencies unless explicit action is taken by a user or another package.

• install_only --- The provider accepts options to only install packages never update (kernels, etc.)
• install_options --- The provider accepts options to be passed to the installer command.
• installable --- The provider can install packages.
• package_settings --- The provider accepts package_settings to be ensured for the given package. The

meaning and format of these settings is provider-specific.
• purgeable --- The provider can purge packages. This generally means that all traces of the package are

removed, including existing configuration files. This feature is thus destructive and should be used with the utmost
care.

• reinstallable --- The provider can reinstall packages.
• supports_flavors --- The provider accepts flavors, which are specific variants of packages.
• targetable --- The provider accepts a targeted package management command.
• uninstall_options --- The provider accepts options to be passed to the uninstaller command.
• uninstallable --- The provider can uninstall packages.
• upgradeable --- The provider can upgrade to the latest version of a package. This feature is used by specifying

latest as the desired value for the package.
• version_ranges --- The provider can ensure version ranges.
• versionable --- The provider is capable of interrogating the package database for installed version(s), and can

select which out of a set of available versions of a package to install if asked.
• virtual_packages --- The provider accepts virtual package names for install and uninstall.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 697

Provider support:

• aix - versionable
• appdmg - No supported Provider features
• apple - No supported Provider features
• apt - versionable, install options, virtual packages
• aptitude - versionable
• aptrpm - versionable
• blastwave - No supported Provider features
• dnf - install options, versionable, virtual packages, install only
• dnfmodule - installable, uninstallable, versionable, supports flavors, disableable
• dpkg - holdable, virtual packages
• fink - versionable
• freebsd - No supported Provider features
• gem - versionable, install options, uninstall options, targetable, version ranges
• hpux - No supported Provider features
• macports - installable, uninstallable, upgradeable, versionable
• nim - versionable
• openbsd - versionable, install options, uninstall options, upgradeable, supports flavors
• opkg - No supported Provider features
• pacman - install options, uninstall options, upgradeable, virtual packages
• pip - installable, uninstallable, upgradeable, versionable, version ranges, install options, targetable
• pip2 - installable, uninstallable, upgradeable, versionable, install options, targetable
• pip3 - installable, uninstallable, upgradeable, versionable, install options, targetable
• pkg - versionable, upgradable, holdable, install options
• pkgdmg - No supported Provider features
• pkgin - installable, uninstallable, upgradeable, versionable
• pkgng - versionable, upgradeable, install options
• pkgutil - No supported Provider features
• portage - install options, purgeable, reinstallable, uninstall options, versionable, virtual packages
• ports - No supported Provider features
• portupgrade - No supported Provider features
• puppet_gem - versionable, install options, uninstall options
• puppetserver_gem - versionable, install options, uninstall options
• rpm - versionable, install options, uninstall options, virtual packages, install only
• rug - versionable
• sun - install options
• sunfreeware - No supported Provider features
• tdnf - install options, versionable, virtual packages
• up2date - No supported Provider features
• urpmi - versionable
• windows - installable, uninstallable, install options, uninstall options, versionable
• yum - install options, versionable, virtual packages, install only
• zypper - versionable, install options, virtual packages

Using package on Windows
The built-in package resource type handles many different packaging systems on many operating systems, so not
all features are relevant everywhere. This page offers guidance and tips for working with package on Windows.

package { 'mysql':
 ensure => '5.5.16',
 source => 'N:\packages\mysql-5.5.16-winx64.msi',

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 698

 install_options => ['INSTALLDIR=C:\mysql-5.5'],
}

package { "Git version 1.8.4-preview20130916":
 ensure => installed,
 source => 'C:\code\puppetlabs\temp\windowsexample\Git-1.8.4-
preview20130916.exe',
 install_options => ['/VERYSILENT']
}

Supported package types: MSI and EXE

Puppet can install and remove MSI packages and executable installers on Windows. Both package types use the
default windows package provider.

Alternatively, a Chocolatey package provider is available on the Forge.

The source attribute is required

When managing packages using the windows package provider, you must specify a package file using the source
attribute.

The source can be a local file or a file on a mapped network drive. For MSI installers, you can use a UNC path.
Puppet URLs are not supported for the package type’s source attribute, but you can use file resources to copy
packages to the local system. The source attribute accepts both forward- and backslashes.

The package name must be the DisplayName

The title (or name) of the package must match the value of the package’s DisplayName property in the registry,
which is also the value displayed in the Add/Remove Programs or Programs and Features control panels.

If the provided name and the installed name don’t match, Puppet assumes the package is not installed and tries to
install it again.

To determine a package's DisplayName:

1. Install the package on an example system.
2. Run puppet resource package to see a list of installed packages.
3. Copy the name of the package from the list.

Some packages (Git is a notable example) change their display names with every newly released version. See the
section below on handling package versions and upgrades.

Install and uninstall options

The Windows package provider also supports package-specific install_options (such as install directory) and
uninstall_options. These options vary across packages, so see the documentation for the specific package
you’re installing. Options are specified as an array of strings or hashes.

MSI properties can be specified as an array of strings following the property=key pattern; use one string per
property. Command line flags to executable installers can be specified as an array of strings, with one string per flag.

For file path arguments within the install_options attribute (such as INSTALLDIR), use backslashes (\), not
forward slashes. Escape your backslashes appropriately. For more info, see Handling file paths on Windows.

If you pass a string argument that includes spaces to the install_options attribute, you must split the string on
every space. For example, to make Puppet install a self-extracting executable package as:

./installer.exe /s /v"MANAGEMENT_SERVER=1.1.1.1 /l*v! c:\temp\log.txt /qn"

the proper syntax would be:

install_options => ['/s',

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/chocolatey/readme

Puppet | Developing Puppet code | 699

 "/v\"MANAGEMENT_SERVER=${management_server}",
 '/l*v!',
 "${install_log}",
 '/qn',
 '"'
],

For more information, visit Install options with quotes or spaces.

Use the hash notation for file path arguments because they might contain spaces. For example:

install_options => [{ 'INSTALLDIR' => ${packagedir} }]

Handling versions and upgrades
Setting ensure => latest (which requires the upgradeable feature) doesn’t work on Windows, because
Windows doesn’t have central package repositories like on most *nix systems.

There are two ways to handle package versions and upgrades on Windows.

Packages with real versions

Many packages on Windows have version metadata. To tell whether a package has usable version metadata, install it
on a test system and use puppet resource package to inspect it.

To upgrade these packages, replace the source file and set ensure => '<VERSION>'. For example:

package { 'mysql':
 ensure => '5.5.16',
 source => 'N:\packages\mysql-5.5.16-winx64.msi',
 install_options => ['INSTALLDIR=C:\mysql-5.5'],
}

The next time Puppet runs, it will notice that the versions don’t match and will install the new package. This makes
the installed version match the new version, so Puppet won’t attempt to re-install the package until you change the
version in the manifest again.

The version you use in ensure must exactly match the version string that the package reports when you inspect it
with puppet resource. If it doesn’t match, Puppet will repeatedly try to install it.

Packages that include version info in their DisplayName

Some packages don’t embed version metadata; instead, they change their DisplayName property with each release.
The Git packages are a notable example.

To upgrade these packages, replace the source file and update the resource’s title or name to the new
DisplayName. For example:

package { "Git version 1.8.4-preview20130916":
 ensure => installed,
 source => 'C:\code\puppetlabs\temp\windowsexample\Git-1.8.4-
preview20130916.exe',
 install_options => ['/VERYSILENT']
}

The next time Puppet runs, it will notice that the names don’t match and will install the new package. This makes the
installed name match the new name, so Puppet won’t attempt to re-install the package until you change the name in
the manifest again.

The name you use in the title must exactly match the name that the package reports when you inspect it with puppet
resource. If it doesn’t match, Puppet will repeatedly try to install it.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/modules/puppetlabs/chocolatey#install-options-with-quotes-or-spaces

Puppet | Developing Puppet code | 700

Resource Type: resources

NOTE: This page was generated from the Puppet source code on 2022-02-07 10:11:41 -0800

resources

• Attributes

Description

This is a metatype that can manage other resource types. Any metaparams specified here will be passed on to any
generated resources, so you can purge unmanaged resources but set noop to true so the purging is only logged and
does not actually happen.

Attributes

resources { 'resource title':
 name => # (namevar) The name of the type to be...
 purge => # Whether to purge unmanaged resources. When set...
 unless_system_user => # This keeps system users from being purged. By...
 unless_uid => # This keeps specific uids or ranges of uids from...
 # ...plus any applicable metaparameters.
}

name

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The name of the type to be managed.

(# Back to resources attributes)

purge

Whether to purge unmanaged resources. When set to true, this will delete any resource that is not specified in your
configuration and is not autorequired by any managed resources. Note: The ssh_authorized_key resource type
can't be purged this way; instead, see the purge_ssh_keys attribute of the user type.

Default: false

Allowed values:

• true

• false

• yes

• no

(# Back to resources attributes)

unless_system_user

This keeps system users from being purged. By default, it does not purge users whose UIDs are less than the
minimum UID for the system (typically 500 or 1000), but you can specify a different UID as the inclusive limit.

Allowed values:

• true

• false

• /^\d+$/

(# Back to resources attributes)

unless_uid

This keeps specific uids or ranges of uids from being purged when purge is true. Accepts integers, integer strings, and
arrays of integers or integer strings. To specify a range of uids, consider using the range() function from stdlib.

(# Back to resources attributes)

© 2024 Puppet, Inc., a Perforce company

cfebc75107d05846d09f123dd72a022a7da73429.md#resources-attributes
cfebc75107d05846d09f123dd72a022a7da73429.md#resources-attribute-name
cfebc75107d05846d09f123dd72a022a7da73429.md#resources-attribute-purge
cfebc75107d05846d09f123dd72a022a7da73429.md#resources-attribute-unless_system_user
cfebc75107d05846d09f123dd72a022a7da73429.md#resources-attribute-unless_uid
https://puppet.com/docs/puppet/latest/metaparameter.html
cfebc75107d05846d09f123dd72a022a7da73429.md#resources-attributes
cfebc75107d05846d09f123dd72a022a7da73429.md#resources-attributes
cfebc75107d05846d09f123dd72a022a7da73429.md#resources-attributes
cfebc75107d05846d09f123dd72a022a7da73429.md#resources-attributes

Puppet | Developing Puppet code | 701

Resource Type: schedule

NOTE: This page was generated from the Puppet source code on 2022-02-07 10:11:41 -0800

schedule

• Attributes

Description

Define schedules for Puppet. Resources can be limited to a schedule by using the schedule metaparameter.

Currently, schedules can only be used to stop a resource from being applied; they cannot cause a resource to be
applied when it otherwise wouldn't be, and they cannot accurately specify a time when a resource should run.

Every time Puppet applies its configuration, it will apply the set of resources whose schedule does not eliminate them
from running right then, but there is currently no system in place to guarantee that a given resource runs at a given
time. If you specify a very restrictive schedule and Puppet happens to run at a time within that schedule, then the
resources will get applied; otherwise, that work may never get done.

Thus, it is advisable to use wider scheduling (for example, over a couple of hours) combined with periods and
repetitions. For instance, if you wanted to restrict certain resources to only running once, between the hours of two
and 4 AM, then you would use this schedule:

schedule { 'maint':
 range => '2 - 4',
 period => daily,
 repeat => 1,
}

With this schedule, the first time that Puppet runs between 2 and 4 AM, all resources with this schedule will get
applied, but they won't get applied again between 2 and 4 because they will have already run once that day, and they
won't get applied outside that schedule because they will be outside the scheduled range.

Puppet automatically creates a schedule for each of the valid periods with the same name as that period (such as
hourly and daily). Additionally, a schedule named puppet is created and used as the default, with the following
attributes:

schedule { 'puppet':
 period => hourly,
 repeat => 2,
}

This will cause resources to be applied every 30 minutes by default.

The statettl setting on the agent affects the ability of a schedule to determine if a resource has already been
checked. If the statettl is set lower than the span of the associated schedule resource, then a resource could be
checked & applied multiple times in the schedule as the information about when the resource was last checked will
have expired from the cache.

Attributes

schedule { 'resource title':
 name => # (namevar) The name of the schedule. This name is used...
 period => # The period of repetition for resources on this...
 periodmatch => # Whether periods should be matched by a numeric...
 range => # The earliest and latest that a resource can be...
 repeat => # How often a given resource may be applied in...
 weekday => # The days of the week in which the schedule...
 # ...plus any applicable metaparameters.
}

name

© 2024 Puppet, Inc., a Perforce company

f5d4b28341f08abc72be92125ccf9e583af59a8d.md#schedule-attributes
https://puppet.com/docs/puppet/latest/metaparameter.html#schedule
f5d4b28341f08abc72be92125ccf9e583af59a8d.md#schedule-attribute-name
f5d4b28341f08abc72be92125ccf9e583af59a8d.md#schedule-attribute-period
f5d4b28341f08abc72be92125ccf9e583af59a8d.md#schedule-attribute-periodmatch
f5d4b28341f08abc72be92125ccf9e583af59a8d.md#schedule-attribute-range
f5d4b28341f08abc72be92125ccf9e583af59a8d.md#schedule-attribute-repeat
f5d4b28341f08abc72be92125ccf9e583af59a8d.md#schedule-attribute-weekday
https://puppet.com/docs/puppet/latest/metaparameter.html

Puppet | Developing Puppet code | 702

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The name of the schedule. This name is used when assigning the schedule to a resource with the schedule
metaparameter:

schedule { 'everyday':
 period => daily,
 range => '2 - 4',
}

exec { '/usr/bin/apt-get update':
 schedule => 'everyday',
}

(# Back to schedule attributes)

period

The period of repetition for resources on this schedule. The default is for resources to get applied every time Puppet
runs.

Note that the period defines how often a given resource will get applied but not when; if you would like to restrict
the hours that a given resource can be applied (for instance, only at night during a maintenance window), then use the
range attribute.

If the provided periods are not sufficient, you can provide a value to the repeat attribute, which will cause Puppet to
schedule the affected resources evenly in the period the specified number of times. Take this schedule:

schedule { 'veryoften':
 period => hourly,
 repeat => 6,
}

This can cause Puppet to apply that resource up to every 10 minutes.

At the moment, Puppet cannot guarantee that level of repetition; that is, the resource can applied up to every 10
minutes, but internal factors might prevent it from actually running that often (for instance, if a Puppet run is still in
progress when the next run is scheduled to start, that next run will be suppressed).

See the periodmatch attribute for tuning whether to match times by their distance apart or by their specific value.

Tip: You can use period => never, to prevent a resource from being applied in the given range.
This is useful if you need to create a blackout window to perform sensitive operations without interruption.

Allowed values:

• hourly

• daily

• weekly

• monthly

• never

(# Back to schedule attributes)

periodmatch

Whether periods should be matched by a numeric value (for instance, whether two times are in the same hour) or by
their chronological distance apart (whether two times are 60 minutes apart).

Default: distance

Allowed values:

• number

• distance

© 2024 Puppet, Inc., a Perforce company

f5d4b28341f08abc72be92125ccf9e583af59a8d.md#schedule-attributes
f5d4b28341f08abc72be92125ccf9e583af59a8d.md#schedule-attributes

Puppet | Developing Puppet code | 703

(# Back to schedule attributes)

range

The earliest and latest that a resource can be applied. This is always a hyphen-separated range within a 24 hour
period, and hours must be specified in numbers between 0 and 23, inclusive. Minutes and seconds can optionally be
provided, using the normal colon as a separator. For instance:

schedule { 'maintenance':
 range => '1:30 - 4:30',
}

This is mostly useful for restricting certain resources to being applied in maintenance windows or during off-peak
hours. Multiple ranges can be applied in array context. As a convenience when specifying ranges, you can cross
midnight (for example, range => "22:00 - 04:00").

(# Back to schedule attributes)

repeat

How often a given resource may be applied in this schedule's period. Must be an integer.

Default: 1

(# Back to schedule attributes)

weekday

The days of the week in which the schedule should be valid. You may specify the full day name 'Tuesday', the three
character abbreviation 'Tue', or a number (as a string or as an integer) corresponding to the day of the week where 0 is
Sunday, 1 is Monday, and so on. Multiple days can be specified as an array. If not specified, the day of the week will
not be considered in the schedule.

If you are also using a range match that spans across midnight then this parameter will match the day that it was at the
start of the range, not necessarily the day that it is when it matches. For example, consider this schedule:

schedule { 'maintenance_window':
 range => '22:00 - 04:00',
 weekday => 'Saturday',
}

This will match at 11 PM on Saturday and 2 AM on Sunday, but not at 2 AM on Saturday.

(# Back to schedule attributes)

Resource Type: service

NOTE: This page was generated from the Puppet source code on 2022-02-07 10:11:41 -0800

service

• Attributes
• Providers
• Provider Features

Description

Manage running services. Service support unfortunately varies widely by platform --- some platforms have very little
if any concept of a running service, and some have a very codified and powerful concept. Puppet's service support is
usually capable of doing the right thing, but the more information you can provide, the better behaviour you will get.

Puppet 2.7 and newer expect init scripts to have a working status command. If this isn't the case for any of your
services' init scripts, you will need to set hasstatus to false and possibly specify a custom status command in the
status attribute. As a last resort, Puppet will attempt to search the process table by calling whatever command is

© 2024 Puppet, Inc., a Perforce company

f5d4b28341f08abc72be92125ccf9e583af59a8d.md#schedule-attributes
f5d4b28341f08abc72be92125ccf9e583af59a8d.md#schedule-attributes
f5d4b28341f08abc72be92125ccf9e583af59a8d.md#schedule-attributes
f5d4b28341f08abc72be92125ccf9e583af59a8d.md#schedule-attributes
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attributes
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-providers
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-features

Puppet | Developing Puppet code | 704

listed in the ps fact. The default search pattern is the name of the service, but you can specify it with the pattern
attribute.

Refresh: service resources can respond to refresh events (via notify, subscribe, or the ~> arrow). If a
service receives an event from another resource, Puppet will restart the service it manages. The actual command
used to restart the service depends on the platform and can be configured:

• If you set hasrestart to true, Puppet will use the init script's restart command.
• You can provide an explicit command for restarting with the restart attribute.
• If you do neither, the service's stop and start commands will be used.

Attributes

service { 'resource title':
 name => # (namevar) The name of the service to run. This name
 is...
 ensure => # Whether a service should be running. Default...
 binary => # The path to the daemon. This is only used for...
 control => # The control variable used to manage services...
 enable => # Whether a service should be enabled to start at...
 flags => # Specify a string of flags to pass to the startup
 hasrestart => # Specify that an init script has a `restart...
 hasstatus => # Declare whether the service's init script has a...
 logonaccount => # Specify an account for service...
 logonpassword => # Specify a password for service logon. Default...
 manifest => # Specify a command to config a service, or a path
 path => # The search path for finding init scripts....
 pattern => # The pattern to search for in the process table...
 provider => # The specific backend to use for this `service...
 restart => # Specify a *restart* command manually. If left...
 start => # Specify a *start* command manually. Most...
 status => # Specify a *status* command manually. This...
 stop => # Specify a *stop* command...
 timeout => # Specify an optional minimum timeout (in seconds)
 # ...plus any applicable metaparameters.
}

name

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The name of the service to run.

This name is used to find the service; on platforms where services have short system names and long display names,
this should be the short name. (To take an example from Windows, you would use "wuauserv" rather than "Automatic
Updates.")

(# Back to service attributes)

ensure

(Property: This attribute represents concrete state on the target system.)

Whether a service should be running. Default values depend on the platform.

Allowed values:

• stopped

• running

• false

• true

(# Back to service attributes)

binary

© 2024 Puppet, Inc., a Perforce company

ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attribute-name
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attribute-ensure
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attribute-binary
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attribute-control
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attribute-enable
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attribute-flags
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attribute-hasrestart
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attribute-hasstatus
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attribute-logonaccount
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attribute-logonpassword
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attribute-manifest
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attribute-path
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attribute-pattern
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attribute-provider
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attribute-restart
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attribute-start
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attribute-status
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attribute-stop
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attribute-timeout
https://puppet.com/docs/puppet/latest/metaparameter.html
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attributes
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attributes

Puppet | Developing Puppet code | 705

The path to the daemon. This is only used for systems that do not support init scripts. This binary will be used to start
the service if no start parameter is provided.

(# Back to service attributes)

control

The control variable used to manage services (originally for HP-UX). Defaults to the upcased service name plus
START replacing dots with underscores, for those providers that support the controllable feature.

(# Back to service attributes)

enable

(Property: This attribute represents concrete state on the target system.)

Whether a service should be enabled to start at boot. This property behaves differently depending on the platform;
wherever possible, it relies on local tools to enable or disable a given service. Default values depend on the platform.

If you don't specify a value for the enable attribute, Puppet leaves that aspect of the service alone and your
operating system determines the behavior.

Allowed values:

• true

• false

• manual

• mask

• delayed

Requires features enableable.

(# Back to service attributes)

flags

(Property: This attribute represents concrete state on the target system.)

Specify a string of flags to pass to the startup script.

Requires features flaggable.

(# Back to service attributes)

hasrestart

Specify that an init script has a restart command. If this is false and you do not specify a command in the
restart attribute, the init script's stop and start commands will be used.

Allowed values:

• true

• false

(# Back to service attributes)

hasstatus

Declare whether the service's init script has a functional status command. This attribute's default value changed in
Puppet 2.7.0.

The init script's status command must return 0 if the service is running and a nonzero value otherwise. Ideally, these
exit codes should conform to the LSB's specification for init script status actions, but Puppet only considers the
difference between 0 and nonzero to be relevant.

If a service's init script does not support any kind of status command, you should set hasstatus to false and either
provide a specific command using the status attribute or expect that Puppet will look for the service name in the

© 2024 Puppet, Inc., a Perforce company

ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attributes
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attributes
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attributes
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attributes
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attributes
http://refspecs.linuxfoundation.org/LSB_4.1.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html

Puppet | Developing Puppet code | 706

process table. Be aware that 'virtual' init scripts (like 'network' under Red Hat systems) will respond poorly to refresh
events from other resources if you override the default behavior without providing a status command.

Default: true

Allowed values:

• true

• false

(# Back to service attributes)

logonaccount

(Property: This attribute represents concrete state on the target system.)

Specify an account for service logon

Requires features manages_logon_credentials.

(# Back to service attributes)

logonpassword

Specify a password for service logon. Default value is an empty string (when logonaccount is specified).

Requires features manages_logon_credentials.

(# Back to service attributes)

manifest

Specify a command to config a service, or a path to a manifest to do so.

(# Back to service attributes)

path

The search path for finding init scripts. Multiple values should be separated by colons or provided as an array.

(# Back to service attributes)

pattern

The pattern to search for in the process table. This is used for stopping services on platforms that do not support
init scripts, and is also used for determining service status on those service whose init scripts do not include a status
command.

Defaults to the name of the service. The pattern can be a simple string or any legal Ruby pattern, including regular
expressions (which should be quoted without enclosing slashes).

(# Back to service attributes)

provider

The specific backend to use for this service resource. You will seldom need to specify this --- Puppet will usually
discover the appropriate provider for your platform.

Available providers are:

• base

• bsd

• daemontools

• debian

• freebsd

• gentoo

• init

• launchd

© 2024 Puppet, Inc., a Perforce company

ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attributes
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attributes
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attributes
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attributes
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attributes
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attributes
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-base
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-bsd
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-daemontools
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-debian
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-freebsd
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-gentoo
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-init
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-launchd

Puppet | Developing Puppet code | 707

• openbsd

• openrc

• openwrt

• rcng

• redhat

• runit

• service

• smf

• src

• systemd

• upstart

• windows

(# Back to service attributes)

restart

Specify a restart command manually. If left unspecified, the service will be stopped and then started.

(# Back to service attributes)

start

Specify a start command manually. Most service subsystems support a start command, so this will not need to be
specified.

(# Back to service attributes)

status

Specify a status command manually. This command must return 0 if the service is running and a nonzero value
otherwise. Ideally, these exit codes should conform to the LSB's specification for init script status actions, but Puppet
only considers the difference between 0 and nonzero to be relevant.

If left unspecified, the status of the service will be determined automatically, usually by looking for the service in the
process table.

(# Back to service attributes)

stop

Specify a stop command manually.

(# Back to service attributes)

timeout

Specify an optional minimum timeout (in seconds) for puppet to wait when syncing service properties

Requires features configurable_timeout.

(# Back to service attributes)

Providers
base

The simplest form of Unix service support.

You have to specify enough about your service for this to work; the minimum you can specify is a binary for starting
the process, and this same binary will be searched for in the process table to stop the service. As with init-style
services, it is preferable to specify start, stop, and status commands.

• Required binaries: kill

bsd

Generic BSD form of init-style service management with rc.d.

© 2024 Puppet, Inc., a Perforce company

ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-openbsd
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-openrc
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-openwrt
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-rcng
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-redhat
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-runit
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-service
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-smf
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-src
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-systemd
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-upstart
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-provider-windows
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attributes
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attributes
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attributes
http://refspecs.linuxfoundation.org/LSB_4.1.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attributes
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attributes
ff182e290424a84d06971e43af5b8b1a211a73bd.md#service-attributes

Puppet | Developing Puppet code | 708

Uses rc.conf.d for service enabling and disabling.

• Confined to: operatingsystem == [:freebsd, :dragonfly]

daemontools

Daemontools service management.

This provider manages daemons supervised by D.J. Bernstein daemontools. When detecting the service directory it
will check, in order of preference:

• /service

• /etc/service

• /var/lib/svscan

The daemon directory should be in one of the following locations:

• /var/lib/service

• /etc

...or this can be overridden in the resource's attributes:

service { 'myservice':
 provider => 'daemontools',
 path => '/path/to/daemons',
}

This provider supports out of the box:

• start/stop (mapped to enable/disable)
• enable/disable
• restart
• status

If a service has ensure => "running", it will link /path/to/daemon to /path/to/service, which will automatically
enable the service.

If a service has ensure => "stopped", it will only shut down the service, not remove the /path/to/
service link.

• Required binaries: /usr/bin/svc, /usr/bin/svstat

debian

Debian's form of init-style management.

The only differences from init are support for enabling and disabling services via update-rc.d and the ability to
determine enabled status via invoke-rc.d.

• Required binaries: /usr/sbin/update-rc.d, /usr/sbin/invoke-rc.d, /usr/sbin/service
• Confined to: false == Puppet::FileSystem.exist?('/proc/1/comm') &&

Puppet::FileSystem.read('/proc/1/comm').include?('systemd')

• Default for: ["operatingsystem", "cumuluslinux"] == ["operatingsystemmajrelease",
"['1','2']"], ["operatingsystem", "debian"] == ["operatingsystemmajrelease",
"['5','6','7']"], ["operatingsystem", "devuan"] ==

freebsd

Provider for FreeBSD and DragonFly BSD. Uses the rcvar argument of init scripts and parses/edits rc files.

• Confined to: operatingsystem == [:freebsd, :dragonfly]
• Default for: ["operatingsystem", "[:freebsd, :dragonfly]"] ==

gentoo

Gentoo's form of init-style service management.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 709

Uses rc-update for service enabling and disabling.

• Required binaries: /sbin/rc-update
• Confined to: operatingsystem == gentoo

init

Standard init-style service management.

• Confined to: true == begin os =
Puppet.runtime[:facter].value(:operatingsystem).downcase family =
Puppet.runtime[:facter].value(:osfamily).downcase !(os == 'debian' || os ==
'ubuntu' || family == 'redhat') end

launchd

This provider manages jobs with launchd, which is the default service framework for Mac OS X (and may be
available for use on other platforms).

For more information, see the launchd man page:

• https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man8/launchd.8.html

This provider reads plists out of the following directories:

• /System/Library/LaunchDaemons

• /System/Library/LaunchAgents

• /Library/LaunchDaemons

• /Library/LaunchAgents

...and builds up a list of services based upon each plist's "Label" entry.

This provider supports:

• ensure => running/stopped,
• enable => true/false
• status
• restart

Here is how the Puppet states correspond to launchd states:

• stopped --- job unloaded
• started --- job loaded
• enabled --- 'Disable' removed from job plist file
• disabled --- 'Disable' added to job plist file

Note that this allows you to do something launchctl can't do, which is to be in a state of "stopped/enabled" or
"running/disabled".

Note that this provider does not support overriding 'restart'

• Required binaries: /bin/launchctl
• Confined to: operatingsystem == darwin, feature == cfpropertylist
• Default for: ["operatingsystem", "darwin"] ==
• Supported features: enableable, refreshable

openbsd

Provider for OpenBSD's rc.d daemon control scripts

• Required binaries: /usr/sbin/rcctl
• Confined to: operatingsystem == openbsd
• Default for: ["operatingsystem", "openbsd"] ==
• Supported features: flaggable

© 2024 Puppet, Inc., a Perforce company

https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man8/launchd.8.html

Puppet | Developing Puppet code | 710

openrc

Support for Gentoo's OpenRC initskripts

Uses rc-update, rc-status and rc-service to manage services.

• Required binaries: /sbin/rc-service, /sbin/rc-update
• Default for: ["operatingsystem", "gentoo"] == , ["operatingsystem", "funtoo"] ==

openwrt

Support for OpenWrt flavored init scripts.

Uses /etc/init.d/service_name enable, disable, and enabled.

• Confined to: operatingsystem == openwrt
• Default for: ["operatingsystem", "openwrt"] ==
• Supported features: enableable

rcng

RCng service management with rc.d

• Confined to: operatingsystem == [:netbsd, :cargos]
• Default for: ["operatingsystem", "[:netbsd, :cargos]"] ==

redhat

Red Hat's (and probably many others') form of init-style service management. Uses chkconfig for service
enabling and disabling.

• Required binaries: /sbin/chkconfig, /sbin/service
• Default for: ["osfamily", "redhat"] == , ["osfamily", "suse"] ==

["operatingsystemmajrelease", "["10", "11"]"]

runit

Runit service management.

This provider manages daemons running supervised by Runit. When detecting the service directory it will check, in
order of preference:

• /service

• /etc/service

• /var/service

The daemon directory should be in one of the following locations:

• /etc/sv

• /var/lib/service

or this can be overridden in the service resource parameters:

service { 'myservice':
 provider => 'runit',
 path => '/path/to/daemons',
}

This provider supports out of the box:

• start/stop
• enable/disable
• restart
• status
• Required binaries: /usr/bin/sv

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 711

service

The simplest form of service support.

smf

Support for Sun's new Service Management Framework.

Starting a service is effectively equivalent to enabling it, so there is only support for starting and stopping services,
which also enables and disables them, respectively.

By specifying manifest => "/path/to/service.xml", the SMF manifest will be imported if it does not
exist.

• Required binaries: /usr/sbin/svcadm, /usr/bin/svcs, /usr/sbin/svccfg
• Confined to: osfamily == solaris
• Default for: ["osfamily", "solaris"] ==
• Supported features: refreshable

src

Support for AIX's System Resource controller.

Services are started/stopped based on the stopsrc and startsrc commands, and some services can be refreshed
with refresh command.

Enabling and disabling services is not supported, as it requires modifications to /etc/inittab. Starting and
stopping groups of subsystems is not yet supported.

• Confined to: operatingsystem == aix
• Default for: ["operatingsystem", "aix"] ==
• Supported features: refreshable

systemd

Manages systemd services using systemctl.

Because systemd defaults to assuming the .service unit type, the suffix may be omitted. Other unit types (such
as .path) may be managed by providing the proper suffix.

• Required binaries: systemctl
• Confined to: true == Puppet::FileSystem.exist?('/proc/1/comm') &&

Puppet::FileSystem.read('/proc/1/comm').include?('systemd')

• Default for: ["osfamily", "[:archlinux]"] == , ["osfamily", "redhat"] ==
["operatingsystemmajrelease", "["7", "8", "9"]"], ["osfamily", "redhat"]
== ["operatingsystem", "fedora"], ["osfamily", "suse"] == , ["osfamily",
"coreos"] == , ["operatingsystem", "amazon"] == ["operatingsystemmajrelease",
"["2"]"], ["operatingsystem", "debian"] == , ["operatingsystem", "LinuxMint"]
== , ["operatingsystem", "ubuntu"] == , ["operatingsystem", "cumuluslinux"] ==
["operatingsystemmajrelease", "["3", "4"]"]

upstart

Ubuntu service management with upstart.

This provider manages upstart jobs on Ubuntu. For upstart documentation, see http://upstart.ubuntu.com/.

• Required binaries: /sbin/start, /sbin/stop, /sbin/restart, /sbin/status, /sbin/initctl
• Confined to: any == [Puppet.runtime[:facter].value(:operatingsystem) ==

'Ubuntu', (Puppet.runtime[:facter].value(:osfamily) == 'RedHat' and
Puppet.runtime[:facter].value(:operatingsystemrelease) =~ /^6./),
(Puppet.runtime[:facter].value(:operatingsystem) == 'Amazon' and
Puppet.runtime[:facter].value(:operatingsystemmajrelease) =~ /\d{4}/),
Puppet.runtime[:facter].value(:operatingsystem) == 'LinuxMint',], true ==
lambda { has_initctl? }

© 2024 Puppet, Inc., a Perforce company

http://upstart.ubuntu.com/

Puppet | Developing Puppet code | 712

• Default for: ["operatingsystem", "ubuntu"] == ["operatingsystemmajrelease",
"["10.04", "12.04", "14.04", "14.10"]"], ["operatingsystem", "LinuxMint"] ==
["operatingsystemmajrelease", "["10", "11", "12", "13", "14", "15", "16",
"17"]"]

• Supported features: enableable

windows

Support for Windows Service Control Manager (SCM). This provider can start, stop, enable, and disable services, and
the SCM provides working status methods for all services.

Control of service groups (dependencies) is not yet supported, nor is running services as a specific user.

• Confined to: operatingsystem == windows
• Default for: ["operatingsystem", "windows"] ==
• Supported features: refreshable, configurable_timeout, manages_logon_credentials

Provider Features

Available features:

• configurable_timeout --- The provider can specify a minumum timeout for syncing service properties
• controllable --- The provider uses a control variable.
• delayed_startable --- The provider can set service to delayed start
• enableable --- The provider can enable and disable the service.
• flaggable --- The provider can pass flags to the service.
• manages_logon_credentials --- The provider can specify the logon credentials used for a service
• manual_startable --- The provider can set service to manual start
• maskable --- The provider can 'mask' the service.
• refreshable --- The provider can restart the service.

Provider support:

• base - No supported Provider features
• bsd - No supported Provider features
• daemontools - No supported Provider features
• debian - No supported Provider features
• freebsd - No supported Provider features
• gentoo - No supported Provider features
• init - No supported Provider features
• launchd - enableable, refreshable
• openbsd - flaggable
• openrc - No supported Provider features
• openwrt - enableable
• rcng - No supported Provider features
• redhat - No supported Provider features
• runit - No supported Provider features
• service - No supported Provider features
• smf - refreshable
• src - refreshable
• systemd - No supported Provider features
• upstart - enableable
• windows - refreshable, configurable timeout, manages logon credentials

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 713

Using service
Puppet can manage services on nearly all operating systems.This page offers operating system-specific advice and
best practices for working with service.

Using service on *nix systems
If your *nix operating system has a good system for managing services, and all the services you care about have
working init scripts or service configs, you can write small service resources with just the ensure and enable
attributes.

For example:

service { 'apache2':
 ensure => running,
 enable => true,
}

Note: Some *nix operating systems don't support the enable attribute.

Defective init script

On platforms that use SysV-style init scripts, Puppet assumes the script has working start, stop, and status
commands. See descriptions below.

If the status command is missing, set hasstatus => false for that service. This makes Puppet search the
process table for the service’s name to check whether it’s running.

In some rare cases — such as virtual services like the Red Hat network — a service won’t have a matching entry in
the process table. If a service acts like this and is also missing a status command, set hasstatus => false and
also specify either status or pattern attribute.

No init script or service config

If some of your services lack init scripts, Puppet can compensate, as in the following example:

service { "apache2":
 ensure => running,
 start => "/usr/sbin/apachectl start",
 stop => "/usr/sbin/apachectl stop",
 pattern => "/usr/sbin/httpd",
}

In addition to specifing ensure, specify also how to start the service, how to stop it, how to check whether it’s
running, and optionally how to restart it.

Start

Use either start or binary to specify a start command. The difference is that binary also gives you default
behavior for stop and status.

Stop

If you specified binary, Puppet defaults to finding that same executable in the process table and killing it.

To stop the service some other way, use the stop attribute to specify the appropriate command.

Status

If you specified binary, Puppet checks for that executable in the process table. If it doesn’t find it, it reports
that the service isn’t running.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 714

If there’s a better way to check the service’s status, or if the start command is just a script and a different
process implements the service itself, use either status (a command that exits 0 if the service is running and
nonzero otherwise) or pattern (a pattern to search the process table for).

Restart

If a service needs to be reloaded, Puppet defaults to stopping it and starting it again. If you have a safer command
for restarting a service, you can optionally specify it in the restart attribute.

Using service on macOS
macOS handles services much like most *nix-based systems. The main difference is that enable and ensure are
much more closely linked — running services are always enabled, and stopped ones are always disabled.

For best results, either leave enable blank or make sure it’s set to true whenever ensure => running.

The launchd plists that configure your services must be in one of the following directories:

• /System/Library/LaunchDaemons

• /System/Library/LaunchAgents

• /Library/LaunchDaemons

• /Library/LaunchAgents

You can also specify start and stop commands to assemble your own services, much like on *nix systems.

Using service on Windows
On Windows, Puppet can start, stop, enable, disable, list, query, and configure services. It expects that all services
will run with the built-in Service Control Manager (SCM) system. It does not support configuring service
dependencies, the account to run as, or desktop interaction.

When writing service resources for Windows, remember the following:

• Use the short service name (such as wuauserv) in Puppet, not the display name (such as Automatic
Updates).

• Set enable => true to assign a service the Automatic startup type.
• Set enable => manual to assign the Manual startup type.

For example, here is a complete service resource:

service { 'mysql':
 ensure => 'running',
 enable => true,
}

Managing systemd services
In addition to the default values for the ensure and enable attributes, you can mask systemd services by setting
enable => mask.

Note that static services can not be enabled by design, and services of type indirect can not be enabled due to
a limitation in the implementation of systemd. When restarting services, Puppet checks whether any unit files were
modified and runs daemon-reload when required.

Resource Type: stage

NOTE: This page was generated from the Puppet source code on 2022-02-07 10:11:41 -0800

stage

• Attributes

Description

A resource type for creating new run stages. Once a stage is available, classes can be assigned to it by declaring them
with the resource-like syntax and using the stage metaparameter.

Note that new stages are not useful unless you also declare their order in relation to the default main stage.

© 2024 Puppet, Inc., a Perforce company

4841f0d5460fdd88b7fcf02ca0f15a3f7a9a1042.md#stage-attributes
https://puppet.com/docs/puppet/latest/metaparameter.html#stage

Puppet | Developing Puppet code | 715

A complete run stage example:

stage { 'pre':
 before => Stage['main'],
}

class { 'apt-updates':
 stage => 'pre',
}

Individual resources cannot be assigned to run stages; you can only set stages for classes.

Attributes

stage { 'resource title':
 name => # (namevar) The name of the stage. Use this as the value for
 # ...plus any applicable metaparameters.
}

name

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The name of the stage. Use this as the value for the stage metaparameter when assigning classes to this stage.

(# Back to stage attributes)

Resource Type: tidy

NOTE: This page was generated from the Puppet source code on 2022-02-07 10:11:41 -0800

tidy

• Attributes

Description

Remove unwanted files based on specific criteria. Multiple criteria are OR'd together, so a file that is too large but is
not old enough will still get tidied.

If you don't specify either age or size, then all files will be removed.

This resource type works by generating a file resource for every file that should be deleted and then letting that
resource perform the actual deletion.

Attributes

tidy { 'resource title':
 path => # (namevar) The path to the file or directory to manage....
 age => # Tidy files whose age is equal to or greater than
 backup => # Whether tidied files should be backed up. Any...
 matches => # One or more (shell type) file glob patterns...
 max_files => # In case the resource is a directory and the...
 recurse => # If target is a directory, recursively descend...
 rmdirs => # Tidy directories in addition to files; that is...
 size => # Tidy files whose size is equal to or greater...
 type => # Set the mechanism for determining age. Default:
 # ...plus any applicable metaparameters.
}

path

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The path to the file or directory to manage. Must be fully qualified.

© 2024 Puppet, Inc., a Perforce company

4841f0d5460fdd88b7fcf02ca0f15a3f7a9a1042.md#stage-attribute-name
https://puppet.com/docs/puppet/latest/metaparameter.html
4841f0d5460fdd88b7fcf02ca0f15a3f7a9a1042.md#stage-attributes
335a63cbdb68c56472f9ab1d24a102782a3284df.md#tidy-attributes
335a63cbdb68c56472f9ab1d24a102782a3284df.md#tidy-attribute-path
335a63cbdb68c56472f9ab1d24a102782a3284df.md#tidy-attribute-age
335a63cbdb68c56472f9ab1d24a102782a3284df.md#tidy-attribute-backup
335a63cbdb68c56472f9ab1d24a102782a3284df.md#tidy-attribute-matches
335a63cbdb68c56472f9ab1d24a102782a3284df.md#tidy-attribute-max_files
335a63cbdb68c56472f9ab1d24a102782a3284df.md#tidy-attribute-recurse
335a63cbdb68c56472f9ab1d24a102782a3284df.md#tidy-attribute-rmdirs
335a63cbdb68c56472f9ab1d24a102782a3284df.md#tidy-attribute-size
335a63cbdb68c56472f9ab1d24a102782a3284df.md#tidy-attribute-type
https://puppet.com/docs/puppet/latest/metaparameter.html

Puppet | Developing Puppet code | 716

(# Back to tidy attributes)

age

Tidy files whose age is equal to or greater than the specified time. You can choose seconds, minutes, hours, days, or
weeks by specifying the first letter of any of those words (for example, '1w' represents one week).

Specifying 0 will remove all files.

(# Back to tidy attributes)

backup

Whether tidied files should be backed up. Any values are passed directly to the file resources used for actual file
deletion, so consult the file type's backup documentation to determine valid values.

(# Back to tidy attributes)

matches

One or more (shell type) file glob patterns, which restrict the list of files to be tidied to those whose basenames match
at least one of the patterns specified. Multiple patterns can be specified using an array.

Example:

tidy { '/tmp':
 age => '1w',
 recurse => 1,
 matches => ['[0-9]pub*.tmp', '*.temp', 'tmpfile?'],
}

This removes files from /tmp if they are one week old or older, are not in a subdirectory and match one of the shell
globs given.

Note that the patterns are matched against the basename of each file -- that is, your glob patterns should not have any
'/' characters in them, since you are only specifying against the last bit of the file.

Finally, note that you must now specify a non-zero/non-false value for recurse if matches is used, as matches only
apply to files found by recursion (there's no reason to use static patterns match against a statically determined path).
Requiring explicit recursion clears up a common source of confusion.

(# Back to tidy attributes)

max_files

In case the resource is a directory and the recursion is enabled, puppet will generate a new resource for each file file
found, possible leading to an excessive number of resources generated without any control.

Setting max_files will check the number of file resources that will eventually be created and will raise a resource
argument error if the limit will be exceeded.

Use value 0 to disable the check. In this case, a warning is logged if the number of files exceeds 1000.

Default: 0

Allowed values:

• /^[0-9]+$/

(# Back to tidy attributes)

recurse

If target is a directory, recursively descend into the directory looking for files to tidy.

Allowed values:

• true

• false

© 2024 Puppet, Inc., a Perforce company

335a63cbdb68c56472f9ab1d24a102782a3284df.md#tidy-attributes
335a63cbdb68c56472f9ab1d24a102782a3284df.md#tidy-attributes
335a63cbdb68c56472f9ab1d24a102782a3284df.md#tidy-attributes
335a63cbdb68c56472f9ab1d24a102782a3284df.md#tidy-attributes
335a63cbdb68c56472f9ab1d24a102782a3284df.md#tidy-attributes

Puppet | Developing Puppet code | 717

• inf

• /^[0-9]+$/

(# Back to tidy attributes)

rmdirs

Tidy directories in addition to files; that is, remove directories whose age is older than the specified criteria. This will
only remove empty directories, so all contained files must also be tidied before a directory gets removed.

Allowed values:

• true

• false

• yes

• no

(# Back to tidy attributes)

size

Tidy files whose size is equal to or greater than the specified size. Unqualified values are in kilobytes, but b, k, m,
g, and t can be appended to specify bytes, kilobytes, megabytes, gigabytes, and terabytes, respectively. Only the first
character is significant, so the full word can also be used.

(# Back to tidy attributes)

type

Set the mechanism for determining age.

Default: atime

Allowed values:

• atime

• mtime

• ctime

(# Back to tidy attributes)

Resource Type: user

NOTE: This page was generated from the Puppet source code on 2022-02-07 10:11:41 -0800

user

• Attributes
• Providers
• Provider Features

Description

Manage users. This type is mostly built to manage system users, so it is lacking some features useful for managing
normal users.

This resource type uses the prescribed native tools for creating groups and generally uses POSIX APIs for retrieving
information about them. It does not directly modify /etc/passwd or anything.

Autorequires: If Puppet is managing the user's primary group (as provided in the gid attribute) or any group listed
in the groups attribute then the user resource will autorequire that group. If Puppet is managing any role accounts
corresponding to the user's roles, the user resource will autorequire those role accounts.

Attributes

user { 'resource title':

© 2024 Puppet, Inc., a Perforce company

335a63cbdb68c56472f9ab1d24a102782a3284df.md#tidy-attributes
335a63cbdb68c56472f9ab1d24a102782a3284df.md#tidy-attributes
335a63cbdb68c56472f9ab1d24a102782a3284df.md#tidy-attributes
335a63cbdb68c56472f9ab1d24a102782a3284df.md#tidy-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-providers
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-provider-features

Puppet | Developing Puppet code | 718

 name => # (namevar) The user name. While naming
 limitations vary by...
 ensure => # The basic state that the object should be in....
 allowdupe => # Whether to allow duplicate UIDs. Default...
 attribute_membership => # Whether specified attribute value pairs
 should...
 attributes => # Specify AIX attributes for the user in an
 array...
 auth_membership => # Whether specified auths should be considered
 the
 auths => # The auths the user has. Multiple auths
 should...
 comment => # A description of the user. Generally the
 user's
 expiry => # The expiry date for this user. Provide as
 either
 forcelocal => # Forces the management of local accounts when...
 gid => # The user's primary group. Can be specified...
 groups => # The groups to which the user belongs. The...
 home => # The home directory of the user. The
 directory...
 ia_load_module => # The name of the I&A module to use to manage
 this
 iterations => # This is the number of iterations of a chained...
 key_membership => # Whether specified key/value pairs should be...
 keys => # Specify user attributes in an array of key ...
 loginclass => # The name of login class to which the user...
 managehome => # Whether to manage the home directory when
 Puppet
 membership => # If `minimum` is specified, Puppet will ensure...
 password => # The user's password, in whatever encrypted...
 password_max_age => # The maximum number of days a password may be...
 password_min_age => # The minimum number of days a password must be...
 password_warn_days => # The number of days before a password is going
 to
 profile_membership => # Whether specified roles should be treated as
 the
 profiles => # The profiles the user has. Multiple profiles...
 project => # The name of the project associated with a...
 provider => # The specific backend to use for this `user...
 purge_ssh_keys => # Whether to purge authorized SSH keys for this...
 role_membership => # Whether specified roles should be considered
 the
 roles => # The roles the user has. Multiple roles
 should...
 salt => # This is the 32-byte salt used to generate the...
 shell => # The user's login shell. The shell must exist...
 system => # Whether the user is a system user, according
 to...
 uid => # The user ID; must be specified numerically.
 If...
 # ...plus any applicable metaparameters.
}

name

(Namevar: If omitted, this attribute's value defaults to the resource's title.)

The user name. While naming limitations vary by operating system, it is advisable to restrict names to the lowest
common denominator, which is a maximum of 8 characters beginning with a letter.

Note that Puppet considers user names to be case-sensitive, regardless of the platform's own rules; be sure to always
use the same case when referring to a given user.

© 2024 Puppet, Inc., a Perforce company

097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-name
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-ensure
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-allowdupe
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-attribute_membership
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-auth_membership
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-auths
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-comment
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-expiry
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-forcelocal
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-gid
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-groups
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-home
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-ia_load_module
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-iterations
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-key_membership
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-keys
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-loginclass
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-managehome
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-membership
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-password
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-password_max_age
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-password_min_age
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-password_warn_days
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-profile_membership
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-profiles
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-project
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-provider
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-purge_ssh_keys
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-role_membership
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-roles
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-salt
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-shell
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-system
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attribute-uid
https://puppet.com/docs/puppet/latest/metaparameter.html

Puppet | Developing Puppet code | 719

(# Back to user attributes)

ensure

(Property: This attribute represents concrete state on the target system.)

The basic state that the object should be in.

Allowed values:

• present

• absent

• role

(# Back to user attributes)

allowdupe

Whether to allow duplicate UIDs.

Default: false

Allowed values:

• true

• false

• yes

• no

(# Back to user attributes)

attribute_membership

Whether specified attribute value pairs should be treated as the complete list (inclusive) or the minimum list
(minimum) of attribute/value pairs for the user.

Default: minimum

Allowed values:

• inclusive

• minimum

(# Back to user attributes)

attributes

(Property: This attribute represents concrete state on the target system.)

Specify AIX attributes for the user in an array or hash of attribute = value pairs.

For example:

['minage=0', 'maxage=5', 'SYSTEM=compat']

or

attributes => { 'minage' => '0', 'maxage' => '5', 'SYSTEM' => 'compat' }

Requires features manages_aix_lam.

(# Back to user attributes)

auth_membership

Whether specified auths should be considered the complete list (inclusive) or the minimum list (minimum) of
auths the user has. This setting is specific to managing Solaris authorizations.

Default: minimum

© 2024 Puppet, Inc., a Perforce company

097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes

Puppet | Developing Puppet code | 720

Allowed values:

• inclusive

• minimum

(# Back to user attributes)

auths

(Property: This attribute represents concrete state on the target system.)

The auths the user has. Multiple auths should be specified as an array.

Requires features manages_solaris_rbac.

(# Back to user attributes)

comment

(Property: This attribute represents concrete state on the target system.)

A description of the user. Generally the user's full name.

(# Back to user attributes)

expiry

(Property: This attribute represents concrete state on the target system.)

The expiry date for this user. Provide as either the special value absent to ensure that the account never expires, or
as a zero-padded YYYY-MM-DD format -- for example, 2010-02-19.

Allowed values:

• absent

• /^\d{4}-\d{2}-\d{2}$/

Requires features manages_expiry.

(# Back to user attributes)

forcelocal

Forces the management of local accounts when accounts are also being managed by some other Name Service Switch
(NSS). For AIX, refer to the ia_load_module parameter.

This option relies on your operating system's implementation of luser* commands, such as luseradd , and
lgroupadd, lusermod. The forcelocal option could behave unpredictably in some circumstances. If the tools
it depends on are not available, it might have no effect at all.

Default: false

Allowed values:

• true

• false

• yes

• no

Requires features manages_local_users_and_groups.

(# Back to user attributes)

gid

(Property: This attribute represents concrete state on the target system.)

The user's primary group. Can be specified numerically or by name.

© 2024 Puppet, Inc., a Perforce company

097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes

Puppet | Developing Puppet code | 721

This attribute is not supported on Windows systems; use the groups attribute instead. (On Windows, designating a
primary group is only meaningful for domain accounts, which Puppet does not currently manage.)

(# Back to user attributes)

groups

(Property: This attribute represents concrete state on the target system.)

The groups to which the user belongs. The primary group should not be listed, and groups should be identified by
name rather than by GID. Multiple groups should be specified as an array.

(# Back to user attributes)

home

(Property: This attribute represents concrete state on the target system.)

The home directory of the user. The directory must be created separately and is not currently checked for existence.

(# Back to user attributes)

ia_load_module

The name of the I&A module to use to manage this user. This should be set to files if managing local users.

Requires features manages_aix_lam.

(# Back to user attributes)

iterations

(Property: This attribute represents concrete state on the target system.)

This is the number of iterations of a chained computation of the PBKDF2 password hash. This parameter is used in
OS X, and is required for managing passwords on OS X 10.8 and newer.

Requires features manages_password_salt.

(# Back to user attributes)

key_membership

Whether specified key/value pairs should be considered the complete list (inclusive) or the minimum list
(minimum) of the user's attributes.

Default: minimum

Allowed values:

• inclusive

• minimum

(# Back to user attributes)

keys

(Property: This attribute represents concrete state on the target system.)

Specify user attributes in an array of key = value pairs.

Requires features manages_solaris_rbac.

(# Back to user attributes)

loginclass

(Property: This attribute represents concrete state on the target system.)

The name of login class to which the user belongs.

Requires features manages_loginclass.

© 2024 Puppet, Inc., a Perforce company

097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
https://en.wikipedia.org/wiki/PBKDF2
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes

Puppet | Developing Puppet code | 722

(# Back to user attributes)

managehome

Whether to manage the home directory when Puppet creates or removes the user. This creates the home directory if
Puppet also creates the user account, and deletes the home directory if Puppet also removes the user account.

This parameter has no effect unless Puppet is also creating or removing the user in the resource at the same time. For
instance, Puppet creates a home directory for a managed user if ensure => present and the user does not exist
at the time of the Puppet run. If the home directory is then deleted manually, Puppet will not recreate it on the next
run.

Note that on Windows, this manages creation/deletion of the user profile instead of the home directory. The user
profile is stored in the C:\Users<username> directory.

Default: false

Allowed values:

• true

• false

• yes

• no

(# Back to user attributes)

membership

If minimum is specified, Puppet will ensure that the user is a member of all specified groups, but will not remove any
other groups that the user is a part of.

If inclusive is specified, Puppet will ensure that the user is a member of only specified groups.

Default: minimum

Allowed values:

• inclusive

• minimum

(# Back to user attributes)

password

(Property: This attribute represents concrete state on the target system.)

The user's password, in whatever encrypted format the local system requires. Consult your operating system's
documentation for acceptable password encryption formats and requirements.

• Mac OS X 10.5 and 10.6, and some older Linux distributions, use salted SHA1 hashes. You can use Puppet's
built-in sha1 function to generate a salted SHA1 hash from a password.

• Mac OS X 10.7 (Lion), and many recent Linux distributions, use salted SHA512 hashes. The Puppet Labs stdlib
module contains a str2saltedsha512 function which can generate password hashes for these operating
systems.

• OS X 10.8 and higher use salted SHA512 PBKDF2 hashes. When managing passwords on these systems, the
salt and iterations attributes need to be specified as well as the password.

• Windows passwords can be managed only in cleartext, because there is no Windows API for setting the password
hash.

Enclose any value that includes a dollar sign ($) in single quotes (') to avoid accidental variable interpolation.

To redact passwords from reports to PuppetDB, use the Sensitive data type. For example, this resource protects
the password:

user { 'foo':
 ensure => present,

© 2024 Puppet, Inc., a Perforce company

097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
https://github.com/puppetlabs/puppetlabs-stdlib/

Puppet | Developing Puppet code | 723

 password => Sensitive("my secret password")
}

This results in the password being redacted from the report, as in the previous_value, desired_value, and
message fields below.

 events:
 - !ruby/object:Puppet::Transaction::Event
 audited: false
 property: password
 previous_value: "[redacted]"
 desired_value: "[redacted]"
 historical_value:
 message: changed [redacted] to [redacted]
 name: :password_changed
 status: success
 time: 2017-05-17 16:06:02.934398293 -07:00
 redacted: true
 corrective_change: false
 corrective_change: false

Requires features manages_passwords.

(# Back to user attributes)

password_max_age

(Property: This attribute represents concrete state on the target system.)

The maximum number of days a password may be used before it must be changed.

Requires features manages_password_age.

(# Back to user attributes)

password_min_age

(Property: This attribute represents concrete state on the target system.)

The minimum number of days a password must be used before it may be changed.

Requires features manages_password_age.

(# Back to user attributes)

password_warn_days

(Property: This attribute represents concrete state on the target system.)

The number of days before a password is going to expire (see the maximum password age) during which the user
should be warned.

Requires features manages_password_age.

(# Back to user attributes)

profile_membership

Whether specified roles should be treated as the complete list (inclusive) or the minimum list (minimum) of
roles of which the user is a member.

Default: minimum

Allowed values:

• inclusive

• minimum

(# Back to user attributes)

© 2024 Puppet, Inc., a Perforce company

097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes

Puppet | Developing Puppet code | 724

profiles

(Property: This attribute represents concrete state on the target system.)

The profiles the user has. Multiple profiles should be specified as an array.

Requires features manages_solaris_rbac.

(# Back to user attributes)

project

(Property: This attribute represents concrete state on the target system.)

The name of the project associated with a user.

Requires features manages_solaris_rbac.

(# Back to user attributes)

provider

The specific backend to use for this user resource. You will seldom need to specify this --- Puppet will usually
discover the appropriate provider for your platform.

Available providers are:

• aix

• directoryservice

• hpuxuseradd

• ldap

• openbsd

• pw

• user_role_add

• useradd

• windows_adsi

(# Back to user attributes)

purge_ssh_keys

Whether to purge authorized SSH keys for this user if they are not managed with the ssh_authorized_key
resource type. This parameter is a noop if the ssh_authorized_key type is not available.

Allowed values are:

• false (default) --- don't purge SSH keys for this user.
• true --- look for keys in the .ssh/authorized_keys file in the user's home directory. Purge any keys that

aren't managed as ssh_authorized_key resources.
• An array of file paths --- look for keys in all of the files listed. Purge any keys that aren't managed as

ssh_authorized_key resources. If any of these paths starts with ~ or %h, that token will be replaced with the
user's home directory.

Default: false

Allowed values:

• true

• false

(# Back to user attributes)

role_membership

Whether specified roles should be considered the complete list (inclusive) or the minimum list (minimum) of
roles the user has.

© 2024 Puppet, Inc., a Perforce company

097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-provider-aix
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-provider-directoryservice
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-provider-hpuxuseradd
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-provider-ldap
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-provider-openbsd
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-provider-pw
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-provider-user_role_add
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-provider-useradd
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-provider-windows_adsi
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes

Puppet | Developing Puppet code | 725

Default: minimum

Allowed values:

• inclusive

• minimum

(# Back to user attributes)

roles

(Property: This attribute represents concrete state on the target system.)

The roles the user has. Multiple roles should be specified as an array.

Requires features manages_roles.

(# Back to user attributes)

salt

(Property: This attribute represents concrete state on the target system.)

This is the 32-byte salt used to generate the PBKDF2 password used in OS X. This field is required for managing
passwords on OS X >= 10.8.

Requires features manages_password_salt.

(# Back to user attributes)

shell

(Property: This attribute represents concrete state on the target system.)

The user's login shell. The shell must exist and be executable.

This attribute cannot be managed on Windows systems.

Requires features manages_shell.

(# Back to user attributes)

system

Whether the user is a system user, according to the OS's criteria; on most platforms, a UID less than or equal to 500
indicates a system user. This parameter is only used when the resource is created and will not affect the UID when the
user is present.

Default: false

Allowed values:

• true

• false

• yes

• no

(# Back to user attributes)

uid

(Property: This attribute represents concrete state on the target system.)

The user ID; must be specified numerically. If no user ID is specified when creating a new user, then one will be
chosen automatically. This will likely result in the same user having different UIDs on different systems, which is
not recommended. This is especially noteworthy when managing the same user on both Darwin and other platforms,
since Puppet does UID generation on Darwin, but the underlying tools do so on other platforms.

On Windows, this property is read-only and will return the user's security identifier (SID).

© 2024 Puppet, Inc., a Perforce company

097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes
097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes

Puppet | Developing Puppet code | 726

(# Back to user attributes)

Providers
aix

User management for AIX.

• Required binaries: /usr/sbin/lsuser, /usr/bin/mkuser, /usr/sbin/rmuser, /usr/bin/
chuser, /bin/chpasswd

• Confined to: operatingsystem == aix
• Default for: ["operatingsystem", "aix"] ==
• Supported features: manages_aix_lam, manages_homedir, manages_passwords, manages_shell,

manages_expiry, manages_password_age, manages_local_users_and_groups

directoryservice

User management on OS X.

• Required binaries: /usr/bin/uuidgen, /usr/bin/dsimport, /usr/bin/dscl, /usr/bin/
dscacheutil

• Confined to: operatingsystem == darwin, feature == cfpropertylist
• Default for: ["operatingsystem", "darwin"] ==
• Supported features: manages_passwords, manages_password_salt, manages_shell

hpuxuseradd

User management for HP-UX. This provider uses the undocumented -F switch to HP-UX's special usermod
binary to work around the fact that its standard usermod cannot make changes while the user is logged in. New
functionality provides for changing trusted computing passwords and resetting password expirations under trusted
computing.

• Required binaries: /usr/sam/lbin/usermod.sam, /usr/sam/lbin/userdel.sam, /usr/sam/
lbin/useradd.sam

• Confined to: operatingsystem == hp-ux
• Default for: ["operatingsystem", "hp-ux"] ==
• Supported features: manages_homedir, allows_duplicates, manages_passwords

ldap

User management via LDAP.

This provider requires that you have valid values for all of the LDAP-related settings in puppet.conf, including
ldapbase. You will almost definitely need settings for ldapuser and ldappassword in order for your clients
to write to LDAP.

Note that this provider will automatically generate a UID for you if you do not specify one, but it is a potentially
expensive operation, as it iterates across all existing users to pick the appropriate next one.

• Confined to: feature == ldap, false == (Puppet[:ldapuser] == "")
• Supported features: manages_passwords, manages_shell

openbsd

User management via useradd and its ilk for OpenBSD. Note that you will need to install Ruby's shadow password
library (package known as ruby-shadow) if you wish to manage user passwords.

• Required binaries: useradd, userdel, usermod, passwd
• Confined to: operatingsystem == openbsd
• Default for: ["operatingsystem", "openbsd"] ==
• Supported features: manages_homedir, manages_expiry, system_users, manages_shell

pw

User management via pw on FreeBSD and DragonFly BSD.

© 2024 Puppet, Inc., a Perforce company

097ae52a02a99a7b3b30474046fbfdb2f95c40e0.md#user-attributes

Puppet | Developing Puppet code | 727

• Required binaries: pw
• Confined to: operatingsystem == [:freebsd, :dragonfly]
• Default for: ["operatingsystem", "[:freebsd, :dragonfly]"] ==
• Supported features: manages_homedir, allows_duplicates, manages_passwords,

manages_expiry, manages_shell

user_role_add

User and role management on Solaris, via useradd and roleadd.

• Required binaries: useradd, userdel, usermod, passwd, roleadd, roledel, rolemod
• Default for: ["osfamily", "solaris"] ==
• Supported features: manages_homedir, allows_duplicates, manages_solaris_rbac,

manages_roles, manages_passwords, manages_password_age, manages_shell

useradd

User management via useradd and its ilk. Note that you will need to install Ruby's shadow password library (often
known as ruby-libshadow) if you wish to manage user passwords.

To use the forcelocal parameter, you need to install the libuser package (providing /usr/sbin/
lgroupadd and /usr/sbin/luseradd).

• Required binaries: useradd, userdel, usermod, chage, chpasswd
• Supported features: manages_homedir, allows_duplicates, manages_expiry, manages_shell

windows_adsi

Local user management for Windows.

• Confined to: operatingsystem == windows
• Default for: ["operatingsystem", "windows"] ==
• Supported features: manages_homedir, manages_passwords, manages_roles

Provider Features

Available features:

• allows_duplicates --- The provider supports duplicate users with the same UID.
• manages_aix_lam --- The provider can manage AIX Loadable Authentication Module (LAM) system.
• manages_expiry --- The provider can manage the expiry date for a user.
• manages_homedir --- The provider can create and remove home directories.
• manages_local_users_and_groups --- Allows local users to be managed on systems that also use some

other remote Name Service Switch (NSS) method of managing accounts.
• manages_loginclass --- The provider can manage the login class for a user.
• manages_password_age --- The provider can set age requirements and restrictions for passwords.
• manages_password_salt --- The provider can set a password salt. This is for providers that implement

PBKDF2 passwords with salt properties.
• manages_passwords --- The provider can modify user passwords, by accepting a password hash.
• manages_roles --- The provider can manage roles
• manages_shell --- The provider allows for setting shell and validates if possible
• manages_solaris_rbac --- The provider can manage normal users
• system_users --- The provider allows you to create system users with lower UIDs.

Provider support:

• aix - manages aix lam, manages homedir, manages passwords, manages shell, manages expiry, manages
password age, manages local users and groups

• directoryservice - manages passwords, manages password salt, manages shell
• hpuxuseradd - manages homedir, allows duplicates, manages passwords
• ldap - manages passwords, manages shell

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 728

• openbsd - manages homedir, manages expiry, system users, manages shell
• pw - manages homedir, allows duplicates, manages passwords, manages expiry, manages shell
• user_role_add - manages homedir, allows duplicates, manages solaris rbac, manages roles, manages passwords,

manages password age, manages shell
• useradd - manages homedir, allows duplicates, manages expiry, manages shell
• windows_adsi - manages homedir, manages passwords, manages roles

Relationships and ordering
Resources are included and applied in the order they are defined in their manifest, but only if the resource has no
implicit relationship with another resource, as this can affect the declared order. To manage a group of resources
in a specific order, explicitly declare such relationships with relationship metaparameters, chaining arrows, and the
require function.

To override Puppet's default manifest ordering, declare an explicit relationship between resources. All relationships
cause Puppet to manage specific resources before other resources. Relationships are not limited by evaluation-order;
you can declare a relationship with a resource before that resource has been declared.

Refreshing and notification

Some resource types can refresh when one of their dependencies changes. For example, some services must restart
when their configuration files change, so service resources can refresh by restarting the service.

The built-in resource types that can refresh are service, exec, and package. For specific details about these
types, see the resource reference.

To specify that a resource must refresh when a related resource changes, create a notifying relationship with the
subscribe or notify metaparameters or the notification chaining arrow (~>). When a resources changes, it sends
a refresh event to any resources that subscribe to it. Those resources that are subscribed receive the refresh event.

When receiving refresh events:

• If a resource gets a refresh event during a run, and its resource type has a refresh action, it performs that action.
• If a resource gets a refresh event, but its resource type cannot refresh, nothing happens.
• If a class or defined resource gets a refresh event, every resource it contains also gets a refresh event.
• A resource can perform its refresh action up to once per run. If it receives multiple refresh events, they're

combined, and the resource refreshes only once.

When sending refresh events:

• If a resource is not in its desired state, and Puppet makes changes to it during a run, it sends a refresh event to any
subscribed resources.

• If a resource performs its refresh action during a run, it sends a refresh event to any subscribed resources.
• If Puppet changes or refreshes any resource in a class or defined resource, that class or defined resource sends a

refresh event to any subscribed resources.

If non-operational (no-op) mode is enabled:

• The resource does not refresh when it receives a refresh event. Instead, Puppet logs a message stating what would
have happened.

• The resource does not send refresh events to subscribed resources. Instead, Puppet logs messages stating what
would have happened to any resources further down the subscription chain.

For more information about refresh behavior, see the types documentation.

Automatic relationships

Certain resource types can have automatic relationships with other resources, using autorequire, autonotify,
autobefore, or autosubscribe. This creates an ordering relationship without you explicitly stating one.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 729

Puppet establishes automatic relationships between types and resources when it applies a catalog. It searches the
catalog for any resources that match certain rules and processes them in the correct order, sending refresh events
if necessary. If any explicit relationship, such as those created by chaining arrows, conflicts with an automatic
relationship, the explicit relationship take precedence.

Missing dependencies

If one of the resources in a relationship is never declared, compilation fails with one of the following errors:

• Could not find dependency <OTHER RESOURCE> for <RESOURCE>

• Could not find resource '<OTHER RESOURCE>' for relationship on '<RESOURCE>

Failed dependencies

If Puppet fails to apply the prior resource in a relationship, it skips the subsequent resource and log the following
messages:

notice: <RESOURCE>: Dependency <OTHER RESOURCE> has failures: true warning:
 <RESOURCE>: Skipping because of failed dependencies

It then continues to apply any unrelated resources. Any resources that depend on the skipped resource are also
skipped. This helps prevent an inconsistent system state, rather than attempting to apply a resource that might have
broken prerequisites.

Dependency cycles

If two or more resources require each other in a loop, Puppet compiles the catalog but won’t be able to apply it.
Puppet logs an error like the following, and attempts to help identify the cycle:

err: Could not apply complete catalog: Found 1 dependency cycle:
(<RESOURCE> => <OTHER RESOURCE> => <RESOURCE>)
Try the '--graph' option and opening the resulting '.dot' file in
 OmniGraffle or GraphViz

To locate the directory containing the graph files, run puppet agent --configprint graphdir.

Related information
Containment on page 964
Containment is what controls the order in which the various parts of your Puppet code are executed. Containment is
the relationship that resources have to classes and defined types, determining what has to happen before other things
can happen.

Relationship metaparameters
You can use certain metaparameters to establish relationships by setting any of them as an attribute in any resource.

The following video gives you an overview of metaparameters:

Set the value of any relationship metaparameter to either a resource reference or an array of references that point to
one or more target resources:

• before: Applies a resource before the target resource.
• require: Applies a resource after the target resource.
• notify: Applies a resource before the target resource. The target resource refreshes if the notifying resource

changes.
• subscribe: Applies a resource after the target resource. The subscribing resource refreshes if the target

resource changes.

If two resources need to happen in order, you can either put a before attribute in the prior one or a require attribute in
the subsequent one; either approach creates the same relationship. The same is true of notify and subscribe.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 730

The two examples below create the same ordering relationship, ensuring that the openssh-server package is
managed before the sshd_config file:

package { 'openssh-server':
 ensure => present,
 before => File['/etc/ssh/sshd_config'],
}

file { '/etc/ssh/sshd_config':
 ensure => file,
 mode => '0600',
 source => 'puppet:///modules/sshd/sshd_config',
 require => Package['openssh-server'],
}

The two examples below create the same notifying relationship, so that if Puppet changes the sshd_config file, it
sends a notification to the sshd service:

file { '/etc/ssh/sshd_config':
 ensure => file,
 mode => '0600',
 source => 'puppet:///modules/sshd/sshd_config',
 notify => Service['sshd'],
}

service { 'sshd':
 ensure => running,
 enable => true,
 subscribe => File['/etc/ssh/sshd_config'],
}

Because an array of resource references can contain resources of differing types, these two examples also create
the same ordering relationship. In both examples, Puppet manages the openssh-server package and the
sshd_config file before it manages the sshd service.

service { 'sshd':
 ensure => running,
 require => [
 Package['openssh-server'],
 File['/etc/ssh/sshd_config'],
],
}

package { 'openssh-server':
 ensure => present,
 before => Service['sshd'],
}

file { '/etc/ssh/sshd_config':
 ensure => file,
 mode => '0600',
 source => 'puppet:///modules/sshd/sshd_config',
 before => Service['sshd'],

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 731

}

Related information
Resources on page 574
Resources are the fundamental unit for modeling system configurations. Each resource describes the desired state
for some aspect of a system, like a specific service or package. When Puppet applies a catalog to the target system, it
manages every resource in the catalog, ensuring the actual state matches the desired state.

Resource and class references on page 916
Resource references identify a specific Puppet resource by its type and title. Several attributes, such as the
relationship metaparameters, require resource references.

The Array data type on page 906
The data type of arrays is Array. By default, Array matches arrays of any length, provided all values in the array
match the abstract data type Data. You can use parameters to restrict which values Array matches.

Chaining arrows
You can create relationships between resources or groups of resources using the -> and ~> operators.

The ordering arrow is a hyphen and a greater-than sign (->). It applies the resource on the left before the resource on
the right.

The notifying arrow is a tilde and a greater-than sign (~>). It applies the resource on the left first. If the left-hand
resource changes, the right-hand resource refreshes.

In this example, Puppet applies configuration to the ntp.conf file resource and notifies the ntpd service resource
if there are any changes.

File['/etc/ntp.conf'] ~> Service['ntpd']

Note: When possible, use relationship metaparameters, not chaining arrows. Metaparameters are more explicit and
easier to maintain. See the Puppet language style guide for information on when and how to use chaining arrows.

Operands

The chaining arrows accept the following kinds of operands on either side of the arrow:

• Resource references, including multi-resource references.
• Arrays of resource references.
• Resource declarations.
• Resource collectors.

You can link operands to apply a series of relationships and notifications. In this example, Puppet applies
configuration to the package, notifies the file resource if there are changes, and then, if there are resulting changes to
the file resouce, Puppet notifies the service resource:

Package['ntp'] -> File['/etc/ntp.conf'] ~> Service['ntpd']

Resource declarations can be chained. That means you can use chaining arrows to make Puppet apply a section of
code in the order that it is written. This example applies configuration to the package, the file, and the service, in that
order, with each related resource notifying the next of any changes:

first:
package { 'openssh-server':
 ensure => present,
} # and then:
-> file { '/etc/ssh/sshd_config':
 ensure => file,
 mode => '0600',
 source => 'puppet:///modules/sshd/sshd_config',

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/6.3/style_guide.html#style_guide

Puppet | Developing Puppet code | 732

} # and then:
~> service { 'sshd':
 ensure => running,
 enable => true,
}

Collectors can also be chained, so you can create relationships between many resources at one time. This example
applies all Yum repository resources before applying any package resources, which protects any packages that rely on
custom repositorie :

Yumrepo <| |> -> Package <| |>

Capturing resource references for generated resources

In Puppet, the value of a resource declaration is a reference to the resource it creates.

This is useful if you're automatically creating resources whose titles you can't predict: use the iteration functions to
declare several resources at once or use an array of strings as a resource title. If you assign the resulting resource
references to a variable, you can then use them in chaining statements without ever knowing the final title of the
affected resources.

For example:

• The map function iterates over its arguments and returns an array of values, with each value produced by the
last expression in the block. If that last expression is a resource declaration, map produces an array of resource
references, which you could then use as an operand for a chaining arrow.

• For a resource declaration whose title is an array, the value is itself an array of resource references that you can
assign to a variable and use in a chaining statement.

Cautions when chaining resource collectors

Chains can create dependency cycles.

Chained collectors can cause huge dependency cycles; be careful when using them. They can also be dangerous
when used with virtual resources, which are implicitly realized by collectors.

Chains can break.

Although you can usually chain many resources or collectors together (File['one'] -> File['two'] -
> File['three']), the chain can break if it includes a collector whose search expression doesn't match any
resources.

Implicit properties aren't searchable.

Collectors can search only on attributes present in the manifests; they cannot see properties that are automatically
set or are read from the target system. For example, the chain Yumrepo <| |> -> Package <|
provider == yum |>, creates only relationships with packages whose provider attribute is explicitly set
to yum in the manifests. It would not affect packages that didn't specify a provider but use Yum because it's the
operating system's default provider.

Reversed forms

Both chaining arrows have a reversed form (<- and <~). As implied by their shape, these forms operate in reverse,
causing the resource on their right to be applied before the resource on their left. Avoid these reversed forms, as they
are confusing and difficult to notice.

Related information
Resource and class references on page 916
Resource references identify a specific Puppet resource by its type and title. Several attributes, such as the
relationship metaparameters, require resource references.

Resources on page 574

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 733

Resources are the fundamental unit for modeling system configurations. Each resource describes the desired state
for some aspect of a system, like a specific service or package. When Puppet applies a catalog to the target system, it
manages every resource in the catalog, ensuring the actual state matches the desired state.

Resource collectors on page 956
Resource collectors select a group of resources by searching the attributes of each resource in the catalog, even
resources which haven’t yet been declared at the time the collector is written. Collectors realize virtual resources, are
used in chaining statements, and override resource attributes. Collectors have an irregular syntax that enables them to
function as a statement and a value.

Lambdas on page 953
Lambdas are blocks of Puppet code passed to functions. When a function receives a lambda, it provides values for the
lambda’s parameters and evaluates its code. If you use other programming languages, think of lambdas as anonymous
functions that are passed to other functions.

Virtual resources on page 958
A virtual resource declaration specifies a desired state for a resource without enforcing that state. Puppet manages the
resource by realizing it elsewhere in your manifests. This divides the work done by a normal resource declaration into
two steps. Although virtual resources are declared one time, they can be realized any number of times, similar to a
class.

The require function
Use the require function to declare a class and make it a dependency of the surrounding container.

For example:

class wordpress {
 require apache
 require mysql
 ...
}

The above example causes every resource in the apache and mysql classes to be applied before any of the
resources in the wordpress class.

Unlike the relationship metaparameters and chaining arrows, the require function does not have a reciprocal form
or a notifying form. However, you can create more complex behavior by combining include and chaining arrows
inside a class definition. This example notifies and restarts every service in the apache::ssl class if any of the
SSL certificates on the node change:

class apache::ssl {
 include site::certificates
 Class['site::certificates'] ~> Class['apache::ssl']
}

Classes
Classes are named blocks of Puppet code that are stored in modules and applied later when they are invoked by name.
You can add classes to a node’s catalog by either declaring them in your manifests or assigning them from an external
node classifier (ENC). Classes generally configure large or medium-sized chunks of functionality, such as all of the
packages, configuration files, and services needed to run an application.

The following video gives you an overview of classes:

Defining classes
Defining a class makes it available for later use. It doesn't add any resources to the catalog — to do that, you must
declare the class or assign it from an external node classifier (ENC).

Create a class by writing a class definition in a manifest (.pp) file. Store class manifests in the manifests/
directory of a module. Define only one class in a manifest, and give the manifest file the same name as the class.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 734

Puppet automatically loads any classes that are present in a valid module. See module fundamentals to learn more
about module structure and usage.

A class contains all of its resources. This means any relationships formed with the class as a whole is extended to
every resource in the class. Every resource in a class gets automatically tagged with the class’s name and each of its
namespace segments.

Classes can contain other classes, but you must use the contain function to explicitly specify when a class is
contained. For more information, see the documentation about containing classes. A contained class is automatically
tagged with the name of its container.

Tip: Unlike many parts of Puppet code, class definitions aren't expressions, so you can't use them where a value is
expected.

The general form of a class definition is:

• The class keyword.
• The name of the class.
• An optional parameter list, which consists of:

• An opening parenthesis.
• A comma-separated list of parameters, such asString $myparam = "value". Each parameter consists

of:

• An optional data type, which restricts the allowed values for the parameter. If not specified, the data type
defaults to Any.

• A variable name to represent the parameter, including the dollar sign ($) prefix
• An optional equals sign (=) and default value, which must match the data type, if one was specified.

• An optional trailing comma after the last parameter.
• A closing parenthesis.

• Optionally, the inherits keyword followed by a single class name.
• An opening curly brace.
• A block of arbitrary Puppet code, which generally contains at least one resource declaration.
• A closing curly brace.

For example, this class definition specifies no parameters:

class base::linux {
 file { '/etc/passwd':
 owner => 'root',
 group => 'root',
 mode => '0644',
 }
 file { '/etc/shadow':
 owner => 'root',
 group => 'root',
 mode => '0440',
 }
}

This class definition creates a version parameter ($version) that accepts a String data type with a default value of
'latest'. It also includes file content from an embedded Ruby (ERB) template from the apache module.

class apache (String $version = 'latest') {
 package {'httpd':
 ensure => $version, # Using the version parameter from above
 before => File['/etc/httpd.conf'],
 }
 file {'/etc/httpd.conf':
 ensure => file,

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 735

 owner => 'httpd',
 content => template('apache/httpd.conf.erb'), # Template from a module
 }
 service {'httpd':
 ensure => running,
 enable => true,
 subscribe => File['/etc/httpd.conf'],
 }
}

Class parameters and variables

Parameters allow a class to request external data. If a class needs to use data other than facts for configuration, use a
parameter for that data.

You can use class parameters as normal variables inside the class definition. The values of these variables are set
based on user input when the class is declared, rather than with normal assignment statements.

Supply default values for parameters whenever possible. If a class parameter lacks a default value, the parameter is
considered required and the user must set a value, either in external data or as an override.

If you set a data type for each parameter, Puppet checks the parameter's value at runtime to make sure that it is the
correct data type, and raises an error if the value is illegal. If you do not provide a data type for a parameter, the
parameter accepts values of any data type.

The variables $title and $name are both set to the class name automatically, so you can't use them as parameters.

Setting class parameter defaults with Hiera data

To set class parameter defaults with Hiera data in your modules, set up a hierarchy in your module's hiera.yaml
file and include the referenced data files in the data directory.

For example, this hiera.yaml file, located in the root directory of the ntp module, uses the operating system
fact to determine which class defaults to apply to the target system. Puppet first looks for a data file that matches the
operating system of the target system: path: "os/%{facts.os.family}.yaml". If no matching path is
found, Puppet uses defaults from the "common" data file instead.

ntp/hiera.yaml

version: 5
defaults:
 datadir: data
 data_hash: yaml_data
hierarchy:
 - name: "OS family"
 path: "os/%{facts.os.family}.yaml"

 - name: "common"
 path: "common.yaml"

The files in the example below specify the default values are located in the data directory:

• AIX.yaml specifies the defaults for systems that return an operating system fact of AIX.
• Debian.yaml specifies the defaults for systems that return an operating system fact of Debian.
• common.yaml specifies the defaults for all other systems.

ntp/data/common.yaml

ntp::autoupdate: false
ntp::service_name: ntpd

ntp/data/os/AIX.yaml

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 736

ntp::service_name: xntpd

ntp/data/os/Debian.yaml
ntp::service_name: ntp

Tip:

If you are maintaining older modules, you might encounter cases where class parameter defaults are set with a
parameter class, such as params.pp, and class inheritance. Update such modules to use Hiera data instead. Class
inheritance can have unpredictable effects and makes troubleshooting difficult. For details about updating existing
params classes to Hiera data, see data in modules.

Related information
Variables on page 571
Variables store values so that those values can be accessed in code later.

Resources on page 574
Resources are the fundamental unit for modeling system configurations. Each resource describes the desired state
for some aspect of a system, like a specific service or package. When Puppet applies a catalog to the target system, it
manages every resource in the catalog, ensuring the actual state matches the desired state.

Tags on page 962
Tags are useful for collecting resources, analyzing reports, and restricting catalog runs. Resources, classes, and
defined type instances can have multiple tags associated with them, and they receive some tags automatically.

Scope on page 966
A scope is a specific area of code that is partially isolated from other areas of code.

Values, data types, and aliases on page 885
Most of the things you can do with the Puppet language involve some form of data. An individual piece of data is
called a value, and every value has a data type, which determines what kind of information that value can contain and
how you can interact with it.

Namespaces and autoloading on page 971
Class and defined type names can be broken up into segments called namespaces which enable the autoloader to find
the class or defined type in your modules.

Declaring classes
Declaring a class in a Puppet manifest adds all of its resources to the catalog.

You can declare classes in node definitions, at top scope in the site manifest, and in other classes or defined types.
Classes are singletons — although a given class can behave very differently depending on how its parameters are set,
the resources in it are evaluated only once per compilation. You can also assign classes to nodes with an external node
classifier (ENC) .

Puppet has two main ways to declare classes: include-like and resource-like. Include-like declarations are the most
common; they are flexible and idempotent, so you can safely repeat them without causing errors. Resource-like
declarations are mostly useful if you want to pass parameters to the class but can't or don't use Hiera. Most ENCs
assign classes with include-like behavior, but others assign them with resource-like behavior. See the ENC interface
documentation or the documentation of your specific ENC for details.

CAUTION: Do not mix include-like and resource-like declarations for a given class. If you declare or assign
a class using both styles, it can cause compilation failures.

Include-like declarations

Include-like resource declarations allow you to declare a class multiple times — but no matter how many times
you add the class, it is added to the catalog only once. This allows classes or defined types to manage their own
dependencies and allows you create overlapping role classes, in which a given node can have more than one role.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/6.4/nodes_external.html

Puppet | Developing Puppet code | 737

Include-like behavior relies on external data and defaults for class parameter values, which allows the external data
source to act like cascading configuration files for all of your classes.

You can declare a class with this behavior with one of four functions: include, require, contain, and
hiera_include.

When a class is declared with an include-like declaration, Puppet takes the following actions, in order, for each of the
class parameters:

1. Requests a value from the external data source, using the key <class name>::<parameter name>. For
example, to get the apache class's version parameter, Puppet searches for apache::version.

2. Uses the default value, if one exists.
3. Fails compilation with an error, if no value is found.

The include function

The include function is the most common way to declare classes. Declaring a class with this function includes the
class in the catalog.

Tip: The include function refers only to inclusion in the catalog. You can include a class in another class's
definition, but doing so does not mean one class contains the other; it only means the included class will be added to
the catalog. If you want one class to contain another, use the contain function instead.

This function uses include-like behavior, so you can make multiple declarations and Puppet relies on external data for
parameters.

The include function accepts one of the following:

• A single class name, such as apache.
• A single class reference, such as Class['apache'].
• A comma-separated list of class names or class references.
• An array of class names or class references.

This single class name declaration declares the class only once and has no additional effect:

include base::linux

This example declares a single class with a class reference:

include Class['base::linux']

This example declares two classes in a list:

include base::linux, apache

This example declares two classes in an array:

$my_classes = ['base::linux', 'apache']
include $my_classes

The require function

The require function declares one or more classes, then causes them to become a dependency of the surrounding
container. This function uses include-like behavior, so you can make multiple declarations, and Puppet relies on
external data for parameters.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 738

Tip: The require function is used to declare classes and defined types. Do not confuse it with the require
metaparameter, which is used to establish relationships between resources.

The require function accepts one of the following:

• A single class name, such as apache.
• A single class reference, such as Class['apache'].
• A comma-separated list of class names or class references.
• An array of class names or class references.

In this example, Puppet ensures that every resource in the apache class is applied before any resource in any
apache::vhost instance:

define apache::vhost (Integer $port, String $docroot, String $servername,
 String $vhost_name) {
 require apache
 ...
}

The contain function

The contain function is used inside another class definition to declare one or more classes and contain those
classes in the surrounding class. This enforces ordering of classes. When you contain a class in another class, the
relationships of the containing class extend to the contained class as well. For details about containment, see the
documentation on containing classes.

This function uses include-like behavior, so you can make multiple declarations, and Puppet relies on external data
for parameters.

The contain function accepts one of the following:

• A single class name, such as apache.
• A single class reference, such as Class['apache'].
• A comma-separated list of class names or class references.
• An array of class names or class references.

In this example class declaration, the ntp class contains the ntp::service class. Any resource that forms a
relationship with the ntp class also has the same relationship to the ntp::service class.

class ntp {
 file { '/etc/ntp.conf':
 ...
 require => Package['ntp'],
 notify => Class['ntp::service'],
 }
 contain ntp::service
 package { 'ntp':
 ...
 }
}

For example, if a resource has a before relationship with the ntp class, that resource will also be applied before the
ntp::service class. Similarly, any resource that forms a require relationship with ntp will be applied after
ntp::service.

The hiera_include function

The hiera_include function requests a list of class names from Hiera, then declares all of them.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 739

This function uses include-like behavior, so you can make multiple declarations, and Puppet relies on external data
for parameters. The hiera_contain function accepts a single lookup key.

Because hiera_include uses the array lookup type, it gets a combined list that includes classes from every
level of the hierarchy. This allows you to abandon node definitions and use Hiera like a lightweight external node
classifier. For more information, see the Hiera documentation.

For example, this hiera_include declaration in the site manifest applies classes across the site infrastructure, as
specified in Hiera.

/etc/puppetlabs/code/environments/production/manifests/site.pp
hiera_include(classes)

Given the Hiera data below, the node web01.example.com in the production environment gets the classes
apache, memcached, wordpress, and base::linux. On all other nodes, only the base::linux class is
declared.

/etc/puppetlabs/puppet/hiera.yaml
...
hierarchy:
 - "%{::clientcert}"
 - common

/etc/puppetlabs/code/hieradata/web01.example.com.yaml

classes:
 - apache
 - memcached
 - wordpress

/etc/puppetlabs/code/hieradata/common.yaml

classes:
 - base::linux

Resource-like declarations

Resource-like class declarations require that you declare a given class only once. They allow you to override class
parameters at compile time — for any parameters you don't override, Puppet falls back to external data.

Resource-like declarations must be unique to avoid conflicting parameter values. Repeated overrides cause catalog
compilation to be unreliable and dependent on order evaluation. This is because overridden values from the class
declaration:

• Always take precedence.
• Are computed at compile time.
• Do not have a built-in hierarchy for resolving conflicts.

When a class is declared with a resource-like declaration, Puppet takes the following actions, in order, for each of the
class parameters:

1. Uses the override value from the declaration, if present.
2. Requests a value from the external data source, using the key <class name>::<parameter name>. For

example, to get the apache class's version parameter, Puppet searches for apache::version.
3. Uses the default value.
4. Fails compilation with an error, if no value is found.

Resource-like declarations look like normal resource declarations, using the class pseudo-resource type. You can
provide a value for any class parameter by specifying it as a resource attribute.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 740

You can also specify a value for any metaparameter. In such cases, every resource contained in the class will also
have that metaparameter. However:

• Any resource can specifically override metaparameter values received from its container.
• Metaparameters that can take more than one value, such as the relationships metaparameters, merge the values

from the container and any resource-specific values.
• You cannot apply the noop metaparameter to resource-like class declarations.

For example, this resource-like declaration declares a class with no parameters:

class {'base::linux':}

This declaration declares a class and specifies the version parameter:

class {'apache':
 version => '2.2.21',
}

Related information
Node definitions on page 842
A node definition, also known as a node statement, is a block of Puppet code that is included only in matching nodes'
catalogs. This allows you to assign specific configurations to specific nodes.

Main manifest directory on page 468
Puppet starts compiling a catalog either with a single manifest file or with a directory of manifests that are treated like
a single file. This starting point is called the main manifest or site manifest.

Defined resource types on page 740
Defined resource types, sometimes called defined types or defines, are blocks of Puppet code that can be evaluated
multiple times with different parameters.

Relationships and ordering on page 728
Resources are included and applied in the order they are defined in their manifest, but only if the resource has no
implicit relationship with another resource, as this can affect the declared order. To manage a group of resources
in a specific order, explicitly declare such relationships with relationship metaparameters, chaining arrows, and the
require function.

Containment on page 964
Containment is what controls the order in which the various parts of your Puppet code are executed. Containment is
the relationship that resources have to classes and defined types, determining what has to happen before other things
can happen.

Resources on page 574
Resources are the fundamental unit for modeling system configurations. Each resource describes the desired state
for some aspect of a system, like a specific service or package. When Puppet applies a catalog to the target system, it
manages every resource in the catalog, ensuring the actual state matches the desired state.

Classifying nodes on page 519
You can classify nodes using an external node classifier (ENC), which is a script or application that tells Puppet
which classes a node must have. It can replace or work in concert with the node definitions in the main site manifest
(site.pp).

Defined resource types
Defined resource types, sometimes called defined types or defines, are blocks of Puppet code that can be evaluated
multiple times with different parameters.

Create a defined resource type by writing a define statement in a manifest (.pp) file. You can declare a resource of
a defined type in the same way you would declare a resource of a built-in type.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 741

Store defined resource type manifests in the manifests/ directory of a module. Define only one defined type in a
manifest, and give the manifest file the same name as the defined type. Puppet automatically loads any defined types
that are present in a valid module. See module fundamentals to learn more about module structure and usage.

If a defined type is present and loadable, you can declare resources of that defined type anywhere in your manifests.
Declaring a new resource of the defined type causes Puppet to re-evaluate the block of code in the definition, using
different values for the parameters.

Every instance of a defined type contains all of its unique resources. This means that any relationships formed
between the instance and another resource are extended to every resource that makes up the instance. See the topics
about containment and relationships for more information.

Tip: Unlike many parts of Puppet code, define statements aren't expressions, so you can't use them where a value is
expected.

Defining types

The general form of a define statement is:

• The define keyword.
• The name of the defined type.
• An optional parameter list, which consists of:

• An opening parenthesis.
• A comma-separated list of parameters, such as: String $myparam = "default value". Each

parameter consists of:

• An optional data type, which restricts the allowed values for the parameter. If no data type is specified,
values of any data type are permitted.

• A variable name to represent the parameter, including the $ prefix, such as $parameter.
• An optional equals = sign and default value, which must match the data type, if one was specified. If no

default value is specified, the parameter is considered required and the user must specify a value.
• An optional trailing comma after the last parameter.
• A closing parenthesis.

• An opening curly brace.
• A block of arbitrary Puppet code, which generally contains at least one resource declaration
• A closing curly brace

The definition does not cause the code in the block to be added to the catalog; it only makes it available. To add the
code to the catalog, you must declare one or more resources of the defined type.

This example creates a new resource type called apache::vhost:

/etc/puppetlabs/puppet/modules/apache/manifests/vhost.pp
define apache::vhost (
 Integer $port,
 String[1] $docroot,
 String[1] $servername = $title,
 String $vhost_name = '*',
) {
 include apache # contains package['httpd'] and service['httpd']
 include apache::params # contains common config settings

 $vhost_dir = $apache::params::vhost_dir

 # the template used below can access all of the parameters and variable
 from above.
 file { "${vhost_dir}/${servername}.conf":
 ensure => file,
 owner => 'www',

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 742

 group => 'www',
 mode => '0644',
 content => template('apache/vhost-default.conf.erb'),
 require => Package['httpd'],
 notify => Service['httpd'],
 }
}

Declaring defined type resources

You can declare instances of a defined type—usually just called resources—the same way you declare any other
resource: with a resource type, a title, and a set of attribute-value pairs. The parameters you added when defining the
type, such as $port, become resource attributes, such as port, when you declare resources of the defined type.

Parameters that have a default value are considered optional parameters: if you don't specify them in the resource
declaration, the default value is used. Parameters without defaults are required parameters, and you must specify a
value for them when you declare the resource.

To declare a resource of the apache::vhost defined type from the example above:

apache::vhost {'homepages':
 port => 8081,
 docroot => '/var/www-testhost',
}

If a defined type is present and loadable, you can declare resources of that defined type anywhere in your manifests.
Declaring a new resource of the defined type causes Puppet to re-evaluate the block of code in the definition, using
the new declaration's values for the parameters.

Just as with a normal resource type, you can declare resource defaults for a defined type. In this example, every
apache::vhost resource defaults to port 80 unless specifically overridden:

/etc/puppetlabs/puppet/manifests/site.pp
Apache::Vhost {
 port => 80,
}

You can include any metaparameter in the declaration of a defined type instance. If you do:

• Every resource contained in the resource declaration also has that metaparameter. Metaparameters that can accept
more than one value, such as the relationship metaparameters, merge the values from the container and any
specific values from the individual resource.

• The value of the metaparameter can be used as a variable in the definition, as though it were a normal parameter.
For example, in an instance declared with require => Class['ntp'], the local value of $require
would be Class['ntp'].

Naming

Defined type names can consist of one or more namespace segments, which indicate the defined type's location in a
module. Each segment must adhere to the naming and reserved names guidelines.

Each namespace segment must be capitalized when writing a resource reference, collector, or resource default. For
example, a reference to the apache::vhost resource would be Apache::Vhost['homepages'].

Because you can declare multiple instances of a defined type in your manifests, every resource in the definition must
be different in every instance. Duplicate resource instances result in compilation failures with a "duplicate resource
declaration" error. To make resources different across instances, include the value of $title or another parameter in
the resource's title and name.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 743

Because $title is unique per instance, this ensures the resources are unique as well. For example, this segment of a
file declaration makes resources unique by adding the vhost_dir and servername attributes to the resource title:

file { "${vhost_dir}/${servername}.conf":

Parameters and attributes

When you create a defined type, you can precede each parameter in the define statement with an optional data type.
If you include a data type, Puppet checks the resource parameter's value at runtime to make sure that it has the right
data type; if the value is illegal, Puppet raises an error. If you don't specify a data type in the definition statement, the
parameter accepts values of any data type.

You can use the parameters of a defined type as local variables inside the definition. Rather than the usual assignment
statement, each instance of the defined type uses its parameter attributes to set the value of the variable. In this
example declaration, the value of the port parameter, 8081, becomes the value assigned to the $port variable.
Likewise, the path for the docroot parameter becomes the value for the $docroot variable.

apache::vhost {'homepages':
 port => 8081,
 docroot => '/var/www-testhost',
}

Note:

The $title and $name variables are both set to the defined type's name automatically, so they cannot be used as
parameters.

$title and $name

The $title and $name attributes are always available to a defined type and are not explicitly added to the
definition. These attributes are both set to the defined type's name automatically:

• $title is always set to the title of the instance. Because it is always unique for each instance, it is useful for
making sure that contained resources are unique.

• $name defaults to the value of $title. You can specify a different value when you declare an instance of the
defined type, but this is rarely useful.

Because the values of $title and $name are already available inside the defined type's parameter list, you can
use $title as all or part of the default value for another attribute. In this example, $title is used as the value of
$servername to ensure the server name is always unique:

define apache::vhost (
 Integer $port,
 String[1] $docroot,
 String $servername = $title,
 String[1] $vhost_name = '*',
) { # ...

Related information
Resources on page 574
Resources are the fundamental unit for modeling system configurations. Each resource describes the desired state
for some aspect of a system, like a specific service or package. When Puppet applies a catalog to the target system, it
manages every resource in the catalog, ensuring the actual state matches the desired state.

Resource default statements on page 955
Resource default statements enable you to set default attribute values for a given resource type. Resource declarations
within the area of effect that omits those attributes inherit the default values.

Containment on page 964

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 744

Containment is what controls the order in which the various parts of your Puppet code are executed. Containment is
the relationship that resources have to classes and defined types, determining what has to happen before other things
can happen.

Namespaces and autoloading on page 971
Class and defined type names can be broken up into segments called namespaces which enable the autoloader to find
the class or defined type in your modules.

Values, data types, and aliases on page 885
Most of the things you can do with the Puppet language involve some form of data. An individual piece of data is
called a value, and every value has a data type, which determines what kind of information that value can contain and
how you can interact with it.

Bolt tasks
Bolt tasks are single actions that you can run on target nodes in your infrastructure, allowing you to make as-
needed changes to remote systems. You can run tasks with the Puppet Enterprise (PE) orchestrator or with Puppet’s
standalone task runner, Bolt.

Sometimes you need to do arbitrary tasks in your infrastructure that aren’t about enforcing the state of machines. You
might need to restart a service, run a troubleshooting script, or get a list of the network connections to a given node.

Tasks allow you to do actions like these with either the PE orchestrator or with Bolt, a standalone task runner. The
orchestrator uses PE's built-in communication protocol, SSH, or WinRM to connect to the targets. Bolt connects to
the targets with SSH or WinRM, without requiring any existing Puppet installation on the target. Bolt can also run
plans, which chain multiple tasks together for more complex actions.

You can write tasks, which are a lot like scripts, in any programming language that can run on the target nodes, such
as Bash, Python, or Ruby. Tasks are packaged within modules, so you can reuse, download, and share tasks on the
Forge. Metadata for each task describes the task, validates input, and controls how the task runner executes the task.

For more information, see the Bolt documentation on Tasks. If you're a Puppet Enterprise user, see Running tasks and
Using Bolt with orchestrator.

Expressions and operators
Expressions are statements that resolve to values. You can use expressions almost anywhere a value is required.
Expressions can be compounded with other expressions, and the entire combined expression resolves to a single
value.

In the Puppet language, nearly everything is an expression, including literal values, references to variables, resource
declarations, function calls, and more. In other words, almost all statements in the language resolve to a value and can
be used anywhere that value would be expected.

Most of this page is about expressions that are constructed with operators. Operators take input values and operate on
them (for example, mathematically) to result in some other value. Other kinds of expressions (for example, function
calls) are described in more detail on other pages.

Some expressions have side effects and are used in Puppet primarily for their side effects, rather than for their result
value. For example:

• Resource declaration: Adds a resource to the catalog.
• Variable assignment: Creates a variable and assigns it a value.
• Chaining statement: Forms a relationship between two or more resources.

Your code won't usually do anything with the value these expressions produce, but sometimes the value is useful for
things like forming relationships to resources whose names can't be predicted until run time.

Important: The following statements are not typical expressions. They don't resolve to usable values and can only
be used in certain contexts:

• Class definitions
• Defined types

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/bolt/latest/tasks.html
https://puppet.com/docs/pe/latest/running_tasks.html
https://puppet.com/docs/pe/latest/bolt_configure_orchestrator.html

Puppet | Developing Puppet code | 745

• Node definitions
• Resource collectors
• Lambdas

Expressions can be used almost everywhere, including:

• The operand of another expression.
• The condition of an if statement.
• The control expression of a case statement or selector statement.
• The assignment value of a variable.
• The argument or arguments of a function call.
• The title of a resource.
• An entry in an array
• A key or value of a hash.

Expressions cannot be used:

• Where a literal name of a class or defined type is expected (for example, in class or define statements).
• As the name of a variable (the name of the variable must be a literal name).
• Where a literal resource type or name of a resource type is expected (for example, in the type position of a

resource declaration).

You can surround an expression by parentheses to control the order of evaluation in compound expressions (for
example, 10+10/5 is 12, and (10+10)/5 is 4), or to make your code clearer.

For formal descriptions of expressions constructed with operators and other elements of the Puppet language, see the
Puppet language specification.

Operator expressions

There are two kinds of operators:

• Infix operators, also called binary operators, appear between two operands:

• $a = 1

• 5 < 9

• $operatingsystem != 'Solaris'

• Prefix operators, also called unary operators, appear immediately before a single operand:

• *$interfaces

• !$is_virtual

Operands in an expression can be any other expression — anything that resolves to a value of the expected data type
is allowed. Each operator has its own rules, described in the sections below, for the data types of its operands.

When you create compound expressions by using other expressions as operands, use parentheses for clarity and
readability:

(90 < 7) and ('Solaris' == 'Solaris') # resolves to false
(90 < 7) or ('Solaris' in ['Linux', 'Solaris']) # resolves to true

Order of operations

Compound expressions are evaluated in a standard order of operations. Expressions wrapped in parentheses are
evaluated first, starting from the innermost expression:

This example resolves to 30, not 23:
notice((7+8)*2)

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppet-specifications

Puppet | Developing Puppet code | 746

For the sake of clarity, use parentheses in all but the simplest compound expressions.

The precedence of operators, from highest to lowest, is:

Precedence Operator

1 ! (unary: not)

2 - (unary: numeric negation)

3 * (unary: array splat)

4 in

5 =~ and !~ (regex or data type match or non-match)

6 *, /, % (multiplication, division, and modulo)

7 + and - (addition/array concatenation and subtraction/
array deletion)

8 << and >> (left shift and right shift)

9 == and != (equal and not equal)

10 >=, <=, >, and < (greater or equal, less or equal, greater
than, and less than)

11 and

12 or

13 = (assignment)

Related information
Values, data types, and aliases on page 885
Most of the things you can do with the Puppet language involve some form of data. An individual piece of data is
called a value, and every value has a data type, which determines what kind of information that value can contain and
how you can interact with it.

Variables on page 571
Variables store values so that those values can be accessed in code later.

Resources on page 574
Resources are the fundamental unit for modeling system configurations. Each resource describes the desired state
for some aspect of a system, like a specific service or package. When Puppet applies a catalog to the target system, it
manages every resource in the catalog, ensuring the actual state matches the desired state.

Function calls on page 760
Functions are plug-ins, written in Ruby, that you can call during catalog compilation. A call to any function is an
expression that resolves to a value. Most functions accept one or more values as arguments, and return a resulting
value.

Conditional statements and expressions on page 754
Conditional statements let your Puppet code behave differently in different situations. They are most helpful when
combined with facts or with data retrieved from an external source. Puppet supports if and unless statements, case
statements, and selectors.

Comparison operators
Comparison operators take operands of several data types, and resolve to Boolean values.

Comparisons of numbers convert the operands to and from floating point and integer values, such that 1.0 == 1 is
true. However, keep in mind that floating point values created by division are inexact, so mathematically equal values
can be slightly unequal when turned into floating point values.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 747

You can compare any two values with equals == or not equals !=, but only strings, numbers, and data types that
require values to have a defined order can be compared with the less than or greater than operators.

Note: Comparisons of string values are case insensitive for characters in the US ASCII range. Characters outside this
range are case sensitive.

Characters are compared based on their encoding. For characters in the US ASCII range, punctuation comes before
digits, digits are in the order 0, 1, 2, ... 9, and letters are in alphabetical order. For characters outside US ASCII,
ordering is defined by their UTF-8 character code, which might not always place them in alphabetical order for a
given locale.

== (equality)

Resolves to true if the operands are equal. Accepts the following data types as operands:

• Numbers: Tests simple equality.
• Strings: Tests whether two strings are identical, ignoring case as described in the Note, above.
• Arrays and hashes: Tests whether two arrays or hashes are identical.
• Booleans: Tests whether two Booleans are the same value.
• Data types: Tests whether two data types would match the exact same set of values.

Values are considered equal only if they have the same data type. Notably, this means that 1 == "1" is false, and
"true" == true is false.

!= (non-equality)

Resolves to false if the operands are equal. So, $x != $y is the same as !($x == $y). It has the same
behavior and restrictions, but opposite result, as equality ==, above.

< (less than)

Resolves to true if the left operand is smaller than the right operand. Accepts numbers, strings, and data types; both
operands must be the same type. When acting on data types, a less-than comparison is true if the left operand is a
subset of the right operand.

> (greater than)

Resolves to true if the left operand is larger than the right operand. Accepts numbers, strings, and data types; both
operands must be the same type. When acting on data types, a greater-than comparison is true if the left operand is
a superset of the right operand.

<= (less than or equal to)

Resolves to true if the left operand is smaller than or equal to the right operand. Accepts numbers, strings, and data
types; both operands must be the same type. When acting on data types, a less-than-or-equal-to comparison is true
if the left operand is the same as the right operand or is a subset of it.

>= (greater than or equal to)

Resolves to true if the left operand is larger than or equal to the right operand. Accepts numbers, strings, and data
types; both operands must be the same type. When acting on data types, a greater-than-or-equal-to comparison is
true if the left operand is the same as the right operand or is a superset of it.

=~ (regex or data type match)

Resolves to true if the left operand matches the right operand. Matching means different things, depending on what
the right operand is.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 748

This operator is non-transitive with regard to data types. The right operand must be one of:

• A regular expression (regex), such as /^[<>=]{7}/.
• A stringified regular expression — that is, a string that represents a regular expression, such as "^[<>=]{7}".
• A data type, such as Integer[1,10].

If the right operand is a regular expression or a stringified regular expression, the left operand must be a string, and
the expression resolves to true if the string matches the regular expression.

If the right operand is a data type, the left operand can be any value. The expression resolves to true if the left
operand has the specified data type. For example, 5 =~ Integer and 5 =~ Integer[1,10] are both true.

!~ (regex or data type non-match)

Resolves to false if the left operand matches the right operand. So, $x !~ $y is the same as !($x =~ $y). It
has the same behavior and restrictions, but opposite result, as regex match =~, above.

in

Resolves to true if the right operand contains the left operand. The exact definition of "contains" here depends on
the data type of the right operand. See table below.

This operator is non-transitive with regard to data types. It accepts:

• A string, regular expression, or data type as the left operand.
• A string, array, or hash as the right operand.

Expression How in expression is evaluated

String in String Tests whether the left operand is a substring of the right,
ignoring case:

'eat' in 'eaten' # resolves to true
'Eat' in 'eaten' # resolves to true

String in Array Tests whether one of the members of the array is
identical to the left operand, ignoring case:

'eat' in ['eat', 'ate', 'eating'] #
 resolves to true
'Eat' in ['eat', 'ate', 'eating'] #
 resolves to true

String in Hash Tests whether the hash has a key identical to the left
operand, ignoring case:

'eat' in { 'eat' => 'present tense',
 'ate' => 'past tense'} # resolves
 to true
'eat' in { 'present' => 'eat',
 'past' => 'ate' } # resolves to
 false

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 749

Expression How in expression is evaluated

Regex in String Tests whether the right operand matches the regular
expression:

note the case-insensitive option ?
i
/(?i:EAT)/ in 'eatery' # resolves to
 true

Regex in Array Tests whether one of the members of the array matches
the regular expression:

/(?i:EAT)/ in ['eat', 'ate',
 'eating'] # resolves to true

Regex in Hash Tests whether the hash has a key that matches the regular
expression:

/(?i:EAT)/ in { 'eat' => 'present
 tense', 'ate' => 'past tense'} #
 resolves to true
/(?i:EAT)/ in { 'present' => 'eat',
 'past' => 'ate' } # resolves to
 false

Data type in Array Tests whether one of the members of the array matches
the data type:

looking for integers between 100
 and 199
Integer[100, 199] in [1, 2, 125] #
 resolves to true
Integer[100, 199] in [1, 2, 25] #
 resolves to false

Data type in anything else Always false.

Related information
Booleans on page 903
Booleans are one-bit values, representing true or false. The condition of an if statement expects an expression that
resolves to a boolean value. All of Puppet's comparison operators resolve to boolean values, as do many functions.

Numbers on page 898
Numbers in the Puppet language are normal integers and floating point numbers.

Strings on page 889
Strings are unstructured text fragments of any length. They’re a common and useful data type.

Arrays on page 904

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 750

Arrays are ordered lists of values. Resource attributes which accept multiple values (including the relationship
metaparameters) generally expect those values in an array. Many functions also take arrays, including the iteration
functions.

Hashes on page 907
Hashes map keys to values, maintaining the order of the entries according to insertion order.

Data type syntax on page 921
Each value in the Puppet language has a data type, like “string.” There is also a set of values whose data type is “data
type.” These values represent the other data types. For example, the value String represents the data type of strings.
The value that represents the data type of these values is Type.

Regular expressions on page 909
A regular expression (sometimes shortened to “regex” or “regexp”) is a pattern that can match some set of strings,
and optionally capture parts of those strings for further use.

Boolean operators
Boolean expressions resolve to boolean values. They are most useful when creating compound expressions.

A boolean operator takes boolean operands. If you pass in another type, it will be converted to boolean; see the
section Automatic conversion to boolean in the data type documentation.

and

Resolves to true if both operands are true, otherwise resolves to false.

or

Resolves to true if either operand is true.

! (not)

Takes one operand. Resolves to true if the operand is false, and false if the operand is true.

$my_value = true
notice (!$my_value) # Resolves to false

Related information
Booleans on page 903
Booleans are one-bit values, representing true or false. The condition of an if statement expects an expression that
resolves to a boolean value. All of Puppet's comparison operators resolve to boolean values, as do many functions.

Arithmetic operators
Arithmetic expressions resolve to numeric values. Except for the unary negative -, arithmetic operators take two
numeric operands. If an operand is a string, it's converted to numeric form. The operation fails if a string can't be
converted.

+ (addition)

Resolves to the sum of the two operands.

- (subtraction and negation)

When used with two operands, resolves to the difference of the two operands, left minus right. When used with one
operand, returns the value of subtracting that operand from zero.

/ (division)

Resolves to the quotient of the two operands, the left divided by the right.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 751

* (multiplication)

Resolves to the product of the two operands. The asterisk is also used as a unary splat operator for arrays (see below).

% (modulo)

Resolves to the remainder of dividing the left operand by the right operand:

5 % 2 # resolves to 1

32 % 7 # resolves to 4

<< (left shift)

Left bitwise shift: shifts the left operand by the number of places specified by the right operand. This is equivalent to
rounding both operands down to the nearest integer, and multiplying the left operand by 2 to the power of the right
operand:

4 << 3 # resolves to 32: 4 times two cubed

>> (right shift)

Right bitwise shift: shifts the left operand by the number of places specified by the right operand. This is equivalent
to rounding each operand down to the nearest integer, and dividing the left operand by 2 to the power of the right
operand:

16 << 3 # resolves to 2: 16 divided by two cubed

Related information
Numbers on page 898
Numbers in the Puppet language are normal integers and floating point numbers.

Array operators
Array operators take arrays as operands, and, with the exception of * (unary splat), they resolve to array values.

* (splat)

The unary splat operator * accepts a single array value. If you pass it a scalar value, it converts the value to a single-
element array first. The splat operator "unfolds" an array, resolving to a comma-separated list values representing the
array elements. It's useful in places where a comma-separated list of values is valid, including:

• The arguments of a function call.
• The cases of a case statement.
• The cases of a selector statement.

If you use it in other contexts, it resolves to the array that was passed in.

For example:

$a = ['vim', 'emacs']
myfunc($a) # Calls myfunc with a single argument, the array containing
 'vim' and 'emacs'
:
 # myfunc(['vim','emacs'])
myfunc(*$a) # Calls myfunc with two arguments, 'vim' and 'emacs':
 # myfunc('vim','emacs')

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 752

Another example:

$a = ['vim', 'emacs']
$x = 'vim'
notice case $x {
 $a : { 'an array with both vim and emacs' }
 *$a : { 'vim or emacs' }
 default : { 'no match' }
}

<< (append)

Resolves to an array containing the elements in the left operand, with the right operand as its final element.

The left operand must be an array, and the right operand can be any data type. Appending adds only a single element
to an array. To add multiple elements from one array to another, use the concatenation operator +.

Examples:

[1, 2, 3] << 4 # resolves to [1, 2, 3, 4] [1, 2, 3] << [4, 5] # resolves to
 [1, 2, 3, [4, 5]]

The append operator does not change its operands; it creates a new value.

+ (concatenation)

Resolves to an array containing the elements in the left operand followed by the elements in the right operand.

Both operands must be arrays. If the left operand isn't an array, Puppet interprets + as arithmetic addition. If the right
operand is a scalar value, it is converted to a single-element array first.

Hash values are converted to arrays instead of wrapped, so you must wrap them yourself.

Examples:

[1, 2, 3] + 1 # resolves to [1, 2, 3, 1]
[1, 2, 3] + [1] # resolves to [1, 2, 3, 1]
[1, 2, 3] + [[1]] # resolves to [1, 2, 3, [1]]

The concatenation operator does not change its operands; it creates a new value.

- (removal)

Resolves to an array containing the elements in the left operand, with every occurrence of elements in the right
operand removed.

Both operands must be arrays. If the left operand isn't an array, Puppet interprets - as arithmetic subtraction. If the
right operand is a scalar value, it is converted to a single-element array first.

Hash values aren't automatically wrapped in arrays, so you must always wrap them yourself.

Examples:

[1, 2, 3, 4, 5, 1, 1] - 1 # resolves to [2, 3, 4, 5]
[1, 2, 3, 4, 5, 1, 1] - [1] # resolves to [2, 3, 4, 5]
[1, 2, 3, [1, 2]] - [1, 2] # resolves to [3, [1, 2]]
[1, 2, 3, [1, 2]] - [[1, 2]] # resolves to [1, 2, 3]

The removal operator does not change its operands; it creates a new value.

Related information
Arrays on page 904

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 753

Arrays are ordered lists of values. Resource attributes which accept multiple values (including the relationship
metaparameters) generally expect those values in an array. Many functions also take arrays, including the iteration
functions.

Hash operators
Hash operators accept hashes as their left operand, and hashes or specific kinds of arrays as their right operand. The
expressions resolve to hash values.

+ (merging)

Resolves to a hash containing the keys and values in the left operand and the keys and values in the right operand. If
a key is present in both operands, the final hash uses the value from the right. It does not merge hashes recursively; it
only merges top-level keys.

The right operand can be one of the following:

• A hash
• An array with an even number of elements. Each pair is converted in order to a key-value hash pair.

Examples:

{a => 10, b => 20} + {b => 30} # resolves to {a => 10, b => 30}
{a => 10, b => 20} + {c => 30} # resolves to {a => 10, b => 30, c => 30}
{a => 10, b => 20} + [c, 30] # resolves to {a => 10, b => 30, c => 30}
{a => 10, b => 20} + 30 # gives an error
{a => 10, b => 20} + [30] # gives an error

The merging operator does not change its operands; it creates a new value.

- (removal)

Resolves to a hash containing the keys and values in the left operand, minus any keys that are also present in the right
operand.

The right operand can be one of the following:

• A hash. The keys present in this hash will be absent in the final hash, regardless of whether that key has the same
values in both operands. The key, not the value, determines whether it's removed.

• An array of keys.
• A single key.

Examples:

{a => first, b => second, c => 17} - {c => 17, a => "something else"} #
 resolves to {b => second}
{a => first, b => second, c => 17} - {a => a, d => d} #
 resolves to {b => second, c => 17}
{a => first, b => second, c => 17} - [c, a] #
 resolves to {b => second}
{a => first, b => second, c => 17} - c #
 resolves to {a => first, b => second}

The removal operator does not change its operands; it creates a new value.

Related information
Hashes on page 907

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 754

Hashes map keys to values, maintaining the order of the entries according to insertion order.

Assignment operator
Puppet has one assignment operator, =.

= (assignment)

The assignment operator sets the variable on the left side to the value on the right side. The expression resolves to
the value of the right hand side. Variables can be set only one time, after which, attempts to set the variable to a new
value cause an error.

Related information
Variables on page 571
Variables store values so that those values can be accessed in code later.

Conditional statements and expressions
Conditional statements let your Puppet code behave differently in different situations. They are most helpful when
combined with facts or with data retrieved from an external source. Puppet supports if and unless statements, case
statements, and selectors.

Examples

An if statement evaluates the given condition and, if the condition resolves to true, executes the given code. This
example includes an elsif condition, and gives a warning if you try to include the ntp class on a virtual machine
or on machine running macOS:

if $facts['is_virtual'] {
 warning('Tried to include class ntp on virtual machine; this node might be
 misclassified.')
} elsif $facts['os']['family'] == 'Darwin' {
 warning('This NTP module does not yet work on our Mac laptops.')
} else {
 include ntp
}

An unless statement takes a Boolean condition and an arbitrary block of Puppet code, evaluates the condition, and
if the condition is false, execute the code block. This statement sets $maxclient to 500 unless the system memory
is above the specified parameter.

unless $facts['memory']['system']['totalbytes'] > 1073741824 {
 $maxclient = 500
}

A case statement evaluates a list of cases against a control expression, and executes the first code block where the
case value matches the control expression. This example declares a role class on a node, but which role class it
declares depends on what operating system the node runs:

case $facts['os']['name'] {
 'Solaris': {
 include role::solaris
 }
 'RedHat', 'CentOS': {
 include role::redhat
 }
 /^(Debian|Ubuntu)$/: {
 include role::debian
 }
 default: {
 include role::generic

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 755

 }
}

A selector statement is similar to a case statement, but instead of executing code, it returns a value. This example
returns the value 'wheel' for the specified operating systems, but the value 'root' for all other operating systems:

$rootgroup = $facts['os']['family'] ? {
 'Solaris' => 'wheel',
 /(Darwin|FreeBSD)/ => 'wheel',
 default => 'root',
}

file { '/etc/passwd':
 ensure => file,
 owner => 'root',
 group => $rootgroup,
}

if statements
An "if" statement takes a Boolean condition and an arbitrary block of Puppet code, and executes the code block only
if the condition is true. Optionally, an if statement can include elsif and else clauses.

Behavior

Puppet's if statements behave much like those in any other language. The if condition is evaluated first and, if it
is true, the if code block is executed. If it is false, each elsif condition (if present) is tested in order, and if all
conditions fail, the else code block (if present) is executed. If none of the conditions in the statement match and
there is no else block, Puppet does nothing and moves on. If statements executes a maximum of one code block.

In addition to executing the code in a block, an if statement also produces a value, so the if statement can be used
wherever a value is allowed.The value of an if expression is the value of the last expression in the executed block, or
undef if no block was executed.

Syntax

An if statement consists of:

• The if keyword.
• A condition (any expression resolving to a Boolean value).
• A pair of curly braces containing any Puppet code.
• Optionally: any number of elsif clauses, which are processed in order.
• Optionally: the else keyword and a pair of curly braces containing Puppet code.

An elsif clause consists of:

• The elsif keyword.
• A condition.
• A pair of curly braces containing any Puppet code.

if $facts['is_virtual'] {
 # Our NTP module is not supported on virtual machines:
 warning('Tried to include class ntp on virtual machine; this node might be
 misclassified.')
} elsif $facts['os']['name'] == 'Darwin' {
 warning('This NTP module does not yet work on our Mac laptops.')
} else {
 # Normal node, include the class.
 include ntp
}

Conditions

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 756

The condition of an if statement can be any expression that resolves to a Boolean value. This includes:

• Variables
• Expressions, including arbitrarily nested and and or expressions
• Functions that return values

Expressions that resolve to non-Boolean values are automatically converted to Booleans. For more information, see
the Booleans documentation.

Regex capture variables

If you use the regular expression match operator in a condition, any captures from parentheses in the pattern are
available inside the associated code block as numbered variables (for example, $1, $2), and the entire match is
available as $0. This example captures any digits from a hostname such as www01 and www02, and stores them in
the $1 variable:

if $trusted['certname'] =~ /^www(\d+)\./ {
 notice("Welcome to web server number $1.")
}

Regex capture variables are different from other variables in a couple of ways:

• The values of the numbered variables do not persist outside the code block associated with the pattern that set
them.

• In nested conditionals, each conditional has its own set of values for the set of numbered variables. At the end of
an interior statement, the numbered variables are reset to their previous values for the remainder of the outside
statement. This causes conditional statements to act like local scopes, but only with regard to the numbered
variables.

Related information
Scope on page 966
A scope is a specific area of code that is partially isolated from other areas of code.

Booleans on page 903
Booleans are one-bit values, representing true or false. The condition of an if statement expects an expression that
resolves to a boolean value. All of Puppet's comparison operators resolve to boolean values, as do many functions.

unless statements
"Unless" statements work like reversed if statements. They take a Boolean condition and an arbitrary block of
Puppet code, evaluate the condition, and if it is false, execute the code block. They cannot include elsif clauses.

Behavior

The condition is evaluated first and, if it is false, the code block is executed. If the condition is true, Puppet does
nothing and moves on.

In addition to executing the code in a block, an unless statement is also an expression that produces a value, and it
can be used wherever a value is allowed. The value of an unless expression is the value of the last expression in the
executed block. If no block was executed, the value is undef.

Syntax

The general form of an unless statement is:

• The unless keyword.
• A condition (any expression resolving to a Boolean value).
• A pair of curly braces containing any Puppet code.
• Optionally: the else keyword and a pair of curly braces containing Puppet code.

You cannot include an elsif clause in an unless statement. If you do, compilation fails with a syntax error.

unless $facts['memory']['system']['totalbytes'] > 1073741824 {
 $maxclient = 500

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 757

}

Conditions

The condition of an unless statement can be any expression that resolves to a Boolean value. This includes:

• Variables.
• Expressions, including arbitrarily nested and and or expressions.
• Functions that return values.

Expressions that resolve to non-Boolean values are automatically converted to Booleans. For more information, see
the Booleans documentation.

Regex capture variables

Although unless statements receive regex capture variables like if statements, you wouldn't usually use one,
because the code in the statement is executed only if the condition doesn't match anything. It generally makes more
sense to use an if statement.

case statements
Like if statements, case statements choose one of several blocks of arbitrary Puppet code to execute. They take
a control expression and a list of cases and code blocks, and execute the first block whose case value matches the
control expression.

Behavior

Puppet compares the control expression to each of the cases, in the order they are listed (except for the top-most
level default case, which always goes last). It executes the block of code associated with the first matching case, and
ignores the remainder of the statement.Case statements execute a maximum of one code block. If none of the cases
match, Puppet does nothing and moves on.

In addition to executing the code in a block, a case statement is also an expression that produces a value, and can be
used wherever a value is allowed. The value of a case expression is the value of the last expression in the executed
block. If no block was executed, the value is undef.

The control expression of a case statement can be any expression that resolves to a value. This includes:

• Variables.
• Expressions.
• Functions that return values.

Syntax

The general form of a case statement is:

• The case keyword.
• A control expression, which is any expression resolving to a value.
• An opening curly brace.
• Any number of possible matches, which consist of:

• A case or comma-separated list of cases.
• A colon.
• A pair of curly braces containing any arbitrary Puppet code.
• A closing curly brace case.

case $facts['os']['name'] {
 'Solaris': { include role::solaris } # Apply the solaris class
 'RedHat', 'CentOS': { include role::redhat } # Apply the redhat class
 /^(Debian|Ubuntu)$/: { include role::debian } # Apply the debian class
 default: { include role::generic } # Apply the generic class
}

Case matching

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 758

A case can be any expression that resolves to a value, for example, literal values, variables and function calls. You
can use a comma-separated list of cases to associate multiple cases with the same block of code. To use values from a
variable as cases, use the * splat operator to convert an array of values into a comma-separated list of values.

Depending on the data type of a case's value, Puppet uses one of following behaviors to test whether the case
matches:

• Most data types, for example, strings and Booleans, are compared to the control value with the == equality
operator, which is case-insensitive when comparing strings.

• Regular expressions are compared to the control value with the =~ matching operator, which is case-sensitive.
Regex cases only match strings.

• Data types, such as Integer, are compared to the control value with the =~ matching operator. This tests
whether the control value is an instance of that data type.

• Arrays are recursively compared to the control value. First, Puppet checks whether the control and array are the
same length, then each corresponding element is compared using these same case matching rules.

• Hashes compare each key-value pair. To match, the control value and the case must have the same keys, and each
corresponding value is compared using these same case matching rules.

• The special value default matches anything, and unless nested inside an array or hash, is always tested last
regardless of its position in the list.

Regex capture variables

If you use regular expression cases, any captures from parentheses in the pattern are available inside the associated
code block as numbered variables (for example, $1, $2), and the entire match is available as $0:

case $trusted['hostname'] {
 /www(\d+)/: { notice("Welcome to web server number ${1}"); include
 role::web }
 default: { include role::generic }
}

This example captures any digits from a hostname such as www01 and www02 and store them in the $1 variable.

Regex capture variables are different from other variables in a couple of ways:

• The values of the numbered variables do not persist outside the code block associated with the pattern that set
them.

• In nested conditionals, each conditional has its own set of values for the set of numbered variables. At the end of
an interior statement, the numbered variables are reset to their previous values for the remainder of the outside
statement. This causes conditional statements to act like local scopes, but only with regard to the numbered
variables.

Best practices

Case statements must have a default case:

• If the rest of your cases are meant to be comprehensive, putting a fail('message') call in the default case
makes your code more robust by protecting against mysterious failures due to behavior changes elsewhere in your
manifests.

• If your cases aren't comprehensive and you want nodes that match none to do nothing, write a default case with an
empty code block (default: {}). This makes your intention obvious to the next person who maintains your
code.

Related information
Values, data types, and aliases on page 885
Most of the things you can do with the Puppet language involve some form of data. An individual piece of data is
called a value, and every value has a data type, which determines what kind of information that value can contain and
how you can interact with it.

Regular expressions on page 909

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 759

A regular expression (sometimes shortened to “regex” or “regexp”) is a pattern that can match some set of strings,
and optionally capture parts of those strings for further use.

Scope lookup rules on page 970
The scope lookup rules determine when a local scope becomes the parent of another local scope.

Selector expressions
Selector expressions are similar to case statements, but instead of executing code, they return a value.

Behavior

The entire selector expression is treated as a single value.Puppet compares the control expression to each of the cases,
in the order they are listed (except for the default case, which always goes last). When it finds a matching case, it
treats that value as the value of the expression and ignore the remainder of the expression. If none of the cases match,
Puppet fails compilation with an error, unless a default case is also provided.

The control expression of a selector can be any expression that resolves to a value. This includes:

• Variables.
• Expressions.
• Functions that return values

Selectors can be used wherever a value is expected. This includes:

• Variable assignments
• Resource attributes
• Function arguments
• Resource titles
• A value in another selector
• Expressions

Tip: For readability sake, use selectors only in variable assignments.

Syntax

Selectors resemble a cross between a case statement and the ternary operator found in other languages. The general
form of a selector is:

• A control expression, which is any expression resolving to a value.
• The ? (question mark) keyword.
• An opening curly brace.
• Any number of possible matches, each of which consists of:

• A case.
• The => (hash rocket) keyword.
• A value, which can be any expression resolving to a value.
• A trailing comma.

• A closing curly brace.

In this example, the value of $rootgroup is determined using the value of $facts['os']['family']:

$rootgroup = $facts['os']['family'] ? {
 'Solaris' => 'wheel',
 /(Darwin|FreeBSD)/ => 'wheel',
 default => 'root',
}

file { '/etc/passwd':
 ensure => file,
 owner => 'root',
 group => $rootgroup,

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 760

}

Case matching

In selector statements, you cannot use lists of cases. If the control expression is a string and you need more than one
case associated with a single value, use a regular expression. Otherwise, use a case statement instead of a selector,
because case statements do allow lists of cases. For more information, see Case statements.

Regex capture variables

If you use regular expression cases, any captures from parentheses in the pattern are available inside the associated
value as numbered variables ($1, $2), and the entire match is available as $0:

puppet
$system = $facts['os']['name'] ? {
 /(RedHat|Debian)/ => "our system is ${1}",
 default => "our system is unknown",
}

Regex capture variables are different from other variables in a couple of ways:

• The values of the numbered variables do not persist outside the value associated with the pattern that set them.
• In nested conditionals, each conditional has its own set of values for the set of numbered variables. At the end of

an interior statement, the numbered variables are reset to their previous values for the remainder of the outside
statement. This causes conditional statements to act like local scopes, but only with regard to the numbered
variables.

Related information
Values, data types, and aliases on page 885
Most of the things you can do with the Puppet language involve some form of data. An individual piece of data is
called a value, and every value has a data type, which determines what kind of information that value can contain and
how you can interact with it.

Regular expressions on page 909
A regular expression (sometimes shortened to “regex” or “regexp”) is a pattern that can match some set of strings,
and optionally capture parts of those strings for further use.

Scope on page 966
A scope is a specific area of code that is partially isolated from other areas of code.

Function calls
Functions are plug-ins, written in Ruby, that you can call during catalog compilation. A call to any function is an
expression that resolves to a value. Most functions accept one or more values as arguments, and return a resulting
value.

The Ruby code in the function can do any number of things to produce the final value, including:

• Evaluate templates.
• Do mathematical calculations.
• Look up values from an external source.
• Cause side effects that modify the catalog.
• Evaluate a provided block of Puppet code, possibly using the function's arguments to modify that code or control

how it runs.

Puppet includes several built-in functions. More functions are available in modules, such as puppetlabs-
stdlib, on the Forge. You can also write custom functions and put them in your own modules.

An entire function call—including the name, arguments, and lambda—constitutes an expression. It resolves to a
single value, and can be used anywhere a value of that type is accepted. A function call might also have an effect,

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/

Puppet | Developing Puppet code | 761

such as adding a class to the catalog. You can also use function calls on their own, which causes their effects to occur
while their value is ignored.

All functions run during catalog compilation, which means they can access code and data only from the primary
Puppet server. To make changes to an agent node, you must use a resource; to collect data from an agent node, you
must use a custom fact.

Each function defines how many arguments it takes, what data types it expects those arguments to be, what values it
returns, and any effects it has. For details about any functions built into Puppet, see the function reference. For details
about a function included in a module, see that module's documentation.

Statement functions

Statement functions are a group of built-in functions that are used only for their effects, rather than for any values.
Puppet recognizes only its built-in statements; it doesn't allow adding new statement functions as plugins. The major
difference between statement functions and other functions is that you can omit parentheses when calling a statement
function with at least one argument, such as include apache.

Statement functions return a value like any other function, but they always return a value of undef. The built-in
statement functions are:

Catalog statements

include: Includes the specified classes in a catalog.

require: Includes the specified classes in the catalog and adds them as a dependency of the current class or
defined resource

contain: Includes the specified classes in the catalog and contains them in the current class.

tag: Adds the specified tag or tags to the containing class or defined resource.

Logging statements

debug: Logs message at the debug level.

info: Logs message at the info level.

notice: Logs message at the notice level.

warning: Logs message at the warning level

err: Logs message at the error level.

Failure statements

fail: Logs the error message and terminates compilation.

Related information
Custom functions overview on page 498
Puppet includes many built-in functions, and more are available in modules on the Forge. You can also write your
own custom functions.

Functions syntax
Like any expression, a function call can be used anywhere the value it returns would be allowed. Function calls can
also stand on their own, to cause their side effects, but ignore their returned value.

There are two ways to call functions in the Puppet language: prefix calls as in template("ntp/
ntp.conf.erb"), and chained calls as in "ntp/ntp.conf.erb".template. There's also a modified form
of prefix call that can only be used with certain functions.

The two function call styles have exactly the same capabilities, so you can choose whichever one is more readable. In
general:

• For functions that take many arguments, prefix calls are easier to read.
• For functions that take one normal argument and a lambda, chained calls are easier to read.
• For a series of functions where each takes the last one's result as its argument, chained calls are easier to read,

especially if at least one of those functions accepts a lambda.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/function.html

Puppet | Developing Puppet code | 762

Most functions have short, one-word names. The modern function API also allows qualified function names like
mymodule::myfunction. Functions must always be called with their full names; you can't shorten a qualified
function name.

Prefix function calls

You call a function in the prefix style by writing its name and providing a list of arguments in parentheses. The
general form of a prefix function call is:

function_name(argument, argument, ...) |$parameter, $parameter, ...| { code
 block }

• The full name of the function, as an unquoted word.
• An opening parenthesis (. Parentheses are optional when you're calling a built-in statement function with at least

one argument, as in include apache. They're mandatory in all other cases.
• Zero or more arguments, separated by commas. Arguments can be any expression that resolves to a value. See

each function's docs for the number of its arguments and their data types. Use the splat array operator * to convert
an array into a comma-separated list of arguments.

• A closing parenthesis) if an opening parenthesis was used.
• Optionally, a lambda (code block), if the function accepts one.

In the following example, template, include, and each are all functions. The template function is used for
its return value, include adds a class to the catalog, and each runs a block of code several times with different
values.

file {"/etc/ntp.conf":
 ensure => file,
 content => template("ntp/ntp.conf.erb"), # function call; resolves to a
 string
}

include apache # function call; modifies catalog

$binaries = [
 "facter",
 "hiera",
 "mco",
 "puppet",
 "puppetserver",
]

function call with lambda; runs block of code several times
each($binaries) |$binary| {
 file {"/usr/bin/$binary":
 ensure => link,
 target => "/opt/puppetlabs/bin/$binary",
 }
}

Chained function calls

Alternatively, you call a function in the chained style by writing its first argument, a period, and the name of the
function. The general form of a chained function call is:

argument.function_name(argument, ...) |$parameter, $parameter, ...| { code
 block }

• The first argument of the function, which can be any expression that resolves to a value.
• A period .

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 763

• The full name of the function, as an unquoted word.
• Optionally, parentheses containing a comma-separated list of additional arguments, starting with the second

argument (because you already passed in the first argument). Use the splat array operator * to convert an array to
a comma-separated list of arguments.

• Optionally, a lambda (code block), if the function accepts one.

In the following example, template, include, and each are all functions. The template function is used for
its return value, include adds a class to the catalog, and each runs a block of code several times with different
values.

puppet
file {"/etc/ntp.conf":
 ensure => file,
 content => "ntp/ntp.conf.erb".template, # function call; resolves to a
 string
}

apache.include # function call; modifies catalog

$binaries = [
 "facter",
 "hiera",
 "mco",
 "puppet",
 "puppetserver",
]

function call with lambda; runs block of code several times
$binaries.each |$binary| {
 file {"/usr/bin/$binary":
 ensure => link,
 target => "/opt/puppetlabs/bin/$binary",
 }
}

Related information
Lambdas on page 953
Lambdas are blocks of Puppet code passed to functions. When a function receives a lambda, it provides values for the
lambda’s parameters and evaluates its code. If you use other programming languages, think of lambdas as anonymous
functions that are passed to other functions.

Expressions and operators on page 744
Expressions are statements that resolve to values. You can use expressions almost anywhere a value is required.
Expressions can be compounded with other expressions, and the entire combined expression resolves to a single
value.

Values, data types, and aliases on page 885
Most of the things you can do with the Puppet language involve some form of data. An individual piece of data is
called a value, and every value has a data type, which determines what kind of information that value can contain and
how you can interact with it.

Array operators on page 751
Array operators take arrays as operands, and, with the exception of * (unary splat), they resolve to array values.

Built-in function reference

NOTE: This page was generated from the Puppet source code on 2022-02-07 10:11:41 -0800

This page is a list of Puppet's built-in functions, with descriptions of what they do and how to use them.

Functions are plugins you can call during catalog compilation. A call to any function is an expression that resolves to
a value. For more information on how to call functions, see Function calls on page 760

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 764

Many of these function descriptions include auto-detected signatures, which are short reminders of the function's
allowed arguments. These signatures aren't identical to the syntax you use to call the function; instead, they resemble
a parameter list from a Puppet Classes on page 733, Defined resource types on page 740, Writing custom
functions in the Puppet language on page 499, or Lambdas on page 953. The syntax of a signature is:

<FUNCTION NAME>(<DATA TYPE> <ARGUMENT NAME>, ...)

The <DATA TYPE> is a Data type syntax on page 921, like String or Optional[Array[String]]. The
<ARGUMENT NAME> is a descriptive name chosen by the function's author to indicate what the argument is used for.

• Any arguments with an Optional data type can be omitted from the function call.
• Arguments that start with an asterisk (like *$values) can be repeated any number of times.
• Arguments that start with an ampersand (like &$block) aren't normal arguments; they represent a code block,

provided with Lambdas on page 953

undef values in Puppet 6

In Puppet 6, many Puppet types were moved out of the Puppet codebase, and into modules on the Puppet Forge.
The new functions handle undef values more strictly than their stdlib counterparts. In Puppet 6, code that relies on
undef values being implicitly treated as other types will return an evaluation error. For more information on which
types were moved into modules, see the Puppet 6 release notes.

abs

Returns the absolute value of a Numeric value, for example -34.56 becomes 34.56. Takes a single Integer or
Float value as an argument.

Deprecated behavior

For backwards compatibility reasons this function also works when given a number in String format such that it
first attempts to covert it to either a Float or an Integer and then taking the absolute value of the result. Only
strings representing a number in decimal format is supported - an error is raised if value is not decimal (using base
10). Leading 0 chars in the string are ignored. A floating point value in string form can use some forms of scientific
notation but not all.

Callers should convert strings to Numeric before calling this function to have full control over the conversion.

abs(Numeric($str_val))

It is worth noting that Numeric can convert to absolute value directly as in the following examples:

Numeric($strval, true) # Converts to absolute Integer or Float
Integer($strval, 10, true) # Converts to absolute Integer using base 10
 (decimal)
Integer($strval, 16, true) # Converts to absolute Integer using base 16
 (hex)
Float($strval, true) # Converts to absolute Float

Signature 1

abs(Numeric $val)

Signature 2

abs(String $val)

alert

Logs a message on the server at level alert.

alert(Any *$values)

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/6.0/release_notes_puppet.html#select-types-moved-to-modules

Puppet | Developing Puppet code | 765

Parameters

• *values --- The values to log.

Return type(s): Undef.

all

Runs a lambda repeatedly using each value in a data structure until the lambda returns a non "truthy" value which
makes the function return false, or if the end of the iteration is reached, true is returned.

This function takes two mandatory arguments, in this order:

1. An array, hash, or other iterable object that the function will iterate over.
2. A lambda, which the function calls for each element in the first argument. It can request one or two parameters.

$data.all |$parameter| { <PUPPET CODE BLOCK> }

or

all($data) |$parameter| { <PUPPET CODE BLOCK> }

For the array $data, run a lambda that checks that all values are
 multiples of 10
$data = [10, 20, 30]
notice $data.all |$item| { $item % 10 == 0 }

Would notice true.

When the first argument is a Hash, Puppet passes each key and value pair to the lambda as an array in the form
[key, value].

For the hash $data, run a lambda using each item as a key-value array
$data = { 'a_0'=> 10, 'b_1' => 20 }
notice $data.all |$item| { $item[1] % 10 == 0 }

Would notice true if all values in the hash are multiples of 10.

When the lambda accepts two arguments, the first argument gets the index in an array or the key from a hash, and the
second argument the value.

Check that all values are a multiple of 10 and keys start with 'abc'
$data = {abc_123 => 10, abc_42 => 20, abc_blue => 30}
notice $data.all |$key, $value| { $value % 10 == 0 and $key =~ /^abc/ }

Would notice true.

For an general examples that demonstrates iteration, see the Puppet iteration documentation.

Signature 1

all(Hash[Any, Any] $hash, Callable[2,2] &$block)

Signature 2

all(Hash[Any, Any] $hash, Callable[1,1] &$block)

Signature 3

all(Iterable $enumerable, Callable[2,2] &$block)

Signature 4

all(Iterable $enumerable, Callable[1,1] &$block)

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html
https://puppet.com/docs/puppet/latest/lang_iteration.html

Puppet | Developing Puppet code | 766

annotate

Handles annotations on objects. The function can be used in four different ways.

With two arguments, an Annotation type and an object, the function returns the annotation for the object of the
given type, or undef if no such annotation exists.

$annotation = Mod::NickNameAdapter.annotate(o)

$annotation = annotate(Mod::NickNameAdapter.annotate, o)

With three arguments, an Annotation type, an object, and a block, the function returns the annotation for the
object of the given type, or annotates it with a new annotation initialized from the hash returned by the given block
when no such annotation exists. The block will not be called when an annotation of the given type is already present.

$annotation = Mod::NickNameAdapter.annotate(o) || { { 'nick_name' =>
 'Buddy' } }

$annotation = annotate(Mod::NickNameAdapter.annotate, o) || { { 'nick_name'
 => 'Buddy' } }

With three arguments, an Annotation type, an object, and an Hash, the function will annotate the given object
with a new annotation of the given type that is initialized from the given hash. An existing annotation of the given
type is discarded.

$annotation = Mod::NickNameAdapter.annotate(o, { 'nick_name' => 'Buddy' })

$annotation = annotate(Mod::NickNameAdapter.annotate, o, { 'nick_name' =>
 'Buddy' })

With three arguments, an Annotation type, an object, and an the string clear, the function will clear the
annotation of the given type in the given object. The old annotation is returned if it existed.

$annotation = Mod::NickNameAdapter.annotate(o, clear)

$annotation = annotate(Mod::NickNameAdapter.annotate, o, clear)

With three arguments, the type Pcore, an object, and a Hash of hashes keyed by Annotation types, the function
will annotate the given object with all types used as keys in the given hash. Each annotation is initialized with the
nested hash for the respective type. The annotated object is returned.

 $person = Pcore.annotate(Mod::Person({'name' => 'William'}), {
 Mod::NickNameAdapter >= { 'nick_name' => 'Bill' },
 Mod::HobbiesAdapter => { 'hobbies' => ['Ham Radio', 'Philatelist'] }
 })

Signature 1

annotate(Type[Annotation] $type, Any $value, Optional[Callable[0, 0]] &$block)

Signature 2

annotate(Type[Annotation] $type, Any $value,
Variant[Enum[clear],Hash[Pcore::MemberName,Any]] $annotation_hash)

Signature 3

annotate(Type[Pcore] $type, Any $value, Hash[Type[Annotation],
Hash[Pcore::MemberName,Any]] $annotations)

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 767

any

Runs a lambda repeatedly using each value in a data structure until the lambda returns a "truthy" value which makes
the function return true, or if the end of the iteration is reached, false is returned.

This function takes two mandatory arguments, in this order:

1. An array, hash, or other iterable object that the function will iterate over.
2. A lambda, which the function calls for each element in the first argument. It can request one or two parameters.

$data.any |$parameter| { <PUPPET CODE BLOCK> }

or

any($data) |$parameter| { <PUPPET CODE BLOCK> }

For the array $data, run a lambda that checks if an unknown hash contains
 those keys
$data = ["routers", "servers", "workstations"]
$looked_up = lookup('somekey', Hash)
notice $data.any |$item| { $looked_up[$item] }

Would notice true if the looked up hash had a value that is neither false nor undef for at least one of the
keys. That is, it is equivalent to the expression $looked_up[routers] || $looked_up[servers] ||
$looked_up[workstations].

When the first argument is a Hash, Puppet passes each key and value pair to the lambda as an array in the form
[key, value].

For the hash $data, run a lambda using each item as a key-value array.
$data = {"rtr" => "Router", "svr" => "Server", "wks" => "Workstation"}
$looked_up = lookup('somekey', Hash)
notice $data.any |$item| { $looked_up[$item[0]] }

Would notice true if the looked up hash had a value for one of the wanted key that is neither false nor undef.

When the lambda accepts two arguments, the first argument gets the index in an array or the key from a hash, and the
second argument the value.

Check if there is an even numbered index that has a non String value
$data = [key1, 1, 2, 2]
notice $data.any |$index, $value| { $index % 2 == 0 and $value !~ String }

Would notice true as the index 2 is even and not a String

For an general examples that demonstrates iteration, see the Puppet iteration documentation.

Signature 1

any(Hash[Any, Any] $hash, Callable[2,2] &$block)

Signature 2

any(Hash[Any, Any] $hash, Callable[1,1] &$block)

Signature 3

any(Iterable $enumerable, Callable[2,2] &$block)

Signature 4

any(Iterable $enumerable, Callable[1,1] &$block)

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html
https://puppet.com/docs/puppet/latest/lang_iteration.html

Puppet | Developing Puppet code | 768

assert_type

Returns the given value if it is of the given data type, or otherwise either raises an error or executes an optional two-
parameter lambda.

The function takes two mandatory arguments, in this order:

1. The expected data type.
2. A value to compare against the expected data type.

$raw_username = 'Amy Berry'

Assert that $raw_username is a non-empty string and assign it to
 $valid_username.
$valid_username = assert_type(String[1], $raw_username)

$valid_username contains "Amy Berry".
If $raw_username was an empty string or a different data type, the Puppet
 run would
fail with an "Expected type does not match actual" error.

You can use an optional lambda to provide enhanced feedback. The lambda takes two mandatory parameters, in this
order:

1. The expected data type as described in the function's first argument.
2. The actual data type of the value.

$raw_username = 'Amy Berry'

Assert that $raw_username is a non-empty string and assign it to
 $valid_username.
If it isn't, output a warning describing the problem and use a default
 value.
$valid_username = assert_type(String[1], $raw_username) |$expected, $actual|
 {
 warning("The username should be \'${expected}\', not \'${actual}\'. Using
 'anonymous'.")
 'anonymous'
}

$valid_username contains "Amy Berry".
If $raw_username was an empty string, the Puppet run would set
 $valid_username to
"anonymous" and output a warning: "The username should be 'String[1,
 default]', not
'String[0, 0]'. Using 'anonymous'."

For more information about data types, see the documentation.

Signature 1

assert_type(Type $type, Any $value, Optional[Callable[Type, Type]] &$block)

Signature 2

assert_type(String $type_string, Any $value, Optional[Callable[Type, Type]] &
$block)

binary_file

Loads a binary file from a module or file system and returns its contents as a Binary. The argument to this function
should be a <MODULE NAME>/<FILE> reference, which will load <FILE> from a module's files directory.
(For example, the reference mysql/mysqltuner.pl will load the file <MODULES DIRECTORY>/mysql/
files/mysqltuner.pl.)

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_data.html
https://puppet.com/docs/puppet/latest/lang_lambdas.html
https://puppet.com/docs/puppet/latest/lang_data.html

Puppet | Developing Puppet code | 769

This function also accepts an absolute file path that allows reading binary file content from anywhere on disk.

An error is raised if the given file does not exists.

To search for the existence of files, use the find_file() function.

• since 4.8.0

binary_file(String $path)

break

Breaks an innermost iteration as if it encountered an end of input. This function does not return to the caller.

The signal produced to stop the iteration bubbles up through the call stack until either terminating the innermost
iteration or raising an error if the end of the call stack is reached.

The break() function does not accept an argument.

$data = [1,2,3]
notice $data.map |$x| { if $x == 3 { break() } $x*10 }

Would notice the value [10, 20]

function break_if_even($x) {
 if $x % 2 == 0 { break() }
}
$data = [1,2,3]
notice $data.map |$x| { break_if_even($x); $x*10 }

Would notice the value [10]

• Also see functions next and return

break()

call

Calls an arbitrary Puppet function by name.

This function takes one mandatory argument and one or more optional arguments:

1. A string corresponding to a function name.
2. Any number of arguments to be passed to the called function.
3. An optional lambda, if the function being called supports it.

This function can also be used to resolve a Deferred given as the only argument to the function (does not accept
arguments nor a block).

$a = 'notice'
call($a, 'message')

$a = 'each'
$b = [1,2,3]
call($a, $b) |$item| {
 notify { $item: }
}

The call function can be used to call either Ruby functions or Puppet language functions.

When used with Deferred values, the deferred value can either describe a function call, or a dig into a variable.

$d = Deferred('join', [[1,2,3], ':']) # A future call to join that joins the
 arguments 1,2,3 with ':'

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 770

notice($d.call())

Would notice the string "1:2:3".

$d = Deferred('$facts', ['processors', 'count'])
notice($d.call())

Would notice the value of $facts['processors']['count'] at the time when the call is made.

• Deferred values supported since Puppet 6.0

Signature 1

call(String $function_name, Any *$arguments, Optional[Callable] &$block)

Signature 2

call(Deferred $deferred)

camelcase

Creates a Camel Case version of a String

This function is compatible with the stdlib function with the same name.

The function does the following:

• For a String the conversion replaces all combinations of *_<char>* with an upcased version of the character
following the _. This is done using Ruby system locale which handles some, but not all special international up-
casing rules (for example German double-s ß is upcased to "Ss").

• For an Iterable[Variant[String, Numeric]] (for example an Array) each value is capitalized and
the conversion is not recursive.

• If the value is Numeric it is simply returned (this is for backwards compatibility).
• An error is raised for all other data types.
• The result will not contain any underscore characters.

Please note: This function relies directly on Ruby's String implementation and as such may not be entirely UTF8
compatible. To ensure best compatibility please use this function with Ruby 2.4.0 or greater - https://bugs.ruby-
lang.org/issues/10085.

'hello_friend'.camelcase()
camelcase('hello_friend')

Would both result in "HelloFriend"

['abc_def', 'bcd_xyz'].camelcase()
camelcase(['abc_def', 'bcd_xyz'])

Would both result in ['AbcDef', 'BcdXyz']

Signature 1

camelcase(Numeric $arg)

Signature 2

camelcase(String $arg)

Signature 3

camelcase(Iterable[Variant[String, Numeric]] $arg)

capitalize

Capitalizes the first character of a String, or the first character of every String in an Iterable value (such as an Array).

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 771

This function is compatible with the stdlib function with the same name.

The function does the following:

• For a String, a string with its first character in upper case version is returned. This is done using Ruby system
locale which handles some, but not all special international up-casing rules (for example German double-s ß is
capitalized to "Ss").

• For an Iterable[Variant[String, Numeric]] (for example an Array) each value is capitalized and
the conversion is not recursive.

• If the value is Numeric it is simply returned (this is for backwards compatibility).
• An error is raised for all other data types.

Please note: This function relies directly on Ruby's String implementation and as such may not be entirely UTF8
compatible. To ensure best compatibility please use this function with Ruby 2.4.0 or greater - https://bugs.ruby-
lang.org/issues/10085.

'hello'.capitalize()
capitalize('hello')

Would both result in "Hello"

['abc', 'bcd'].capitalize()
capitalize(['abc', 'bcd'])

Would both result in ['Abc', 'Bcd']

Signature 1

capitalize(Numeric $arg)

Signature 2

capitalize(String $arg)

Signature 3

capitalize(Iterable[Variant[String, Numeric]] $arg)

ceiling

Returns the smallest Integer greater or equal to the argument. Takes a single numeric value as an argument.

This function is backwards compatible with the same function in stdlib and accepts a Numeric value. A String
that can be converted to a floating point number can also be used in this version - but this is deprecated.

In general convert string input to Numeric before calling this function to have full control over how the conversion
is done.

Signature 1

ceiling(Numeric $val)

Signature 2

ceiling(String $val)

chomp

Returns a new string with the record separator character(s) removed. The record separator is the line ending
characters \r and \n.

This function is compatible with the stdlib function with the same name.

The function does the following:

• For a String the conversion removes \r\n, \n or \r from the end of a string.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 772

• For an Iterable[Variant[String, Numeric]] (for example an Array) each value is processed and
the conversion is not recursive.

• If the value is Numeric it is simply returned (this is for backwards compatibility).
• An error is raised for all other data types.

"hello\r\n".chomp()
chomp("hello\r\n")

Would both result in "hello"

["hello\r\n", "hi\r\n"].chomp()
chomp(["hello\r\n", "hi\r\n"])

Would both result in ['hello', 'hi']

Signature 1

chomp(Numeric $arg)

Signature 2

chomp(String $arg)

Signature 3

chomp(Iterable[Variant[String, Numeric]] $arg)

chop

Returns a new string with the last character removed. If the string ends with \r\n, both characters are removed.
Applying chop to an empty string returns an empty string. If you wish to merely remove record separators then you
should use the chomp function.

This function is compatible with the stdlib function with the same name.

The function does the following:

• For a String the conversion removes the last character, or if it ends with \r\n` it removes both. If String is empty
an empty string is returned.

• For an Iterable[Variant[String, Numeric]] (for example an Array) each value is processed and
the conversion is not recursive.

• If the value is Numeric it is simply returned (this is for backwards compatibility).
• An error is raised for all other data types.

"hello\r\n".chop()
chop("hello\r\n")

Would both result in "hello"

"hello".chop()
chop("hello")

Would both result in "hell"

["hello\r\n", "hi\r\n"].chop()
chop(["hello\r\n", "hi\r\n"])

Would both result in ['hello', 'hi']

Signature 1

chop(Numeric $arg)

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 773

Signature 2

chop(String $arg)

Signature 3

chop(Iterable[Variant[String, Numeric]] $arg)

compare

Compares two values and returns -1, 0 or 1 if first value is smaller, equal or larger than the second value. The
compare function accepts arguments of the data types String, Numeric, Timespan, Timestamp, and Semver,
such that:

• two of the same data type can be compared
• Timespan and Timestamp can be compared with each other and with Numeric

When comparing two String values the comparison can be made to consider case by passing a third (optional)
boolean false value - the default is true which ignores case as the comparison operators in the Puppet Language.

Signature 1

compare(Numeric $a, Numeric $b)

Signature 2

compare(String $a, String $b, Optional[Boolean] $ignore_case)

Signature 3

compare(Semver $a, Semver $b)

Signature 4

compare(Numeric $a, Variant[Timespan, Timestamp] $b)

Signature 5

compare(Timestamp $a, Variant[Timestamp, Numeric] $b)

Signature 6

compare(Timespan $a, Variant[Timespan, Numeric] $b)

contain

Makes one or more classes be contained inside the current class. If any of these classes are undeclared, they will be
declared as if there were declared with the include function. Accepts a class name, an array of class names, or a
comma-separated list of class names.

A contained class will not be applied before the containing class is begun, and will be finished before the containing
class is finished.

You must use the class's full name; relative names are not allowed. In addition to names in string form, you may
also directly use Class and Resource Type-values that are produced by evaluating resource and relationship
expressions.

The function returns an array of references to the classes that were contained thus allowing the function call to
contain to directly continue.

• Since 4.0.0 support for Class and Resource Type-values, absolute names
• Since 4.7.0 a value of type Array[Type[Class[n]]] is returned with all the contained classes

contain(Any *$names)

convert_to

The convert_to(value, type) is a convenience function that does the same as new(type, value). The
difference in the argument ordering allows it to be used in chained style for improved readability "left to right".

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 774

When the function is given a lambda, it is called with the converted value, and the function returns what the lambda
returns, otherwise the converted value.

 # The harder to read variant:
 # Using new operator - that is "calling the type" with operator ()
 Hash(Array("abc").map |$i,$v| { [$i, $v] })

 # The easier to read variant:
 # using 'convert_to'
 "abc".convert_to(Array).map |$i,$v| { [$i, $v] }.convert_to(Hash)

convert_to(Any $value, Type $type, Optional[Any] *$args,
Optional[Callable[1,1]] &$block)

create_resources

Converts a hash into a set of resources and adds them to the catalog.

Note: Use this function selectively. It's generally better to write resources in Puppet, as resources created with
create_resource are difficult to read and troubleshoot.

This function takes two mandatory arguments: a resource type, and a hash describing a set of resources. The hash
should be in the form {title => {parameters} }:

A hash of user resources:
$myusers = {
 'nick' => { uid => '1330',
 gid => allstaff,
 groups => ['developers', 'operations', 'release'], },
 'dan' => { uid => '1308',
 gid => allstaff,
 groups => ['developers', 'prosvc', 'release'], },
}

create_resources(user, $myusers)

A third, optional parameter may be given, also as a hash:

$defaults = {
 'ensure' => present,
 'provider' => 'ldap',
}

create_resources(user, $myusers, $defaults)

The values given on the third argument are added to the parameters of each resource present in the set given on the
second argument. If a parameter is present on both the second and third arguments, the one on the second argument
takes precedence.

This function can be used to create defined resources and classes, as well as native resources.

Virtual and Exported resources may be created by prefixing the type name with @ or @@ respectively. For example,
the $myusers hash may be exported in the following manner:

create_resources("@@user", $myusers)

The $myusers may be declared as virtual resources using:

create_resources("@user", $myusers)

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_resources.html

Puppet | Developing Puppet code | 775

Note that create_resources filters out parameter values that are undef so that normal data binding and Puppet
default value expressions are considered (in that order) for the final value of a parameter (just as when setting a
parameter to undef in a Puppet language resource declaration).

create_resources()

crit

Logs a message on the server at level crit.

crit(Any *$values)

Parameters

• *values --- The values to log.

Return type(s): Undef.

debug

Logs a message on the server at level debug.

debug(Any *$values)

Parameters

• *values --- The values to log.

Return type(s): Undef.

defined

Determines whether a given class or resource type is defined and returns a Boolean value. You can also use
defined to determine whether a specific resource is defined, or whether a variable has a value (including undef,
as opposed to the variable never being declared or assigned).

This function takes at least one string argument, which can be a class name, type name, resource reference, or variable
reference of the form '$name'. (Note that the $ sign is included in the string which must be in single quotes to
prevent the $ character to be interpreted as interpolation.

The defined function checks both native and defined types, including types provided by modules. Types and
classes are matched by their names. The function matches resource declarations by using resource references.

Matching resource types
defined("file")
defined("customtype")

Matching defines and classes
defined("foo")
defined("foo::bar")

Matching variables (note the single quotes)
defined('$name')

Matching declared resources
defined(File['/tmp/file'])

Puppet depends on the configuration's evaluation order when checking whether a resource is declared.

Assign values to $is_defined_before and $is_defined_after using identical
 `defined`
functions.

$is_defined_before = defined(File['/tmp/file'])

file { "/tmp/file":

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 776

 ensure => present,
}

$is_defined_after = defined(File['/tmp/file'])

$is_defined_before returns false, but $is_defined_after returns true.

This order requirement only refers to evaluation order. The order of resources in the configuration graph (e.g. with
before or require) does not affect the defined function's behavior.

Warning: Avoid relying on the result of the defined function in modules, as you might not be able to
guarantee the evaluation order well enough to produce consistent results. This can cause other code that
relies on the function's result to behave inconsistently or fail.

If you pass more than one argument to defined, the function returns true if any of the arguments are defined. You
can also match resources by type, allowing you to match conditions of different levels of specificity, such as whether
a specific resource is of a specific data type.

file { "/tmp/file1":
 ensure => file,
}

$tmp_file = file { "/tmp/file2":
 ensure => file,
}

Each of these statements return `true` ...
defined(File['/tmp/file1'])
defined(File['/tmp/file1'],File['/tmp/file2'])
defined(File['/tmp/file1'],File['/tmp/file2'],File['/tmp/file3'])
... but this returns `false`.
defined(File['/tmp/file3'])

Each of these statements returns `true` ...
defined(Type[Resource['file','/tmp/file2']])
defined(Resource['file','/tmp/file2'])
defined(File['/tmp/file2'])
defined('$tmp_file')
... but each of these returns `false`.
defined(Type[Resource['exec','/tmp/file2']])
defined(Resource['exec','/tmp/file2'])
defined(File['/tmp/file3'])
defined('$tmp_file2')

defined(Variant[String, Type[CatalogEntry], Type[Type[CatalogEntry]]] *$vals)

dig

Returns a value for a sequence of given keys/indexes into a structure, such as an array or hash.

This function is used to "dig into" a complex data structure by using a sequence of keys / indexes to access a value
from which the next key/index is accessed recursively.

The first encountered undef value or key stops the "dig" and undef is returned.

An error is raised if an attempt is made to "dig" into something other than an undef (which immediately returns
undef), an Array or a Hash.

$data = {a => { b => [{x => 10, y => 20}, {x => 100, y => 200}]}}
notice $data.dig('a', 'b', 1, 'x')

Would notice the value 100.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 777

This is roughly equivalent to $data['a']['b'][1]['x']. However, a standard index will return an error
and cause catalog compilation failure if any parent of the final key ('x') is undef. The dig function will return
undef, rather than failing catalog compilation. This allows you to check if data exists in a structure without
mandating that it always exists.

dig(Optional[Collection] $data, Any *$arg)

digest

Returns a hash value from a provided string using the digest_algorithm setting from the Puppet config file.

digest()

downcase

Converts a String, Array or Hash (recursively) into lower case.

This function is compatible with the stdlib function with the same name.

The function does the following:

• For a String, its lower case version is returned. This is done using Ruby system locale which handles some, but
not all special international up-casing rules (for example German double-s ß is upcased to "SS", whereas upper
case double-s is downcased to ß).

• For Array and Hash the conversion to lower case is recursive and each key and value must be convertible by
this function.

• When a Hash is converted, some keys could result in the same key - in those cases, the latest key-value wins. For
example if keys "aBC", and "abC" where both present, after downcase there would only be one key "abc".

• If the value is Numeric it is simply returned (this is for backwards compatibility).
• An error is raised for all other data types.

Please note: This function relies directly on Ruby's String implementation and as such may not be entirely UTF8
compatible. To ensure best compatibility please use this function with Ruby 2.4.0 or greater - https://bugs.ruby-
lang.org/issues/10085.

'HELLO'.downcase()
downcase('HEllO')

Would both result in "hello"

['A', 'B'].downcase()
downcase(['A', 'B'])

Would both result in ['a', 'b']

{'A' => 'HEllO', 'B' => 'GOODBYE'}.downcase()

Would result in {'a' => 'hello', 'b' => 'goodbye'}

['A', 'B', ['C', ['D']], {'X' => 'Y'}].downcase

Would result in ['a', 'b', ['c', ['d']], {'x' => 'y'}]

Signature 1

downcase(Numeric $arg)

Signature 2

downcase(String $arg)

Signature 3

downcase(Array[StringData] $arg)

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 778

Signature 4

downcase(Hash[StringData, StringData] $arg)

each

Runs a lambda repeatedly using each value in a data structure, then returns the values unchanged.

This function takes two mandatory arguments, in this order:

1. An array, hash, or other iterable object that the function will iterate over.
2. A lambda, which the function calls for each element in the first argument. It can request one or two parameters.

$data.each |$parameter| { <PUPPET CODE BLOCK> }

or

each($data) |$parameter| { <PUPPET CODE BLOCK> }

When the first argument ($data in the above example) is an array, Puppet passes each value in turn to the lambda,
then returns the original values.

For the array $data, run a lambda that creates a resource for each item.
$data = ["routers", "servers", "workstations"]
$data.each |$item| {
 notify { $item:
 message => $item
 }
}
Puppet creates one resource for each of the three items in $data. Each
 resource is
named after the item's value and uses the item's value in a parameter.

When the first argument is a hash, Puppet passes each key and value pair to the lambda as an array in the form
[key, value] and returns the original hash.

For the hash $data, run a lambda using each item as a key-value array that
 creates a
resource for each item.
$data = {"rtr" => "Router", "svr" => "Server", "wks" => "Workstation"}
$data.each |$items| {
 notify { $items[0]:
 message => $items[1]
 }
}
Puppet creates one resource for each of the three items in $data, each
 named after the
item's key and containing a parameter using the item's value.

When the first argument is an array and the lambda has two parameters, Puppet passes the array's indexes
(enumerated from 0) in the first parameter and its values in the second parameter.

For the array $data, run a lambda using each item's index and value that
 creates a
resource for each item.
$data = ["routers", "servers", "workstations"]
$data.each |$index, $value| {
 notify { $value:
 message => $index
 }
}
Puppet creates one resource for each of the three items in $data, each
 named after the
item's value and containing a parameter using the item's index.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | Developing Puppet code | 779

When the first argument is a hash, Puppet passes its keys to the first parameter and its values to the second parameter.

For the hash $data, run a lambda using each item's key and value to create
 a resource
for each item.
$data = {"rtr" => "Router", "svr" => "Server", "wks" => "Workstation"}
$data.each |$key, $value| {
 notify { $key:
 message => $value
 }
}
Puppet creates one resource for each of the three items in $data, each
 named after the
item's key and containing a parameter using the item's value.

For an example that demonstrates how to create multiple file resources using each, see the Puppet iteration
documentation.

Signature 1

each(Hash[Any, Any] $hash, Callable[2,2] &$block)

Signature 2

each(Hash[Any, Any] $hash, Callable[1,1] &$block)

Signature 3

each(Iterable $enumerable, Callable[2,2] &$block)

Signature 4

each(Iterable $enumerable, Callable[1,1] &$block)

emerg

Logs a message on the server at level emerg.

emerg(Any *$values)

Parameters

• *values --- The values to log.

Return type(s): Undef.

empty

Returns true if the given argument is an empty collection of values.

This function can answer if one of the following is empty:

• Array, Hash - having zero entries
• String, Binary - having zero length

For backwards compatibility with the stdlib function with the same name the following data types are also accepted
by the function instead of raising an error. Using these is deprecated and will raise a warning:

• Numeric - false is returned for all Numeric values.
• Undef - true is returned for all Undef values.

notice([].empty)
notice(empty([]))
would both notice 'true'

Signature 1

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_iteration.html

Puppet | Developing Puppet code | 780

empty(Collection $coll)

Signature 2

empty(Sensitive[String] $str)

Signature 3

empty(String $str)

Signature 4

empty(Numeric $num)

Signature 5

empty(Binary $bin)

Signature 6

empty(Undef $x)

epp

Evaluates an Embedded Puppet (EPP) template file and returns the rendered text result as a String.

epp('<MODULE NAME>/<TEMPLATE FILE>', <PARAMETER HASH>)

The first argument to this function should be a <MODULE NAME>/<TEMPLATE FILE> reference, which loads
<TEMPLATE FILE> from <MODULE NAME>'s templates directory. In most cases, the last argument is optional;
if used, it should be a hash that contains parameters to pass to the template.

• See the template documentation for general template usage information.
• See the EPP syntax documentation for examples of EPP.

For example, to call the apache module's templates/vhost/_docroot.epp template and pass the docroot
and virtual_docroot parameters, call the epp function like this:

epp('apache/vhost/_docroot.epp', { 'docroot' => '/var/www/html',
'virtual_docroot' => '/var/www/example' })

This function can also accept an absolute path, which can load a template file from anywhere on disk.

Puppet produces a syntax error if you pass more parameters than are declared in the template's parameter tag. When
passing parameters to a template that contains a parameter tag, use the same names as the tag's declared parameters.

Parameters are required only if they are declared in the called template's parameter tag without default values. Puppet
produces an error if the epp function fails to pass any required parameter.

epp(String $path, Optional[Hash[Pattern[/^\w+$/], Any]] $parameters)

err

Logs a message on the server at level err.

err(Any *$values)

Parameters

• *values --- The values to log.

Return type(s): Undef.

eyaml_lookup_key

The eyaml_lookup_key is a hiera 5 lookup_key data provider function. See the configuration guide
documentation for how to use this function.

eyaml_lookup_key(String[1] $key, Hash[String[1],Any] $options,
Puppet::LookupContext $context)

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_data_hash.html
https://puppet.com/docs/puppet/latest/lang_template.html
https://puppet.com/docs/puppet/latest/lang_template_epp.html
https://puppet.com/docs/puppet/latest/hiera_config_yaml_5.html#configuring-a-hierarchy-level-hiera-eyaml
https://puppet.com/docs/puppet/latest/hiera_config_yaml_5.html#configuring-a-hierarchy-level-hiera-eyaml

Puppet | Developing Puppet code | 781

fail

Fail with a parse error. Any parameters will be stringified, concatenated, and passed to the exception-handler.

fail()

file

Loads a file from a module and returns its contents as a string.

The argument to this function should be a <MODULE NAME>/<FILE> reference, which will load <FILE> from a
module's files directory. (For example, the reference mysql/mysqltuner.pl will load the file <MODULES
DIRECTORY>/mysql/files/mysqltuner.pl.)

This function can also accept:

• An absolute path, which can load a file from anywhere on disk.
• Multiple arguments, which will return the contents of the first file found, skipping any files that don't exist.

file()

filter

Applies a lambda to every value in a data structure and returns an array or hash containing any elements for which the
lambda evaluates to a truthy value (not false or undef).

This function takes two mandatory arguments, in this order:

1. An array, hash, or other iterable object that the function will iterate over.
2. A lambda, which the function calls for each element in the first argument. It can request one or two parameters.

$filtered_data = $data.filter |$parameter| { <PUPPET CODE BLOCK> }

or

$filtered_data = filter($data) |$parameter| { <PUPPET CODE BLOCK> }

When the first argument ($data in the above example) is an array, Puppet passes each value in turn to the lambda
and returns an array containing the results.

For the array $data, return an array containing the values that end with
 "berry"
$data = ["orange", "blueberry", "raspberry"]
$filtered_data = $data.filter |$items| { $items =~ /berry$/ }
$filtered_data = [blueberry, raspberry]

When the first argument is a hash, Puppet passes each key and value pair to the lambda as an array in the form
[key, value] and returns a hash containing the results.

For the hash $data, return a hash containing all values of keys that end
 with "berry"
$data = { "orange" => 0, "blueberry" => 1, "raspberry" => 2 }
$filtered_data = $data.filter |$items| { $items[0] =~ /berry$/ }
$filtered_data = {blueberry => 1, raspberry => 2}

When the first argument is an array and the lambda has two parameters, Puppet passes the array's indexes
(enumerated from 0) in the first parameter and its values in the second parameter.

For the array $data, return an array of all keys that both end with
 "berry" and have
an even-numbered index
$data = ["orange", "blueberry", "raspberry"]
$filtered_data = $data.filter |$indexes, $values| { $indexes % 2 == 0 and
 $values =~ /berry$/ }
$filtered_data = [raspberry]

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | Developing Puppet code | 782

When the first argument is a hash, Puppet passes its keys to the first parameter and its values to the second parameter.

For the hash $data, return a hash of all keys that both end with "berry"
 and have
values less than or equal to 1
$data = { "orange" => 0, "blueberry" => 1, "raspberry" => 2 }
$filtered_data = $data.filter |$keys, $values| { $keys =~ /berry$/ and
 $values <= 1 }
$filtered_data = {blueberry => 1}

Signature 1

filter(Hash[Any, Any] $hash, Callable[2,2] &$block)

Signature 2

filter(Hash[Any, Any] $hash, Callable[1,1] &$block)

Signature 3

filter(Iterable $enumerable, Callable[2,2] &$block)

Signature 4

filter(Iterable $enumerable, Callable[1,1] &$block)

find_file

Finds an existing file from a module and returns its path.

This function accepts an argument that is a String as a <MODULE NAME>/<FILE> reference, which searches for
<FILE> relative to a module's files directory. (For example, the reference mysql/mysqltuner.pl will search
for the file <MODULES DIRECTORY>/mysql/files/mysqltuner.pl.)

This function can also accept:

• An absolute String path, which checks for the existence of a file from anywhere on disk.
• Multiple String arguments, which returns the path of the first file found, skipping nonexistent files.
• An array of string paths, which returns the path of the first file found from the given paths in the array, skipping

nonexistent files.

The function returns undef if none of the given paths were found.

Signature 1

find_file(String *$paths)

Signature 2

find_file(Array[String] *$paths_array)

find_template

Finds an existing template from a module and returns its path.

This function accepts an argument that is a String as a <MODULE NAME>/<TEMPLATE> reference, which searches
for <TEMPLATE> relative to a module's templates directory on the primary server. (For example, the reference
mymod/secret.conf.epp will search for the file <MODULES DIRECTORY>/mymod/templates/
secret.conf.epp.)

The primary use case is for agent-side template rendering with late-bound variables resolved, such as from secret
stores inaccessible to the primary server, such as

$variables = {
 'password' => Deferred('vault_lookup::lookup',
 ['secret/mymod', 'https://vault.example.com:8200']),
}

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 783

compile the template source into the catalog
file { '/etc/secrets.conf':
 ensure => file,
 content => Deferred('inline_epp',
 [find_template('mymod/secret.conf.epp').file, $variables]),
}

This function can also accept:

• An absolute String path, which checks for the existence of a template from anywhere on disk.
• Multiple String arguments, which returns the path of the first template found, skipping nonexistent files.
• An array of string paths, which returns the path of the first template found from the given paths in the array,

skipping nonexistent files.

The function returns undef if none of the given paths were found.

Signature 1

find_template(String *$paths)

Signature 2

find_template(Array[String] *$paths_array)

flatten

Returns a flat Array produced from its possibly deeply nested given arguments.

One or more arguments of any data type can be given to this function. The result is always a flat array representation
where any nested arrays are recursively flattened.

flatten(['a', ['b', ['c']]])
Would return: ['a','b','c']

To flatten other kinds of iterables (for example hashes, or intermediate results like from a reverse_each) first
convert the result to an array using Array($x), or $x.convert_to(Array). See the new function for details
and options when performing a conversion.

$hsh = { a => 1, b => 2}

-- without conversion
$hsh.flatten()
Would return [{a => 1, b => 2}]

-- with conversion
$hsh.convert_to(Array).flatten()
Would return [a,1,b,2]

flatten(Array($hsh))
Would also return [a,1,b,2]

$a1 = [1, [2, 3]]
$a2 = [[4,[5,6]]
$x = 7
flatten($a1, $a2, $x)
would return [1,2,3,4,5,6,7]

flatten(42)
Would return [42]

flatten([42])

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 784

Would also return [42]

flatten(Any *$args)

floor

Returns the largest Integer less or equal to the argument. Takes a single numeric value as an argument.

This function is backwards compatible with the same function in stdlib and accepts a Numeric value. A String
that can be converted to a floating point number can also be used in this version - but this is deprecated.

In general convert string input to Numeric before calling this function to have full control over how the conversion
is done.

Signature 1

floor(Numeric $val)

Signature 2

floor(String $val)

fqdn_rand

Usage: fqdn_rand(MAX, [SEED], [DOWNCASE]). MAX is required and must be a positive integer; SEED is
optional and may be any number or string; DOWNCASE is optional and should be a boolean true or false.

Generates a random Integer number greater than or equal to 0 and less than MAX, combining the $fqdn fact and the
value of SEED for repeatable randomness. (That is, each node will get a different random number from this function,
but a given node's result will be the same every time unless its hostname changes.) If DOWNCASE is true, then the
fqdn fact will be downcased when computing the value so that the result is not sensitive to the case of the fqdn
fact.

This function is usually used for spacing out runs of resource-intensive cron tasks that run on many nodes, which
could cause a thundering herd or degrade other services if they all fire at once. Adding a SEED can be useful
when you have more than one such task and need several unrelated random numbers per node. (For example,
fqdn_rand(30), fqdn_rand(30, 'expensive job 1'), and fqdn_rand(30, 'expensive job
2') will produce totally different numbers.)

fqdn_rand()

generate

Calls an external command on the Puppet master and returns the results of the command. Any arguments are passed
to the external command as arguments. If the generator does not exit with return code of 0, the generator is considered
to have failed and a parse error is thrown. Generators can only have file separators, alphanumerics, dashes, and
periods in them. This function will attempt to protect you from malicious generator calls (e.g., those with '..' in them),
but it can never be entirely safe. No subshell is used to execute generators, so all shell metacharacters are passed
directly to the generator, and all metacharacters are returned by the function. Consider cleaning white space from any
string generated.

generate()

get

Digs into a value with dot notation to get a value from within a structure.

To dig into a given value, call the function with (at least) two arguments:

• The first argument must be an Array, or Hash. Value can also be undef (which also makes the result undef
unless a default value is given).

• The second argument must be a dot notation navigation string.
• The optional third argument can be any type of value and it is used as the default value if the function would

otherwise return undef.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 785

• An optional lambda for error handling taking one Error argument.

Dot notation navigation string - The dot string consists of period . separated segments where each segment is either
the index into an array or the value of a hash key. If a wanted key contains a period it must be quoted to avoid it being
taken as a segment separator. Quoting can be done with either single quotes ' or double quotes ". If a segment is a
decimal number it is converted to an Integer index. This conversion can be prevented by quoting the value.

#get($facts, 'os.family')
$facts.get('os.family')

Would both result in the value of $facts['os']['family']

get([1,2,[{'name' =>'waldo'}]], '2.0.name')

Would result in 'waldo'

get([1,2,[{'name' =>'waldo'}]], '2.1.name', 'not waldo')

Would result in 'not waldo'

$x = [1, 2, { 'readme.md' => "This is a readme."}]
$x.get('2."readme.md"')

$x = [1, 2, { '10' => "ten"}]
$x.get('2."0"')

Error Handling - There are two types of common errors that can be handled by giving the function a code block
to execute. (A third kind or error; when the navigation string has syntax errors (for example an empty segment or
unbalanced quotes) will always raise an error).

The given block will be given an instance of the Error data type, and it has methods to extract msg, issue_code,
kind, and details.

The msg will be a preformatted message describing the error. This is the error message that would have surfaced if
there was no block to handle the error.

The kind is the string 'SLICE_ERROR' for both kinds of errors, and the issue_code is either
the string 'EXPECTED_INTEGER_INDEX' for an attempt to index into an array with a String, or
'EXPECTED_COLLECTION' for an attempt to index into something that is not a Collection.

The details is a Hash that for both issue codes contain the entry 'walked_path' which is an Array with each
key in the progression of the dig up to the place where the error occurred.

For an EXPECTED_INTEGER_INDEX-issue the detail 'index_type' is set to the data type of the index value
and for an 'EXPECTED_COLLECTION'-issue the detail 'value_type' is set to the type of the value.

The logic in the error handling block can inspect the details, and either call fail() with a custom error message or
produce the wanted value.

If the block produces undef it will not be replaced with a given default value.

$x = 'blue'
$x.get('0.color', 'green') |$error| { undef } # result is undef

$y = ['blue']
$y.get('color', 'green') |$error| { undef } # result is undef

$x = [1, 2, ['blue']]
$x.get('2.color') |$error| {
 notice("Walked path is ${error.details['walked_path']}")
}

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 786

Would notice Walked path is [2, color]

Also see:

• getvar() that takes the first segment to be the name of a variable and then delegates to this function.
• dig() function which is similar but uses an array of navigation values instead of a dot notation string.

get(Any $value, String $dotted_string, Optional[Any] $default_value,
Optional[Callable[1,1]] &$block)

getvar

Digs into a variable with dot notation to get a value from a structure.

To get the value from a variable (that may or may not exist), call the function with one or two arguments:

• The first argument must be a string, and must start with a variable name without leading $, for example
get('facts'). The variable name can be followed by a dot notation navigation string to dig out a value in the
array or hash value of the variable.

• The optional second argument can be any type of value and it is used as the default value if the function would
otherwise return undef.

• An optional lambda for error handling taking one Error argument.

Dot notation navigation string - The dot string consists of period . separated segments where each segment is either
the index into an array or the value of a hash key. If a wanted key contains a period it must be quoted to avoid it being
taken as a segment separator. Quoting can be done with either single quotes ' or double quotes ". If a segment is a
decimal number it is converted to an Integer index. This conversion can be prevented by quoting the value.

getvar('facts') # results in the value of $facts

getvar('facts.os.family') # results in the value of $facts['os']['family']

$x = [1,2,[{'name' =>'waldo'}]]
getvar('x.2.1.name', 'not waldo')
results in 'not waldo'

For further examples and how to perform error handling, see the get() function which this function delegates to
after having resolved the variable value.

getvar(Pattern[/\A(?:::)?(?:[a-z]\w*::)*[a-z_]\w*(?:.|\Z)/] $get_string,
Optional[Any] $default_value, Optional[Callable[1,1]] &$block)

group_by

Groups the collection by result of the block. Returns a hash where the keys are the evaluated result from the block and
the values are arrays of elements in the collection that correspond to the key.

Signature 1

group_by(Collection $collection, Callable[1,1] &$block)

Parameters

• collection --- A collection of things to group.

Return type(s): Hash.

Examples

Group array of strings by length, results in e.g. { 1 => [a, b], 2 => [ab] }

[a, b, ab].group_by |$s| { $s.length }

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 787

Group array of strings by length and index, results in e.g. {1 => ['a'], 2 => ['b', 'ab']}

[a, b, ab].group_by |$i, $s| { $i%2 + $s.length }

Group hash iterating by key-value pair, results in e.g. { 2 => [['a', [1, 2]]], 1 => [['b', [1]]] }

{ a => [1, 2], b => [1] }.group_by |$kv| { $kv[1].length }

Group hash iterating by key and value, results in e.g. { 2 => [['a', [1, 2]]], 1 => [['b', [1]]] }

 { a => [1, 2], b => [1] }.group_by |$k, $v| { $v.length }

Signature 2

group_by(Array $array, Callable[2,2] &$block)

Signature 3

group_by(Collection $collection, Callable[2,2] &$block)

hiera

Performs a standard priority lookup of the hierarchy and returns the most specific value for a given key. The returned
value can be any type of data.

This function is deprecated in favor of the lookup function. While this function continues to work, it does not
support:

• lookup_options stored in the data
• lookup across global, environment, and module layers

The function takes up to three arguments, in this order:

1. A string key that Hiera searches for in the hierarchy. Required.
2. An optional default value to return if Hiera doesn't find anything matching the key.

• If this argument isn't provided and this function results in a lookup failure, Puppet fails with a compilation
error.

3. The optional name of an arbitrary hierarchy level to insert at the top of the hierarchy. This lets you temporarily
modify the hierarchy for a single lookup.

• If Hiera doesn't find a matching key in the overriding hierarchy level, it continues searching the rest of the
hierarchy.

The hiera function does not find all matches throughout a hierarchy, instead returning the first specific value
starting at the top of the hierarchy. To search throughout a hierarchy, use the hiera_array or hiera_hash
functions.

Assuming hiera.yaml
:hierarchy:
- web01.example.com
- common

Assuming web01.example.com.yaml:
users:
- "Amy Barry"
- "Carrie Douglas"

Assuming common.yaml:
users:
 admins:
 - "Edith Franklin"
 - "Ginny Hamilton"
 regular:

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/hiera/latest/hierarchy.html

Puppet | Developing Puppet code | 788

 - "Iris Jackson"
 - "Kelly Lambert"

Assuming we are not web01.example.com:

$users = hiera('users', undef)

$users contains {admins => ["Edith Franklin", "Ginny Hamilton"],
regular => ["Iris Jackson", "Kelly Lambert"]}

You can optionally generate the default value with a lambda that takes one parameter.

Assuming the same Hiera data as the previous example:

$users = hiera('users') | $key | { "Key \'${key}\' not found" }

$users contains {admins => ["Edith Franklin", "Ginny Hamilton"],
regular => ["Iris Jackson", "Kelly Lambert"]}
If hiera couldn't match its key, it would return the lambda result,
"Key 'users' not found".

The returned value's data type depends on the types of the results. In the example above, Hiera matches the 'users' key
and returns it as a hash.

See the 'Using the lookup function' documentation for how to perform lookup of data. Also see the 'Using the
deprecated hiera functions' documentation for more information about the Hiera 3 functions.

hiera()

hiera_array

Finds all matches of a key throughout the hierarchy and returns them as a single flattened array of unique values.
If any of the matched values are arrays, they're flattened and included in the results. This is called an array merge
lookup.

This function is deprecated in favor of the lookup function. While this function continues to work, it does not
support:

• lookup_options stored in the data
• lookup across global, environment, and module layers

The hiera_array function takes up to three arguments, in this order:

1. A string key that Hiera searches for in the hierarchy. Required.
2. An optional default value to return if Hiera doesn't find anything matching the key.

• If this argument isn't provided and this function results in a lookup failure, Puppet fails with a compilation
error.

3. The optional name of an arbitrary hierarchy level to insert at the top of the hierarchy. This lets you temporarily
modify the hierarchy for a single lookup.

• If Hiera doesn't find a matching key in the overriding hierarchy level, it continues searching the rest of the
hierarchy.

Assuming hiera.yaml
:hierarchy:
- web01.example.com
- common

Assuming common.yaml:
users:
- 'cdouglas = regular'
- 'efranklin = regular'

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/hiera/latest/lookup_types.html#array-merge
https://puppet.com/docs/hiera/latest/lookup_types.html#array-merge
https://puppet.com/docs/hiera/latest/hierarchy.html

Puppet | Developing Puppet code | 789

Assuming web01.example.com.yaml:
users: 'abarry = admin'

$allusers = hiera_array('users', undef)

$allusers contains ["cdouglas = regular", "efranklin = regular", "abarry =
 admin"].

You can optionally generate the default value with a lambda that takes one parameter.

Assuming the same Hiera data as the previous example:

$allusers = hiera_array('users') | $key | { "Key \'${key}\' not found" }

$allusers contains ["cdouglas = regular", "efranklin = regular", "abarry =
 admin"].
If hiera_array couldn't match its key, it would return the lambda result,
"Key 'users' not found".

hiera_array expects that all values returned will be strings or arrays. If any matched value is a hash, Puppet raises
a type mismatch error.

See the 'Using the lookup function' documentation for how to perform lookup of data. Also see the 'Using the
deprecated hiera functions' documentation for more information about the Hiera 3 functions.

hiera_array()

hiera_hash

Finds all matches of a key throughout the hierarchy and returns them in a merged hash.

This function is deprecated in favor of the lookup function. While this function continues to work, it does not
support:

• lookup_options stored in the data
• lookup across global, environment, and module layers

If any of the matched hashes share keys, the final hash uses the value from the highest priority match. This is called a
hash merge lookup.

The merge strategy is determined by Hiera's :merge_behavior setting.

The hiera_hash function takes up to three arguments, in this order:

1. A string key that Hiera searches for in the hierarchy. Required.
2. An optional default value to return if Hiera doesn't find anything matching the key.

• If this argument isn't provided and this function results in a lookup failure, Puppet fails with a compilation
error.

3. The optional name of an arbitrary hierarchy level to insert at the top of the hierarchy. This lets you temporarily
modify the hierarchy for a single lookup.

• If Hiera doesn't find a matching key in the overriding hierarchy level, it continues searching the rest of the
hierarchy.

Assuming hiera.yaml
:hierarchy:
- web01.example.com
- common

Assuming common.yaml:
users:
regular:

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/hiera/latest/lookup_types.html#hash-merge
https://puppet.com/docs/hiera/latest/configuring.html#mergebehavior
https://puppet.com/docs/hiera/latest/hierarchy.html

Puppet | Developing Puppet code | 790

'cdouglas': 'Carrie Douglas'

Assuming web01.example.com.yaml:
users:
administrators:
'aberry': 'Amy Berry'

Assuming we are not web01.example.com:

$allusers = hiera_hash('users', undef)

$allusers contains {regular => {"cdouglas" => "Carrie Douglas"},
administrators => {"aberry" => "Amy Berry"}}

You can optionally generate the default value with a lambda that takes one parameter.

Assuming the same Hiera data as the previous example:

$allusers = hiera_hash('users') | $key | { "Key \'${key}\' not found" }

$allusers contains {regular => {"cdouglas" => "Carrie Douglas"},
administrators => {"aberry" => "Amy Berry"}}
If hiera_hash couldn't match its key, it would return the lambda result,
"Key 'users' not found".

hiera_hash expects that all values returned will be hashes. If any of the values found in the data sources are
strings or arrays, Puppet raises a type mismatch error.

See the 'Using the lookup function' documentation for how to perform lookup of data. Also see the 'Using the
deprecated hiera functions' documentation for more information about the Hiera 3 functions.

hiera_hash()

hiera_include

Assigns classes to a node using an array merge lookup that retrieves the value for a user-specified key from Hiera's
data.

This function is deprecated in favor of the lookup function in combination with include. While this function
continues to work, it does not support:

• lookup_options stored in the data
• lookup across global, environment, and module layers

In site.pp, outside of any node definitions and below any top-scope
 variables:
lookup('classes', Array[String], 'unique').include

The hiera_include function requires:

• A string key name to use for classes.
• A call to this function (i.e. hiera_include('classes')) in your environment's sites.pp manifest,

outside of any node definitions and below any top-scope variables that Hiera uses in lookups.
• classes keys in the appropriate Hiera data sources, with an array for each classes key and each value of the

array containing the name of a class.

The function takes up to three arguments, in this order:

1. A string key that Hiera searches for in the hierarchy. Required.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/hiera/latest/lookup_types.html#array-merge

Puppet | Developing Puppet code | 791

2. An optional default value to return if Hiera doesn't find anything matching the key.

• If this argument isn't provided and this function results in a lookup failure, Puppet fails with a compilation
error.

3. The optional name of an arbitrary hierarchy level to insert at the top of the hierarchy. This lets you temporarily
modify the hierarchy for a single lookup.

• If Hiera doesn't find a matching key in the overriding hierarchy level, it continues searching the rest of the
hierarchy.

The function uses an array merge lookup to retrieve the classes array, so every node gets every class from the
hierarchy.

Assuming hiera.yaml
:hierarchy:
- web01.example.com
- common

Assuming web01.example.com.yaml:
classes:
- apache::mod::php

Assuming common.yaml:
classes:
- apache

In site.pp, outside of any node definitions and below any top-scope
 variables:
hiera_include('classes', undef)

Puppet assigns the apache and apache::mod::php classes to the
 web01.example.com node.

You can optionally generate the default value with a lambda that takes one parameter.

Assuming the same Hiera data as the previous example:

In site.pp, outside of any node definitions and below any top-scope
 variables:
hiera_include('classes') | $key | {"Key \'${key}\' not found" }

Puppet assigns the apache and apache::mod::php classes to the
 web01.example.com node.
If hiera_include couldn't match its key, it would return the lambda
 result,
"Key 'classes' not found".

See the 'Using the lookup function' documentation for how to perform lookup of data. Also see the 'Using the
deprecated hiera functions' documentation for more information about the Hiera 3 functions.

hiera_include()

hocon_data

The hocon_data is a hiera 5 data_hash data provider function. See the configuration guide documentation for
how to use this function.

Note that this function is not supported without a hocon library being present.

hocon_data(Struct[{path=>String[1]}] $options, Puppet::LookupContext $context)

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/hiera/latest/hierarchy.html
https://puppet.com/docs/hiera/latest/lookup_types.html#array-merge
https://puppet.com/docs/puppet/latest/lang_lambdas.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/puppet/latest/hiera_config_yaml_5.html#configuring-a-hierarchy-level-built-in-backends

Puppet | Developing Puppet code | 792

import

The import function raises an error when called to inform the user that import is no longer supported.

import(Any *$args)

include

Declares one or more classes, causing the resources in them to be evaluated and added to the catalog. Accepts a class
name, an array of class names, or a comma-separated list of class names.

The include function can be used multiple times on the same class and will only declare a given class once. If a
class declared with include has any parameters, Puppet will automatically look up values for them in Hiera, using
<class name>::<parameter name> as the lookup key.

Contrast this behavior with resource-like class declarations (class {'name': parameter => 'value',}),
which must be used in only one place per class and can directly set parameters. You should avoid using both
include and resource-like declarations with the same class.

The include function does not cause classes to be contained in the class where they are declared. For that, see the
contain function. It also does not create a dependency relationship between the declared class and the surrounding
class; for that, see the require function.

You must use the class's full name; relative names are not allowed. In addition to names in string form, you may also
directly use Class and Resource Type-values that are produced by the resource and relationship expressions.

• Since < 3.0.0
• Since 4.0.0 support for class and resource type values, absolute names
• Since 4.7.0 returns an Array[Type[Class]] of all included classes

include(Any *$names)

index

Returns the index (or key in a hash) to a first-found value in an Iterable value.

When called with a lambda the lambda is called repeatedly using each value in a data structure until the lambda
returns a "truthy" value which makes the function return the index or key, or if the end of the iteration is reached,
undef is returned.

This function can be called in two different ways; with a value to be searched for, or with a lambda that determines if
an entry in the iterable matches.

When called with a lambda the function takes two mandatory arguments, in this order:

1. An array, hash, string, or other iterable object that the function will iterate over.
2. A lambda, which the function calls for each element in the first argument. It can request one (value) or two (index/

key, value) parameters.

$data.index |$parameter| { <PUPPET CODE BLOCK> }

or

index($data) |$parameter| { <PUPPET CODE BLOCK> }

$data = ["routers", "servers", "workstations"]
notice $data.index |$value| { $value == 'servers' } # notices 1
notice $data.index |$value| { $value == 'hosts' } # notices undef

$data = {types => ["routers", "servers", "workstations"], colors => ['red',
 'blue', 'green']}
notice $data.index |$value| { 'servers' in $value } # notices 'types'
notice $data.index |$value| { 'red' in $value } # notices 'colors'

Note that the lambda gets the value and not an array with [key, value] as in other iterative functions.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | Developing Puppet code | 793

Using a lambda that accepts two values works the same way, it simply gets the index/key as the first parameter, and
the value as the second.

Find the first even numbered index that has a non String value
$data = [key1, 1, 3, 5]
notice $data.index |$idx, $value| { $idx % 2 == 0 and $value !~ String } #
 notices 2

When called on a String, the lambda is given each character as a value. What is typically wanted is to find a
sequence of characters which is achieved by calling the function with a value to search for instead of giving a lambda.

Find first occurrence of 'ah'
$data = "blablahbleh"
notice $data.index('ah') # notices 5

Find first occurrence of 'la' or 'le'
$data = "blablahbleh"
notice $data.index(/l(a|e)/ # notices 1

When searching in a String with a given value that is neither String nor Regexp the answer is always undef.
When searching in any other iterable, the value is matched against each value in the iteration using strict Ruby ==
semantics. If Puppet Language semantics are wanted (where string compare is case insensitive) use a lambda and the
== operator in Puppet.

$data = ['routers', 'servers', 'WORKstations']
notice $data.index('servers') # notices 1
notice $data.index('workstations') # notices undef (not matching case)

For an general examples that demonstrates iteration, see the Puppet iteration documentation.

Signature 1

index(Hash[Any, Any] $hash, Callable[2,2] &$block)

Signature 2

index(Hash[Any, Any] $hash, Callable[1,1] &$block)

Signature 3

index(Iterable $enumerable, Callable[2,2] &$block)

Signature 4

index(Iterable $enumerable, Callable[1,1] &$block)

Signature 5

index(String $str, Variant[String,Regexp] $match)

Signature 6

index(Iterable $enumerable, Any $match)

info

Logs a message on the server at level info.

info(Any *$values)

Parameters

• *values --- The values to log.

Return type(s): Undef.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_iteration.html

Puppet | Developing Puppet code | 794

inline_epp

Evaluates an Embedded Puppet (EPP) template string and returns the rendered text result as a String.

inline_epp('<EPP TEMPLATE STRING>', <PARAMETER HASH>)

The first argument to this function should be a string containing an EPP template. In most cases, the last argument is
optional; if used, it should be a hash that contains parameters to pass to the template.

• See the template documentation for general template usage information.
• See the EPP syntax documentation for examples of EPP.

For example, to evaluate an inline EPP template and pass it the docroot and virtual_docroot parameters, call
the inline_epp function like this:

inline_epp('docroot: <%= $docroot %> Virtual docroot: <%= $virtual_docroot
%>', { 'docroot' => '/var/www/html', 'virtual_docroot' => '/var/www/
example' })

Puppet produces a syntax error if you pass more parameters than are declared in the template's parameter tag. When
passing parameters to a template that contains a parameter tag, use the same names as the tag's declared parameters.

Parameters are required only if they are declared in the called template's parameter tag without default values. Puppet
produces an error if the inline_epp function fails to pass any required parameter.

An inline EPP template should be written as a single-quoted string or heredoc. A double-quoted string is subject to
expression interpolation before the string is parsed as an EPP template.

For example, to evaluate an inline EPP template using a heredoc, call the inline_epp function like this:

Outputs 'Hello given argument planet!'
inline_epp(@(END), { x => 'given argument' })
<%- | $x, $y = planet | -%>
Hello <%= $x %> <%= $y %>!
END

inline_epp(String $template, Optional[Hash[Pattern[/^\w+$/], Any]]
$parameters)

inline_template

Evaluate a template string and return its value. See the templating docs for more information. Note that if multiple
template strings are specified, their output is all concatenated and returned as the output of the function.

inline_template()

join

Joins the values of an Array into a string with elements separated by a delimiter.

Supports up to two arguments

• values - first argument is required and must be an an Array
• delimiter - second arguments is the delimiter between elements, must be a String if given, and defaults to an

empty string.

join(['a','b','c'], ",")
Would result in: "a,b,c"

Note that array is flattened before elements are joined, but flattening does not extend to arrays nested in hashes or
other objects.

$a = [1,2, undef, 'hello', [x,y,z], {a => 2, b => [3, 4]}]
notice join($a, ', ')

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_data_hash.html
https://puppet.com/docs/puppet/latest/lang_template.html
https://puppet.com/docs/puppet/latest/lang_template_epp.html
https://puppet.com/docs/puppet/latest/lang_data_string.html#heredocs
https://puppet.com/docs/puppet/latest/lang_template.html

Puppet | Developing Puppet code | 795

would result in noticing:
1, 2, , hello, x, y, z, {"a"=>2, "b"=>[3, 4]}

For joining iterators and other containers of elements a conversion must first be made to an Array. The reason for
this is that there are many options how such a conversion should be made.

[1,2,3].reverse_each.convert_to(Array).join(', ')
would result in: "3, 2, 1"

{a => 1, b => 2}.convert_to(Array).join(', ')
would result in "a, 1, b, 2"

For more detailed control over the formatting (including indentations and line breaks, delimiters around arrays
and hash entries, between key/values in hash entries, and individual formatting of values in the array) see the new
function for String and its formatting options for Array and Hash.

join(Array $arg, Optional[String] $delimiter)

json_data

The json_data is a hiera 5 data_hash data provider function. See the configuration guide documentation for
how to use this function.

json_data(Struct[{path=>String[1]}] $options, Puppet::LookupContext $context)

keys

Returns the keys of a hash as an Array

$hsh = {"apples" => 3, "oranges" => 4 }
$hsh.keys()
keys($hsh)
both results in the array ["apples", "oranges"]

• Note that a hash in the puppet language accepts any data value (including undef) unless it is constrained with a
Hash data type that narrows the allowed data types.

• For an empty hash, an empty array is returned.
• The order of the keys is the same as the order in the hash (typically the order in which they were added).

keys(Hash $hsh)

length

Returns the length of an Array, Hash, String, or Binary value.

The returned value is a positive integer indicating the number of elements in the container; counting (possibly
multibyte) characters for a String, bytes in a Binary, number of elements in an Array, and number of key-value
associations in a Hash.

"roses".length() # 5
length("violets") # 7
[10, 20].length # 2
{a => 1, b => 3}.length # 2

Signature 1

length(Collection $arg)

Signature 2

length(String $arg)

Signature 3

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/hiera_config_yaml_5.html#configuring-a-hierarchy-level-built-in-backends

Puppet | Developing Puppet code | 796

length(Binary $arg)

lest

Calls a lambda without arguments if the value given to lest is undef. Returns the result of calling the lambda if the
argument is undef, otherwise the given argument.

The lest function is useful in a chain of then calls, or in general as a guard against undef values. The function
can be used to call fail, or to return a default value.

These two expressions are equivalent:

if $x == undef { do_things() }
lest($x) || { do_things() }

$data = {a => [b, c] }
notice $data.dig(a, b, c)
 .then |$x| { $x * 2 }
 .lest || { fail("no value for $data[a][b][c]" }

Would fail the operation because $data[a][b][c] results in undef (there is no b key in a).

In contrast - this example:

$data = {a => { b => { c => 10 } } }
notice $data.dig(a, b, c)
 .then |$x| { $x * 2 }
 .lest || { fail("no value for $data[a][b][c]" }

Would notice the value 20

lest(Any $arg, Callable[0,0] &$block)

lookup

Uses the Puppet lookup system to retrieve a value for a given key. By default, this returns the first value found
(and fails compilation if no values are available), but you can configure it to merge multiple values into one, fail
gracefully, and more.

When looking up a key, Puppet will search up to three tiers of data, in the following order:

1. Hiera.
2. The current environment's data provider.
3. The indicated module's data provider, if the key is of the form <MODULE NAME>::<SOMETHING>.

Arguments

You must provide the name of a key to look up, and can optionally provide other arguments. You can combine these
arguments in the following ways:

• lookup(<NAME>, [<VALUE TYPE>], [<MERGE BEHAVIOR>], [<DEFAULT VALUE>])

• lookup([<NAME>], <OPTIONS HASH>)

• lookup(as above) |$key| { # lambda returns a default value }

Arguments in [square brackets] are optional.

The arguments accepted by lookup are as follows:

1. <NAME> (string or array) --- The name of the key to look up.

• This can also be an array of keys. If Puppet doesn't find anything for the first key, it will try again with the
subsequent ones, only resorting to a default value if none of them succeed.

2. <VALUE TYPE> (data type) --- A data type that must match the retrieved value; if not, the lookup (and catalog
compilation) will fail. Defaults to Data (accepts any normal value).

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html
https://puppet.com/docs/puppet/latest/lang_data_type.html

Puppet | Developing Puppet code | 797

3. <MERGE BEHAVIOR> (string or hash; see "Merge Behaviors" below) --- Whether (and how) to combine
multiple values. If present, this overrides any merge behavior specified in the data sources. Defaults to no value;
Puppet will use merge behavior from the data sources if present, and will otherwise do a first-found lookup.

4. <DEFAULT VALUE> (any normal value) --- If present, lookup returns this when it can't find a normal value.
Default values are never merged with found values. Like a normal value, the default must match the value type.
Defaults to no value; if Puppet can't find a normal value, the lookup (and compilation) will fail.

5. <OPTIONS HASH> (hash) --- Alternate way to set the arguments above, plus some less-common extra options. If
you pass an options hash, you can't combine it with any regular arguments (except <NAME>). An options hash can
have the following keys:

• 'name' --- Same as <NAME> (argument 1). You can pass this as an argument or in the hash, but not both.
• 'value_type' --- Same as <VALUE TYPE> (argument 2).
• 'merge' --- Same as <MERGE BEHAVIOR> (argument 3).
• 'default_value' --- Same as <DEFAULT VALUE> (argument 4).
• 'default_values_hash' (hash) --- A hash of lookup keys and default values. If Puppet can't find

a normal value, it will check this hash for the requested key before giving up. You can combine this with
default_value or a lambda, which will be used if the key isn't present in this hash. Defaults to an empty
hash.

• 'override' (hash) --- A hash of lookup keys and override values. Puppet will check for the requested key
in the overrides hash first; if found, it returns that value as the final value, ignoring merge behavior. Defaults
to an empty hash.

Finally, lookup can take a lambda, which must accept a single parameter. This is yet another way to set a default
value for the lookup; if no results are found, Puppet will pass the requested key to the lambda and use its result as the
default value.

Merge Behaviors

Puppet lookup uses a hierarchy of data sources, and a given key might have values in multiple sources. By default,
Puppet returns the first value it finds, but it can also continue searching and merge all the values together.

Note: Data sources can use the special lookup_options metadata key to request a specific merge
behavior for a key. The lookup function will use that requested behavior unless you explicitly specify
one.

The valid merge behaviors are:

• 'first' --- Returns the first value found, with no merging. Puppet lookup's default behavior.
• 'unique' (called "array merge" in classic Hiera) --- Combines any number of arrays and scalar values to return

a merged, flattened array with all duplicate values removed. The lookup will fail if any hash values are found.
• 'hash' --- Combines the keys and values of any number of hashes to return a merged hash. If the same

key exists in multiple source hashes, Puppet will use the value from the highest-priority data source; it won't
recursively merge the values.

• 'deep' --- Combines the keys and values of any number of hashes to return a merged hash. If the same key
exists in multiple source hashes, Puppet will recursively merge hash or array values (with duplicate values
removed from arrays). For conflicting scalar values, the highest-priority value will win.

• {'strategy' => 'first'}, {'strategy' => 'unique'}, or {'strategy' => 'hash'} ---
Same as the string versions of these merge behaviors.

• {'strategy' => 'deep', <DEEP OPTION> => <VALUE>, ...} --- Same as 'deep', but can
adjust the merge with additional options. The available options are:

• 'knockout_prefix' (string or undef) --- A string prefix to indicate a value should be removed from the
final result. If a value is exactly equal to the prefix, it will knockout the entire element. Defaults to undef,
which disables this feature.

• 'sort_merged_arrays' (boolean) --- Whether to sort all arrays that are merged together. Defaults to
false.

• 'merge_hash_arrays' (boolean) --- Whether to merge hashes within arrays. Defaults to false.

Signature 1

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 798

lookup(NameType $name, Optional[ValueType] $value_type, Optional[MergeType]
$merge)

Signature 2

lookup(NameType $name, Optional[ValueType] $value_type, Optional[MergeType]
$merge, DefaultValueType $default_value)

Signature 3

lookup(NameType $name, Optional[ValueType] $value_type, Optional[MergeType]
$merge, BlockType &$block)

Signature 4

lookup(OptionsWithName $options_hash, Optional[BlockType] &$block)

Signature 5

lookup(Variant[String,Array[String]] $name, OptionsWithoutName $options_hash,
Optional[BlockType] &$block)

lstrip

Strips leading spaces from a String

This function is compatible with the stdlib function with the same name.

The function does the following:

• For a String the conversion removes all leading ASCII white space characters such as space, tab, newline,
and return. It does not remove other space-like characters like hard space (Unicode U+00A0). (Tip, /
^[[:space:]]/ regular expression matches all space-like characters).

• For an Iterable[Variant[String, Numeric]] (for example an Array) each value is processed and
the conversion is not recursive.

• If the value is Numeric it is simply returned (this is for backwards compatibility).
• An error is raised for all other data types.

"\n\thello ".lstrip()
lstrip("\n\thello ")

Would both result in "hello"

["\n\thello ", "\n\thi "].lstrip()
lstrip(["\n\thello ", "\n\thi "])

Would both result in ['hello', 'hi']

Signature 1

lstrip(Numeric $arg)

Signature 2

lstrip(String $arg)

Signature 3

lstrip(Iterable[Variant[String, Numeric]] $arg)

map

Applies a lambda to every value in a data structure and returns an array containing the results.

This function takes two mandatory arguments, in this order:

1. An array, hash, or other iterable object that the function will iterate over.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | Developing Puppet code | 799

2. A lambda, which the function calls for each element in the first argument. It can request one or two parameters.

$transformed_data = $data.map |$parameter| { <PUPPET CODE BLOCK> }

or

$transformed_data = map($data) |$parameter| { <PUPPET CODE BLOCK> }

When the first argument ($data in the above example) is an array, Puppet passes each value in turn to the lambda.

For the array $data, return an array containing each value multiplied by
 10
$data = [1,2,3]
$transformed_data = $data.map |$items| { $items * 10 }
$transformed_data contains [10,20,30]

When the first argument is a hash, Puppet passes each key and value pair to the lambda as an array in the form
[key, value].

For the hash $data, return an array containing the keys
$data = {'a'=>1,'b'=>2,'c'=>3}
$transformed_data = $data.map |$items| { $items[0] }
$transformed_data contains ['a','b','c']

When the first argument is an array and the lambda has two parameters, Puppet passes the array's indexes
(enumerated from 0) in the first parameter and its values in the second parameter.

For the array $data, return an array containing the indexes
$data = [1,2,3]
$transformed_data = $data.map |$index,$value| { $index }
$transformed_data contains [0,1,2]

When the first argument is a hash, Puppet passes its keys to the first parameter and its values to the second parameter.

For the hash $data, return an array containing each value
$data = {'a'=>1,'b'=>2,'c'=>3}
$transformed_data = $data.map |$key,$value| { $value }
$transformed_data contains [1,2,3]

Signature 1

map(Hash[Any, Any] $hash, Callable[2,2] &$block)

Signature 2

map(Hash[Any, Any] $hash, Callable[1,1] &$block)

Signature 3

map(Iterable $enumerable, Callable[2,2] &$block)

Signature 4

map(Iterable $enumerable, Callable[1,1] &$block)

match

Matches a regular expression against a string and returns an array containing the match and any matched capturing
groups.

The first argument is a string or array of strings. The second argument is either a regular expression, regular
expression represented as a string, or Regex or Pattern data type that the function matches against the first argument.

The returned array contains the entire match at index 0, and each captured group at subsequent index values. If the
value or expression being matched is an array, the function returns an array with mapped match results.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 800

If the function doesn't find a match, it returns 'undef'.

$matches = "abc123".match(/[a-z]+[1-9]+/)
$matches contains [abc123]

$matches = "abc123".match(/([a-z]+)([1-9]+)/)
$matches contains [abc123, abc, 123]

$matches = ["abc123","def456"].match(/([a-z]+)([1-9]+)/)
$matches contains [[abc123, abc, 123], [def456, def, 456]]

Signature 1

match(String $string, Variant[Any, Type] $pattern)

Signature 2

match(Array[String] $string, Variant[Any, Type] $pattern)

max

Returns the highest value among a variable number of arguments. Takes at least one argument.

This function is (with one exception) compatible with the stdlib function with the same name and performs
deprecated type conversion before comparison as follows:

• If a value converted to String is an optionally '-' prefixed, string of digits, one optional decimal point, followed by
optional decimal digits - then the comparison is performed on the values converted to floating point.

• If a value is not considered convertible to float, it is converted to a String and the comparison is a lexical
compare where min is the lexicographical later value.

• A lexicographical compare is performed in a system locale - international characters may therefore not appear in
what a user thinks is the correct order.

• The conversion rules apply to values in pairs - the rule must hold for both values - a value may therefore be
compared using different rules depending on the "other value".

• The returned result found to be the "highest" is the original unconverted value.

The above rules have been deprecated in Puppet 6.0.0 as they produce strange results when given values of mixed
data types. In general, either convert values to be all String or all Numeric values before calling the function,
or call the function with a lambda that performs type conversion and comparison. This because one simply cannot
compare Boolean with Regexp and with any arbitrary Array, Hash or Object and getting a meaningful result.

The one change in the function's behavior is when the function is given a single array argument. The stdlib
implementation would return that array as the result where it now instead returns the max value from that array.

notice(max(1)) # would notice 1
notice(max(1,2)) # would notice 2
notice(max("1", 2)) # would notice 2
notice(max("0777", 512)) # would notice "0777", since "0777" is not
 converted from octal form
notice(max(0777, 512)) # would notice 512, since 0777 is decimal 511
notice(max('aa', 'ab')) # would notice 'ab'
notice(max(['a'], ['b'])) # would notice ['b'], since "['b']" is after
 "['a']"

$x = [1,2,3,4]
notice(max(*$x)) # would notice 4

$x = [1,2,3,4]
notice(max($x)) # would notice 4
notice($x.max) # would notice 4

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 801

This example shows that a single array argument is used as the set of values as opposed to being a single returned
value.

When calling with a lambda, it must accept two variables and it must return one of -1, 0, or 1 depending on if first
argument is before/lower than, equal to, or higher/after the second argument.

notice(max("2", "10", "100") |$a, $b| { compare($a, $b) })

Would notice "2" as higher since it is lexicographically higher/after the other values. Without the lambda the stdlib
compatible (deprecated) behavior would have been to return "100" since number conversion kicks in.

Signature 1

max(Numeric *$values)

Signature 2

max(String *$values)

Signature 3

max(Array[Numeric] $values, Optional[Callable[2,2]] &$block)

Signature 4

max(Array[String] $values, Optional[Callable[2,2]] &$block)

Signature 5

max(Array $values, Optional[Callable[2,2]] &$block)

Signature 6

max(Any *$values, Callable[2,2] &$block)

Signature 7

max(Any *$values)

md5

Returns a MD5 hash value from a provided string.

md5()

min

Returns the lowest value among a variable number of arguments. Takes at least one argument.

This function is (with one exception) compatible with the stdlib function with the same name and performs
deprecated type conversion before comparison as follows:

• If a value converted to String is an optionally '-' prefixed, string of digits, one optional decimal point, followed by
optional decimal digits - then the comparison is performed on the values converted to floating point.

• If a value is not considered convertible to float, it is converted to a String and the comparison is a lexical
compare where min is the lexicographical earlier value.

• A lexicographical compare is performed in a system locale - international characters may therefore not appear in
what a user thinks is the correct order.

• The conversion rules apply to values in pairs - the rule must hold for both values - a value may therefore be
compared using different rules depending on the "other value".

• The returned result found to be the "lowest" is the original unconverted value.

The above rules have been deprecated in Puppet 6.0.0 as they produce strange results when given values of mixed
data types. In general, either convert values to be all String or all Numeric values before calling the function,
or call the function with a lambda that performs type conversion and comparison. This because one simply cannot
compare Boolean with Regexp and with any arbitrary Array, Hash or Object and getting a meaningful result.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 802

The one change in the function's behavior is when the function is given a single array argument. The stdlib
implementation would return that array as the result where it now instead returns the max value from that array.

notice(min(1)) # would notice 1
notice(min(1,2)) # would notice 1
notice(min("1", 2)) # would notice 1
notice(min("0777", 512)) # would notice 512, since "0777" is not converted
 from octal form
notice(min(0777, 512)) # would notice 511, since 0777 is decimal 511
notice(min('aa', 'ab')) # would notice 'aa'
notice(min(['a'], ['b'])) # would notice ['a'], since "['a']" is before
 "['b']"

$x = [1,2,3,4]
notice(min(*$x)) # would notice 1

$x = [1,2,3,4]
notice(min($x)) # would notice 1
notice($x.min) # would notice 1

This example shows that a single array argument is used as the set of values as opposed to being a single returned
value.

When calling with a lambda, it must accept two variables and it must return one of -1, 0, or 1 depending on if first
argument is before/lower than, equal to, or higher/after the second argument.

notice(min("2", "10", "100") |$a, $b| { compare($a, $b) })

Would notice "10" as lower since it is lexicographically lower/before the other values. Without the lambda the stdlib
compatible (deprecated) behavior would have been to return "2" since number conversion kicks in.

Signature 1

min(Numeric *$values)

Signature 2

min(String *$values)

Signature 3

min(Array[Numeric] $values, Optional[Callable[2,2]] &$block)

Signature 4

min(Array[String] $values, Optional[Callable[2,2]] &$block)

Signature 5

min(Array $values, Optional[Callable[2,2]] &$block)

Signature 6

min(Any *$values, Callable[2,2] &$block)

Signature 7

min(Any *$values)

module_directory

Finds an existing module and returns the path to its root directory.

The argument to this function should be a module name String For example, the reference mysql will search for the
directory <MODULES DIRECTORY>/mysql and return the first found on the modulepath.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 803

This function can also accept:

• Multiple String arguments, which will return the path of the first module found, skipping non existing modules.
• An array of module names, which will return the path of the first module found from the given names in the array,

skipping non existing modules.

The function returns undef if none of the given modules were found

Signature 1

module_directory(String *$names)

Signature 2

module_directory(Array[String] *$names)

new

Creates a new instance/object of a given data type.

This function makes it possible to create new instances of concrete data types. If a block is given it is called with the
just created instance as an argument.

Calling this function is equivalent to directly calling the data type:

$a = Integer.new("42")
$b = Integer("42")

These would both convert the string "42" to the decimal value 42.

$a = Integer.new("42", 8)
$b = Integer({from => "42", radix => 8})

This would convert the octal (radix 8) number "42" in string form to the decimal value 34.

The new function supports two ways of giving the arguments:

• by name (using a hash with property to value mapping)
• by position (as regular arguments)

Note that it is not possible to create new instances of some abstract data types (for example Variant). The data type
Optional[T] is an exception as it will create an instance of T or undef if the value to convert is undef.

The arguments that can be given is determined by the data type.

An assertion is always made that the produced value complies with the given type constraints.

Integer[0].new("-100")

Would fail with an assertion error (since value is less than 0).

The following sections show the arguments and conversion rules per data type built into the Puppet Type System.

Conversion to Optional[T] and NotUndef[T]

Conversion to these data types is the same as a conversion to the type argument T. In the case of Optional[T] it
is accepted that the argument to convert may be undef. It is however not acceptable to give other arguments (than
undef) that cannot be converted to T.

Conversion to Integer

A new Integer can be created from Integer, Float, Boolean, and String values. For conversion from
String it is possible to specify the radix (base).

type Radix = Variant[Default, Integer[2,2], Integer[8,8], Integer[10,10],
 Integer[16,16]]

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 804

function Integer.new(
 String $value,
 Radix $radix = 10,
 Boolean $abs = false
)

function Integer.new(
 Variant[Numeric, Boolean] $value,
 Boolean $abs = false
)

• When converting from String the default radix is 10.
• If radix is not specified an attempt is made to detect the radix from the start of the string:

• 0b or 0B is taken as radix 2.
• 0x or 0X is taken as radix 16.
• 0 as radix 8.
• All others are decimal.

• Conversion from String accepts an optional sign in the string.
• For hexadecimal (radix 16) conversion an optional leading "0x", or "0X" is accepted.
• For octal (radix 8) an optional leading "0" is accepted.
• For binary (radix 2) an optional leading "0b" or "0B" is accepted.
• When radix is set to default, the conversion is based on the leading. characters in the string. A leading "0"

for radix 8, a leading "0x", or "0X" for radix 16, and leading "0b" or "0B" for binary.
• Conversion from Boolean results in 0 for false and 1 for true.
• Conversion from Integer, Float, and Boolean ignores the radix.
• Float value fractions are truncated (no rounding).
• When abs is set to true, the result will be an absolute integer.

$a_number = Integer("0xFF", 16) # results in 255
$a_number = Integer("010") # results in 8
$a_number = Integer("010", 10) # results in 10
$a_number = Integer(true) # results in 1
$a_number = Integer(-38, 10, true) # results in 38

Conversion to Float

A new Float can be created from Integer, Float, Boolean, and String values. For conversion from
String both float and integer formats are supported.

function Float.new(
 Variant[Numeric, Boolean, String] $value,
 Boolean $abs = true
)

• For an integer, the floating point fraction of .0 is added to the value.
• A Boolean true is converted to 1.0, and a false to 0.0.
• In String format, integer prefixes for hex and binary are understood (but not octal since floating point in string

format may start with a '0').
• When abs is set to true, the result will be an absolute floating point value.

Conversion to Numeric

A new Integer or Float can be created from Integer, Float, Boolean and String values.

function Numeric.new(
 Variant[Numeric, Boolean, String] $value,
 Boolean $abs = true

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 805

)

• If the value has a decimal period, or if given in scientific notation (e/E), the result is a Float, otherwise the value
is an Integer. The conversion from String always uses a radix based on the prefix of the string.

• Conversion from Boolean results in 0 for false and 1 for true.
• When abs is set to true, the result will be an absolute Floator Integer value.

$a_number = Numeric(true) # results in 1
$a_number = Numeric("0xFF") # results in 255
$a_number = Numeric("010") # results in 8
$a_number = Numeric("3.14") # results in 3.14 (a float)
$a_number = Numeric(-42.3, true) # results in 42.3
$a_number = Numeric(-42, true) # results in 42

Conversion to Timespan

A new Timespan can be created from Integer, Float, String, and Hash values. Several variants of the
constructor are provided.

Timespan from seconds

When a Float is used, the decimal part represents fractions of a second.

function Timespan.new(
 Variant[Float, Integer] $value
)

Timespan from days, hours, minutes, seconds, and fractions of a second

The arguments can be passed separately in which case the first four, days, hours, minutes, and seconds are mandatory
and the rest are optional. All values may overflow and/or be negative. The internal 128-bit nano-second integer is
calculated as:

(((((days * 24 + hours) * 60 + minutes) * 60 + seconds) * 1000 +
 milliseconds) * 1000 + microseconds) * 1000 + nanoseconds

function Timespan.new(
 Integer $days, Integer $hours, Integer $minutes, Integer $seconds,
 Integer $milliseconds = 0, Integer $microseconds = 0, Integer $nanoseconds
 = 0
)

or, all arguments can be passed as a Hash, in which case all entries are optional:

function Timespan.new(
 Struct[{
 Optional[negative] => Boolean,
 Optional[days] => Integer,
 Optional[hours] => Integer,
 Optional[minutes] => Integer,
 Optional[seconds] => Integer,
 Optional[milliseconds] => Integer,
 Optional[microseconds] => Integer,
 Optional[nanoseconds] => Integer
 }] $hash
)

Timespan from String and format directive patterns

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 806

The first argument is parsed using the format optionally passed as a string or array of strings. When an array is used,
an attempt will be made to parse the string using the first entry and then with each entry in succession until parsing
succeeds. If the second argument is omitted, an array of default formats will be used.

An exception is raised when no format was able to parse the given string.

function Timespan.new(
 String $string, Variant[String[2],Array[String[2], 1]] $format = <default
 format>)
)

the arguments may also be passed as a Hash:

function Timespan.new(
 Struct[{
 string => String[1],
 Optional[format] => Variant[String[2],Array[String[2], 1]]
 }] $hash
)

The directive consists of a percent (%) character, zero or more flags, optional minimum field width and a conversion
specifier as follows:

%[Flags][Width]Conversion

Flags:

Flag Meaning

- Don't pad numerical output

_ Use spaces for padding

0 Use zeros for padding

Format directives:

Format Meaning

D Number of Days

H Hour of the day, 24-hour clock

M Minute of the hour (00..59)

S Second of the minute (00..59)

L Millisecond of the second (000..999)

N Fractional seconds digits

The format directive that represents the highest magnitude in the format will be allowed to overflow. I.e. if no "%D"
is used but a "%H" is present, then the hours may be more than 23.

The default array contains the following patterns:

['%D-%H:%M:%S', '%D-%H:%M', '%H:%M:%S', '%H:%M']

Examples - Converting to Timespan

$duration = Timespan(13.5) # 13 seconds and 500 milliseconds
$duration = Timespan({days=>4}) # 4 days
$duration = Timespan(4, 0, 0, 2) # 4 days and 2 seconds

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 807

$duration = Timespan('13:20') # 13 hours and 20 minutes (using default
 pattern)
$duration = Timespan('10:03.5', '%M:%S.%L') # 10 minutes, 3 seconds, and 5
 milli-seconds
$duration = Timespan('10:03.5', '%M:%S.%N') # 10 minutes, 3 seconds, and 5
 nano-seconds

Conversion to Timestamp

A new Timestamp can be created from Integer, Float, String, and Hash values. Several variants of the
constructor are provided.

Timestamp from seconds since epoch (1970-01-01 00:00:00 UTC)

When a Float is used, the decimal part represents fractions of a second.

function Timestamp.new(
 Variant[Float, Integer] $value
)

Timestamp from String and patterns consisting of format directives

The first argument is parsed using the format optionally passed as a string or array of strings. When an array is used,
an attempt will be made to parse the string using the first entry and then with each entry in succession until parsing
succeeds. If the second argument is omitted, an array of default formats will be used.

A third optional timezone argument can be provided. The first argument will then be parsed as if it represents a local
time in that timezone. The timezone can be any timezone that is recognized when using the '%z' or '%Z' formats,
or the word 'current', in which case the current timezone of the evaluating process will be used. The timezone
argument is case insensitive.

The default timezone, when no argument is provided, or when using the keyword default, is 'UTC'.

It is illegal to provide a timezone argument other than default in combination with a format that contains '%z' or
'%Z' since that would introduce an ambiguity as to which timezone to use. The one extracted from the string, or the
one provided as an argument.

An exception is raised when no format was able to parse the given string.

function Timestamp.new(
 String $string,
 Variant[String[2],Array[String[2], 1]] $format = <default format>,
 String $timezone = default)
)

the arguments may also be passed as a Hash:

function Timestamp.new(
 Struct[{
 string => String[1],
 Optional[format] => Variant[String[2],Array[String[2], 1]],
 Optional[timezone] => String[1]
 }] $hash
)

The directive consists of a percent (%) character, zero or more flags, optional minimum field width and a conversion
specifier as follows:

%[Flags][Width]Conversion

Flags:

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 808

Flag Meaning

- Don't pad numerical output

_ Use spaces for padding

0 Use zeros for padding

Change names to upper-case or change case of am/pm

^ Use uppercase

: Use colons for %z

Format directives (names and padding can be altered using flags):

Date (Year, Month, Day):

Format Meaning

Y Year with century, zero-padded to at least 4 digits

C year / 100 (rounded down such as 20 in 2009)

y year % 100 (00..99)

m Month of the year, zero-padded (01..12)

B The full month name ("January")

b The abbreviated month name ("Jan")

h Equivalent to %b

d Day of the month, zero-padded (01..31)

e Day of the month, blank-padded (1..31)

j Day of the year (001..366)

Time (Hour, Minute, Second, Subsecond):

Format Meaning

H Hour of the day, 24-hour clock, zero-padded (00..23)

k Hour of the day, 24-hour clock, blank-padded (0..23)

I Hour of the day, 12-hour clock, zero-padded (01..12)

l Hour of the day, 12-hour clock, blank-padded (1..12)

P Meridian indicator, lowercase ("am" or "pm")

p Meridian indicator, uppercase ("AM" or "PM")

M Minute of the hour (00..59)

S Second of the minute (00..60)

L Millisecond of the second (000..999). Digits under
millisecond are truncated to not produce 1000

N Fractional seconds digits, default is 9 digits
(nanosecond). Digits under a specified width are
truncated to avoid carry up

Time (Hour, Minute, Second, Subsecond):

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 809

Format Meaning

z Time zone as hour and minute offset from UTC (e.g.
+0900)

:z hour and minute offset from UTC with a colon (e.g.
+09:00)

::z hour, minute and second offset from UTC (e.g.
+09:00:00)

Z Abbreviated time zone name or similar information. (OS
dependent)

Weekday:

Format Meaning

A The full weekday name ("Sunday")

a The abbreviated name ("Sun")

u Day of the week (Monday is 1, 1..7)

w Day of the week (Sunday is 0, 0..6)

ISO 8601 week-based year and week number:

The first week of YYYY starts with a Monday and includes YYYY-01-04. The days in the year before the first week
are in the last week of the previous year.

Format Meaning

G The week-based year

g The last 2 digits of the week-based year (00..99)

V Week number of the week-based year (01..53)

Week number:

The first week of YYYY that starts with a Sunday or Monday (according to %U or %W). The days in the year before
the first week are in week 0.

Format Meaning

U Week number of the year. The week starts with Sunday.
(00..53)

W Week number of the year. The week starts with Monday.
(00..53)

Seconds since the Epoch:

| Format | Meaning | | s | Number of seconds since 1970-01-01 00:00:00 UTC. |

Literal string:

Format Meaning

n Newline character (\n)

t Tab character (\t)

% Literal % character

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 810

Combination:

Format Meaning

c date and time (%a %b %e %T %Y)

D Date (%m/%d/%y)

F The ISO 8601 date format (%Y-%m-%d)

v VMS date (%e-%^b-%4Y)

x Same as %D

X Same as %T

r 12-hour time (%I:%M:%S %p)

R 24-hour time (%H:%M)

T 24-hour time (%H:%M:%S)

The default array contains the following patterns:

When a timezone argument (other than default) is explicitly provided:

['%FT%T.L', '%FT%T', '%F']

otherwise:

['%FT%T.%L %Z', '%FT%T %Z', '%F %Z', '%FT%T.L', '%FT%T', '%F']

Examples - Converting to Timestamp

$ts = Timestamp(1473150899) # 2016-09-06
 08:34:59 UTC
$ts = Timestamp({string=>'2015', format=>'%Y'}) # 2015-01-01
 00:00:00.000 UTC
$ts = Timestamp('Wed Aug 24 12:13:14 2016', '%c') # 2016-08-24
 12:13:14 UTC
$ts = Timestamp('Wed Aug 24 12:13:14 2016 PDT', '%c %Z') # 2016-08-24
 19:13:14.000 UTC
$ts = Timestamp('2016-08-24 12:13:14', '%F %T', 'PST') # 2016-08-24
 20:13:14.000 UTC
$ts = Timestamp('2016-08-24T12:13:14', default, 'PST') # 2016-08-24
 20:13:14.000 UTC

Conversion to Type

A new Type can be created from its String representation.

$t = Type.new('Integer[10]')

Conversion to String

Conversion to String is the most comprehensive conversion as there are many use cases where a string
representation is wanted. The defaults for the many options have been chosen with care to be the most basic "value in
textual form" representation. The more advanced forms of formatting are intended to enable writing special purposes
formatting functions in the Puppet language.

A new string can be created from all other data types. The process is performed in several steps - first the data type
of the given value is inferred, then the resulting data type is used to find the most significant format specified for that
data type. And finally, the found format is used to convert the given value.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 811

The mapping from data type to format is referred to as the format map. This map allows different formatting
depending on type.

$format_map = {
 Integer[default, 0] => "%d",
 Integer[1, default] => "%#x"
}
String("-1", $format_map) # produces '-1'
String("10", $format_map) # produces '0xa'

A format is specified on the form:

%[Flags][Width][.Precision]Format

Width is the number of characters into which the value should be fitted. This allocated space is padded if value is
shorter. By default it is space padded, and the flag 0 will cause padding with 0 for numerical formats.

Precision is the number of fractional digits to show for floating point, and the maximum characters included in a
string format.

Note that all data type supports the formats s and p with the meaning "default string representation" and "default
programmatic string representation" (which for example means that a String is quoted in 'p' format).

Signatures of String conversion

type Format = Pattern[/^%([\s\+\-#0\[\{<\(\|]*)([1-9][0-9]*)?(?:\.([0-9]+))?
([a-zA-Z])/]
type ContainerFormat = Struct[{
 format => Optional[String],
 separator => Optional[String],
 separator2 => Optional[String],
 string_formats => Hash[Type, Format]
 }]
type TypeMap = Hash[Type, Variant[Format, ContainerFormat]]
type Formats = Variant[Default, String[1], TypeMap]

function String.new(
 Any $value,
 Formats $string_formats
)

Where:

• separator is the string used to separate entries in an array, or hash (extra space should not be included at the
end), defaults to ","

• separator2 is the separator between key and value in a hash entry (space padding should be included as
wanted), defaults to " => ".

• string_formats is a data type to format map for values contained in arrays and hashes - defaults to {Any
=> "%p"}. Note that these nested formats are not applicable to data types that are containers; they are always
formatted as per the top level format specification.

$str = String(10) # produces '10'
$str = String([10]) # produces '["10"]'

$str = String(10, "%#x") # produces '0x10'
$str = String([10], "%(a") # produces '("10")'

$formats = {
 Array => {
 format => '%(a',

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 812

 string_formats => { Integer => '%#x' }
 }
}
$str = String([1,2,3], $formats) # produces '(0x1, 0x2, 0x3)'

The given formats are merged with the default formats, and matching of values to convert against format is based on
the specificity of the mapped type; for example, different formats can be used for short and long arrays.

Integer to String

Format Integer Formats

d Decimal, negative values produces leading -.

x X Hexadecimal in lower or upper case. Uses ..f/..F for
negative values unless + is also used. A # adds prefix
0x/0X.

o Octal. Uses ..0 for negative values unless + is also
used. A # adds prefix 0.

b B Binary with prefix b or B. Uses ..1/..1 for negative
values unless + is also used.

c Numeric value representing a Unicode value, result is a
one unicode character string, quoted if alternative flag #
is used

s Same as d, or d in quotes if alternative flag # is used.

p Same as d.

eEfgGaA Converts integer to float and formats using the floating
point rules.

Defaults to d.

Float to String

Format Float formats

f Floating point in non exponential notation.

e E Exponential notation with e or E.

g G Conditional exponential with e or E if exponent < -4 or
>= the precision.

a A Hexadecimal exponential form, using x/X as prefix and
p/P before exponent.

s Converted to string using format p, then applying string
formatting rule, alternate form `#`` quotes result.

p Same as f format with minimum significant number of
fractional digits, prec has no effect.

dxXobBc Converts float to integer and formats using the integer
rules.

Defaults to p.

String to String

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 813

Format String

s Unquoted string, verbatim output of control chars.

p Programmatic representation - strings are quoted, interior
quotes and control chars are escaped. Selects single or
double quotes based on content, or uses double quotes if
alternative flag # is used.

C Each :: name segment capitalized, quoted if alternative
flag # is used.

c Capitalized string, quoted if alternative flag # is used.

d Downcased string, quoted if alternative flag # is used.

u Upcased string, quoted if alternative flag # is used.

t Trims leading and trailing whitespace from the string,
quoted if alternative flag # is used.

Defaults to s at top level and p inside array or hash.

Boolean to String

Format Boolean Formats

t T String 'true'/'false' or 'True'/'False',
first char if alternate form is used (i.e. 't'/'f' or
'T'/'F').

y Y String 'yes'/'no', 'Yes'/'No', 'y'/'n' or
'Y'/'N' if alternative flag # is used.

dxXobB Numeric value 0/1 in accordance with the given format
which must be valid integer format.

eEfgGaA Numeric value 0.0/1.0 in accordance with the given
float format and flags.

s String 'true' / 'false'.

p String 'true' / 'false'.

Regexp to String

Format Regexp Formats

s No delimiters, quoted if alternative flag # is used.

p Delimiters / /.

Undef to String

Format Undef formats

s Empty string, or quoted empty string if alternative flag #
is used.

p String 'undef', or quoted '"undef"' if alternative
flag # is used.

n String 'nil', or 'null' if alternative flag # is used.

dxXobB String 'NaN'.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 814

Format Undef formats

eEfgGaA String 'NaN'.

v String 'n/a'.

V String 'N/A'.

u String 'undef', or 'undefined' if alternative #
flag is used.

Default value to String

Format Default formats

d D String 'default' or 'Default', alternative form #
causes value to be quoted.

s Same as d.

p Same as d.

Binary value to String

Format Default formats

s binary as unquoted UTF-8 characters (errors if byte
sequence is invalid UTF-8). Alternate form escapes non
ascii bytes.

p 'Binary("<base64strict>")'

b '<base64>' - base64 string with newlines inserted

B '<base64strict>' - base64 strict string (without
newlines inserted)

u '<base64urlsafe>' - base64 urlsafe string

t 'Binary' - outputs the name of the type only

T 'BINARY' - output the name of the type in all caps only

• The alternate form flag # will quote the binary or base64 text output.
• The format %#s allows invalid UTF-8 characters and outputs all non ascii bytes as hex escaped characters on the

form \xHH where H is a hex digit.
• The width and precision values are applied to the text part only in %p format.

Array & Tuple to String

Format Array/Tuple Formats

a Formats with [] delimiters and ,, alternate form #
indents nested arrays/hashes.

s Same as a.

p Same as a.

See "Flags" <[({| for formatting of delimiters, and "Additional parameters for containers; Array and Hash" for
more information about options.

The alternate form flag # will cause indentation of nested array or hash containers. If width is also set it is taken as
the maximum allowed length of a sequence of elements (not including delimiters). If this max length is exceeded,
each element will be indented.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 815

Hash & Struct to String

Format Hash/Struct Formats

h Formats with { } delimiters, , element separator and
=> inner element separator unless overridden by flags.

s Same as h.

p Same as h.

a Converts the hash to an array of [k,v] tuples and
formats it using array rule(s).

See "Flags" <[({| for formatting of delimiters, and "Additional parameters for containers; Array and Hash" for
more information about options.

The alternate form flag # will format each hash key/value entry indented on a separate line.

Type to String

Format Array/Tuple Formats

s The same as p, quoted if alternative flag # is used.

p Outputs the type in string form as specified by the
Puppet Language.

Flags

Flag Effect

(space) A space instead of + for numeric output (- is shown), for
containers skips delimiters.

Alternate format; prefix 0x/0x, 0 (octal) and 0b/0B
for binary, Floats force decimal '.'. For g/G keep trailing
0.

+ Show sign +/- depending on value's sign, changes x, X,
o, b, B format to not use 2's complement form.

- Left justify the value in the given width.

0 Pad with 0 instead of space for widths larger than value.

<[({| Defines an enclosing pair <> [] () {} or | |
when used with a container type.

Conversion to Boolean

Accepts a single value as argument:

• Float 0.0 is false, all other float values are true
• Integer 0 is false, all other integer values are true
• Strings

• true if 'true', 'yes', 'y' (case independent compare)
• false if 'false', 'no', 'n' (case independent compare)

• Boolean is already boolean and is simply returned

Conversion to Array and Tuple

When given a single value as argument:

• A non empty Hash is converted to an array matching Array[Tuple[Any,Any], 1].

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 816

• An empty Hash becomes an empty array.
• An Array is simply returned.
• An Iterable[T] is turned into an array of T instances.
• A Binary is converted to an Array[Integer[0,255]] of byte values

When given a second Boolean argument:

• if true, a value that is not already an array is returned as a one element array.
• if false, (the default), converts the first argument as shown above.

$arr = Array($value, true)

Conversion to a Tuple works exactly as conversion to an Array, only that the constructed array is asserted against
the given tuple type.

Conversion to Hash and Struct

Accepts a single value as argument:

• An empty Array becomes an empty Hash
• An Array matching Array[Tuple[Any,Any], 1] is converted to a hash where each tuple describes a key/

value entry
• An Array with an even number of entries is interpreted as [key1, val1, key2, val2, ...]
• An Iterable is turned into an Array and then converted to hash as per the array rules
• A Hash is simply returned

Alternatively, a tree can be constructed by giving two values; an array of tuples on the form [path, value]
(where the path is the path from the root of a tree, and value the value at that position in the tree), and either
the option 'tree' (do not convert arrays to hashes except the top level), or 'hash_tree' (convert all arrays to
hashes).

The tree/hash_tree forms of Hash creation are suited for transforming the result of an iteration using tree_each
and subsequent filtering or mapping.

Mapping an arbitrary structure in a way that keeps the structure, but where some values are replaced can be done by
using the tree_each function, mapping, and then constructing a new Hash from the result:

A hash tree with 'water' at different locations
$h = { a => { b => { x => 'water'}}, b => { y => 'water'} }
a helper function that turns water into wine
function make_wine($x) { if $x == 'water' { 'wine' } else { $x } }
create a flattened tree with water turned into wine
$flat_tree = $h.tree_each.map |$entry| { [$entry[0], make_wine($entry[1])] }
create a new Hash and log it
notice Hash($flat_tree, 'hash_tree')

Would notice the hash {a => {b => {x => wine}}, b => {y => wine}}

Conversion to a Struct works exactly as conversion to a Hash, only that the constructed hash is asserted against
the given struct type.

Conversion to a Regexp

A String can be converted into a Regexp

Example: Converting a String into a Regexp

$s = '[a-z]+\.com'
$r = Regexp($s)
if('foo.com' =~ $r) {
 ...
}

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 817

Creating a SemVer

A SemVer object represents a single Semantic Version. It can be created from a String, individual values for its parts,
or a hash specifying the value per part. See the specification at semver.org for the meaning of the SemVer's parts.

The signatures are:

type PositiveInteger = Integer[0,default]
type SemVerQualifier = Pattern[/\A(?<part>[0-9A-Za-z-]+)(?:\.\g<part>)*\Z/]
type SemVerString = String[1]
type SemVerHash =Struct[{
 major => PositiveInteger,
 minor => PositiveInteger,
 patch => PositiveInteger,
 Optional[prerelease] => SemVerQualifier,
 Optional[build] => SemVerQualifier
}]

function SemVer.new(SemVerString $str)

function SemVer.new(
 PositiveInteger $major
 PositiveInteger $minor
 PositiveInteger $patch
 Optional[SemVerQualifier] $prerelease = undef
 Optional[SemVerQualifier] $build = undef
)

function SemVer.new(SemVerHash $hash_args)

As a type, SemVer can describe disjunct ranges which versions can be
matched against - here the type is constructed with two
SemVerRange objects.
#
$t = SemVer[
 SemVerRange('>=1.0.0 <2.0.0'),
 SemVerRange('>=3.0.0 <4.0.0')
]
notice(SemVer('1.2.3') =~ $t) # true
notice(SemVer('2.3.4') =~ $t) # false
notice(SemVer('3.4.5') =~ $t) # true

Creating a SemVerRange

A SemVerRange object represents a range of SemVer. It can be created from a String, or from two SemVer
instances, where either end can be given as a literal default to indicate infinity. The string format of a
SemVerRange is specified by the Semantic Version Range Grammar.

Use of the comparator sets described in the grammar (joining with ||) is not supported.

The signatures are:

type SemVerRangeString = String[1]
type SemVerRangeHash = Struct[{
 min => Variant[Default, SemVer],
 Optional[max] => Variant[Default, SemVer],
 Optional[exclude_max] => Boolean
}]

function SemVerRange.new(
 SemVerRangeString $semver_range_string
)

© 2024 Puppet, Inc., a Perforce company

http://semver.org/
http://semver.org/
https://github.com/npm/node-semver#ranges

Puppet | Developing Puppet code | 818

function SemVerRange.new(
 Variant[Default,SemVer] $min
 Variant[Default,SemVer] $max
 Optional[Boolean] $exclude_max = undef
)

function SemVerRange.new(
 SemVerRangeHash $semver_range_hash
)

For examples of SemVerRange use see "Creating a SemVer"

Creating a Binary

A Binary object represents a sequence of bytes and it can be created from a String in Base64 format, an Array
containing byte values. A Binary can also be created from a Hash containing the value to convert to a Binary.

The signatures are:

type ByteInteger = Integer[0,255]
type Base64Format = Enum["%b", "%u", "%B", "%s"]
type StringHash = Struct[{value => String, "format" =>
 Optional[Base64Format]}]
type ArrayHash = Struct[{value => Array[ByteInteger]}]
type BinaryArgsHash = Variant[StringHash, ArrayHash]

function Binary.new(
 String $base64_str,
 Optional[Base64Format] $format
)

function Binary.new(
 Array[ByteInteger] $byte_array
}

Same as for String, or for Array, but where arguments are given in a Hash.
function Binary.new(BinaryArgsHash $hash_args)

The formats have the following meaning:

format explanation

B The data is in base64 strict encoding

u The data is in URL safe base64 encoding

b The data is in base64 encoding, padding as required by
base64 strict, is added by default

s The data is a puppet string. The string must be valid
UTF-8, or convertible to UTF-8 or an error is raised.

r (Ruby Raw) the byte sequence in the given string is used
verbatim irrespective of possible encoding errors

• The default format is %B.
• Note that the format %r should be used sparingly, or not at all. It exists for backwards compatibility reasons when

someone receiving a string from some function and that string should be treated as Binary. Such code should be
changed to return a Binary instead of a String.

create the binary content "abc"
$a = Binary('YWJj')

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 819

create the binary content from content in a module's file
$b = binary_file('mymodule/mypicture.jpg')

• Since 4.5.0
• Binary type since 4.8.0

Creating an instance of a Type using the Init type

The type Init[T] describes a value that can be used when instantiating a type. When used as the first argument in
a call to new, it will dispatch the call to its contained type and optionally augment the parameter list with additional
arguments.

The following declaration
$x = Init[Integer].new('128')
is exactly the same as
$x = Integer.new('128')

or, with base 16 and using implicit new

The following declaration
$x = Init[Integer,16]('80')
is exactly the same as
$x = Integer('80', 16)

$fmt = Init[String,'%#x']
notice($fmt(256)) # will notice '0x100'

new(Type $type, Any *$args, Optional[Callable] &$block)

next

Makes iteration continue with the next value, optionally with a given value for this iteration. If a value is not given it
defaults to undef

next(Optional[Any] $value)

notice

Logs a message on the server at level notice.

notice(Any *$values)

Parameters

• *values --- The values to log.

Return type(s): Undef.

partition

Returns two arrays, the first containing the elements of enum for which the block evaluates to true, the second
containing the rest.

Signature 1

partition(Collection $collection, Callable[1,1] &$block)

Parameters

• collection --- A collection of things to partition.

Return type(s): Tuple[Array, Array].

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 820

Examples

Partition array of empty strings, results in e.g. [[''], [b, c]]

['', b, c].partition |$s| { $s.empty }

Partition array of strings using index, results in e.g. [['', 'ab'], ['b']]

['', b, ab].partition |$i, $s| { $i == 2 or $s.empty }

Partition hash of strings by key-value pair, results in e.g. [[['b', []]], [['a', [1, 2]]]]

{ a => [1, 2], b => [] }.partition |$kv| { $kv[1].empty }

Partition hash of strings by key and value, results in e.g. [[['b', []]], [['a', [1, 2]]]]

{ a => [1, 2], b => [] }.partition |$k, $v| { $v.empty }

Signature 2

partition(Array $array, Callable[2,2] &$block)

Signature 3

partition(Collection $collection, Callable[2,2] &$block)

realize

Make a virtual object real. This is useful when you want to know the name of the virtual object and don't want to
bother with a full collection. It is slightly faster than a collection, and, of course, is a bit shorter. You must pass the
object using a reference; e.g.: realize User[luke].

realize()

reduce

Applies a lambda to every value in a data structure from the first argument, carrying over the returned value of each
iteration, and returns the result of the lambda's final iteration. This lets you create a new value or data structure by
combining values from the first argument's data structure.

This function takes two mandatory arguments, in this order:

1. An array, hash, or other iterable object that the function will iterate over.
2. A lambda, which the function calls for each element in the first argument. It takes two mandatory parameters:

a. A memo value that is overwritten after each iteration with the iteration's result.
b. A second value that is overwritten after each iteration with the next value in the function's first argument.

$data.reduce |$memo, $value| { ... }

or

reduce($data) |$memo, $value| { ... }

You can also pass an optional "start memo" value as an argument, such as start below:

$data.reduce(start) |$memo, $value| { ... }

or

reduce($data, start) |$memo, $value| { ... }

When the first argument ($data in the above example) is an array, Puppet passes each of the data structure's values
in turn to the lambda's parameters. When the first argument is a hash, Puppet converts each of the hash's values to an
array in the form [key, value].

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | Developing Puppet code | 821

If you pass a start memo value, Puppet executes the lambda with the provided memo value and the data structure's
first value. Otherwise, Puppet passes the structure's first two values to the lambda.

Puppet calls the lambda for each of the data structure's remaining values. For each call, it passes the result of the
previous call as the first parameter ($memo in the above examples) and the next value from the data structure as the
second parameter ($value).

Reduce the array $data, returning the sum of all values in the array.
$data = [1, 2, 3]
$sum = $data.reduce |$memo, $value| { $memo + $value }
$sum contains 6

Reduce the array $data, returning the sum of a start memo value and all
 values in the
array.
$data = [1, 2, 3]
$sum = $data.reduce(4) |$memo, $value| { $memo + $value }
$sum contains 10

Reduce the hash $data, returning the sum of all values and concatenated
 string of all
keys.
$data = {a => 1, b => 2, c => 3}
$combine = $data.reduce |$memo, $value| {
 $string = "${memo[0]}${value[0]}"
 $number = $memo[1] + $value[1]
 [$string, $number]
}
$combine contains [abc, 6]

Reduce the array $data, returning the sum of all values in the array and
 starting
with $memo set to an arbitrary value instead of $data's first value.
$data = [1, 2, 3]
$sum = $data.reduce(4) |$memo, $value| { $memo + $value }
At the start of the lambda's first iteration, $memo contains 4 and $value
 contains 1.
After all iterations, $sum contains 10.

Reduce the hash $data, returning the sum of all values and concatenated
 string of
all keys, and starting with $memo set to an arbitrary array instead of
 $data's first
key-value pair.
$data = {a => 1, b => 2, c => 3}
$combine = $data.reduce([d, 4]) |$memo, $value| {
 $string = "${memo[0]}${value[0]}"
 $number = $memo[1] + $value[1]
 [$string, $number]
}
At the start of the lambda's first iteration, $memo contains [d, 4] and
 $value
contains [a, 1].
$combine contains [dabc, 10]

Reduce a hash of hashes $data, merging defaults into the inner hashes.
$data = {
 'connection1' => {
 'username' => 'user1',
 'password' => 'pass1',
 },
 'connection_name2' => {

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 822

 'username' => 'user2',
 'password' => 'pass2',
 },
}

$defaults = {
 'maxActive' => '20',
 'maxWait' => '10000',
 'username' => 'defaultuser',
 'password' => 'defaultpass',
}

$merged = $data.reduce({}) |$memo, $x| {
 $memo + { $x[0] => $defaults + $data[$x[0]] }
}
At the start of the lambda's first iteration, $memo is set to {}, and $x
 is set to
the first [key, value] tuple. The key in $data is, therefore, given by
 $x[0]. In
subsequent rounds, $memo retains the value returned by the expression,
 i.e.
$memo + { $x[0] => $defaults + $data[$x[0]] }.

Signature 1

reduce(Iterable $enumerable, Callable[2,2] &$block)

Signature 2

reduce(Iterable $enumerable, Any $memo, Callable[2,2] &$block)

regsubst

Performs regexp replacement on a string or array of strings.

Signature 1

regsubst(Variant[Array[String],String] $target, String $pattern,
Variant[String,Hash[String,String]] $replacement, Optional[Optional[Pattern[/
^[GEIM]*$/]]] $flags, Optional[Enum['N','E','S','U']] $encoding)

Parameters

• target --- The string or array of strings to operate on. If an array, the replacement will be performed on each of
the elements in the array, and the return value will be an array.

• pattern --- The regular expression matching the target string. If you want it anchored at the start and or end of
the string, you must do that with ^ and $ yourself.

• replacement --- Replacement string. Can contain backreferences to what was matched using \0 (whole match),
\1 (first set of parentheses), and so on. If the second argument is a Hash, and the matched text is one of its keys,
the corresponding value is the replacement string.

• flags --- Optional. String of single letter flags for how the regexp is interpreted (E, I, and M cannot be used if
pattern is a precompiled regexp):

• E Extended regexps
• I Ignore case in regexps
• M Multiline regexps
• G Global replacement; all occurrences of the regexp in each target string will be replaced. Without this, only

the first occurrence will be replaced.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 823

• encoding --- Optional. How to handle multibyte characters when compiling the regexp (must not be used when
pattern is a precompiled regexp). A single-character string with the following values:

• N None
• E EUC
• S SJIS
• U UTF-8

Return type(s): Array[String], String. The result of the substitution. Result type is the same as for the target
parameter.

Examples

Get the third octet from the node's IP address:

$i3 = regsubst($ipaddress,'^(\\d+)\\.(\\d+)\\.(\\d+)\\.(\\d+)$','\\3')

Signature 2

regsubst(Variant[Array[String],String] $target, Variant[Regexp,Type[Regexp]]
$pattern, Variant[String,Hash[String,String]] $replacement, Optional[Pattern[/
^G?$/]] $flags)

Parameters

• target --- The string or array of strings to operate on. If an array, the replacement will be performed on each of
the elements in the array, and the return value will be an array.

• pattern --- The regular expression matching the target string. If you want it anchored at the start and or end of
the string, you must do that with ^ and $ yourself.

• replacement --- Replacement string. Can contain backreferences to what was matched using \0 (whole match),
\1 (first set of parentheses), and so on. If the second argument is a Hash, and the matched text is one of its keys,
the corresponding value is the replacement string.

• flags --- Optional. String of single letter flags for how the regexp is interpreted (E, I, and M cannot be used if
pattern is a precompiled regexp):

• E Extended regexps
• I Ignore case in regexps
• M Multiline regexps
• G Global replacement; all occurrences of the regexp in each target string will be replaced. Without this, only

the first occurrence will be replaced.
• encoding --- Optional. How to handle multibyte characters when compiling the regexp (must not be used when

pattern is a precompiled regexp). A single-character string with the following values:

• N None
• E EUC
• S SJIS
• U UTF-8

Return type(s): Array[String], String. The result of the substitution. Result type is the same as for the target
parameter.

Examples

Put angle brackets around each octet in the node's IP address:

$x = regsubst($ipaddress, /([0-9]+)/, '<\\1>', 'G')

require

Requires the specified classes. Evaluate one or more classes, adding the required class as a dependency.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 824

The relationship metaparameters work well for specifying relationships between individual resources, but they can be
clumsy for specifying relationships between classes. This function is a superset of the include function, adding a
class relationship so that the requiring class depends on the required class.

Warning: using require in place of include can lead to unwanted dependency cycles.

For instance, the following manifest, with require instead of include, would produce a nasty dependence cycle,
because notify imposes a before between File[/foo] and Service[foo]:

class myservice {
 service { foo: ensure => running }
}

class otherstuff {
 include myservice
 file { '/foo': notify => Service[foo] }
}

Note that this function only works with clients 0.25 and later, and it will fail if used with earlier clients.

You must use the class's full name; relative names are not allowed. In addition to names in string form, you may also
directly use Class and Resource Type values that are produced when evaluating resource and relationship expressions.

• Since 4.0.0 Class and Resource types, absolute names
• Since 4.7.0 Returns an Array[Type[Class]] with references to the required classes

require(Any *$names)

return

Makes iteration continue with the next value, optionally with a given value for this iteration. If a value is not given it
defaults to undef

return(Optional[Any] $value)

reverse_each

Reverses the order of the elements of something that is iterable and optionally runs a lambda for each element.

This function takes one to two arguments:

1. An Iterable that the function will iterate over.
2. An optional lambda, which the function calls for each element in the first argument. It must request one

parameter.

$data.reverse_each |$parameter| { <PUPPET CODE BLOCK> }

or

$reverse_data = $data.reverse_each

or

reverse_each($data) |$parameter| { <PUPPET CODE BLOCK> }

or

$reverse_data = reverse_each($data)

When no second argument is present, Puppet returns an Iterable that represents the reverse order of its first
argument. This allows methods on Iterable to be chained.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | Developing Puppet code | 825

When a lambda is given as the second argument, Puppet iterates the first argument in reverse order and passes each
value in turn to the lambda, then returns undef.

Puppet will log a notice for each of the three items
in $data in reverse order.
$data = [1,2,3]
$data.reverse_each |$item| { notice($item) }

When no second argument is present, Puppet returns a new Iterable which allows it to be directly chained into
another function that takes an Iterable as an argument.

For the array $data, return an array containing each
value multiplied by 10 in reverse order
$data = [1,2,3]
$transformed_data = $data.reverse_each.map |$item| { $item * 10 }
$transformed_data is set to [30,20,10]

For the array $data, return an array containing each
value multiplied by 10 in reverse order
$data = [1,2,3]
$transformed_data = map(reverse_each($data)) |$item| { $item * 10 }
$transformed_data is set to [30,20,10]

Signature 1

reverse_each(Iterable $iterable)

Signature 2

reverse_each(Iterable $iterable, Callable[1,1] &$block)

round

Returns an Integer value rounded to the nearest value. Takes a single Numeric value as an argument.

notice(round(2.9)) # would notice 3
notice(round(2.1)) # would notice 2
notice(round(-2.9)) # would notice -3

round(Numeric $val)

rstrip

Strips trailing spaces from a String

This function is compatible with the stdlib function with the same name.

The function does the following:

• For a String the conversion removes all trailing ASCII white space characters such as space, tab, newline,
and return. It does not remove other space-like characters like hard space (Unicode U+00A0). (Tip, /
^[[:space:]]/ regular expression matches all space-like characters).

• For an Iterable[Variant[String, Numeric]] (for example an Array) each value is processed and
the conversion is not recursive.

• If the value is Numeric it is simply returned (this is for backwards compatibility).
• An error is raised for all other data types.

" hello\n\t".rstrip()
rstrip(" hello\n\t")

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 826

Would both result in "hello"

[" hello\n\t", " hi\n\t"].rstrip()
rstrip([" hello\n\t", " hi\n\t"])

Would both result in ['hello', 'hi']

Signature 1

rstrip(Numeric $arg)

Signature 2

rstrip(String $arg)

Signature 3

rstrip(Iterable[Variant[String, Numeric]] $arg)

scanf

Scans a string and returns an array of one or more converted values based on the given format string. See the
documentation of Ruby's String#scanf method for details about the supported formats (which are similar but not
identical to the formats used in Puppet's sprintf function.)

This function takes two mandatory arguments: the first is the string to convert, and the second is the format string.
The result of the scan is an array, with each successfully scanned and transformed value. The scanning stops if a scan
is unsuccessful, and the scanned result up to that point is returned. If there was no successful scan, the result is an
empty array.

"42".scanf("%i")

You can also optionally pass a lambda to scanf, to do additional validation or processing.

"42".scanf("%i") |$x| {
 unless $x[0] =~ Integer {
 fail "Expected a well formed integer value, got '$x[0]'"
 }
 $x[0]
}

scanf(String $data, String $format, Optional[Callable] &$block)

sha1

Returns a SHA1 hash value from a provided string.

sha1()

sha256

Returns a SHA256 hash value from a provided string.

sha256()

shellquote

Quote and concatenate arguments for use in Bourne shell.

Each argument is quoted separately, and then all are concatenated with spaces. If an argument is an array, the
elements of that array is interpolated within the rest of the arguments; this makes it possible to have an array of
arguments and pass that array to shellquote instead of having to specify each argument individually in the call.

shellquote()

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 827

size

The same as length() - returns the size of an Array, Hash, String, or Binary value.

size(Variant[Collection, String, Binary] $arg)

slice

Slices an array or hash into pieces of a given size.

This function takes two mandatory arguments: the first should be an array or hash, and the second specifies the
number of elements to include in each slice.

When the first argument is a hash, each key value pair is counted as one. For example, a slice size of 2 will produce
an array of two arrays with key, and value.

$a.slice(2) |$entry| { notice "first ${$entry[0]}, second
 ${$entry[1]}" }
$a.slice(2) |$first, $second| { notice "first ${first}, second ${second}" }

The function produces a concatenated result of the slices.

slice([1,2,3,4,5,6], 2) # produces [[1,2], [3,4], [5,6]]
slice(Integer[1,6], 2) # produces [[1,2], [3,4], [5,6]]
slice(4,2) # produces [[0,1], [2,3]]
slice('hello',2) # produces [[h, e], [l, l], [o]]

 $a.slice($n) |$x| { ... }
 slice($a) |$x| { ... }

The lambda should have either one parameter (receiving an array with the slice), or the same number of parameters as
specified by the slice size (each parameter receiving its part of the slice). If there are fewer remaining elements than
the slice size for the last slice, it will contain the remaining elements. If the lambda has multiple parameters, excess
parameters are set to undef for an array, or to empty arrays for a hash.

 $a.slice(2) |$first, $second| { ... }

Signature 1

slice(Hash[Any, Any] $hash, Integer[1, default] $slice_size,
Optional[Callable] &$block)

Signature 2

slice(Iterable $enumerable, Integer[1, default] $slice_size,
Optional[Callable] &$block)

sort

Sorts an Array numerically or lexicographically or the characters of a String lexicographically. Please note:
This function is based on Ruby String comparison and as such may not be entirely UTF8 compatible. To ensure
compatibility please use this function with Ruby 2.4.0 or greater - https://bugs.ruby-lang.org/issues/10085.

This function is compatible with the function sort() in stdlib.

• Comparison of characters in a string always uses a system locale and may not be what is expected for a particular
locale

• Sorting is based on Ruby's <=> operator unless a lambda is given that performs the comparison.

• comparison of strings is case dependent (use lambda with compare($a,$b) to ignore case)
• comparison of mixed data types raises an error (if there is the need to sort mixed data types use a lambda)

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 828

Also see the compare() function for information about comparable data types in general.

notice(sort("xadb")) # notices 'abdx'

notice(sort([3,6,2])) # notices [2, 3, 6]

notice(sort([3,6,2]) |$a,$b| { compare($a, $b) }) # notices [2, 3, 6]
notice(sort([3,6,2]) |$a,$b| { compare($b, $a) }) # notices [6, 3, 2]

notice(sort(['A','b','C'])) # notices
 ['A', 'C', 'b']
notice(sort(['A','b','C']) |$a,$b| { compare($a, $b) }) # notices
 ['A', 'b', 'C']
notice(sort(['A','b','C']) |$a,$b| { compare($a, $b, true) }) # notices
 ['A', 'b', 'C']
notice(sort(['A','b','C']) |$a,$b| { compare($a, $b, false) }) # notices
 ['A','C', 'b']

notice(sort(['b', 3, 'a', 2]) |$a, $b| {
 case [$a, $b] {
 [String, Numeric] : { 1 }
 [Numeric, String] : { -1 }
 default: { compare($a, $b) }
 }
})

Would notice [2,3,'a','b']

Signature 1

sort(String $string_value, Optional[Callable[2,2]] &$block)

Signature 2

sort(Array $array_value, Optional[Callable[2,2]] &$block)

split

Splits a string into an array using a given pattern. The pattern can be a string, regexp or regexp type.

$string = 'v1.v2:v3.v4'
$array_var1 = split($string, /:/)
$array_var2 = split($string, '[.]')
$array_var3 = split($string, Regexp['[.:]'])

#`$array_var1` now holds the result `['v1.v2', 'v3.v4']`,
while `$array_var2` holds `['v1', 'v2:v3', 'v4']`, and
`$array_var3` holds `['v1', 'v2', 'v3', 'v4']`.

Note that in the second example, we split on a literal string that contains a regexp meta-character (.), which must be
escaped. A simple way to do that for a single character is to enclose it in square brackets; a backslash will also escape
a single character.

Signature 1

split(String $str, String $pattern)

Signature 2

split(String $str, Regexp $pattern)

Signature 3

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 829

split(String $str, Type[Regexp] $pattern)

sprintf

Perform printf-style formatting of text.

The first parameter is format string describing how the rest of the parameters should be formatted. See the
documentation for the Kernel::sprintf function in Ruby for details.

To use named format arguments, provide a hash containing the target string values as the argument to be formatted.
For example:

notice sprintf(\"%<x>s : %<y>d\", { 'x' => 'value is', 'y' => 42 })

This statement produces a notice of value is : 42.

sprintf()

step

When no block is given, Puppet returns a new Iterable which allows it to be directly chained into another function
that takes an Iterable as an argument.

For the array $data, return an array, set to the first element and each
 5th successor element, in reverse
order multiplied by 10
$data = Integer[0,20]
$transformed_data = $data.step(5).map |$item| { $item * 10 }
$transformed_data contains [0,50,100,150,200]

For the array $data, return an array, set to the first and each 5th
successor, in reverse order, multiplied by 10
$data = Integer[0,20]
$transformed_data = map(step($data, 5)) |$item| { $item * 10 }
$transformed_data contains [0,50,100,150,200]

Signature 1

step(Iterable $iterable, Integer[1] $step)

Signature 2

step(Iterable $iterable, Integer[1] $step, Callable[1,1] &$block)

strftime

Formats timestamp or timespan according to the directives in the given format string. The directives begins with a
percent (%) character. Any text not listed as a directive will be passed through to the output string.

A third optional timezone argument can be provided. The first argument will then be formatted to represent a local
time in that timezone. The timezone can be any timezone that is recognized when using the '%z' or '%Z' formats, or
the word 'current', in which case the current timezone of the evaluating process will be used. The timezone argument
is case insensitive.

The default timezone, when no argument is provided, or when using the keyword default, is 'UTC'.

The directive consists of a percent (%) character, zero or more flags, optional minimum field width and a conversion
specifier as follows:

%[Flags][Width]Conversion

© 2024 Puppet, Inc., a Perforce company

https://ruby-doc.org/core/Kernel.html
https://idiosyncratic-ruby.com/49-what-the-format.html

Puppet | Developing Puppet code | 830

Flags that controls padding

Flag Meaning

- Don't pad numerical output

_ Use spaces for padding

0 Use zeros for padding

Timestamp specific flags

Flag Meaning

Change case

^ Use uppercase

: Use colons for %z

Format directives applicable to Timestamp (names and padding can be altered using flags):

Date (Year, Month, Day):

Format Meaning

Y Year with century, zero-padded to at least 4 digits

C year / 100 (rounded down such as 20 in 2009)

y year % 100 (00..99)

m Month of the year, zero-padded (01..12)

B The full month name ("January")

b The abbreviated month name ("Jan")

h Equivalent to %b

d Day of the month, zero-padded (01..31)

e Day of the month, blank-padded (1..31)

j Day of the year (001..366)

Time (Hour, Minute, Second, Subsecond):

Format Meaning

H Hour of the day, 24-hour clock, zero-padded (00..23)

k Hour of the day, 24-hour clock, blank-padded (0..23)

I Hour of the day, 12-hour clock, zero-padded (01..12)

l Hour of the day, 12-hour clock, blank-padded (1..12)

P Meridian indicator, lowercase ("am" or "pm")

p Meridian indicator, uppercase ("AM" or "PM")

M Minute of the hour (00..59)

S Second of the minute (00..60)

L Millisecond of the second (000..999). Digits under
millisecond are truncated to not produce 1000

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 831

Format Meaning

N Fractional seconds digits, default is 9 digits
(nanosecond). Digits under a specified width are
truncated to avoid carry up

Time (Hour, Minute, Second, Subsecond):

Format Meaning

z Time zone as hour and minute offset from UTC (e.g.
+0900)

:z hour and minute offset from UTC with a colon (e.g.
+09:00)

::z hour, minute and second offset from UTC (e.g.
+09:00:00)

Z Abbreviated time zone name or similar information. (OS
dependent)

Weekday:

Format Meaning

A The full weekday name ("Sunday")

a The abbreviated name ("Sun")

u Day of the week (Monday is 1, 1..7)

w Day of the week (Sunday is 0, 0..6)

ISO 8601 week-based year and week number:

The first week of YYYY starts with a Monday and includes YYYY-01-04. The days in the year before the first week
are in the last week of the previous year.

Format Meaning

G The week-based year

g The last 2 digits of the week-based year (00..99)

V Week number of the week-based year (01..53)

Week number:

The first week of YYYY that starts with a Sunday or Monday (according to %U or %W). The days in the year before
the first week are in week 0.

Format Meaning

U Week number of the year. The week starts with Sunday.
(00..53)

W Week number of the year. The week starts with Monday.
(00..53)

Seconds since the Epoch:

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 832

Format Meaning

s Number of seconds since 1970-01-01 00:00:00 UTC.

Literal string:

Format Meaning

n Newline character (\n)

t Tab character (\t)

% Literal "%" character

Combination:

Format Meaning

c date and time (%a %b %e %T %Y)

D Date (%m/%d/%y)

F The ISO 8601 date format (%Y-%m-%d)

v VMS date (%e-%^b-%4Y)

x Same as %D

X Same as %T

r 12-hour time (%I:%M:%S %p)

R 24-hour time (%H:%M)

T 24-hour time (%H:%M:%S)

$timestamp = Timestamp('2016-08-24T12:13:14')

Notice the timestamp using a format that notices the ISO 8601 date format
notice($timestamp.strftime('%F')) # outputs '2016-08-24'

Notice the timestamp using a format that notices weekday, month, day, time
 (as UTC), and year
notice($timestamp.strftime('%c')) # outputs 'Wed Aug 24 12:13:14 2016'

Notice the timestamp using a specific timezone
notice($timestamp.strftime('%F %T %z', 'PST')) # outputs '2016-08-24
 04:13:14 -0800'

Notice the timestamp using timezone that is current for the evaluating
 process
notice($timestamp.strftime('%F %T', 'current')) # outputs the timestamp
 using the timezone for the current process

Format directives applicable to Timespan:

Format Meaning

D Number of Days

H Hour of the day, 24-hour clock

M Minute of the hour (00..59)

S Second of the minute (00..59)

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 833

Format Meaning

L Millisecond of the second (000..999). Digits under
millisecond are truncated to not produce 1000.

N Fractional seconds digits, default is 9 digits
(nanosecond). Digits under a specified length are
truncated to avoid carry up

The format directive that represents the highest magnitude in the format will be allowed to overflow. I.e. if no "%D"
is used but a "%H" is present, then the hours will be more than 23 in case the timespan reflects more than a day.

$duration = Timespan({ hours => 3, minutes => 20, seconds => 30 })

Notice the duration using a format that outputs
 <hours>:<minutes>:<seconds>
notice($duration.strftime('%H:%M:%S')) # outputs '03:20:30'

Notice the duration using a format that outputs <minutes>:<seconds>
notice($duration.strftime('%M:%S')) # outputs '200:30'

• Since 4.8.0

Signature 1

strftime(Timespan $time_object, String $format)

Signature 2

strftime(Timestamp $time_object, String $format, Optional[String] $timezone)

Signature 3

strftime(String $format, Optional[String] $timezone)

strip

Strips leading and trailing spaces from a String

This function is compatible with the stdlib function with the same name.

The function does the following:

• For a String the conversion removes all leading and trailing ASCII white space characters such as space, tab,
newline, and return. It does not remove other space-like characters like hard space (Unicode U+00A0). (Tip, /
^[[:space:]]/ regular expression matches all space-like characters).

• For an Iterable[Variant[String, Numeric]] (for example an Array) each value is processed and
the conversion is not recursive.

• If the value is Numeric it is simply returned (this is for backwards compatibility).
• An error is raised for all other data types.

" hello\n\t".strip()
strip(" hello\n\t")

Would both result in "hello"

[" hello\n\t", " hi\n\t"].strip()
strip([" hello\n\t", " hi\n\t"])

Would both result in ['hello', 'hi']

Signature 1

strip(Numeric $arg)

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 834

Signature 2

strip(String $arg)

Signature 3

strip(Iterable[Variant[String, Numeric]] $arg)

tag

Add the specified tags to the containing class or definition. All contained objects will then acquire that tag, also.

tag()

tagged

A boolean function that tells you whether the current container is tagged with the specified tags. The tags are ANDed,
so that all of the specified tags must be included for the function to return true.

tagged()

template

Loads an ERB template from a module, evaluates it, and returns the resulting value as a string.

The argument to this function should be a <MODULE NAME>/<TEMPLATE FILE> reference, which will
load <TEMPLATE FILE> from a module's templates directory. (For example, the reference apache/
vhost.conf.erb will load the file <MODULES DIRECTORY>/apache/templates/vhost.conf.erb.)

This function can also accept:

• An absolute path, which can load a template file from anywhere on disk.
• Multiple arguments, which will evaluate all of the specified templates and return their outputs concatenated into a

single string.

template()

then

Calls a lambda with the given argument unless the argument is undef. Returns undef if the argument is undef,
and otherwise the result of giving the argument to the lambda.

This is useful to process a sequence of operations where an intermediate result may be undef (which makes the
entire sequence undef). The then function is especially useful with the function dig which performs in a similar
way "digging out" a value in a complex structure.

$data = {a => { b => [{x => 10, y => 20}, {x => 100, y => 200}]}}
notice $data.dig(a, b, 1, x).then |$x| { $x * 2 }

Would notice the value 200

Contrast this with:

$data = {a => { b => [{x => 10, y => 20}, {not_x => 100, why => 200}]}}
notice $data.dig(a, b, 1, x).then |$x| { $x * 2 }

Which would notice undef since the last lookup of 'x' results in undef which is returned (without calling the
lambda given to the then function).

As a result there is no need for conditional logic or a temporary (non local) variable as the result is now either the
wanted value (x) multiplied by 2 or undef.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | Developing Puppet code | 835

Calls to then can be chained. In the next example, a structure is using an offset based on using 1 as the index to the
first element (instead of 0 which is used in the language). We are not sure if user input actually contains an index at
all, or if it is outside the range of available names.args.

Names to choose from
$names = ['Ringo', 'Paul', 'George', 'John']

Structure where 'beatle 2' is wanted (but where the number refers
to 'Paul' because input comes from a source using 1 for the first
element).

$data = ['singer', { beatle => 2 }]
$picked = assert_type(String,
 # the data we are interested in is the second in the array,
 # a hash, where we want the value of the key 'beatle'
 $data.dig(1, 'beatle')
 # and we want the index in $names before the given index
 .then |$x| { $names[$x-1] }
 # so we can construct a string with that beatle's name
 .then |$x| { "Picked Beatle '${x}'" }
)
notice $picked

Would notice "Picked Beatle 'Paul'", and would raise an error if the result was not a String.

• Since 4.5.0

then(Any $arg, Callable[1,1] &$block)

tree_each

Runs a lambda recursively and repeatedly using values from a data structure, then returns the unchanged data
structure, or if a lambda is not given, returns an Iterator for the tree.

This function takes one mandatory argument, one optional, and an optional block in this order:

1. An Array, Hash, Iterator, or Object that the function will iterate over.
2. An optional hash with the options:

• include_containers => Optional[Boolean] # default true - if containers should be given to the
lambda

• include_values => Optional[Boolean] # default true - if non containers should be given to the
lambda

• include_root => Optional[Boolean] # default true - if the root container should be given to the
lambda

• container_type => Optional[Type[Variant[Array, Hash, Object]]] # a type that
determines what a container is - can only be set to a type that matches the default Variant[Array,
Hash, Object].

• order => Enum[depth_first, breadth_first] # default ´depth_first`, the order in which elements
are visited

• include_refs => Optional[Boolean] # default false, if attributes in objects marked as bing of
reference kind should be included.

3. An optional lambda, which the function calls for each element in the first argument. It must accept one or two
arguments; either $path, and $value, or just $value.

$data.tree_each |$path, $value| { <PUPPET CODE BLOCK> } $data.tree_each |
$value| { <PUPPET CODE BLOCK> }

or

tree_each($data) |$path, $value| { <PUPPET CODE BLOCK> } tree_each($data) |
$value| { <PUPPET CODE BLOCK> }

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | Developing Puppet code | 836

The parameter $path is always given as an Array containing the path that when applied to the tree as
$data.dig(*$path) yields the $value. The $value` is the value at that path.

For Array values, the path will contain Integer entries with the array index, and for Hash values, the path will
contain the hash key, which may be Any value. For Object containers, the entry is the name of the attribute (a
String).

The tree is walked in either depth-first order, or in breadth-first order under the control of the order option, yielding
each Array, Hash, Object, and each entry/attribute. The default is depth_first which means that children are
processed before siblings. An order of breadth_first means that siblings are processed before children.

[1, [2, 3], 4]

If containers are skipped, results in:

• depth_first order 1, 2, 3, 4
• breadth_first order 1, 4,2, 3

If containers and root are included, results in:

• depth_first order [1, [2, 3], 4], 1, [2, 3], 2, 3, 4
• breadth_first order [1, [2, 3], 4], 1, [2, 3], 4, 2, 3

Typical use of the tree_each function include:

• a more efficient way to iterate over a tree than first using flatten on an array as that requires a new (potentially
very large) array to be created

• when a tree needs to be transformed and 'pretty printed' in a template
• avoiding having to write a special recursive function when tree contains hashes (flatten does not work on hashes)

$data = [1, 2, [3, [4, 5]]]
$data.tree_each({include_containers => false}) |$v| { notice "$v" }

This would call the lambda 5 times with with the following values in sequence: 1, 2, 3, 4, 5

$data = [1, 2, [3, [4, 5]]]
$data.tree_each |$v| { notice "$v" }

This would call the lambda 7 times with the following values in sequence: 1, 2, [3, [4, 5]], 3, [4, 5], 4, 5

$data = [1, 2, [3, [4, 5]]]
$data.tree_each({include_values => false, include_root => false}) |$v|
 { notice "$v" }

This would call the lambda 2 times with the following values in sequence: [3, [4, 5]], [4, 5]

Any Puppet Type system data type can be used to filter what is considered to be a container, but it must be a narrower
type than one of the default Array, Hash, Object types - for example it is not possible to make a String be a
container type.

$data = [1, {a => 'hello', b => [100, 200]}, [3, [4, 5]]]
$data.tree_each({container_type => Array, include_containers => false} |$v|
 { notice "$v" }

Would call the lambda 5 times with 1, {a => 'hello', b => [100, 200]}, 3, 4, 5

Chaining When calling tree_each without a lambda the function produces an Iterator that can be chained into
another iteration. Thus it is easy to use one of:

• reverse_each - get "leaves before root"
• filter - prune the tree
• map - transform each element

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 837

• reduce - produce something else

Note than when chaining, the value passed on is a Tuple with [path, value].

A tree of some complexity (here very simple for readability)
$tree = [
 { name => 'user1', status => 'inactive', id => '10'},
 { name => 'user2', status => 'active', id => '20'}
]
notice $tree.tree_each.filter |$v| {
 $value = $v[1]
 $value =~ Hash and $value[status] == active
}

Would notice [[[1], {name => user2, status => active, id => 20}]], which can then be
processed further as each filtered result appears as a Tuple with [path, value].

For general examples that demonstrates iteration see the Puppet iteration documentation.

Signature 1

tree_each(Variant[Iterator, Array, Hash, Object] $tree, Optional[OptionsType]
$options, Callable[2,2] &$block)

Signature 2

tree_each(Variant[Iterator, Array, Hash, Object] $tree, Optional[OptionsType]
$options, Callable[1,1] &$block)

Signature 3

tree_each(Variant[Iterator, Array, Hash, Object] $tree, Optional[OptionsType]
$options)

type

Returns the data type of a given value with a given degree of generality.

type InferenceFidelity = Enum[generalized, reduced, detailed]

function type(Any $value, InferenceFidelity $fidelity = 'detailed') #
 returns Type

notice type(42) =~ Type[Integer]

Would notice true.

By default, the best possible inference is made where all details are retained. This is good when the type is used for
further type calculations but is overwhelmingly rich in information if it is used in a error message.

The optional argument $fidelity may be given as (from lowest to highest fidelity):

• generalized - reduces to common type and drops size constraints
• reduced - reduces to common type in collections
• detailed - (default) all details about inferred types is retained

notice type([3.14, 42], 'generalized')
notice type([3.14, 42], 'reduced'')
notice type([3.14, 42], 'detailed')
notice type([3.14, 42])

Would notice the four values:

1. Array[Numeric]

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_iteration.html

Puppet | Developing Puppet code | 838

2. Array[Numeric, 2, 2]

3. Tuple[Float[3.14], Integer[42,42]]]

4. Tuple[Float[3.14], Integer[42,42]]]

Signature 1

type(Any $value, Optional[Enum[detailed]] $inference_method)

Signature 2

type(Any $value, Enum[reduced] $inference_method)

Signature 3

type(Any $value, Enum[generalized] $inference_method)

unique

Produces a unique set of values from an Iterable argument.

• If the argument is a String, the unique set of characters are returned as a new String.
• If the argument is a Hash, the resulting hash associates a set of keys with a set of unique values.
• For all other types of Iterable (Array, Iterator) the result is an Array with a unique set of entries.
• Comparison of all String values are case sensitive.
• An optional code block can be given - if present it is given each candidate value and its return is used instead of

the given value. This enables transformation of the value before comparison. The result of the lambda is only used
for comparison.

• The optional code block when used with a hash is given each value (not the keys).

will produce 'abc'
"abcaabb".unique

will produce ['a', 'b', 'c']
['a', 'b', 'c', 'a', 'a', 'b'].unique

will produce { ['a', 'b'] => [10], ['c'] => [20]}
{'a' => 10, 'b' => 10, 'c' => 20}.unique

will produce { 'a' => 10, 'c' => 20 } (use first key with first value)
Hash.new({'a' => 10, 'b' => 10, 'c' => 20}.unique.map |$k, $v| { [$k[0] ,
 $v[0]] })

will produce { 'b' => 10, 'c' => 20 } (use last key with first value)
Hash.new({'a' => 10, 'b' => 10, 'c' => 20}.unique.map |$k, $v| { [$k[-1] ,
 $v[0]] })

will produce [3, 2, 1]
[1,2,2,3,3].reverse_each.unique

will produce [['sam', 'smith'], ['sue', 'smith']]
[['sam', 'smith'], ['sam', 'brown'], ['sue', 'smith']].unique |$x| { $x[0] }

will produce [['sam', 'smith'], ['sam', 'brown']]
[['sam', 'smith'], ['sam', 'brown'], ['sue', 'smith']].unique |$x| { $x[1] }

will produce ['aBc', 'bbb'] (using a lambda to make comparison using
 downcased (%d) strings)
['aBc', 'AbC', 'bbb'].unique |$x| { String($x,'%d') }

will produce {[a] => [10], [b, c, d, e] => [11, 12, 100]}

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 839

{a => 10, b => 11, c => 12, d => 100, e => 11}.unique |$v| { if $v > 10
 { big } else { $v } }

Note that for Hash the result is slightly different than for the other data types. For those the result contains the
first-found unique value, but for Hash it contains associations from a set of keys to the set of values clustered
by the equality lambda (or the default value equality if no lambda was given). This makes the unique function
more versatile for hashes in general, while requiring that the simple computation of "hash's unique set of values" is
performed as $hsh.map |$k, $v| { $v }.unique. (A unique set of hash keys is in general meaningless
(since they are unique by definition) - although if processed with a different lambda for equality that would be
different. First map the hash to an array of its keys if such a unique computation is wanted). If the more advanced
clustering is wanted for one of the other data types, simply transform it into a Hash as shown in the following
example.

Array ['a', 'b', 'c'] to Hash with index results in
{0 => 'a', 1 => 'b', 2 => 'c'}
Hash(['a', 'b', 'c'].map |$i, $v| { [$i, $v]})

String "abc" to Hash with index results in
{0 => 'a', 1 => 'b', 2 => 'c'}
Hash(Array("abc").map |$i,$v| { [$i, $v]})
"abc".to(Array).map |$i,$v| { [$i, $v]}.to(Hash)

Signature 1

unique(String $string, Optional[Callable[String]] &$block)

Signature 2

unique(Hash $hash, Optional[Callable[Any]] &$block)

Signature 3

unique(Array $array, Optional[Callable[Any]] &$block)

Signature 4

unique(Iterable $iterable, Optional[Callable[Any]] &$block)

unwrap

Unwraps a Sensitive value and returns the wrapped object. Returns the Value itself, if it is not Sensitive.

$plaintext = 'hunter2'
$pw = Sensitive.new($plaintext)
notice("Wrapped object is $pw") #=> Prints "Wrapped object is Sensitive
 [value redacted]"
$unwrapped = $pw.unwrap
notice("Unwrapped object is $unwrapped") #=> Prints "Unwrapped object is
 hunter2"

You can optionally pass a block to unwrap in order to limit the scope where the unwrapped value is visible.

$pw = Sensitive.new('hunter2')
notice("Wrapped object is $pw") #=> Prints "Wrapped object is Sensitive
 [value redacted]"
$pw.unwrap |$unwrapped| {
 $conf = inline_template("password: ${unwrapped}\n")
 Sensitive.new($conf)
} #=> Returns a new Sensitive object containing an interpolated config file
$unwrapped is now out of scope

Signature 1

unwrap(Sensitive $arg, Optional[Callable] &$block)

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 840

Signature 2

unwrap(Any $arg, Optional[Callable] &$block)

upcase

Converts a String, Array or Hash (recursively) into upper case.

This function is compatible with the stdlib function with the same name.

The function does the following:

• For a String, its upper case version is returned. This is done using Ruby system locale which handles some, but
not all special international up-casing rules (for example German double-s ß is upcased to "SS", whereas upper
case double-s is downcased to ß).

• For Array and Hash the conversion to upper case is recursive and each key and value must be convertible by
this function.

• When a Hash is converted, some keys could result in the same key - in those cases, the latest key-value wins. For
example if keys "aBC", and "abC" where both present, after upcase there would only be one key "ABC".

• If the value is Numeric it is simply returned (this is for backwards compatibility).
• An error is raised for all other data types.

Please note: This function relies directly on Ruby's String implementation and as such may not be entirely UTF8
compatible. To ensure best compatibility please use this function with Ruby 2.4.0 or greater - https://bugs.ruby-
lang.org/issues/10085.

'hello'.upcase()
upcase('hello')

Would both result in "HELLO"

['a', 'b'].upcase()
upcase(['a', 'b'])

Would both result in ['A', 'B']

{'a' => 'hello', 'b' => 'goodbye'}.upcase()

Would result in {'A' => 'HELLO', 'B' => 'GOODBYE'}

['a', 'b', ['c', ['d']], {'x' => 'y'}].upcase

Would result in ['A', 'B', ['C', ['D']], {'X' => 'Y'}]

Signature 1

upcase(Numeric $arg)

Signature 2

upcase(String $arg)

Signature 3

upcase(Array[StringData] $arg)

Signature 4

upcase(Hash[StringData, StringData] $arg)

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 841

values

Returns the values of a hash as an Array

$hsh = {"apples" => 3, "oranges" => 4 }
$hsh.values()
values($hsh)
both results in the array [3, 4]

• Note that a hash in the puppet language accepts any data value (including undef) unless it is constrained with a
Hash data type that narrows the allowed data types.

• For an empty hash, an empty array is returned.
• The order of the values is the same as the order in the hash (typically the order in which they were added).

values(Hash $hsh)

versioncmp

Compares two version numbers.

Prototype:

\$result = versioncmp(a, b)

Where a and b are arbitrary version strings.

Optional parameter ignore_trailing_zeroes is used to ignore unnecessary trailing version numbers like .0 or .0.00

This function returns:

• 1 if version a is greater than version b
• 0 if the versions are equal
• -1 if version a is less than version b

This function uses the same version comparison algorithm used by Puppet's package type.

versioncmp(String $a, String $b, Optional[Boolean] $ignore_trailing_zeroes)

warning

Logs a message on the server at level warning.

warning(Any *$values)

Parameters

• *values --- The values to log.

Return type(s): Undef.

with

Calls a lambda with the given arguments and returns the result.

Since a lambda's scope is local to the lambda, you can use the with function to create private blocks of code within a
class using variables whose values cannot be accessed outside of the lambda.

Concatenate three strings into a single string formatted as a list.
$fruit = with("apples", "oranges", "bananas") |$x, $y, $z| {
 "${x}, ${y}, and ${z}"
}
$check_var = $x
$fruit contains "apples, oranges, and bananas"
$check_var is undefined, as the value of $x is local to the lambda.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html
https://puppet.com/docs/puppet/latest/lang_lambdas.html#lambda-scope

Puppet | Developing Puppet code | 842

with(Any *$arg, Callable &$block)

yaml_data

The yaml_data is a hiera 5 data_hash data provider function. See the configuration guide documentation for
how to use this function.

yaml_data(Struct[{path=>String[1]}] $options, Puppet::LookupContext $context)

Node definitions
A node definition, also known as a node statement, is a block of Puppet code that is included only in matching nodes'
catalogs. This allows you to assign specific configurations to specific nodes.

Put node definitions in the main manifest, which can be a single site.pp file, or a directory containing many files.

If the main manifest contains at least one node definition, it must have one for every node. Compilation for a node
fails if a node definition for it cannot be found. Either specify no node definitions, or use the default node
definition, as described below, to avoid this situation.

Puppet code that is outside any node definition is compiled for every node. That is, a given node gets both the code
that is in its node definition and the code that is outside any node definition.

Node definitions create an anonymous scope that can override variables and defaults from top scope.

Tip: Although node definitions can contain almost any Puppet code, we recommend that you use them only to
set variables and declare classes. Avoid putting resource declarations, collectors, conditional statements, chaining
relationships, and functions in node definitions; all of these belong in classes or defined types.

Node definitions are an optional feature of Puppet. You can use them instead of or in combination with an external
node classifier (ENC). Alternatively, you can use conditional statements with facts to classify nodes. Unlike more
general conditional structures, node definitions match nodes only by name. By default, the name of a node is its
certname, which defaults to the node's fully qualified domain name.

Although you can use node definitions in conjunction with an ENC, it's simpler to choose one method or the other. If
you do use them together, Puppet merges their data as follows:

• Variables from an ENC are set at top scope and can be overridden by variables in a node definition.
• Classes from an ENC are declared at node scope, so they are affected by any variables set in the node definition.

Syntax

Node definitions look like class definitions. The general form of a node definition is:

• The node keyword.
• The node definition name: a quoted string, a regular expression, or default.
• An opening curly brace.
• Any mixture of class declarations, variables, resource declarations, collectors, conditional statements, chaining

relationships, and functions.
• A closing curly brace.

In the following example, only www1.example.com receives the apache and squid classes, and only
db1.example.com receives the mysql class:

<ENVIRONMENTS DIRECTORY>/<ENVIRONMENT>/manifests/site.pp
node 'www1.example.com' {
 include common
 include apache
 include squid
}
node 'db1.example.com' {
 include common
 include mysql

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/hiera_config_yaml_5.html#configuring-a-hierarchy-level-built-in-backends

Puppet | Developing Puppet code | 843

}

A node definition name must be one of the following:

• A quoted string containing only letters, numbers, underscores (_), hyphens (-), and periods (.).
• A regular expression.
• The bare word default. If no other node definition matches a given node, the default node definition will be

used for that node.

You can use a comma-separated list of names to match a group of nodes with a single node definition:

node 'www1.example.com', 'www2.example.com', 'www3.example.com' {
 include common
 include apache, squid
}

If you use a regular expression for a node definition name, it also has the potential to match multiple nodes. For
example, the following node definition matches www1, www13, and any other node whose name consists of www and
one or more digits:

node /^www\d+$/ {
 include common
}

The following example of a regex node definition name matches one.example.com and two.example.com,
but no other nodes:

node /^(one|two)\.example\.com$/ {
 include common
}

Important: Make sure all of your node definition name regexes match non-overlapping sets of node names. If a
node’s name matches more than one regex, Puppet makes no guarantee about which matching definition it will get.

You can use regex capture variables by enclosing parts of your regex node definition name in parentheses (), and
then referencing them in order as $1, $2 and so on, as variables within the body of the node definition. For example:

node /^www(\d+)$/ {
 $wwwnumber = $1 #assigns the value of the (\d+) from a regex match to the
 variable $wwwnumber
}

Matching

A given node gets the contents of only one node definition, even if multiple node definitions could match its name.
Puppet does the following checks, in this order, until it finds one that matches:

1. If there is a node definition with the node's exact name, Puppet uses it.
2. If there is a regular expression node definition that matches the node's name, Puppet uses it. If more than one

regex node matches, Puppet uses one of them, but we can't predict which. Make your node definition name
regexes non-overlapping to avoid this problem.

3. By default, the primary server's strict_hostname_checking is set to true, which means the nodes are
always matched by the certname.

If strict_hostname_checking is set to false and the node's name looks like a fully qualified domain
name (it has multiple period-separated groups of letters, numbers, underscores, and dashes), Puppet chops off the
final group and starts again at step 1. This is also true for fqdn. If the fqdn fact is not found, it will combine the
hostname and domain facts.

4. Puppet uses the default node.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 844

For example, when compiling a catalog for a node with certname www01.example.com, with fuzzy checking,
Puppet looks for a node definition with the following name, in this order:

• www01.example.com

• A regex that matches www01.example.com
• www01.example

• A regex that matches www01.example
• www01

• A regex that matches www01
• default

If it doesn't find one, catalog compilation fails. It's a good idea to always have a default node definition.

Related information
Variables on page 571
Variables store values so that those values can be accessed in code later.

Conditional statements and expressions on page 754
Conditional statements let your Puppet code behave differently in different situations. They are most helpful when
combined with facts or with data retrieved from an external source. Puppet supports if and unless statements, case
statements, and selectors.

Key configuration settings on page 128
Puppet has about 200 settings, all of which are listed in the configuration reference. Most of the time, you interact
with only a couple dozen of them. This page lists the most important ones, assuming that you're okay with default
values for things like the port Puppet uses for network traffic. See the configuration reference for more details on
each.

Main manifest directory on page 468
Puppet starts compiling a catalog either with a single manifest file or with a directory of manifests that are treated like
a single file. This starting point is called the main manifest or site manifest.

Scope on page 966
A scope is a specific area of code that is partially isolated from other areas of code.

Facts and built-in variables
Before requesting a catalog for a managed node, or compiling one with puppet apply, Puppet collects system
information, called facts, by using the Facter tool. The facts are assigned as values to variables that you can use
anywhere in your manifests. Puppet also sets some additional special variables, called built-in variables, which
behave a lot like facts.

Puppet code can access the following facts when compiling a catalog:

• Core facts from Facter.
• Custom facts and external facts that are present in your modules.

To see the fact values for a node, run facter -p on the command line, or browse facts on node detail pages in the
Puppet Enterprise console. You can also use the PuppetDB API to explore or build tools to search and report on your
infrastructure's facts.

Puppet honors fact values of of any data type. It does not convert Boolean, numeric, or structured facts to strings.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetdb/latest/api/index.html

Puppet | Developing Puppet code | 845

• Accessing facts from Puppet code on page 845
When you write Puppet code, you can access facts in two ways: with the $fact_name syntax, or with the
$facts['fact_name'] hash.
• Built-in variables on page 846
In addition to Facter's core facts and custom facts, Puppet creates several variables for a node to facilitate managing
it. These variables are called trusted facts, server facts, agent facts, server variables, and compiler variables.

Accessing facts from Puppet code
When you write Puppet code, you can access facts in two ways: with the $fact_name syntax, or with the
$facts['fact_name'] hash.

Using the $fact_name syntax

Facts appear in Puppet as top-scope variables. They can be accessed in manifests as $fact_name.

For example:

if $osfamily == 'RedHat' {
 # ...
}

Tip: When you code with this fact syntax, it's not immediately obvious that you're using a fact — someone reading
your code needs to know which facts exist to guess that you're accessing a top-scope variable. To make your code
easier for others to read, use the $::fact_name syntax as a hint, to show that it's accessing a top-scope variable.

Using the $facts['fact_name'] hash syntax

Alternatively, facts are structured in a $facts hash, and your manifest code can access them as
$facts['fact_name']. The variable name $facts is reserved, so local scopes cannot re-use it. Structured
facts show up as a nested structure inside the $facts namespace, and can be accessed using Puppet's normal hash
access syntax.

For example:

if $facts['os']['family'] == 'RedHat' {
 # ...
}

Accessing facts using this syntax makes for more readable and maintainable code, by making facts visibly distinct
from other variables. It eliminates confusion that is possible when you use a local variable whose name happens to
match that of a common fact.

Because of ambiguity with function invocation, the dot-separated access syntax that is available in Facter commands
is not available with the $facts hash access syntax. However, you can instead use the fact function included in
the stdlib module. Read more about it in the stdlib module README.

Improving performance by blocking or caching built-in facts

If Facter is slowing down your code, you can configure Facter to block or cache built-in facts. When a system
has a lot of something — for example, mount points or disks — Facter can take a long time to collect the facts
from each one. When this is a problem, you can speed up Facter’s collection by configuring these settings in the
facter.conf file:

• blocklist for blocking built-in facts you’re uninterested in.
• ttls for caching built-in facts you don’t need retrieved frequently.

Related information
Scope on page 966

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppetlabs-stdlib#fact

Puppet | Developing Puppet code | 846

A scope is a specific area of code that is partially isolated from other areas of code.

Variables on page 571
Variables store values so that those values can be accessed in code later.

Hashes on page 907
Hashes map keys to values, maintaining the order of the entries according to insertion order.

Configuring Facter with facter.conf on page 407
The facter.conf file is a configuration file that allows you to cache and block fact groups, and manage how
Facter interacts with your system. There are three sections: facts, global, and cli. All sections are optional and
can be listed in any order within the file.

Built-in variables
In addition to Facter's core facts and custom facts, Puppet creates several variables for a node to facilitate managing
it. These variables are called trusted facts, server facts, agent facts, server variables, and compiler variables.

Trusted facts

Normal facts are self-reported by the node, and nothing guarantees their accuracy. Trusted facts are extracted from the
node's certificate, which can prove that the certificate authority checked and approved them, making them useful for
deciding whether a given node can receive the sensitive data in its catalog.

Trusted facts is a hash that contains trusted data from the node's certificate. You can access the data using the syntax
$trusted['fact_name']. The variable name $trusted is reserved, so local scopes cannot reuse it.

Keys in the $trusted hash Possible values

authenticated An indication of whether the catalog request was
authenticated, as well as how it was authenticated. The
value will be one of these:

• remote for authenticated remote requests, as with
agent-server Puppet configurations.

• local for all local requests, as with standalone
Puppet apply nodes.

• false for unauthenticated remote requests,
possible if your auth.conf configuration allows
unauthenticated catalog requests.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 847

Keys in the $trusted hash Possible values

certname The node’s subject certificate name, as listed in its
certificate. When first requesting its certificate, the node
requests a subject certificate name matching the value of
its certname setting.

• If authenticated is remote, the value is the
subject certificate name extracted from the node’s
certificate.

• If authenticated is local, the value is read
directly from the certname setting.

• If authenticated is false, the value will be an
empty string.

domain The node’s domain, as derived from its validated
certificate name. The value can be empty if the
certificate name doesn’t contain a fully qualified domain
name.

extensions A hash containing any custom extensions present in
the node’s certificate. The keys of the hash are the
extension OIDs. OIDs in the ppRegCertExt range appear
using their short names, and other OIDs appear as
plain dotted numbers. If no extensions are present, or
authenticated is local or false, this is an
empty hash.

hostname The node’s hostname, as derived from its validated
certificate name

A typical $trusted hash looks something like this:

{
 'authenticated' => 'remote',
 'certname' => 'web01.example.com',
 'domain' => 'example.com',
 'extensions' => {
 'pp_uuid' => 'ED803750-
E3C7-44F5-BB08-41A04433FE2E',
 'pp_image_name' => 'storefront_production'
 '1.3.6.1.4.1.34380.1.2.1' => 'ssl-termination'
 },
 'hostname' => 'web01'
}

Here is some example Puppet code using a certificate extension:

if $trusted['extensions']['pp_image_name'] == 'storefront_production' {
 include private::storefront::private_keys
}

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 848

Here's an example of a hiera.yaml file using certificate extensions in a hierarchy:

version: 5
hierarchy:
 - name: "Certname"
 path: "nodes/%{trusted.certname}.yaml"
 - name: "Original VM image name"
 path: "images/%{trusted.extensions.pp_image_name}.yaml"
 - name: "Machine role (custom certificate extension)"
 path: "role/%{trusted.extensions.'1.3.6.1.4.1.34380.1.2.1'}.yaml"
 - name: "Common data"
 path: "common.yaml"

Server facts

The $server_facts variable provides a hash of server-side facts that cannot be overwritten by client side facts.
This is important because it enables you to get trusted server facts that could otherwise be overwritten by client-side
facts.

For example, the primary Puppet server sets the global $::environment variable to contain the name of the
node's environment. However, if a node provides a fact with the name environment, that fact's value overrides the
server-set environment fact. The same happens with other server-set global variables, like $::servername and
$::serverip. As a result, modules can't reliably use these variables for whatever their intended purpose was.

A warning is issued any time a node parameter is overwritten.

Here is an example $server_facts hash:

{
 serverversion => "4.1.0",
 servername => "v85ix8blah.delivery.example.com",
 serverip => "192.0.2.10",
 environment => "production",
}

Agent facts

Puppet agent and Puppet apply both add several extra pieces of info to their facts before requesting or compiling a
catalog. Like other facts, these are available as either top-scope variables or elements in the $facts hash.

Agent facts Values

$clientcert The node’s certname setting. This is self-
reported; for the verified certificate name,
use$trusted['certname'].

$clientversion The current version of Puppet agent.

$puppetversion The current version of Puppet on the node.

$clientnoop The value of the node’s noop setting (true or false) at the
time of the run.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 849

Agent facts Values

$agent_specified_environment The value of the node’s environment setting. If the
primary server’s node classifier specified an environment
for the node, $agent_specified_environment
and $environment can have different values. If
no value was set for the environment setting (in
puppet.conf or with --environment), the value
of $agent_specified_environmentis undef.
That is, it doesn't default to production like the
setting does.

Server variables

Several variables are set by the compiling Puppet server. These are most useful when managing Puppet with Puppet,
for example, managing the puppet.conf file with a template. Server variables are not available in the $facts
hash.

Server variables Values

$environment (also available topuppet apply) The agent node’s environment. Note that nodes can
accidentally or purposefully override this with a custom
fact; the $server_facts['environment']
variable always contains the correct environment, and
can’t be overridden.

$servername The compiling server’s fully-qualified domain name
(FQDN). Note that this information is gathered from
the primary server by Facter, rather than read from the
config files. Even if the compiling server’s certname is
set to something other than its FQDN, this variable still
contains the server’s FQDN.

$serverip The compiling server’s IP address.

$serverversion The current version of Puppet on the compiling server.

$settings::<SETTING_NAME>(also available to
puppet apply)

The value of any of the compiling server’s configuration
settings. This is implemented as a special namespace
and these variables must be referred to by their
qualified names. Other than $environment and
$clientnoop, the agent node’s settings are not
available in manifests. If you wish to expose them to the
compiling server, you must create a custom fact.

$settings::all_local Contains all variables in the $settingsnamespace
as a hash of <SETTING_NAME> =>
<SETTING_VALUE>. This helps you reference settings
that might be missing, because a direct reference
to such a missing setting raises an error when --
strict_variablesis enabled.

Compiler variables

Compiler variables are set in every local scope by the compiler during compilation. They are mostly used when
implementing complex defined types. Compiler variables are not available in the $facts hash.

These variables are always considered defined, suc strict_variables setting always considers these variables
to be defined, but their value is undef whenever no other value is applicable.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 850

Compiler variables Values

$module_name The name of the module that contains the current class or
defined type.

$caller_module_name The name of the module in which the specific instance of
the surrounding defined type was declared. This is useful
when creating versatile defined types that will be reused
by several modules.

Related information
CSR attributes and certificate extensions on page 338
When Puppet agent nodes request their certificates, the certificate signing request (CSR) usually contains only their
certname and the necessary cryptographic information. Agents can also embed additional data in their CSR, useful for
policy-based autosigning and for adding new trusted facts.

Configuring Hiera on page 417
The Hiera configuration file is called hiera.yaml. It configures the hierarchy for a given layer of data.

About environments on page 458
An environment is a branch that gets turned into a directory on your primary server.

Puppet settings on page 125
Customize Puppet settings in the main configuration file, called puppet.conf.

Writing custom facts on page 399
A typical fact in Facter is an collection of several elements, and is written either as a simple value (“flat” fact) or as
structured data (“structured” fact). This page shows you how to write and format facts correctly.

Scope on page 966
A scope is a specific area of code that is partially isolated from other areas of code.

Defined resource types on page 740
Defined resource types, sometimes called defined types or defines, are blocks of Puppet code that can be evaluated
multiple times with different parameters.

Reserved words and acceptable names
You can use only certain characters for naming variables, modules, classes, defined types, and other custom
constructs. Additionally, some words in the Puppet language are reserved and cannot be used as bare word strings or
names.

Reserved words

Reserved words cannot be used as:

• Bare word strings—to use these words as strings, you must enclose them in quotes.
• Names for custom functions.
• Names for classes.
• Names for custom resource types or defined resource types.

In addition, do not:

• Use the name of any existing resource type or function as the name of a function.
• Use the name of any existing resource type as the name of a defined type.
• Use the name of any existing data type (such as integer) as the name of a defined type.

Reserved word Description

and Expression operator

application Language keyword

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 851

Reserved word Description

attr Reserved for future use

case Language keyword

component Reserved

consumes Language keyword

default Language keyword

define Language keyword

elsif Language keyword

environment Reserved for symbolic namespace use

false Boolean value

function Language keyword

if Language keyword

import Former language keyword

in Expression operator

inherits Language keyword

node Language keyword

or Expression operator

private Reserved for future use

produces Language keyword

regexp Reserved

site Language keyword

true Boolean value

type Language keyword

undef Special value

unit Reserved

unless Language keyword

Reserved class names

Puppet automatically creates two names that must not be used as class names elsewhere:

• main: Puppet creates a main class, which contains any resources not contained by any other class.
• settings: Puppet creates a settings namespace, which contains variables with the settings available to the

primary server.

Additionally, the names of data types can't be used as class names:

• any, Any
• array, Array
• binary, Binary
• boolean, Boolean
• catalogentry, catalogEntry, CatalogEntry

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 852

• class, Class
• collection, Collection
• callable, Callable
• data, Data
• default, Default
• deferred, Deferred
• enum, Enum
• float, Float
• hash, Hash
• integer, Integer
• notundef, NotUndef
• numeric, Numeric
• optional, Optional
• pattern, Pattern
• resource, Resource
• regexp, Regexp
• runtime, Runtime
• scalar, Scalar
• semver, SemVer
• semVerRange, SemVerRange
• sensitive, Sensitive
• string, String
• struct, Struct
• timespan, Timespan
• timestamp, TImestamp
• tuple, Tuple
• type, Type
• undef, Undef
• variant, Variant

Reserved variable names

The following variable names are reserved. Unless otherwise noted, you can't assign values to them or use them as
parameters in classes or defined types.

Table 1:

Reserved variable name Description

$0, $1, and every other variable name consisting only of
digits

These are regex capture variables automatically set by
regular expression used in conditional statements. Their
values do not persist oustide their associated code block
or selector value. Assigning these variables causes an
error.

Top-scope Puppet built-in variables and facts Built-in variables and facts are reserved at top scope, but
you can safely reuse them at node or local scope. See
built-in variables and facts for a list of these variables
and facts.

$facts Reserved for facts and cannot be reassigned at local
scopes.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 853

Reserved variable name Description

$trusted Reserved for facts and cannot be reassigned at local
scopes.

$server_facts If enabled, this variable is reserved for trusted server
facts and cannot be reassigned at local scopes.

title Reserved for the title of a class or defined type.

name Reserved for the name of a class or defined type.

Related information
Facts and built-in variables on page 844
Before requesting a catalog for a managed node, or compiling one with puppet apply, Puppet collects system
information, called facts, by using the Facter tool. The facts are assigned as values to variables that you can use
anywhere in your manifests. Puppet also sets some additional special variables, called built-in variables, which
behave a lot like facts.

Scope on page 966
A scope is a specific area of code that is partially isolated from other areas of code.

Acceptable characters in names
Puppet limits the characters you can use when naming language constructs.

CAUTION: In some cases, names containing unsupported characters might still work. Such cases are bugs
and could cease to work at any time. Removal of these bug cases is not limited to major releases.

Classes and defined resource type names

The names of classes and defined resource types can consist of one or more namespace segments. Each namespace
segment:

• Must begin with a lowercase letter.
• Can include lowercase letters.
• Can include digits.
• Can include underscores.

When you follow these rules, each namespace segment matches the following regular expression:

\A[a-z][a-z0-9_]*\Z

The one exception is the top namespace, whose name is the empty string.

Multiple namespace segments are joined together in a class or defined type name with the double colon namespace
separator: ::. Class names with multiple namespaces must match the following regular expression:

\A([a-z][a-z0-9_]*)?(::[a-z][a-z0-9_]*)*\Z

Some words and class names are reserved and cannot be used as class or defined type names. Additionally, the
filename init.pp is reserved for the class named after any given module, so you cannot use the name <MODULE
NAME>::init for a class or defined type.

Variable names

Variable names are case-sensitive and must begin with a dollar sign ($). Most variable names must start with a
lowercase letter or an underscore. The exception is regex capture variables, which are named with only numbers.

Variable names can include:

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 854

• Uppercase and lowercase letters
• Numbers
• Underscores (_). If the first character is an underscore, access that variable only from its own local scope.

Qualified variable names are prefixed with the name of their scope and the double colon (::) namespace
separator. For example, the $vhostdir variable from the apache::params class would be
$apache::params::vhostdir.

Optionally, the name of the very first namespace can be empty, representing the top namespace. The main reason
to namespace this way is to indicate to anyone reading your code that you're accessing a top-scope variable, such as
$::is_virtual.

You can also use a regular expression for variable names. Short variable names match the following regular
expression:

\A\$[a-z0-9_][a-zA-Z0-9_]*\Z

Qualified variable names match the following regular expression:

\A\$([a-z][a-z0-9_]*)?(::[a-z][a-z0-9_]*)*::[a-z0-9_][a-zA-Z0-9_]*\Z

Module names

Module names obey the same rules as individual namespace segments, just as in a class or defined type name. That is,
each namespace segment:

• Must begin with a lowercase letter.
• Can include lowercase letters.
• Can include digits.
• Can include underscores.

When you follow these rules, each namespace segment matches the following regular expression:

\A[a-z][a-z0-9_]*\Z

Reserved words and class names cannot be used as module names.

Parameter names

Parameter names begin with a dollar sign prefix ($). The parameter name after the prefix:

• Must begin with a lowercase letter.
• Can include lowercase letters.
• Can include digits.
• Can include underscores.

When you follow these rules, a parameter name matches the following regular expression:

\A\$[a-z][a-z0-9_]*\Z

Tag names

Tag names must begin with:

• A lowercase letter, or
• An number, or
• An underscore.

Tag names can include:

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 855

• Lowercase letters
• Uppercase letters
• Digits
• Underscores
• Colons
• Periods
• Hyphens

When you follow these rules, a tag name matches the following regular expression:

\A[[:alnum:]_][[:alnum:]_:.-]*\Z

Resource names

Resource titles can contain any characters whatsoever and are case-sensitive. Resource names, or the namevar
attribute, might be limited by the system being managed. For example, most operating systems have limits on the
characters permitted in the name of a user account. You are generally responsible for knowing the name limits on the
platforms you manage.

Node names

Node names can contain:

• Letters
• Digits
• Periods
• Underscores
• Dashes

That is, node names match the regular expression:

 /\A[a-z0-9._-]+\Z/

Environment names

Environment names can contain:

• Lowercase letters
• Numbers
• Underscores

That is, environment names match the regular expression:

\A[a-z0-9_]+\Z

Custom resources
A resource is the basic unit that is managed by Puppet. Each resource has a set of attributes describing its state. Some
attributes can be changed throughout the lifetime of the resource, whereas others are only reported back but cannot be
changed, and some can only be set one time during initial creation.

A custom resource allows you to interact with something external. Three common use cases for this are:

• Parsing a file
• Running a command line tool
• Communicating with an API

To gather information about a resource and to enact changes on it, Puppet requires a provider to implement
interactions. The provider can have parameters that influence its operation. To describe all these parts to the

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 856

infrastructure and the consumers, the resource type defines all the metadata, including the list of the attributes. The
provider contains the code to get and set the system state.

If you are starting from scratch, or want a simple method for writing types and providers, use the Resource API. Built
on top of Puppet core, the Resource API makes the type and provider development easier, cheaper, safer, faster, and
better. If you need to maintain existing code, need multiple providers, or need access to the catalog, use the old low-
level types and providers method.

• Develop types and providers with the Resource API on page 856
The recommended method to create custom types and providers is to use the Resource API, which is built on top of
Puppet core. It is easier, faster, and safer than the old types and providers method.
• Resource API reference on page 859
Use this information to understand how the Resource API works: how the resource is defined in the type, how
resource management is implemented in the provider, and some of the known limitations of the Resource API.
• Low-level method for developing types and providers on page 874
You can define custom resource types for managing your infrastructure by defining types and providers. This original
method has largely been replaced by the Resource API method, but you might already have a setup that uses this low-
level method, or your situation might fall into one of the Resource API limitations.

Develop types and providers with the Resource API
The recommended method to create custom types and providers is to use the Resource API, which is built on top of
Puppet core. It is easier, faster, and safer than the old types and providers method.

To get started developing types and providers with the Resource API:

1. Download Puppet Development Kit (PDK) appropriate to your operating system and architecture.

2. Create a new module with PDK, or work with an existing PDK-enabled module. To create a new module, run
pdk new module <MODULE_NAME> from the command line, specifying the name of the module. Respond to
the dialog questions.

3. To add the puppet-resource_api gem and enable modern rspec-style mocking, open the .sync.yml file
in your editor, and add the following content:

.sync.yml

Gemfile:
 optional:
 ':development':
 - gem: 'puppet-resource_api'
spec/spec_helper.rb:
 mock_with: ':rspec'

4. Apply these changes by running pdk update

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/download-puppet-development-kit
https://puppet.com/docs/pdk/latest/pdk_generating_modules.html

Puppet | Developing Puppet code | 857

5. To create the required files for a new type and provider in the module, run: pdk new provider
<provider_name>

You will get the following response:

$ pdk new provider foo
pdk (INFO): Creating '.../example/lib/puppet/type/foo.rb'from template.
pdk (INFO): Creating '.../example/lib/puppet/provider/foo/foo.rb' from
 template.
pdk (INFO): Creating '.../example/spec/unit/puppet/provider/foo/
foo_spec.rb' from template.
$

The three generated files are the type (resource definition), the provider (resource implementation), and the unit
tests. The default template contains an example that demonstrates the basic workings of the Resource API. This
allows the unit tests to run immediately after creating the provider, which looks like this:

$ pdk test unit
[#] Preparing to run the unit tests.
[#] Running unit tests.
Evaluated 4 tests in 0.012065973 seconds: 0 failures, 0 pending.
[#] Cleaning up after running unit tests.
$

Writing the type and provider
Write a type to describe the resource and define its metadata, and a provider to gather information about the resource
and implement changes.

Writing the type

The type contains the shape of your resources. The template provides the necessary name and ensure attributes.
You can modify their description and the name's type to match your resource. Add more attributes as you need.

lib/puppet/type/yum.rb
require 'puppet/resource_api'

Puppet::ResourceApi.register_type(
 name: 'yum',
 docs: <<-EOS,
 This type provides Puppet with the capabilities to manage ...
 EOS
 attributes: {
 ensure: {
 type: 'Enum[present, absent]',
 desc: 'Whether this apt key should be present or absent on the
 target system.',
 default: 'present',
 },
 name: {
 type: 'String',
 desc: 'The name of the resource you want to manage.',
 behaviour: :namevar,
 },
 },
)

The following keys are available for defining attributes:

• type: the Puppet 4 data type allowed in this attribute. You can use all data types matching Scalar and Data.
• desc: a string describing this attribute. This is used in creating the automated API docs with puppet-strings.

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppet-strings

Puppet | Developing Puppet code | 858

• default: a default value used by the runtime environment; when the caller does not specify a value for this
attribute.

• behaviour / behavior: how the attribute behaves. Available values include:

• namevar: marks an attribute as part of the primary key or identity of the resource. A given set of namevar
values must distinctively identify an instance.

• init_only: this attribute can only be set during the creation of the resource. Its value is reported going
forward, but trying to change it later leads to an error. For example, the base image for a VM or the UID of a
user.

• read_only: values for this attribute are returned by get(), but set() is not able to change them. Values
for this should never be specified in a manifest. For example, the checksum of a file, or the MAC address of a
network interface.

• parameter: values for this attributes are not returned by get(). You can use this attribute to influence how
the provider behaves. For example, you can influence the managehome attribute when creating a user.

Writing the provider

The provider is the most important part of your new resource, as it reads and enforces state. When you generate a
provider with the pdk new provider command, PDK generates a provider file like this generated yum.rb file

require 'puppet/resource_api/simple_provider'

Implementation for the yum type using the Resource API.
class Puppet::Provider::provider_name::Yum <
 Puppet::ResourceApi::SimpleProvider
 def get(_context)
 [
 {
 name: 'foo',
 ensure: 'present',
 },
 {
 name: 'bar',
 ensure: 'present',
 },
]
 end

 def create(context, name, should)
 context.notice("Creating '#{name}' with #{should.inspect}")
 end

 def update(context, name, should)
 context.notice("Updating '#{name}' with #{should.inspect}")
 end

 def delete(context, name)
 context.notice("Deleting '#{name}'")
 end
end

The optional initialize method can be used to set up state that is available throughout the execution of the
catalog. This is most often used for establishing a connection when talking to a service, such as when you are
managing a database.

The get(context) method returns a list of hashes describing the resources that are on the target system. The basic
example would return an empty list. For example, these resources could be returned from this:

[
 {

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 859

 name: 'a',
 ensure: 'present',
 },
 {
 name: 'b',
 ensure: 'present',
 },
]

The create, update, and delete methods are called by the SimpleProvider base class to change the
system as requested by the catalog. The name argument is the name of the resource that is being processed. should
contains the attribute hash — in the same format as get returns — with the values in the catalog.

When adding Ruby code to a module, follow these guidelines:

• For small sized blocks of code, put the code in the provider.
• For medium sized blocks of code, put the code into a separate file in lib/puppet_x/$forgeuser/

$modulename.rb. puppet_x is optional, but it helps keep the file name unique and reduces the risk of a file
overwriting code from an unknown dependency.

• For large sized blocks of code, put the code in a separate gem.

Unit testing

The generated unit tests in spec/unit/puppet/provider/<PROVIDER_NAME>_spec.rb are evaluated
when you run pdk test unit.

Resource API reference
Use this information to understand how the Resource API works: how the resource is defined in the type, how
resource management is implemented in the provider, and some of the known limitations of the Resource API.

Resource definition: the type
A type is a definition of a resource that Puppet can manage. The definition contains the resource’s configurable
properties and the parameters used to access it.

To make the resource known to the Puppet ecosystem, its definition, or type needs to be registered with Puppet. For
example:

Puppet::ResourceApi.register_type(
 name: 'apt_key',
 desc: <<-EOS,
 This type provides Puppet with the capabilities to manage GPG keys
 needed
 by apt to perform package validation. Apt has it's own GPG keyring that
 can
 be manipulated through the `apt-key` command.

 apt_key { '6F6B15509CF8E59E6E469F327F438280EF8D349F':
 source => 'http://apt.puppetlabs.com/pubkey.gpg'
 }

 Autorequires:
 If Puppet is given the location of a key file which looks like an
 absolute
 path this type will autorequire that file.
 EOS
 attributes: {
 ensure: {
 type: 'Enum[present, absent]',
 desc: 'Whether this apt key should be present or absent on the target
 system.'
 },
 id: {

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 860

 type: 'Variant[Pattern[/\A(0x)?[0-9a-fA-F]{8}\Z/], Pattern[/
\A(0x)?[0-9a-fA-F]{16}\Z/], Pattern[/\A(0x)?[0-9a-fA-F]{40}\Z/]]',
 behaviour: :namevar,
 desc: 'The ID of the key you want to manage.',
 },
 source: {
 type: 'String',
 desc: 'Where to retrieve the key from, can be a HTTP(s) URL, or a
 local file. Files get automatically required.',
 },
 # ...
 created: {
 type: 'String',
 behaviour: :read_only,
 desc: 'Date the key was created, in ISO format.',
 },
 },
 autorequire: {
 file: '$source', # evaluates to the value of the `source` attribute
 package: 'apt',
 },
)

The Puppet::ResourceApi.register_type(options) function takes the following keyword arguments:

• name: the name of the resource type.
• desc: a doc string that describes the overall working of the resource type, provides examples, and explains

prerequisites and known issues.
• attributes: a hash mapping attribute names to their details. Each attribute is described by a hash containing

the Puppet 4 data type, a desc string, a default value, and the behavior of the attribute: namevar,
read_only, init_only, or a parameter.

• type: the Puppet 4 data type allowed in this attribute.
• desc: a string describing this attribute. This is used in creating the automated API docs with puppet-strings.
• default: a default value that the runtime environment uses when you don't specify a value.
• behavior/behaviour: how the attribute behaves. Currently available values:

• namevar: marks an attribute as part of the "primary key" or "identity" of the resource. A given set of
namevar values needs to distinctively identify an instance.

• init_only: this attribute can only be set when creating the resource. Its value is reported going forward,
but trying to change it later leads to an error. For example, the base image for a VM or the UID of a user.

• read_only: values for this attribute are returned by get(), but set() is not able to change them.
Values for this should never be specified in a manifest. For example, the checksum of a file, or the MAC
address of a network interface.

• parameter: these attributes influence how the provider behaves, and cannot be read from the target
system. For example, the target file on inifile, or the credentials to access an API.

• autorequire, autobefore, autosubscribe, and autonotify: a hash mapping resource types to titles.
The titles must either be constants, or, if the value starts with a dollar sign, a reference to the value of an attribute.
If the specified resources exist in the catalog, Puppet creates the relationships that are requested here.

• features: a list of API feature names, specifying which optional parts of this spec the provider supports.
Currently defined features: canonicalize, simple_get_filter, and supports_noop. See provider
types for details.

Composite namevars (title_patterns)

Each resource being managed must be identified by a unique title. Usually this is straightforward and a single
attribute can be used to act as an identifier. But sometimes you need a composite of two attributes to uniquely identify
the resource you want to manage.

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppet-strings

Puppet | Developing Puppet code | 861

If multiple attributes are defined with the namevar behavior, the type specifies title_patterns that tell the
Resource API how to get at the attributes from the title. If title_patterns is not specified, a default pattern is
applied and matches against the first declared namevar.

Note: The order of the title_patterns is important. Declare the most specific pattern first and end with the
most generic.

Each title pattern contains:

• pattern, which is a Ruby regular expression containing named captures. The names of the captures must be that
of the namevar attributes.

• desc, a short description of what the pattern matches for.

For example:

Puppet::ResourceApi.register_type(
 name: 'software',
 docs: <<-DOC,
 This type provides Puppet with the capabilities to manage ...
 DOC
 title_patterns: [
 {
 pattern: %r{^(?<package>.*[^-])-(?<manager>.*)$},
 desc: 'Where the package and the manager are provided with a hyphen
 seperator',
 },
 {
 pattern: %r{^(?<package>.*)$},
 desc: 'Where only the package is provided',
 },
],
 attributes: {
 ensure: {
 type: 'Enum[present, absent]',
 desc: 'Whether this resource should be present or absent on the
 target system.',
 default: 'present',
 },
 package: {
 type: 'String',
 desc: 'The name of the package you want to manage.',
 behaviour: :namevar,
 },
 manager: {
 type: 'String',
 desc: 'The system used to install the package.',
 behaviour: :namevar,
 },
 },
)

These match the first title pattern:

software { php-yum:
 ensure=>'present'
}

software { php-gem:
 ensure=>'absent'
}

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 862

This matches the second title pattern:

software { php:
 manager='yum'
 ensure=>'present'
}

Resource implementation: the provider
To make changes, a resource requires an implementation, or provider. It is the code used to retrieve, update and delete
the resources of a certain type.

The two fundamental operations to manage resources are reading and writing system state. These operations are
implemented as get and set. The implementation itself is a Ruby class in the Puppet::Provider namespace,
named after the type using CamelCase.

Note: Due to the way Puppet autoload works, this is in a file called puppet/provider/<type_name>/
<type_name>.rb. The class also has the CamelCased type name twice.

At runtime, the current and intended system states a specific resource. These are represented as Ruby hashes of the
resource's attributes and applicable operational parameters:

class Puppet::Provider::AptKey::AptKey
 def get(context)
 [
 {
 name: 'name',
 ensure: 'present',
 created: '2017-01-01',
 # ...
 },
 # ...
]
 end

 def set(context, changes)
 changes.each do |name, change|
 is = change.has_key? :is ? change[:is] : get_single(name)
 should = change[:should]
 # ...
 end
 end
end

The get method reports the current state of the managed resources. It returns an enumerable of all existing resources.
Each resource is a hash with attribute names as keys, and their respective values as values. It is an error to return
values not matching the type specified in the resource type. If a requested resource is not listed in the result, it is
considered to not exist on the system. If the get method raises an exception, the provider is marked as unavailable
during the current run, and all resources of this type fails in the current transaction. The exception message is
reported.

The set method updates resources to a new state. The changes parameter gets passed a hash of change requests,
keyed by the resource's name. Each value is another hash with the optional :is and :should keys. At least one of
the two must be specified. The values are of the same shape as those returned by get. After the set, all resources
are in the state defined by the :should values.

A missing :should entry indicates that a resource will be removed from the system. Even a type implementing the
ensure => [present, absent] attribute pattern must react correctly on a missing :should entry. An :is
key might contain the last available system state from a prior get call. If the :is value is nil, the resources were
not found by get. If there is no :is key, the runtime did not have a cached state available.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 863

The set method should always return nil. Signaling progress through the logging utilities described below. If the
set method throws an exception, all resources that should change in this call and haven't already been marked with a
definite state, are marked as failed. The runtime only calls the set method if there are changes to be made, especially
when resources are marked with noop => true (either locally or through a global flag). The runtime does not pass
them to set. See supports_noop for changing this behavior if required.

Both methods take a context parameter which provides utilties from the runtime environment, and is described in
more detail there.

Implementing simple providers

In many cases, the resource type follows the conventional patterns of Puppet, and does not gain from the complexities
around batch-processing changes. For those cases, the SimpleProvider class supplies a proven foundation that
reduces the amount of code necessary to get going.

SimpleProvider requires that your type follows these common conventions:

• name is the name of your namevar attribute.
• ensure attribute is present and has the Enum[absent, present] type.

To start using SimpleProvider, inherit from the class like this:

require 'puppet/resource_api/simple_provider'

Implementation for the wordarray type using the Resource API.
class Puppet::Provider::AptKey::AptKey < Puppet::ResourceApi::SimpleProvider
 # ...

Next, instead of the set method, the provider needs to implement the create, update or delete methods:

• create(context, name, should): Called to create a resource.

• context: provides utilities from the runtime environment.
• name: the name of the new resource.
• should: a hash of the attributes for the new instance.

• update(context, name, should): Called to update a resource.

• context: provides utilties from the runtime environment.
• name: the name of the resource to change.
• should: a hash of the desired state of the attributes.

• delete(context, name): Called to delete a resource.

• context: provides utilities from the runtime environment.
• name: the name of the resource that to be deleted.

The SimpleProvider does basic logging and error handling.

Provider features
There are some use cases where an implementation provides a better experience than the default runtime environment
provides. To avoid burdening the simplest providers with that additional complexity, these cases are hidden behind
feature flags. To enable the special handling, the resource definition has a feature key to list all features implemented
by the provider.

canonicalize

Allows the provider to accept a wide range of formats for values without confusing the user.

Puppet::ResourceApi.register_type(
 name: 'apt_key',
 features: ['canonicalize'],
)

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 864

class Puppet::Provider::AptKey::AptKey
 def canonicalize(context, resources)
 resources.each do |r|
 r[:name] = if r[:name].start_with?('0x')
 r[:name][2..-1].upcase
 else
 r[:name].upcase
 end
 end
 end

The runtime environment needs to compare user input from the manifest (the desired state) with values returned
from get (the actual state), to determine whether or not changes need to be affected. In simple cases, a provider
only accepts values from the manifest in the same format as get returns. No extra work is required, as a value
comparison is enough. This places a high burden on the user to provide values in an unnaturally constrained format.
In the example, the apt_key name is a hexadecimal number that can be written with, and without, the '0x' prefix,
and the casing of the digits is irrelevant. A value comparison on the strings causes false positives if the user inputs
format that does not match. There is no hexadecimal type in the Puppet language. To address this, the provider can
specify the canonicalize feature and implement the canonicalize method.

The canonicalize method transforms its resources argument into the standard format required by the rest
of the provider. The resources argument to canonicalize is an enumerable of resource hashes matching
the structure returned by get. It returns all passed values in the same structure with the required transformations
applied. It is free to reuse or recreate the data structures passed in as arguments. The runtime environment must use
canonicalize before comparing user input values with values returned from get. The runtime environment
always passes canonicalized values into set. If the runtime environment requires the original values for later
processing, it protects itself from modifications to the objects passed into canonicalize, for example by creating
a deep copy of the objects.

The context parameter is the same passed to get and set, which provides utilities from the runtime environment,
and is described in more detail there.

Note: When the provider implements canonicalization, it aims to always log the canonicalized values. As a result of
get and set producing and consuming canonically formatted values, it is not expected to present extra cost.

A side effect of these rules is that the canonicalization of the get method's return value must not change the
processed values. Runtime environments may have strict or development modes that check this property.

For example, in the Puppet Discovery runtime environment it is bound to the strict setting, and follows the
established practices:

puppet resource --strict=error apt_key ensure=present
> runtime exception

puppet resource --strict=warning apt_key ensure=present
> warning logged but values changed

puppet resource --strict=off apt_key ensure=present
> values changed

simple_get_filter

Allows for more efficient querying of the system state when only specific parts are required.

Puppet::ResourceApi.register_type(
 name: 'apt_key',
 features: ['simple_get_filter'],
)

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 865

class Puppet::Provider::AptKey::AptKey
 def get(context, names = nil)
 [
 {
 name: 'name',
 # ...
 },
]
 end

Some resources are very expensive to enumerate. The provider can implement simple_get_filter to signal
extended capabilities of the get method to address this. The provider's get method is called with an array of
resource names, or nil. The get method must at least return the resources mentioned in the names array, but
may return more. If the names parameter is nil, all existing resources should be returned. The names parameter
defaults to nil to allow simple runtimes to ignore this feature.

The runtime environment calls get with a minimal set of names, and keeps track of additional instances returned to
avoid double querying. To gain the most benefits from batching implementations, the runtime minimizes the number
of calls into get.

supports_noop

When a resource is marked with noop => true, either locally or through a global flag, the standard runtime
produces the default change report with a noop flag set. In some cases, an implementation provides additional
information, for example commands that would get executed, or require additional evaluation before determining
the effective changes, such as exec's onlyif attribute. The resource type specifies the supports_noop feature
to have set called for all resources, even those flagged with noop. When the noop parameter is set to true, the
provider must not change the system state, but only report what it would change. The noop parameter should default
to false to allow simple runtimes to ignore this feature.

Puppet::ResourceApi.register_type(
 name: 'apt_key',
 features: ['supports_noop'],
)

class Puppet::Provider::AptKey::AptKey
 def set(context, changes, noop: false)
 changes.each do |name, change|
 is = change.has_key? :is ? change[:is] : get_single(name)
 should = change[:should]
 # ...
 do_something unless noop
 end
 end
end

remote_resource

Declaring this feature restricts the resource from being run locally. It is expected to execute all external interactions
through the context.transport instance. The way that an instance is set up is runtime specific. Use puppet/
resource_api/transport/wrapper as the base class for all devices:

lib/puppet/type/nx9k_vlan.rb
Puppet::ResourceApi.register_type(
 name: 'nx9k_vlan',
 features: ['remote_resource'],
 # ...
)

lib/puppet/util/network_device/nexus/device.rb

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 866

require 'puppet'
require 'puppet/resource_api/transport/wrapper'
force registering the transport schema
require 'puppet/transport/schema/device_type'

module Puppet::Util::NetworkDevice::Nexus
 class Device < Puppet::ResourceApi::Transport::Wrapper
 def initialize(url_or_config, _options = {})
 super('nexus', url_or_config)
 end
 end
end

lib/puppet/provider/nx9k_vlan/nx9k_vlan.rb
class Puppet::Provider::Nx9k_vlan::Nx9k_vlan
 def set(context, changes, noop: false)
 changes.each do |name, change|
 is = change.has_key? :is ? change[:is] : get_single(name)
 should = change[:should]
 # ...
 context.transport.do_something unless noop
 end
 end
end

Runtime environment
The primary runtime environment for the provider is the Puppet agent, a long-running daemon process. The
provider can also be used in the puppet apply command, a self contained version of the agent, or the puppet
resource command, a short-lived command line interface (CLI) process for listing or managing a single resource
type. Other callers that want to access the provider must imitate these environments.

The primary life cycle of resource management in each of these tools is the transaction, a single set of changes, for
example a catalog or a CLI invocation. The provider's class is instantiated one time for each transaction. Within that
class the provider defines any number of helper methods to support itself. To allow for a transaction to set up the
prerequisites for a provider and be used immediately, the provider is instantiated as late as possible. A transaction
usually calls get one time, and may call set any number of times to make changes.

The object instance that hosts the get and set methods can be used to cache ephemeral state during execution. The
provider should not try to cache state outside of its instances. In many cases, such caching won't help as the hosting
process only manages a single transaction. In long-running runtime environments like the agent, the benefit of the
caching needs to be balanced with the cost of the cache at rest, and the lifetime of cache entries, which are only useful
when they are longer than the regular runinterval.

The runtime environment has the following utilities to provide a uniform experience for its users.

Logging and reporting utilities

The provider needs to signal changes, successes, and failures to the runtime environment. The context is the
primary way to do this. It provides a structured logging interface for all provider actions. Using this information, the
runtime environments can do automatic processing, emit human readable progress information, and provide status
messages for operators.

To provide feedback about the overall operation of the provider, the context has the usual set of loglevel methods
that take a string, and pass that up to the runtime environments logging infrastructure. For example:

context.warning("Unexpected state detected, continuing in degraded mode.")

Results in the following message:

Warning: apt_key: Unexpected state detected, continuing in degraded mode.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 867

Other common messages include:

• debug: Detailed messages to understand everything that is happening at runtime, shown on request.
• info: Regular progress and status messages, especially useful before long-running operations, or before

operations that can fail, to provide context for interactive users.
• notice: Indicates state changes and other events of notice from the regular operations of the provider.
• warning: Signals error conditions that do not (yet) prohibit execution of the main part of the provider; for

example, deprecation warnings, temporary errors.
• err: Signals error conditions that have caused normal operations to fail.
• critical, alert, emerg: Should not be used by resource providers.

In simple cases, a provider passes off work to an external tool, logs the details there, and then reports back to Puppet
acknowledging these changes. This is called resource status signaling, and looks like this:

@apt_key_cmd.run(context, action, key_id)
context.processed(key_id, is, should)

It reports all changes from is to should, using default messages.

Providers that want to have more control over the logging throughout the processing can use the more specific
created(title), updated(title), deleted(title), unchanged(title) methods. To report the
change of an attribute, the context provides a attribute_changed(title, attribute, old_value,
new_value, message) method.

Most of those messages are expected to be relative to a specific resource instance, and a specific operation on that
instance. To enable detailed logging without repeating key arguments, and to provide consistent error logging, the
context provides logging context methods to capture the current action and resource instance:

context.updating(title) do
 if apt_key_not_found(title)
 context.warning('Original key not found')
 end

 # Update the key by calling CLI tool
 apt_key(...)

 context.attribute_changed('content', nil, content_hash,
 message: "Replaced with content hash #{content_hash}")
end

This results in the following messages:

Debug: Apt_key[F1D2D2F9]: Started updating
Warning: Apt_key[F1D2D2F9]: Updating: Original key not found
Debug: Apt_key[F1D2D2F9]: Executing 'apt-key ...'
Debug: Apt_key[F1D2D2F9]: Successfully executed 'apt-key ...'
Notice: Apt_key[F1D2D2F9]: Updating content: Replaced with content hash
 E242ED3B
Notice: Apt_key[F1D2D2F9]: Successfully updated

In the case of an exception escaping the block, the error is logged appropriately:

Debug: Apt_keyF1D2D2F9]: Started updating
Warning: Apt_key[F1D2D2F9]: Updating: Original key not found
Error: Apt_key[F1D2D2F9]: Updating failed: Something went wrong

Logging contexts process all exceptions. A StandardError is assumed to be regular failures in handling
resources, and are consumed after logging. Everything else is assumed to be a fatal application-level issue, and
is passed up the stack, ending execution. See the Ruby documentation for details on which exceptions are not a
StandardError.

© 2024 Puppet, Inc., a Perforce company

https://ruby-doc.org/core/StandardError.html
https://ruby-doc.org/core/Exception.html

Puppet | Developing Puppet code | 868

The equivalent long-hand form of manual error handling:

context.updating(title)
begin
 unless title_got_passed_to_set(title)
 raise Puppet::DevError, 'Managing resource outside of requested set:
 %{title}')
 end

 if apt_key_not_found(title)
 context.warning('Original key not found')
 end

 # Update the key by calling CLI tool
 result = @apt_key_cmd.run(...)

 if result.exitstatus != 0
 context.error(title, "Failed executing apt-key #{...}")
 else
 context.attribute_changed(title, 'content', nil, content_hash,
 message: "Replaced with content hash #{content_hash}")
 end
 context.changed(title)
rescue Exception => e
 context.error(title, e, message: 'Updating failed')
 raise unless e.is_a? StandardError
end

This example is only for demonstration purposes. In the normal course of operations, providers should always use the
utility functions.

The following methods are available:

• Block functions: these functions provide logging and timing around a provider's core actions. If the the passed
&block returns, the action is recorded as successful. To signal a failure, the block should raise an exception
explaining the problem:

• creating(titles, message: 'Creating', &block)

• updating(titles, message: 'Updating', &block)

• deleting(titles, message: 'Deleting', &block)

• processing(title, is, should, message: 'Processing', &block): generic processing
of a resource, produces default change messages for the difference between is: and should:.

• failing(titles, message: 'Failing', &block): unlikely to be used often, but provided for
completeness. It always records a failure.

• Action functions:

• created(titles, message: 'Created')

• updated(titles, message: 'Updated')

• deleted(titles, message: 'Deleted')

• processed(title, is, should): the resource has been processed. It produces default logging for the
resource and each attribute

• failed(titles, message:): the resource has not been updated successfully
• Attribute Change notifications:

• attribute_changed(title, attribute, is, should, message: nil): notify the runtime
environment that a specific attribute for a specific resource has changed. is and should are the original and
the new value of the attribute. Either can be nil.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 869

• Plain messages:

• debug(message)

• debug(titles, message:)

• info(message)

• info(titles, message:)

• notice(message)

• notice(titles, message:)

• warning(message)

• warning(titles, message:)

• err(message)

• err(titles, message:)

titles can be a single identifier for a resource or an array of values, if the following block batch processes multiple
resources in one pass. If that processing is not atomic, providers should instead use the non-block forms of logging,
and provide accurate status reporting on the individual parts of update operations.

A single set() execution may only log messages for instances that have been passed, as part of the changes to
process. Logging for instances not requested to be changed causes an exception - the runtime environment is not
prepared for other resources to change.

The provider is free to call different logging methods for different resources in any order it needs to. The only
ordering restriction is for all calls specifying the same title. For example, the attribute_changed needs
logged before that resource's action logging, and the context needs to be opened before any other logging for this
resource.

Type definition

The provider can gain insight into the type definition through these context.type utility methods:

• attributes: returns a hash containing the type attributes and it's properties.
• ensurable?: returns true if the type contains the ensure attribute.
• feature?(feature): returns true if the type supports a given provider feature.

For example:

example from simple_provider.rb

def set(context, changes)
 changes.each do |name, change|
 is = if context.type.feature?('simple_get_filter')
 change.key?(:is) ? change[:is] : (get(context, [name]) || []).find
 { |r| r[:name] == name }
 else
 change.key?(:is) ? change[:is] : (get(context) || []).find { |r|
 r[:name] == name }
 end
 ...

end

Resource API transports
A transport connects providers to remote resources, such as a device, cloud infrastructure, or a REST API.

The transport class contains the code for managing connections and processing information to and from the remote
resource. The transport schema, similar to a resource type, describes the structure of the data that is passed for it to
make a connection.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 870

Transport implementation methods

When you are writing a transport class to manage remote resources, use the following methods as appropriate:

• initialize(context, connection_info)

• The connection_info contains a hash that matches the schema. After you run the initialize method, the
provider assumes that you have defined your transport in such as way as to ensure that it’s ready for processing
requests. The transport will report connection errors by throwing an exception, for example, if the network
is unreachable or the credentials are rejected. In some cases, for example when the target is a REST API, no
processing will happen during initialization.

• verify(context)

• Use this method to check whether the transport can connect to the remote target. If the connection fails, the
transport will raise an exception.

• facts(context)

• Use this method to access the target and the facts hash which contains a subset of default facts from Facter,
and more specific facts appropriate for the target.

• close(context)

• Use this method to close the connection. Calling this method releases the transport so that you can't use it
any more and frees up cache and operating system resources, such as open connections. For implementation
quality, the library will ignore exceptions that are thrown.

Note: The context is the primary way to signal changes, successes, and failures to the runtime environment. For
more information, see Runtime environment.

An example of a transport class:

lib/puppet/transport/device_type.rb
module Puppet::Transport
 # The main connection class to a Device endpoint
 class DeviceType
 def initialize(context, connection_info)
 # Add additional validation for connection_info
 # and pre-load a connection if it is useful for your target
 end

 def verify(context)
 # Test that transport can talk to the remote target
 end

 def facts(context)
 # Access target, return a Facter facts hash
 end

 def close(context)
 # Close connection, free up resources
 end
 end
end

An example of a corresponding schema:

lib/puppet/transport/device_type.rb
Puppet::ResourceAPI.register_transport(
 name: 'device_type', # points at class Puppet::Transport::DeviceType
 desc: 'Connects to a device_type',
 connection_info: {
 host: {
 type: 'String',

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 871

 desc: 'The host to connect to.',
 },
 user: {
 type: 'String',
 desc: 'The user.',
 },
 password: {
 type: 'String',
 sensitive: true,
 desc: 'The password to connect.',
 },
 enable_password: {
 type: 'String',
 sensitive: true,
 desc: 'The password escalate to enable access.',
 },
 port: {
 type: 'Integer',
 desc: 'The port to connect to.',
 },
 },
)

If the following attributes apply to your target, use these names for consistency across transports:

• uri: use to specify which URL to connect to.
• host: use to specify an IP or address to connect to.
• protocol: use to specify which protocol the transport uses, for example http, https, ssh or tcp.
• user: the user you want the transport to connect as.
• port: the port you want the transport to connect to.

Do not use the following keywords in when writing the connection_info:

• name

• path

• query

• run-on

• remote-transport

• remote-*

• implementations

To ensure that the data the schema passes to the implementation is handled securely, set password attributes to
sensitive: true. Attributes marked with the sensitive flag allow a user interface based on this schema to
make appropriate presentation choices, such as obscuring the password field. Values that you’ve marked sensitive
are passed to the transport wrapped in the type Puppet::Pops::Types::PSensitiveType::Sensitive.
This keeps the value from being logged or saved inadvertently while it is being transmitted between
components. To access the sensitive value within the transport, use the unwrap method, for example,
connection_info[:password].unwrap.

Errors and retry handling in transport implementation

The Resource API does not put many constraints on when and how a transport can fail. The remote resource you are
connecting to will have it's own device specific connection and error handling capabilities. Be aware of the following
issues that may arise:

• Your initial connection might fail. To retry making the connection, verify whether you have network problems or
whether there has been a service restart of the target that you are trying to connect to. As part of the retry logic, the
transport avoids passing these issues to other parts of your system and waits up to 30 seconds for a single target to
recover. When you execute a retry, the transport logs transient problems at the notice level.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 872

• After you make your connection and have run the initialize method, the transport might apply deeper validation to
the passed connection information — like mutual exclusivity of optional values, for example, password or key
— and throw an ArgumentError. The transport then tries to establish a connection to the remote target. If this
fails due to unrecoverable errors, it throws another exception.

• The verify and facts methods, like initialize, throw exceptions only when unrecoverable errors are
encountered, or when the retry logic times out.

Port your existing device code to transports

If you have old code that uses Device, port it by updating your code with the following replacements as appropriate:

• Move the device class to Puppet::Transport
• Change Util::NetworkDevice::NAME::Device to ResourceApi::Transport::NAME
• Change the initialization to accept and process a connection_info hash.
• When accessing the connection_info in your new transport, change all string keys to symbols, for example,

name to :name.
• Add context as the first argument to your initialize and facts method.
• Change puppet/util/network_device/NAME/device to puppet/transport/NAME
• Replace calls to Puppet logging with calls to the context logger

Note: If you can't port your code at this time, your providers can still access your Device through
context.device, but you won't be able to make use of the functionality in Bolt plans.

After porting your code, you will have a transport class and a shim Device class that connects your transport in a
way that Puppet understands. Specify the transport name in the super call to make the connection:

lib/puppet/type/nx9k_vlan.rb
Puppet::ResourceApi.register_type(
 name: 'nx9k_vlan',
 features: ['remote_resource'],
 # ...
)

lib/puppet/util/network_device/nexus/device.rb
require 'puppet/resource_api/transport/wrapper'
force registering the transport
require 'puppet/transport/schema/nexus'

module Puppet::Util::NetworkDevice::Nexus
 class Device < Puppet::ResourceApi::Transport::Wrapper
 def initialize(url_or_config, _options = {})
 super('nexus', url_or_config)
 end
 end
end

Note: Agent versions 6.0 to 6.3 are incompatible with this way of executing remote content. These versions will not
be supported after support for PE 2019.0 ends.

Resource API limitations
This Resource API is not a full replacement for the original low-level types and providers method. Here is a list of
the current limitations. If they apply to your situation, the low-level types and providers method might be a better
solution. The goal of the new Resource API is not to be a replacement of the prior one, but to be a simplified way to
get the same results for the majority of use cases.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/bolt/latest/bolt_running_plans.html
https://puppet.com/misc/puppet-enterprise-lifecycle

Puppet | Developing Puppet code | 873

You can't have multiple providers for the same type

The low-level type and provider method allows multiple providers for the same resource type. This allows the
creation of abstract resource types, such as packages, which can span multiple operating systems. Automatic selection
of an OS-appropriate provider means less work for the user, as they don't have to address whether the package needs
to be managed using apt or yum in their code .

Allowing multiple providers means more complexity and more work for the type or provider developer, including:

• attribute sprawl
• disparate feature sets between the different providers for the same abstract type
• complexity in implementation of both the type and provider pieces stemming from the two issues above

The Resource API does not implement support for multiple providers.

If you want support for multiple providers for a given type, your options are:

• Use the older, more complex type and provider method, or
• Implement multiple similar types using the Resource API, and select the platform-appropriate type in Puppet

code. For example:

define package (
 Ensure $ensure,
 Enum[apt, rpm] $provider, # have a hiera 5 dynamic binding to a function
 choosing a sensible default for the current system
 Optional[String] $source = undef,
 Optional[String] $version = undef,
 Optional[Hash] $options = { },
) {
 case $provider {
 apt: {
 package_apt { $title:
 ensure => $ensure,
 source => $source,
 version => $version,
 * => $options,
 }
 }
 rpm: {
 package_rpm { $title:
 ensure => $ensure,
 source => $source,
 * => $options,
 }
 if defined($version) { fail("RPM doesn't support \$version") }
 # ...
 }
 }
}

Only built-in Puppet 4 data types are available

Currently, only built-in Puppet 4 data types are usable. This is because the type information is required on the agent,
but Puppet has not made it available yet. Even after that is implemented, modules have to wait until the functionality
is widely available before being able to rely on it.

There is no catalog access

There is no way to access the catalog from the provider. Several existing types rely on this to implement advanced
functionality. Some of these use cases would be better off being implemented as "external" catalog transformations,
instead of munging the catalog from within the compilation process.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 874

No logging for unmanaged instances

Previously, the provider could provide log messages for resource instances that were not passed into the set call. In
the current implementation, these causes an error.

Automatic relationships constrained to consts and attribute values

The Puppet 3 type API allows arbitrary code execution for calculating automatic relationship targets. The Resource
API is more restrained, but allows understanding the type's needs by inspecting the metadata.

Low-level method for developing types and providers
You can define custom resource types for managing your infrastructure by defining types and providers. This original
method has largely been replaced by the Resource API method, but you might already have a setup that uses this low-
level method, or your situation might fall into one of the Resource API limitations.

Using this types and providers method, you can add new resource types to Puppet. This section describes what types
and providers are, how they interact, and how to develop them.

Low-level Puppet types and providers development is done in Ruby. Previous experience with Ruby is helpful.
Alternatively, opt for the more straightforward Resource API method for developing types and providers.

The internals of how types are created have changed over Puppet’s lifetime, and this documentation describes
effective development methods, skipping over all the things you can but probably shouldn’t do.

When making a new resource type, you create two things:

• The type definition, which is a model of the resource type. It defines what parameters are available, handles input
validation, and determines what features a provider can (or should) provide.

• One or more providers for that type. The provider implements the type by translating its capabilities into specific
operations on a system. For example, the package type has yum and apt providers which implement package
resources on Red Hat-like and Debian-like systems, respectively.

Deploying types and providers

To use new types and providers:

1. The type and providers must be present in a module on the primary server. Like other types of plug-in (such as
custom functions and custom facts), they go in the module’s lib directory:

• Type files: lib/puppet/type/<TYPE NAME>.rb
• Provider files: lib/puppet/provider/<TYPE NAME>/<PROVIDER NAME>.rb

2. If you are using an agent-server deployment, each agent node must have its pluginsync setting in puppet.conf
set to true, which is the default. In serverless Puppet, using puppet apply, the pluginsync setting is not
required, but the module that contains the type and providers must be present on each node.

• Type development on page 875
When you define a resource type, focus on what the resource can do, not how it does it.
• Provider development on page 881
Providers are back-ends that support specific implementations of a given resource type, particularly for different
platforms. Not all resource types have or need providers, but any resource type concerned about portability will likely
need them.

Related information
Plug-ins in modules on page 979
Puppet supports several kinds of plug-ins, which are distributed in modules. These plug-ins enable features such as
custom facts and functions for managing your nodes. Modules that you download from the Forge can include these
kinds of plug-ins, and you can also develop your own.

Custom resources on page 855

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 875

A resource is the basic unit that is managed by Puppet. Each resource has a set of attributes describing its state. Some
attributes can be changed throughout the lifetime of the resource, whereas others are only reported back but cannot be
changed, and some can only be set one time during initial creation.

Resource API limitations on page 872
This Resource API is not a full replacement for the original low-level types and providers method. Here is a list of
the current limitations. If they apply to your situation, the low-level types and providers method might be a better
solution. The goal of the new Resource API is not to be a replacement of the prior one, but to be a simplified way to
get the same results for the majority of use cases.

Type development
When you define a resource type, focus on what the resource can do, not how it does it.

Note: Unless you are maintaining existing type and provider code, or the Resource API limitations affect you, use
the Resource API to create custom resource types, instead of this method.

Creating types

Types are created by calling the newtype method on the Puppet::Type class:

lib/puppet/type/database.rb
Puppet::Type.newtype(:database) do
 @doc = "Create a new database."
 # ... the code ...
end

The name of the type is the only required argument to newtype. The name must be a Ruby symbol, and the name of
the file containing the type must match the type's name.

The newtype method also requires a block of code, specified with either curly braces ({ ... }) or the do ...
end syntax. The code block implements the type, and contains all of the properties and parameters. The block will
not be passed any arguments.

You can optionally specify a self-refresh option for the type by putting :self_refresh => true after the
name. Doing so causes resources of this type to refresh (as if they had received an event through a notify-subscribe
relationship) whenever a change is made to the resource. A notable use of this option is in the core mount type.

Documenting types
Write a description for the custom resource type in the type's @doc instance variable. The description can be
extracted by the puppet doc --reference type command, which generates a complete type reference which
includes your new type, and by the puppet describe command, which outputs information about specific types.

Write the description as a string in standard Markdown format. When the Puppet tools extract the string, they strip the
greatest common amount of leading whitespace from the front of each line, excluding the first line. For example:

Puppet::Type.newtype(:database) do
 @doc = %q{Creates a new database. Depending
 on the provider, this might create relational
 databases or NoSQL document stores.

 Example:

 database {'mydatabase':
 ensure => present,
 owner => root,
 }
 }
end

© 2024 Puppet, Inc., a Perforce company

http://www.ruby-doc.org/core/Symbol.html

Puppet | Developing Puppet code | 876

In this example, any whitespace would be trimmed from the first line (in this case, it’s zero spaces), then the greatest
common amount would be trimmed from remaining lines. Three lines have four leading spaces, two lines have six,
and two lines have eight, so four leading spaces would be trimmed from each line. This leaves the example code
block indented by four spaces, and thus doesn’t break the Markdown formatting.

Properties and parameters
The bulk of a type definition consists of properties and parameters, which become the resource attributes available
when declaring a resource of the new type.

The difference between a property and a parameter is subtle but important:

• Properties correspond to something measurable on the target system. For example, the UID and GID of a user
account are properties, because their current state can be queried or changed. In practical terms, setting a value for
a property causes a method to be called on the provider.

• Parameters change how Puppet manages a resource, but do not necessarily map directly to something measurable.
For example, the user type’s managehome attribute is a parameter — its value affects what Puppet does, but
the question of whether Puppet is managing a home directory isn’t an innate property of the user account.

Additionally, there are a few special attributes called metaparameters, which are supported by all resource types.
These don’t need to be handled when creating new types; they’re implemented elsewhere.

A type definition typically has multiple properties, and must have at least one parameter.

Properties
A custom type's properties are at the heart of defining how the resource works. In most cases, it’s the properties that
interact with your resource’s providers.

If you define a property named owner, then when you are retrieving the state of your resource, then the owner
property calls the owner method on the provider. In turn, when you are setting the state (because the resource is out
of sync), then the owner property calls the owner= method to set the state on disk.

There’s one common exception to this: The ensure property is special because it’s used to create and destroy
resources. You can set this property up on your resource type just by calling the ensurable method in your type
definition:

Puppet::Type.newtype(:database) do
 ensurable
 ...
end

This property uses three methods on the provider: create, destroy, and exists?. The last method, somewhat
obviously, is a Boolean to determine if the resource exists. If a resource’s ensure property is out of sync, then no
other properties are checked or modified.

You can modify how ensure behaves, such as by adding other valid values and determining what methods get
called as a result; see types like package for examples.

The rest of the properties are defined a lot like you define the types, with the newproperty method, which should
be called on the type:

Puppet::Type.newtype(:database) do
 ensurable
 newproperty(:owner) do
 desc "The owner of the database."
 ...
 end
end

Note the call to desc; this sets the documentation string for this property, and for Puppet types that get distributed
with Puppet, it is extracted as part of the Type reference.

When Puppet was first developed, there would typically be a lot of code in this property definition. Now, however,
you only define valid values or set up validation and munging. If you specify valid values, then Puppet only accepts

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 877

those values, and automatically handles accepting either strings or symbols. In most cases, you only define allowed
values for ensure, but it works for other properties, too:

newproperty(:enable) do
 newvalue(:true)
 newvalue(:false)
end

You can attach code to the value definitions (this code would be called instead of the property= method), but it’s
normally unnecessary.

For most properties, though, it is sufficient to set up validation:

newproperty(:owner) do
 validate do |value|
 unless value =~ /^\w+/
 raise ArgumentError, "%s is not a valid user name" % value
 end
 end
end

Note that the order in which you define your properties can be important: Puppet keeps track of the definition order,
and it always checks and fixes properties in the order they are defined.

Customizing behavior

By default, if a property is assigned multiple values in an array:

• It is considered in sync if any of those values matches the current value.
• If none of those values match, the first one is used when syncing the property.

If, instead, the property should only be in sync if all values match the current value (for example, a list of times in a
cron job), declare this:

newproperty(:minute, :array_matching => :all) do # :array_matching defaults
 to :first
 ...
end

You can also customize how information about your property gets logged. You can create an is_to_s method
to change how the current values are described, should_to_s to change how the desired values are logged, and
change_to_s to change the overall log message for changes. See current types for examples.

Handling property values

When a resource is created with a list of desired values, those values are stored in each property in its @should
instance variable. You can retrieve those values directly by calling should on your resource (although note that
when :array_matching is set to :first you get the first value in the array; otherwise you get the whole array):

myval = should(:color)

When you’re not sure (or don’t care) whether you’re dealing with a property or parameter, it’s best to use value:

myvalue = value(:color)

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 878

Parameters
Parameters are defined the same way as properties. The difference between them is that parameters never result in
methods being called on providers.

To define a new parameter, call the newparam method. This method takes the name of the parameter (as a symbol)
as its argument, as well as a block of code. You can and should provide documentation for each parameter by calling
the desc method inside its block. Tools that generate docs from this description trim leading whitespace from
multiline strings, as described for type descriptions.

newparam(:name) do
 desc "The name of the database."
end

Namevar

Every type must have at least one mandatory parameter: the namevar. This parameter uniquely identifies each
resource of the type on the target system — for example, the path of a file on disk, the name of a user account, or the
name of a package.

If the user doesn’t specify a value for the namevar when declaring a resource, its value defaults to the title of the
resource.

There are three ways to designate a namevar. Every type must have exactly one parameter that meets exactly one of
these criteria:

1. Create a parameter whose name is :name. Because most types just use :name as the namevar, it gets special
treatment and automatically becomes the namevar.

newparam(:name) do
 desc "The name of the database."
end

2. Provide the :namevar => true option as an additional argument to the newparam call. This allows you to
use a namevar with a different, more descriptive name, such as the file type’s path parameter.

newparam(:path, :namevar => true) do
 ...
end

3. Call the isnamevar method (which takes no arguments) inside the parameter’s code block. This allows you to
use a namevar with a different, more descriptive name. There is no practical difference between this and option 2.

newparam(:path) do
 isnamevar
 ...
end

Specifying allowed values

If your parameter has a fixed list of valid values, you can declare them all at the same time:

newparam(:color) do
 newvalues(:red, :green, :blue, :purple)
end

You can specify regular expressions in addition to literal values; matches against regex always happen after equality
comparisons against literal values, and those matches are not converted to symbols. For instance, given the following
definition:

newparam(:color) do

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 879

 desc "Your color, and stuff."

 newvalues(:blue, :red, /.+/)
end

If you provide blue as the value, then your parameter is set to :blue, but if you provide green, then it is set to
"green".

Validation and munging

If your parameter does not have a defined list of values, or you need to convert the values in some way, you can use
the validate and munge hooks:

newparam(:color) do
 desc "Your color, and stuff."

 newvalues(:blue, :red, /.+/)

 validate do |value|
 if value == "green"
 raise ArgumentError,
 "Everyone knows green databases don't have enough RAM"
 else
 super(value)
 end
 end

 munge do |value|
 case value
 when :mauve, :violet # are these colors really any different?
 :purple
 else
 super(value)
 end
 end
end

The default validate method looks for values defined using newvalues and if there are any values defined
it accepts only those values (this is how allowed values are validated). The default munge method converts any
values that are specifically allowed into symbols. If you override either of these methods, note that you lose this value
handling and symbol conversion, which you’ll have to call super for.

Values are always validated before they’re munged.

Lastly, validation and munging only happen when a value is assigned. They have no role to play at all during use of a
given value, only during assignment.

Boolean parameters

Boolean parameters are common. To avoid repetition, some utilities are available:

require 'puppet/parameter/boolean'
...
newparam(:force, :boolean => true, :parent => Puppet::Parameter::Boolean)

There are two parts here. The :parent => Puppet::Parameter::Boolean part configures the parameter
to accept lots of names for true and false, to make things easy for your users. The :boolean => true creates a
boolean method on the type class to return the value of the parameter. In this example, the method would be named
force?.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 880

Automatic relationships
Use automatic relationships to define the ordering of resources.

By default, Puppet includes and processes resources in the order they are defined in their manifest. However, there are
times when resources need to be applied in a different order. The Puppet language provides ways to express explicit
ordering such as relationship metaparameters (require, before, etc), chaining arrows and the require and
contain functions.

Sometimes there is natural relationship between your custom type and other resource types. For example, ssh
authorized keys can only be managed after you create the home directory and you can only manage files after you
create their parent directories. You can add explicit relationships for these, but doing so can be restrictive for others
who may want to use your custom type. Automatic relationships provide a way to define implicit ordering. For
example, to automatically add a require relationship from your custom type to a configuration file that it depends
on, add the following to your custom type:

autorequire(:file) do
 ['/path/to/file']
end

The Ruby symbol :file refers to the type of resource you want to require, and the array contains resource title(s)
with which to create the require relationship(s). The effect is nearly equivalent to using an explicit require
relationship:

custom { <CUSTOM RESOURCE>:
 ensure => present,
 require => File['/path/to/file']
}

An important difference between automatic and explicit relationships is that automatic relationships do not require the
other resources to exist, while explicit relationships do.

Agent-side pre-run resource validation
A resource can have prerequisites on the target, without which it cannot be synced. In some cases, if the absence of
these prerequisites would be catastrophic, you might want to halt the catalog run if you detect a missing prerequisite.

In this situation, define a method in your type named pre_run_check. This method can do any check you want. It
should take no arguments, and should raise a Puppet::Error if the catalog run should be halted.

If a type has a pre_run_check method, Puppet agent and puppet apply runs the check for every resource of
the type before attempting to apply the catalog. It collects any errors raised, and presents all of them before halting the
catalog run.

As a trivial example, here’s a pre-run check that fails randomly, about one time out of six:

Puppet::Type.newtype(:thing) do
 newparam :name, :namevar => true

 def pre_run_check
 if(rand(6) == 0)
 raise Puppet::Error, "Puppet roulette failed, no catalog for you!"
 end
 end
end

How types and providers interact
The type definition declares the features that a provider must have and what’s required to make them work. Providers
can either be tested for whether they suffice, or they can declare that they have the features. Because a type's
properties call getter and setter methods on the providers, the providers must define getters and setters for each
property (except ensure).

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 881

Additionally, individual properties and parameters in the type can declare that they require one or more specific
features, and Puppet throws an error if those parameters are used with providers missing those features:

newtype(:coloring) do
 feature :paint, "The ability to paint.", :methods => [:paint]
 feature :draw, "The ability to draw."

 newparam(:color, :required_features => %w{paint}) do
 ...
 end
end

The first argument to the feature method is the name of the feature, the second argument is its description, and
after that is a hash of options that help Puppet determine whether the feature is available. The only option currently
supported is specifying one or more methods that must be defined on the provider. If no methods are specified, then
the provider needs to specifically declare that it has that feature:

Puppet::Type.type(:coloring).provide(:drawer) do
 has_feature :draw
end

The provider can specify multiple available features at the same time with has_features.

When you define features on your type, Puppet automatically defines the following class methods on the provider:

• feature?: Passed a feature name, returns true if the feature is available or false otherwise.
• features: Returns a list of all supported features on the provider.
• satisfies?: Passed a list of feature, returns true if they are all available, false otherwise.

Additionally, each feature gets a separate Boolean method, so the above example would result in a paint? method
on the provider.

Related information
Provider development on page 881
Providers are back-ends that support specific implementations of a given resource type, particularly for different
platforms. Not all resource types have or need providers, but any resource type concerned about portability will likely
need them.

Provider development
Providers are back-ends that support specific implementations of a given resource type, particularly for different
platforms. Not all resource types have or need providers, but any resource type concerned about portability will likely
need them.

For instance, there are more than 20 package providers, including providers for package formats like dpkg and rpm
along with high-level package managers like apt and yum. A provider’s main job is to wrap client-side tools, usually
by just calling out to those tools with the right information.

The examples on this page use the apt and dpkg package providers, and the examples used are current as of 0.23.0.

Note: Unless you are maintaining existing type and provider code, or the Resource API limitations affect you, use
the Resource API to create custom resource types, instead of this method.

Declaring providers
Providers are always associated with a single resource type, so they are created by calling the provide method on
that resource type.

The provide method takes three arguments plus a block:

• The first argument must be the name of the provider, as a :symbol.
• The optional :parent argument should be the name of a parent class.
• The optional :source argument should be a symbol.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 882

• The block takes no arguments, and implements the behavior of the provider.

There are several kinds of parent classes you can use:

Base provider

A provider can inherit from a base provider, which is never used alone and only exists for other providers to
inherit from. Use the full name of the class. For example, all package providers have a common parent class:

Puppet::Type.type(:package).provide(:dpkg, :parent =>
 Puppet::Provider::Package) do
 desc "..."
 ...
end

Note the call to the desc method; this sets the documentation for this provider, and should include everything
necessary for someone to use this provider.

Another provider of the same resource type

Providers can also specify another provider as their parent. If it’s a provider for the same resource type, you can
use the name of that provider as a symbol.

Puppet::Type.type(:package).provide(:apt, :parent => :dpkg, :source
 => :dpkg) do
 ...
end

Note that we’re also specifying that this provider uses the dpkg source; this tells Puppet to deduplicate
packages from dpkg and apt, so the same package does not show up in an instance list from each provider type.
Puppet defaults to creating a new source for each provider type, so you have to specify when a provider subclass
shares a source with its parent class.

A provider of any resource type

Providers can also specify a provider of any resource type as their parent. Use the
Puppet::Type.type(<NAME>).provider(<NAME>) methods to locate the provider.

my_module/lib/puppet/provider/glance_api_config/ini_setting.rb
Puppet::Type.type(:glance_api_config).provide(
 :ini_setting,
 # set ini_setting as the parent provider
 :parent => Puppet::Type.type(:ini_setting).provider(:ruby)
) do
 # implement section as the first part of the namevar
 def section
 resource[:name].split('/', 2).first
 end
 def setting
 # implement setting as the second part of the namevar
 resource[:name].split('/', 2).last
 end
 # hard code the file path (this allows purging)
 def self.file_path
 '/etc/glance/glance-api.conf'
 end
end

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 883

Suitability
The first question to ask about a new provider is where it will be functional, which Puppet calls suitable. Unsuitable
providers cannot be used to do any work. The suitability test is late-binding, meaning that you can have a resource in
your configuration that makes a provider suitable.

If you start puppetd or puppet in debug mode, you’ll see the results of failed provider suitability tests for the
resource types you’re using.

Puppet providers include some helpful class-level methods you can use to both document and declare how to
determine whether a given provider is suitable. The primary method is commands, which does two things for you:
it declares that this provider requires the named binary, and it sets up class and instance methods with the name
provided that call the specified binary. The binary can be fully qualified, in which case that specific path is required,
or it can be unqualified, in which case Puppet finds the binary in the shell path and uses that. If the binary cannot be
found, then the provider is considered unsuitable. For example, here is the header for the dpkg provider (as of 0.23.0):

commands :dpkg => "/usr/bin/dpkg"
commands :dpkg_deb => "/usr/bin/dpkg-deb"
commands :dpkgquery => "/usr/bin/dpkg-query"

In addition to looking for binaries, Puppet can compare Facter facts, test for the existence of a file, check for a feature
such as a library, or test whether a given value is true or false. For file existence, truth, or false, call the confine
class method with exists, true, or false as the name of the test and your test as the value:

confine :exists => "/etc/debian_release"
confine :true => /^10\.[0-4]/.match(product_version)
confine :false => (Puppet[:ldapuser] == "")

To test Facter values, use the name of the fact:

confine :operatingsystem => [:debian, :solaris]
confine :puppetversion => "0.23.0"

Case doesn’t matter in the tests, nor does it matter whether the values are strings or symbols. It also doesn’t matter
whether you specify an array or a single value — Puppet does an OR on the list of values.

To test a feature, as defined in lib/puppet/feature/*.rb, supply the name of the feature. This is preferable
to using a confine :true statement that calls Puppet.features because the expression is evaluated only one
time. Puppet enables the provider if the feature becomes available during a run (for example, if a package is installed
during the run).

confine :feature => :posix
confine :feature => :rrd

You can create custom features. They live in lib/puppet/feature/*.rb and an example can be found
here. These features can be shipped in a similar manner as types and providers are shipped within modules and are
pluginsynced.

Using custom features you can delay resource evaluation until the provider becomes suitable. This is a way of
informing Puppet that your provider depends on a file being created by Puppet, or a certain fact being set to some
value, or it not being set at all.

Default providers
Providers are generally meant to be hidden from the users, allowing them to focus on resource specification rather
than implementation details, so Puppet does what it can to choose an appropriate default provider for each resource
type.

This is generally done by a single provider declaring that it is the default for a given set of facts, using the defaultfor
class method. For instance, this is the apt provider’s declaration:

defaultfor :operatingsystem => :debian

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppet/blob/master/lib/puppet/feature/libuser.rb

Puppet | Developing Puppet code | 884

The same fact-matching functionality as confinement is used.

Alternatively, you can supply a regular expression (regex) value to match against a fact value. This is useful, for
example, for providers that should only be default for a specific range of operating system versions:

defaultfor :operatingsystemmajrelease => /^[5-7]$/

How providers interact with resources
Providers do nothing on their own; all of their action is triggered through an associated resource (or, in special cases,
from the transaction). Because of this, resource types are essentially free to define their own provider interface if
necessary, and providers were initially developed without a clear resource-provider API (mostly because it wasn’t
clear whether such an API was necessary or what it would look like). At this point, however, there is a default
interface between the resource type and the provider.

This interface consists entirely of getter and setter methods. When the resource is retrieving its current state, it iterates
across all of its properties and calls the getter method on the provider for that property. For instance, when a user
resource is having its state retrieved and its uid and shell properties are being managed, then the resource calls
uid and shell on the provider to figure out what the current state of each of those properties is. This method call is
in the retrieve method in Puppet::Property.

When a resource is being modified, it calls the equivalent setter method for each property on the provider.
Again using our user example, if the uid was in sync but the shell was not, then the resource would call
shell=(value) with the new shell value.

The transaction is responsible for storing these returned values and deciding which value to send, and it does its
work through a PropertyChange instance. It calls sync on each of the properties, which in turn call the setter by
default.

You can override that interface as necessary for your resource type.

All providers must define an instances class method that returns a list of provider instances, one for each existing
instance of that provider. For example, the dpkg provider should return a provider instance for every package in the
dpkg database.

Provider methods
By default, you have to define all of your getter and setter methods. For simple cases, this is sufficient — you
just implement the code that does the work for that property. For the more complicated aspects of provider
implementation, Puppet has prefetching, resource methods, and flushing.

Prefetching

First, Puppet transactions prefetch provider information by calling prefetch on each used provider type. This calls
the instances method in turn, which returns a list of provider instances with the current resource state already
retrieved and stored in a @property_hash instance variable. The prefetch method then tries to find any matching
resources, and assigns the retrieved providers to found resources. This way you can get information on all of the
resources you’re managing in just a few method calls, instead of having to call all of the getter methods for every
property being managed. Note that it also means that providers are often getting replaced, so you cannot maintain
state in a provider.

Resource methods

For providers that directly modify the system when a setter method is called, there’s no substitute for defining them
manually. But for resources that get flushed to disk in one step, such as the ParsedFile providers, there is a
mk_resource_methods class method that creates a getter and setter for each property on the resource. These
methods retrieve and set the appropriate value in the @property_hash variable.

Flushing

Many providers model files or parts of files, so it makes sense to save up all of the writes and do them in one run.
Providers that need this functionality can define a flush instance method to do this. The transaction calls this method

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 885

after all values are synced (which means that the provider should have them all in its @property_hash variable)
but before refresh is called on the resource (if appropriate).

Values, data types, and aliases
Most of the things you can do with the Puppet language involve some form of data. An individual piece of data is
called a value, and every value has a data type, which determines what kind of information that value can contain and
how you can interact with it.

Strings are the most common and useful data type, but you’ll also work with others, including numbers, arrays, and
some Puppet-specific data types like resource references.

Note that once created, Puppet's values are immutable — they cannot be modified in any way.

For information on type conversion, see Typecasting.

Literal data types as values

Although you’ll mostly interact with values of the various data types, Puppet also includes values like String that
represent data types.

You can use these special values to examine a piece of data or enforce rules. Usually, they act like patterns, similar
to a regular expression: given a value and a data type, you can test whether the value matches the data type, and then
either adjust your code’s behavior accordingly, or raise an error if something has gone wrong.

The pages in this section provide details about using each of the data types as a value. For information about the
syntax and behavior of literal data types, see Data type syntax. For information about special abstract data types,
which you can use to do more sophisticated or permissive type checking, see Abstract data types.

Puppet data types

See the following pages to learn more about the syntax, parameters, and usage for each of the data types.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 886

• Strings on page 889
Strings are unstructured text fragments of any length. They’re a common and useful data type.
• Numbers on page 898
Numbers in the Puppet language are normal integers and floating point numbers.
• Binary on page 902
A Binary object represents a sequence of bytes and it can be created from a String in Base64 format, a verbatim
String, or an Array containing byte values. A Binary can also be created from a Hash containing the value to
convert to a Binary.
• Booleans on page 903
Booleans are one-bit values, representing true or false. The condition of an if statement expects an expression that
resolves to a boolean value. All of Puppet's comparison operators resolve to boolean values, as do many functions.
• Arrays on page 904
Arrays are ordered lists of values. Resource attributes which accept multiple values (including the relationship
metaparameters) generally expect those values in an array. Many functions also take arrays, including the iteration
functions.
• Hashes on page 907
Hashes map keys to values, maintaining the order of the entries according to insertion order.
• Regular expressions on page 909
A regular expression (sometimes shortened to “regex” or “regexp”) is a pattern that can match some set of strings,
and optionally capture parts of those strings for further use.
• Sensitive on page 911
Sensitive types in the Puppet language are strings marked as sensitive. The value is displayed in plain text in the
catalog and manifest, but is redacted from logs and reports. Because the value is maintained as plain text, use it only
as an aid to ensure that sensitive values are not inadvertently disclosed.
• Time-related data types on page 912
A Timespan defines the length of a duration of time, and a Timestamp defines a point in time. For example,
“two hours” is a duration that can be represented as a Timespan, while “three o'clock in the afternoon UTC on 8
November, 2018” is a point in time that can be represented as a Timestamp. Both types can use nanosecond values
if it is available on the platform.
• Undef on page 914
Puppet's undef value is roughly equivalent to nil in Ruby. It represents the absence of a value. If the
strict_variables setting isn’t enabled, variables which have never been declared have a value of undef.
• Default on page 914
Puppet’s default value acts like a keyword in a few specific usages. Less commonly, it can also be used as a value.
• Resource and class references on page 916
Resource references identify a specific Puppet resource by its type and title. Several attributes, such as the
relationship metaparameters, require resource references.
• Resource types on page 918
Resource types are a special family of data types that behave differently from other data types. They are subtypes of
the fairly abstract Resource data type. Resource references are a useful subset of this data type family.
• Data type syntax on page 921
Each value in the Puppet language has a data type, like “string.” There is also a set of values whose data type is “data
type.” These values represent the other data types. For example, the value String represents the data type of strings.
The value that represents the data type of these values is Type.
• Abstract data types on page 926
If you’re using data types to match or restrict values and need more flexibility than what the core data types (such as
String or Array) allow, you can use one of the abstract data types to construct a data type that suits your needs
and matches the values you want.

Type aliases
Type aliases allow you to create reusable and descriptive data types and resource types.

By using type aliases, you can:

• Give a type a descriptive name, such as IPv6Addr, instead of creating or using a complex pattern-based type.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 887

• Shorten and move complex type expressions.
• Improve code quality by reusing existing types instead of inventing new types.
• Test type definitions separately from manifests.

Type aliases are transparent, which means they are fully equivalent to the types of which they are aliases. For
example, in the following code, the notice returns true because MyType is an alias of the Integer type:

type MyModule::MyType = Integer
notice MyModule::MyType == Integer

Note: The internal types TypeReference and TypeAlias are never values in Puppet code .

Creating type aliases

Use the following syntax to create a type alias:

type <MODULE NAME>::<ALIAS NAME> = <TYPE DEFINITION>

The <MODULE NAME> must be named after the module that contains the type alias, and both the <MODULE NAME>
and <ALIAS NAME> begin with a capital letter and must not be a reserved word.

For example, you can create a type alias named MyType that is equivalent to the Integer data type:

type MyModule::MyType = Integer

You can then declare a parameter using the alias as though it were a unique data type:

MyModule::MyType $example = 10

To make your code easier to maintain and troubleshoot, store type aliases as .pp files in your module's types
directory, which is a top-level directory and sibling of the manifests and lib directories. Define only one alias
per file, and name the file after the type alias name converted to lowercase. For example, MyType is expected to be
loaded from a file named mytype.pp.

You can create recursive type aliases, which can refer to the alias being declared or to other types, thereby defining
complex, descriptive type definitions without using the Any type. For example:

type MyModule::Tree = Array[Variant[Data, Tree]]

This Tree type alias is defined as a being built out of Arrays that contain Data, or a Tree:

[1,2 [3], [4, [5, 6], [[[[1,2,3]]]]]]

You can also create aliases to resource types:

type MyModule::MyFile = File

When defining an alias to a resource type, use its short form (for example, File) instead of its long form
(Resource[File]).

Related information
Data type syntax on page 921
Each value in the Puppet language has a data type, like “string.” There is also a set of values whose data type is “data
type.” These values represent the other data types. For example, the value String represents the data type of strings.
The value that represents the data type of these values is Type.

Resources on page 574

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 888

Resources are the fundamental unit for modeling system configurations. Each resource describes the desired state
for some aspect of a system, like a specific service or package. When Puppet applies a catalog to the target system, it
manages every resource in the catalog, ensuring the actual state matches the desired state.

Typecasting
Typecasting is a method for converting data from one data type to another. In many cases, you can explicitly typecast
into the type you need, but the Puppet language also provides shortcuts for common data conversions, as well as
support for more complex conversions.

Creating a new typed variable

When there's an unambiguous translation between one data type and another, you can typecast into the type you need:

$temp = Float("98.6") # Cast into a float variable; 98.6
$count = Integer("42") # Cast into an integer variable; 42
$bool = Boolean("false") # Cast into a boolean false
$string = String(100) # Cast into the string "100"

You can also typecast between number formats, such as turning a hex number string into an integer:

$intval = Integer("0xFF") # Cast into an integer variable; 255

Invoking the data type directly is a shortcut for calling the .new() function. For more information, including the
conversion rules and options available, see the function reference for new().

Automatic coercions

When you use strings in arithmetic, Puppet assumes that you did so intentionally and coerces them to the proper
types. For example:

$result = "2" + "2" # Cast into an integer variable; 4
$multiple = 4 * "25" # Cast into an integer variable; 100
$float = "2.75" * 2 # Cast into a float variable; 5.5
$identity = "1024" + 0 # Cast into integer variable; 1024 (direct
 conversion)

When you interpolate variables into a string, Puppet converts them to their string representation using the most
obvious method. If you need an explicit conversion, you can manually typecast. For example:

$var = 1
notice("The truth value of ${var} is ${Boolean($var)}") # Outputs "The truth
 value of 1 is true"

Extracting a Number from a String fragment

To convert a string that contains non-numeric characters into a number, for example 32º or 9,000, you must parse
the string. You can parse a string using the scanf function.

For example:

$input = "It is 32º outside!"
$format = "It is %iº outside!"
scanf($input, $format) # returns array of matches; [32]

$input = "The melting point of iron is 2,800°F".delete(",")
$format = "The melting point of iron is %i°F"
scanf($input, $format) # returns array of matches; [2800]

Here are more example format conversions:

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/6.17/function.html#new
https://puppet.com/docs/puppet/6.17/function.html#scanf

Puppet | Developing Puppet code | 889

Conversion Description of match

%d, %u Optionally signed decimal integer

%i Optionally signed integer with auto-detected base

%o Optionally signed octal integer

%x, %X Optionally signed hexadecimal integer

%s String, or a sequence of non-white-space characters

%c A single character

%% A % character

Converting to a Boolean

You can cast case-insensitive strings of true/false, yes/no, non-zero/0, and integers of non-zero/0:

$value = Boolean('true') # true
$value = Boolean('Yes') # true
$value = Boolean('FALSE') # false
$value = Boolean('1') # true
$value = Boolean(0) # false
$value = Boolean(127) # true

Converting data structures

Converting a hash to an array creates a multi-dimensional array by flattening each key-value pair into a two-element
array as an element of another array. Converting an array to a hash interleaves alternating elements as keys and
values.

$an_array = Array({a => 10, b => 20}) # results in [[a, 10],[b, 20]]
$a_hash = Hash([1,2,3,4]) # results in {1=>2, 3=>4}
$a_hash = Hash([[1,2],[3,4]]) # results in {1=>2, 3=>4}

The Array conversion also takes a second argument to "force" an array conversion. This slightly changes the
semantics of the operation by creating a single-element array out of the first argument if it's not already.

$an_array = Array(1, true) # results in [1]
$an_array = Array([1], true) # results in [1]
$an_array = Array(1) # Raises a type error, cannot convert
 directly
$an_array = Array({1 => 2}, true) # results in [{1 => 2}]
$an_array = Array({1 => 2}} # results in [[1, 2]]

Strings
Strings are unstructured text fragments of any length. They’re a common and useful data type.

Strings can interpolate other values, and can use escape sequences to represent characters that are inconvenient or
impossible to write literally. You can access substrings of a string by numerical index.

There are four ways to write literal strings in the Puppet language:

• Bare words
• Single-quoted strings
• Double-quoted strings
• Heredocs

Each of these have slightly different behavior around syntax, interpolation features, and escape sequences.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 890

Bare words
Puppet treats certain bare words — that is, runs of alphanumeric characters without surrounding quotation marks
— as single-word strings. Bare word strings are most commonly used with resource attributes that accept a limited
number of one-word values.

To be treated as a string, a bare word must:

• Begin with a lower case letter;
• Contain only letters, digits, hyphens (-), and underscores (_); and
• Not be a reserved word.

For example, in the following code, running is a bare word string:

service { "ntp":
 ensure => running, # bare word string
}

Unquoted words that begin with upper case letters are interpreted as data types or resource references, not strings.

Bare word strings can’t interpolate values and can’t use escape sequences.

Single-quoted strings
Multi-word strings can be surrounded by single quotation marks, 'like this'.

For example:

if $autoupdate {
 notice('autoupdate parameter has been deprecated and replaced with
 package_ensure. Set this to latest for the same behavior as autoupdate =>
 true.')
}

Line breaks within the string are interpreted as literal line breaks.

Single-quoted strings can’t interpolate values.

Escape sequences

The following escape sequences are available in single-quoted strings:

Sequence Result

\\ Single backslash

\' Literal single quotation mark

Within single quotation marks, if a backslash is followed by any character other than another backslash or a single
quotation mark, Puppet treats it as a literal backslash.

To include a literal double backslash use a quadruple backslash.

To include a backslash at the very end of a single-quoted string, use a double backslash instead of a single backslash.
For example: path => 'C:\Program Files(x86)\\'

Tip: A good habit is to always use two backslashes where you want the result to be one backslash. For example,
path => 'C:\\Program Files(x86)\\'

Double-quoted strings
Strings can be surrounded by double quotation marks, "like this".

Line breaks within the string are interpreted as literal line breaks. You can also insert line breaks with \n (Unix-style)
or \r\n (Windows-style).

Double-quoted strings can interpolate values. See Interpolation information below.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 891

Escape sequences

The following escape sequences are available in double-quoted strings:

Sequence Result

\\ Single backslash

\n New line

\r Carriage return

\t Tab

\s Space

\$ Literal dollar sign (to prevent interpolation)

\uXXXX Unicode character number XXXX (a four-digit
hexadecimal number)

\u{XXXXXX} Unicode character XXXXXX (a hexadecimal number
between two and six digits)

\" Literal double quotation mark

\' Literal single quotation mark

Within double quotation marks, if a backslash is followed by any character other than those listed above (that is, a
character that is not a recognized escape sequence), Puppet logs a warning: Warning: Unrecognized escape
sequence, and treats it as a literal backslash.

Tip: A good habit is to always use two backslashes where you want the result to be one backslash.

Heredocs
Heredocs let you quote strings with more control over escaping, interpolation, and formatting. They’re especially
good for long strings with complicated content.

Example

$gitconfig = @("GITCONFIG"/L)
 [user]
 name = ${displayname}
 email = ${email}
 [color]
 ui = true
 [alias]
 lg = "log --pretty=format:'%C(yellow)%h%C(reset) %s \
 %C(cyan)%cr%C(reset) %C(blue)%an%C(reset) %C(green)%d%C(reset)' --graph"
 wdiff = diff --word-diff=color --ignore-space-at-eol \
 --word-diff-regex='[[:alnum:]]+|[^[:space:][:alnum:]]+'
 [merge]
 defaultToUpstream = true
 [push]
 default = upstream
 | GITCONFIG

file { "${homedir}/.gitconfig":
 ensure => file,
 content => $gitconfig,
}

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 892

Syntax

To write a heredoc, you place a heredoc tag in a line of code. This tag acts as a literal string value, but the content of
that string is read from the lines that follow it. The string ends when an end marker is reached.

The general form of a heredoc string is:

heredoc tag

@("ENDTEXT"/<X>)

You can use a heredoc tag in Puppet code, anywhere
a string value is accepted. In the above example, the
heredoc tag @("GITCONFIG"/L) completes the line
of Puppet code: $gitconfig = .

A heredoc tag starts with @(and ends with).

Between those characters, the heredoc tag contains end
text (see below) — text that is used to mark the end of
the string. You can optionally surround this end text
with double quotation marks to enable interpolation
(see below). In the above example, the end text is
GITCONFIG.

It also optionally contains escape switches (see below),
which start with a slash /. In the above example, the
heredoc tag has the escape switch /L.

the string

This is the
text that makes
up my string.

The content of the string starts on the next line, and can
run over multiple lines. If you specified escape switches
in the heredoc tag, the string can contain the enabled
escape sequences.

In the above example, the string starts with [user]
and ends with default = upstream. It uses the
escape sequence \ to add cosmetic line breaks, because
the heredoc tag contained the /L escape switch.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 893

end marker

 | - ENDTEXT

On a line of its own, the end marker consists of:

• Optional indentation and a pipe character (|) to
indicate how much indentation is stripped from the
lines of the string (see below).

• An optional hyphen character (-), with any amount
of space around it, to trim the final line break from
the string (see below).

• The end text, repeating the same end text used in the
heredoc tag, always without quotation marks.

In the above example, the end marker is |
GITCONFIG.

If a line of code includes more than one heredoc tag, Puppet reads all of those heredocs in order: the first one begins
on the following line and continue until its end marker, the second one begins on the line immediately after the first
end marker, and so on. Puppet won’t start evaluating additional lines of Puppet code until it reaches the end marker
for the final heredoc tag from the original line.

End text

The heredoc tag contains piece of text called the end text. When Puppet reaches a line that contains only that end text
(plus optional formatting control), the string ends.

Both occurrences of the end text must match exactly, with the same capitalization and internal spacing.

End text can be any run of text that doesn’t include line breaks, colons, slashes, or parentheses. It can include spaces,
and can be mixed case. The following are all valid end text:

• EOT

• ...end...end...

• Verse 8 of The Raven

Tip: To help with code readability, make your end text stand out from the content of the heredoc string, for example,
by making it all uppercase.

Enabling interpolation

By default, heredocs do not allow you to interpolate values into the string content. You can enable interpolation by
double-quoting the end text in the opening heredoc tag. That is:

• An opening tag like @(EOT) won’t allow interpolation.
• An opening tag like @("EOT") allows interpolation.

Note: If you enable interpolation, but the string has a dollar character ($) that you want to be literal, not interpolated,
you must enable the literal dollar sign escape switch (/$) in the heredoc tag: @("EOT"/$). Then use the escape
sequence \$ to specify the literal dollar sign in the string. See the information on enabling escape sequences, below,
for more details.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 894

Enabling escape sequences

By default, heredocs have no escape sequences and every character is literal (except interpolated expressions, if
enabled). To enable escape sequences, add switches to the heredoc tag.

To enable individual escape sequences, add a slash (/) and one or more switches. For example, to enable an escape
sequence for dollar signs (\$) and new lines (\n), add /$n to the heredoc tag :

@("EOT"/$n)

To enable all escape sequences, add a slash and no switches:

@("EOT"/)

Use the following switches to enable escape sequences:

Switch to put in the heredoc tag Escape sequence to use in the
heredoc string

Result in the string value

(automatic) \\ Single backslash. This switch is
enabled when any other escape
sequence is enabled.

n \n New line

r \r Carriage return

t \t Tab

s \s Space

$ \$ Literal dollar sign (to prevent
interpolation)

u \uXXXX or \u{XXXXXX} Unicode character number XXXX
(a four-digit hexadecimal number)
or XXXXXX (a two- to six-digit
hexadecimal number)

L \<New line or carriage
return>

Nothing. This lets you put line breaks
in the heredoc source code that won't
appear in the string value.

Note: A backslash that isn't part of an escape sequence is treated as a literal backslash. Unlike in double-quoted
strings, this won't log a warning.

Tip: If a heredoc has escapes enabled, and includes several literal backslashes in a row, make sure each literal
backslash is represented by the \\ escape sequence. So, for example, If you want the result to include a double
backslash, use four backslashes.

Enabling syntax checking

To enable syntax checking of heredoc text, add the name of the syntax to the heredoc tag. For example:

@(END:pp)
@(END:epp)
@(END:json)

If Puppet has a syntax checker for the given syntax, it validates the heredoc text, but only if the heredoc is static text
and does not contain any interpolations. If Puppet has no checker available for the given syntax, it silently ignores the
syntax tag.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 895

Syntax checking in heredocs is useful for validating syntax earlier, avoiding later failure.

By default, heredocs are treated as text unless otherwise specified in the heredoc tag.

Stripping indentation

To make your code easier to read, you can indent the content of a heredoc to separate it from the surrounding code.
To strip this indentation from the resulting string value, put the same amount of indentation in front of the end marker
and use a pipe character (|) to indicate the position of the first “real” character on each line.

$mytext = @(EOT)
 This block of text is
 visibly separated from
 everything around it.
 | EOT

If a line has less indentation than you’ve indicated with the pipe, Puppet strips any spaces it can without deleting non-
space characters.

If a line has more indentation than you’ve indicated with the pipe, the excess spaces are included in the final string
value.

Important: Indentation can include tab characters, but Puppet won’t convert tabs to spaces, so make sure you use the
exact same sequence of space and tab characters on each line.

Suppressing literal line breaks

If you enable the L escape switch, you can end a line with a backslash (\) to exclude the following line break from
the string value. This lets you break up long lines in your source code without adding unwanted literal line breaks to
the resulting string value.

For example, Puppet would read this as a single line:

lg = "log --pretty=format:'%C(yellow)%h%C(reset) %s \
%C(cyan)%cr%C(reset) %C(blue)%an%C(reset) %C(green)%d%C(reset)' --graph"

Suppressing the final line break

By default, heredocs end with a trailing line break, but you can exclude this line break from the final string. To
suppress it, add a hyphen (-) to the end marker, before the end text, but after the indentation pipe if you used one.
This works even if you don’t have the L escape switch enabled.

For example, Puppet would read this as a string with no line break at the end:

$mytext = @("EOT")
 This is too inconvenient for ${double} or ${single} quotes, but must be
 one line.
 |-EOT

Interpolation
Interpolation allows strings to contain expressions, which can be replaced with their values. You can interpolate
any expression that resolves to a value, except for statement-style function calls. You can interpolate expressions in
double-quoted strings, and in heredocs with interpolation enabled.

To interpolate an expression, start with a dollar sign and wrap the expression in curly braces, as in: "String
content ${<EXPRESSION>} more content".

The dollar sign doesn’t have to have a space in front of it. It can be placed directly after any other character, or at the
beginning of the string.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 896

An interpolated expression can include quote marks that would end the string if they occurred outside the
interpolation token. For example: "<VirtualHost *:${hiera("http_port")}>".

Preventing interpolation

If you want a string to include a literal sequence that looks like an interpolation token, but you don't want Puppet to
try to evaluate it, use a quoting syntax that disables interpolation (single quotes or a non-interpolating heredoc), or
escape the dollar sign with \$.

Short forms for variable interpolation

The most common thing to interpolate into a string is the value of a variable. To make this easier, Puppet has some
shorter forms of the interpolation syntax:

$myvariable

A variable reference (without curly braces) can be replaced with that variable’s value. This also works with
qualified variable names like $myclass::myvariable.

Because this syntax doesn’t have an explicit stopping point (like a closing curly brace), Puppet assumes the
variable name is everything between the dollar sign and the first character that couldn’t legally be part of a
variable name. (Or the end of the string, if that comes first.)

This means you can’t use this style of interpolation when a value must run up against some other word-like text.
And even in some cases where you can use this style, the following style can be clearer.

${myvariable}

A dollar sign followed by a variable name in curly braces can be replaced with that variable’s value. This also
works with qualified variable names like ${myclass::myvariable}.

With this syntax, you can follow a variable name with any combination of chained function calls or hash access /
array access / substring access expressions. For example:

"Using interface ${::interfaces.split(',')[3]} for broadcast"

However, this doesn’t work if the variable’s name overlaps with a language keyword. For example, if you had a
variable called $inherits, you would have to use normal-style interpolation:

"Inheriting ${$inherits.upcase}."

Conversion of interpolated values

Puppet converts the value of any interpolated expression to a string using these rules:

Data type Conversion

String The contents of the string, with any quoting syntax
removed.

Undef An empty string.

Boolean The string 'true' or 'false'.

Number The number in decimal notation (base 10). For
floats, the value can vary on different platforms.
Use the sprintf function for more precise formatting.

Array A pair of square brackets ([and]) containing the
array’s elements, separated by a comma and a space (,
), with no trailing comma. Each element is converted to a
string using these rules.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 897

Data type Conversion

Hash A pair of curly braces ({ and }) containing a <KEY> =>
<VALUE> string for each key-value pair, separated by a
comma and a space (,), with no trailing comma. Each
key and value is converted to a string using these rules.

Regular expression A stringified regular expression.

Resource reference or data type The value as a string.

Line breaks
Quoted strings can continue over multiple lines, and line breaks are preserved as a literal part of the string. Heredocs
let you suppress these line breaks if you use the L escape switch.

Puppet does not attempt to convert line breaks, so whatever type of line break is used in the file (LF for *nix or CRLF
for Windows) is preserved. Use escape sequences to insert specific types of line breaks into strings:

• To insert a CRLF in a manifest file that uses *nix line endings, use the \r\n escape sequences in a double-quoted
string, or a heredoc with those escapes enabled.

• To insert an LF in a manifest that uses Windows line endings, use the \n escape sequence in a double-quoted
string, or a heredoc with that escape enabled.

Encoding
Puppet treats strings as sequences of bytes. It does not recognize encodings or translate between them, and non-
printing characters are preserved.

However, all strings must be valid UTF-8. Future versions of Puppet might impose restrictions on string encoding,
and using only UTF-8 protects you in this event. Also, PuppetDB removes invalid UTF-8 characters when storing
catalogs.

Accessing substrings
Access substrings of a string by specifying a numerical index inside square brackets. The index consists of one
integer, optionally followed by a comma and a second integer, for example $string[3] or $string[3,10].

The first number of the index is the start position. Positive numbers count from the start of the string, starting at 0.
Negative numbers count back from the end of the string, starting at -1.

The second number of the index is the stop position. Positive numbers are lengths, counting forward from the start
position. Negative numbers are absolute positions, counting back from the end of the string (starting at -1). If the
second number is omitted, it defaults to 1 (resolving to a single character).

Examples:

$mystring = 'abcdef'
notice($mystring[0]) # resolves to 'a'
notice($mystring[0,2]) # resolves to 'ab'
notice($mystring[1,2]) # resolves to 'bc'
notice($mystring[1,-2]) # resolves to 'bcde'
notice($mystring[-3,2]) # resolves to 'de'

Text outside the actual range of the string is treated as an infinite amount of empty string:

$mystring = 'abcdef'
notice($mystring[10]) # resolves to ''
notice($mystring[3,10]) # resolves to 'def'
notice($mystring[-10,2]) # resolves to ''
notice($mystring[-10,6]) # resolves to 'ab'

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 898

The String data type
The data type of strings is String. By default, String matches strings of any length. You can use parameters to
restrict which values String matches.

Parameters

The full signature for String is:

String[<MIN LENGTH>, <MAX LENGTH>]

These parameters are optional. They must be listed in order; if you need to specify a later parameter, you must also
specify values for any prior ones.

Position Parameter Data type Default value Description

1 Minimum length Integer 0 The minimum
number of (Unicode)
characters in the
string. This parameter
accepts the special
value default,
which uses its default
value.

2 Maximum length Integer infinite The maximum
number of (Unicode)
characters in the
string. This parameter
accepts the special
value default,
which uses its default
value.

Examples:

String

Matches a string of any length.

String[6]

Matches a string with at least six characters.

String[6,8]

Matches a string with at least six and at most eight characters.

Related information
Data type syntax on page 921
Each value in the Puppet language has a data type, like “string.” There is also a set of values whose data type is “data
type.” These values represent the other data types. For example, the value String represents the data type of strings.
The value that represents the data type of these values is Type.

Abstract data types on page 926
If you’re using data types to match or restrict values and need more flexibility than what the core data types (such as
String or Array) allow, you can use one of the abstract data types to construct a data type that suits your needs
and matches the values you want.

Numbers
Numbers in the Puppet language are normal integers and floating point numbers.

You can work with numbers using arithmetic operators.

Numbers are written without quotation marks, and can consist only of:

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 899

• Digits.
• An optional negative sign (-). This is actually the unary negation operator rather than part of the number. Explicit

positive signs (+) aren’t allowed.
• An optional decimal point, which results in a floating point value.
• An optional e or E for scientific notation of floating point values.
• An 0 prefix for octal base, or 0x or 0X prefix hexidecimal base.

Integers

Integers are numbers without decimal points.

If you divide two integers, the result is not a float. Instead, Puppet truncates the remainder. For example:

$my_number = 2 / 3 # evaluates to 0
$your_number = 5 / 3 # evaluates to 1

Floating point numbers

Floating point numbers (“floats”) are numbers that include a fractional value after a decimal point, including a
fractional value of zero, as in 2.0.

If an expression includes both integer and float values, the result is a float:

$some_number = 8 * -7.992 # evaluates to -63.936
$another_number = $some_number / 4 # evaluates to -15.984

Floating point numbers between -1 and 1 cannot start with a bare decimal point. They must have a zero before the
decimal point:

$product = 8 * .12 # syntax error
$product = 8 * 0.12 # OK

You can express floating point numbers in scientific notation: append e or E, plus an exponent, and the preceding
number is multiplied by 10 to the power of that exponent. Numbers in scientific notation are always floats:

$product = 8 * 3e5 # evaluates to 2400000.0

Octal and hexadecimal integers

Integer values can be expressed in decimal notation (base 10), octal notation (base 8), and hexadecimal notation (base
16).

Decimal (base 10) integers (other than 0) must not start with a 0.

Octal (base 8) integers have a prefix of 0 (zero), followed by octal digits 0 to 7.

Hexadecimal (base 16) integers have a prefix of 0x or 0X, followed by hexadecimal digits 0 to 9, a to f, or A to F.

Floats can't be expressed in octal or hexadecimal.

Examples:

octal
$value = 0777 # evaluates to decimal 511
$value = 0789 # Error, invalid octal
$value = 0777.3 # Error, invalid octal

hexadecimal
$value = 0x777 # evaluates to decimal 1911
$value = 0xdef # evaluates to decimal 3567
$value = 0Xdef # same as above

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 900

$value = 0xDEF # same as above
$value = 0xLMN # Error, invalid hex

Converting numbers to strings
Numbers are automatically converted to strings when interpolated into a string. The automatic conversion uses
decimal (base 10) notation.

You can also cast a number into a string directly, by declaring a new String object.

Examples:

$from_integer = String(342)
$from_float = String(3.14159)

To convert numbers to non-decimal string representations, use the sprintf function.

Converting strings to numbers
Arithmetic operators in an expression automatically convert strings to numbers, but in all other contexts (for example,
resource attributes or function arguments), Puppet won’t automatically convert strings to numbers.

To convert a string to a number, cast the type by declaring a new Numeric object.

Examples:

$integer_var = Integer('342')
$float_var = Float('3.14159')
$numeric_var = Numeric('5280')

For more information about casting, see the function documentation for converting to Integer and converting to Float.

To extract numbers from strings, use the scanf function. This function handles surrounding non-numerical text.

The Integer data type
The data type of integers is Integer. By default, Integer matches whole numbers of any size, within the limits of
available memory. You can use parameters to restrict which values Integer matches.

Parameters

The full signature for Integer is:

Integer[<MIN VALUE>, <MAX VALUE>]

These parameters are optional. They must be listed in order; if you need to specify a later parameter, you must also
specify values for any prior ones.

Position Parameter Data type Default Description

1 Minimum value Integer negative infinity The minimum value
for the integer. This
parameter accepts
the special value
default, which
uses its default value.

2 Maximum value Integer infinity The maximum value
for the integer. This
parameter accepts
the special value
default, which
uses its default value.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 901

Practically speaking, the integer size limit is the range of a 64-bit signed integer (#9,223,372,036,854,775,808 to
9,223,372,036,854,775,807), which is the maximum size that can roundtrip safely between the components in the
Puppet ecosystem.

Examples:

Integer

Matches any integer.

Integer[0]

Matches any integer greater than or equal to 0.

Integer[default, 0]

Matches any integer less than or equal to 0.

Integer[2, 8]

Matches any integer from 2 to 8, inclusive.

The Float data type
The data type of floating point numbers is Float. By default, Float matches floating point numbers within the
limitations of Ruby's Float class. Practically speaking, this means a 64-bit double precision floating point value. You
can use parameters to restrict which values Float matches.

Parameters

The full signature for Float is:

Float[<MIN VALUE>, <MAX VALUE>]

These parameters are optional. They must be listed in order; if you need to specify a later parameter, you must also
specify values for any prior ones.

Position Parameter Data type Default Description

1 Minimum value Float negative infinity The minimum value
for the float. This
parameter accepts
the special value
default, which
uses its default value.

2 Maximum value Float infinity The maximum value
for the float. This
parameter accepts
the special value
default, which
uses its default value.

Examples:

Float

Matches any floating point number.

Float[1.6]

Matches any floating point number greater than or equal to 1.6.

Float[1.6, 3.501]

Matches any floating point number from 1.6 to 3.501, inclusive.

For more information about Float see Ruby's Float class docs.

© 2024 Puppet, Inc., a Perforce company

http://www.ruby-doc.org/core/Float.html

Puppet | Developing Puppet code | 902

The Numeric data type
The data type of all numbers, both integer and floating point, is Numeric. It matches any integer or floating point
number, and takes no parameters.

Numeric is equivalent to Variant[Integer, Float]. If you need to set size limits but still accept both
integers and floats, you can use the abstract type Variant to construct an appropriate data type. For example:

Variant[Integer[-3,3], Float[-3.0,3.0]]

Related information
Data type syntax on page 921
Each value in the Puppet language has a data type, like “string.” There is also a set of values whose data type is “data
type.” These values represent the other data types. For example, the value String represents the data type of strings.
The value that represents the data type of these values is Type.

Abstract data types on page 926
If you’re using data types to match or restrict values and need more flexibility than what the core data types (such as
String or Array) allow, you can use one of the abstract data types to construct a data type that suits your needs
and matches the values you want.

Binary
A Binary object represents a sequence of bytes and it can be created from a String in Base64 format, a verbatim
String, or an Array containing byte values. A Binary can also be created from a Hash containing the value to
convert to a Binary.

Binary algebra

• A Binary can only be assigned a Binary value
• A Binary has no type parameters

Binary.new

The signatures are:

type ByteInteger = Integer[0,255]
type Base64Format = Enum["%b", "%u", "%B", "%s"]
type StringHash = Struct[{value => String, "format" =>
 Optional[Base64Format]}]
type ArrayHash = Struct[{value => Array[ByteInteger]}]
type BinaryArgsHash = Variant[StringHash, ArrayHash]

function Binary.new(
 String $base64_str,
 Optional[Base64Format] $format
)

function Binary.new(
 Array[ByteInteger] $byte_array
}

 # Same as for String, or for Array, but where arguments are given in a
 Hash.
 function Binary.new(BinaryArgsHash $hash_args)

The format codes represent the following data encoding formats:

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 903

Format Explanation

%b The data is in base64 encoding. Padding required by base64 strict encoding is added by
default.

%u The data is in URL-safe base64 encoding.

%B The data is in base64 strict encoding.

%s The data is a Puppet string. If the string is not valid UTF-8 or convertible to UTF-8, Puppet
raises an error.

%r The data is raw Ruby. The byte sequence in the given string is used verbatim irrespective of
possible encoding errors.

• The default format code is %B.
• Avoid using the raw Ruby format %r. It exists for backward compatibility when a string received from some

function should be treated as Binary. Such code should be changed to return a Binary instead of a String. This
format will be deprecated in a future version of the specification when enough time has been given to migrate
existing use of Ruby "binary strings", or Ruby strings that do not report accurate encoding.

Example: Creating Binary-typed content

create the binary content "abc" from base64 encoded string
$a = Binary('YWJj')

create the binary content from content in a module's file
$b = binary_file('mymodule/mypicture.jpg')

Booleans
Booleans are one-bit values, representing true or false. The condition of an if statement expects an expression that
resolves to a boolean value. All of Puppet's comparison operators resolve to boolean values, as do many functions.

The boolean data type has two possible values: true and false. Literal booleans must be one of these two bare
words (that is, not in quotation marks).

Automatic conversion to boolean

If a non-boolean value is used where a boolean is required:

• The undef value is converted to boolean false.
• All other values are converted to boolean true.

Notably, this means the string values "" (a zero-length string) and "false" (in quotation marks) both resolve to
true.

To convert values to booleans with more permissive rules (for example, 0 to false, or "false" to false), use
the str2bool and num2bool functions in the puppetlabs-stdlib module.

The Boolean data type

The data type of boolean values is Boolean.

It matches only the values true or false, and accepts no parameters.

You can use abstract types to match values that might be boolean or might have some other value. For example,
Optional[Boolean] matches true, false, or undef. Variant[Boolean, Enum["true",
"false"]] matches stringified booleans as well as true booleans.

Related information
Data type syntax on page 921

© 2024 Puppet, Inc., a Perforce company

http://forge.puppetlabs.com/puppetlabs/stdlib

Puppet | Developing Puppet code | 904

Each value in the Puppet language has a data type, like “string.” There is also a set of values whose data type is “data
type.” These values represent the other data types. For example, the value String represents the data type of strings.
The value that represents the data type of these values is Type.

Abstract data types on page 926
If you’re using data types to match or restrict values and need more flexibility than what the core data types (such as
String or Array) allow, you can use one of the abstract data types to construct a data type that suits your needs
and matches the values you want.

Arrays
Arrays are ordered lists of values. Resource attributes which accept multiple values (including the relationship
metaparameters) generally expect those values in an array. Many functions also take arrays, including the iteration
functions.

Arrays are written as comma-separated lists of values surrounded by square brackets, []. An optional trailing comma
is allowed between the final value and the closing square bracket.

['one', 'two', 'three']
Equivalent:
['one', 'two', 'three',]

The values in an array can be any data type.

Array values are immutable — they cannot be changed once they are created.

Accessing items in an array

You can access items in an array by their numerical index, counting from zero. Square brackets are used for
accessing. For example:

$my_array = ['one', 'two', 'three']
notice($my_array[1])

This manifest would log two as a notice. The value of $my_array[0] would be one, because indexes count from
zero.

The opening square bracket must not be preceded by white space:

$my_array = ['one', 'two', 'three', 'four', 'five']
notice($my_array[2]) # ok
notice($my_array [2]) # syntax error

Nested arrays and hashes can be accessed by chaining indexes:

$my_array = ['one', {'second' => 'two', 'third' => 'three'}]
notice($my_array[1]['third'])

This manifest would log three as a notice. $my_array[1] is a hash, and we access a key named 'third'.

Arrays support negative indexes, counting backward from the last element, with -1 being the last element of the
array:

$my_array = ['one', 'two', 'three', 'four', 'five']
notice($my_array[2])
notice($my_array[-2])

The first notice would log three, and the second notice would log four.

If you try to access an element beyond the bounds of the array, its value is undef:

$my_array = ['one', 'two', 'three', 'four', 'five']

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 905

$cool_value = $my_array[6] # value is undef

When testing with a regular expression whether an Array[<TYPE>] data type matches a given array, empty arrays
match if the type accepts zero-length arrays.

$my_array = []
if $my_array =~ Array[String] {
 notice('my_array')
}

This manifest would log my_array as a notice, because the expression matches the empty array.

Accessing sections of an array

You can access sections of an array by numerical index. Like accessing individual items, accessing sections uses
square brackets, but it uses two indexes, separated by a comma. For example: $array[3,10].

The result of an array section is always another array.

The first number of the index is the start position. Positive numbers count forward from the start of the array, starting
at zero. Negative numbers count backward from the end of the array, starting at -1.

The second number of the index is the stop position. Positive numbers are lengths, counting forward from the start
position. Negative numbers are absolute positions, counting backward from the end of the array starting at -1.

For example:

$my_array = ['one', 'two', 'three', 'four', 'five']
notice($my_array[2,1]) # evaluates to ['three']
notice($my_array[2,2]) # evaluates to ['three', 'four']
notice($my_array[2,-1]) # evaluates to ['three', 'four', 'five']
notice($my_array[-2,1]) # evaluates to ['four']

Array operators

You can use operators with arrays to create new arrays:

• append with <<
• concatenate with +
• remove elements with -

or to convert arrays to comma-separated lists with * (splat). See the Array operators section of Expressions for more
information.

Additional functions for arrays

The puppetlabs-stdlib module contains useful functions for working with arrays, including:

delete member sort

delete_at prefix unique

flatten range validate_array

grep reverse values_at

hash shuffle zip

is_array size

Related information
Regular expressions on page 909

© 2024 Puppet, Inc., a Perforce company

http://forge.puppetlabs.com/puppetlabs/stdlib

Puppet | Developing Puppet code | 906

A regular expression (sometimes shortened to “regex” or “regexp”) is a pattern that can match some set of strings,
and optionally capture parts of those strings for further use.

Undef on page 914
Puppet's undef value is roughly equivalent to nil in Ruby. It represents the absence of a value. If the
strict_variables setting isn’t enabled, variables which have never been declared have a value of undef.

The Array data type
The data type of arrays is Array. By default, Array matches arrays of any length, provided all values in the array
match the abstract data type Data. You can use parameters to restrict which values Array matches.

Parameters

The full signature for Array is:

Array[<CONTENT TYPE>, <MIN SIZE>, <MAX SIZE>]

These parameters are optional. They must be listed in order; if you need to specify a later parameter, you must also
specify values for any prior ones.

Position Parameter Data type Default value Description

1 Content type Type Data The kind of values
the array contains.
You can specify
only one data type
per array, and every
value in the array
must match that type.
Use an abstract type
to allow multiple data
types. If the order
of elements matters,
use the Tuple type
instead of Array.

2 Minimum size Integer 0 The minimum
number of elements
in the array. This
parameter accepts
the special value
default, which
uses its default value.

3 Maximum size Integer infinite The maximum
number of elements
in the array. This
parameter accepts
the special value
default, which
uses its default value.

Examples:

Array

Matches an array of any length. All elements in the array must match Data.

Array[String]

Matches an array of any size that contains only strings.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 907

Array[Integer, 6]

Matches an array containing at least six integers.

Array[Float, 6, 12]

Matches an array containing at least six and at most 12 floating-point numbers.

Array[Variant[String, Integer]]

Matches an array of any size that contains only strings or integers, or both.

Array[Any, 2]

Matches an array containing at least two elements, allowing any data type (including Type and Resource).

The abstract Tuple data type lets you specify data types for every element in an array, in order. Abstract types, such
as Variant and Enum, are useful when specifying content types for arrays that include multiple kinds of data.

Related information
Abstract data types on page 926
If you’re using data types to match or restrict values and need more flexibility than what the core data types (such as
String or Array) allow, you can use one of the abstract data types to construct a data type that suits your needs
and matches the values you want.

Hashes
Hashes map keys to values, maintaining the order of the entries according to insertion order.

Syntax

Hashes are written as a pair of curly braces {} containing any number of key-value pairs. A key is separated from its
value by an arrow (sometimes called a fat comma or hash rocket) =>, and adjacent pairs are separated by commas. An
optional trailing comma is allowed between the final value and the closing curly brace.

{ key1 => 'val1', key2 => 'val2' }
Equivalent:
{ key1 => 'val1', key2 => 'val2', }

Hash keys can be any data type, but generally, you should use only strings. Put quotation marks around keys that are
strings. Don't assign a hash with non-string keys to a resource attribute or class parameter, because Puppet cannot
serialize non-string hash keys into the catalog.

{ 'key1' => ['val1','val2'],
 'key2' => { 'key3' => 'val3', },
 'key4' => true,
 'key5' => 12345,
 }

Accessing values

Access hash members with their key inside square brackets:

$myhash = { key => "some value",
 other_key => "some other value" }
notice($myhash[key])

This example manifest would log some value as a notice.

If you try to access a nonexistent key from a hash, its value is undef:

$cool_value = $myhash[absent_key] # Value is undef

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 908

Nested arrays and hashes can be accessed by chaining indexes:

$main_site = { port => { http => 80,
 https => 443 },
 vhost_name => 'docs.puppetlabs.com',
 server_name => { mirror0 => 'warbler.example.com',
 mirror1 => 'egret.example.com' }
 }
notice ($main_site[port][https])

This example manifest would log 443 as a notice.

Merging hashes

When hashes are merged (using the addition (+) operator), the keys in the constructed hash have the same order as in
the original hashes, with the left hash keys ordered first, followed by any keys that appeared only in the hash on the
right side of the merge.

Where a key exists in both hashes, the merged hash uses the value of the key in the hash to the right of the addition
operator (+). For example:

$values = {'a' => 'a', 'b' => 'b'}
$overrides = {'a' => 'overridden'}
$result = $values + $overrides
notice($result)
-> {'a' => 'overridden', 'b' => 'b'}

The Hash data type
The data type of hashes is Hash. By default, Hash matches hashes of any size, as long as their keys match the
abstract type Scalar and their values match the abstract type Data. You can use parameters to restrict which values
Hash matches.

Parameters

The full signature for Hash is:

Hash[<KEY TYPE>, <VALUE TYPE>, <MIN SIZE>, <MAX SIZE>]

These parameters are optional. You must specify both key type and value type if you’re going to specify one of them.
The parameters must be listed in order; if you need to specify a later parameter, you must also specify values for any
prior ones.

Position Parameter Data type Default value Description

1 Key type Type Scalar What kinds of values
can be used as keys.
If you specify a key
type, a value type is
mandatory.

2 Value type Type Data What kinds of values
can be used as values.

3 Minimum size Integer 0 The minimum
number of key-value
pairs in the hash. This
parameter accepts
the special value
default, which
uses its default value.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 909

Position Parameter Data type Default value Description

4 Maximum size Integer infinite The maximum
number of key-value
pairs in the hash. This
parameter accepts
the special value
default, which
uses its default value.

Examples:

Hash

Matches a hash of any length; all keys must match Scalar and any values must match Data.

Hash[Integer, String]

Matches a hash that uses integers for keys and strings for values.

Hash[Integer, String, 1]

Same as previous, and requires a non-empty hash.

Hash[Integer, String, 1, 8]

Same as previous, and with a maximum size of eight key-value pairs.

The abstract Struct data type lets you specify the exact keys allowed in a hash, as well as what value types are
allowed for each key.

Other abstract types, particularly Variant and Enum, are useful when specifying a value type for hashes that
include multiple kinds of data.

Related information
Data type syntax on page 921
Each value in the Puppet language has a data type, like “string.” There is also a set of values whose data type is “data
type.” These values represent the other data types. For example, the value String represents the data type of strings.
The value that represents the data type of these values is Type.

Abstract data types on page 926
If you’re using data types to match or restrict values and need more flexibility than what the core data types (such as
String or Array) allow, you can use one of the abstract data types to construct a data type that suits your needs
and matches the values you want.

Regular expressions
A regular expression (sometimes shortened to “regex” or “regexp”) is a pattern that can match some set of strings,
and optionally capture parts of those strings for further use.

You can use regular expression values with the =~ and !~ match operators, case statements and selectors, node
definitions, and functions like regsubst for editing strings, or match for capturing and extracting substrings.
Regular expressions act like any other value, and can be assigned to variables and used in function arguments.

Syntax

Regular expressions are written as patterns enclosed within forward slashes. Unlike in Ruby, you cannot specify
options or encodings after the final slash, like /node .*/m.

if $host =~ /^www(\d+)\./ {
 notify { "Welcome web server #$1": }
}

Puppet uses Ruby’s standard regular expression implementation to match patterns. Other forms of regular expression
quoting, like Ruby’s %r{^www(\d+)\.}, are not allowed. You cannot interpolate variables or expressions into
regex values.

© 2024 Puppet, Inc., a Perforce company

http://ruby-doc.org/core/Regexp.html

Puppet | Developing Puppet code | 910

If you are matching against a string that contains newlines, use \A and \z instead of ^ and $, which match the
beginning and end of a line. This is a common mistake that can cause your regexp to unintentionally match multiline
text.

Some places in the language accept both real regex values and stringified regexes — that is, the same pattern quoted
as a string instead of surrounded by slashes.

Regular expression options

Regular expresions in Puppet cannot have options or encodings appended after the final slash. However, you can turn
options on or off for portions of the expression using the (?<ENABLED OPTION>:<SUBPATTERN>) and (?-
<DISABLED OPTION>:<SUBPATTERN>) notation. The following example enables the i option while disabling
the m and x options:

$packages = $operatingsystem ? {
 /(?i-mx:ubuntu|debian)/ => 'apache2',
 /(?i-mx:centos|fedora|redhat)/ => 'httpd',
}

The following options are available:

i

Ignore case.

m

Treat a new line as a character matched by .

x

Ignore whitespace and comments in the pattern.

Regular expression capture variables

Within conditional statements and node definitions, substrings withing parentheses () in a regular expression are
available as numbered variables inside the associated code section. The first is $1, the second is $2, and so on. The
entire match is available as $0.

These are not normal variables, and have some special behaviors:

• The values of the numbered variables do not persist outside the code block associated with the pattern that set
them.

• You can’t manually assign values to a variable with only digits in its name; they can only be set by pattern
matching.

• In nested conditionals, each conditional has its own set of values for the set of numbered variables. At the end of
an interior statement, the numbered variables are reset to their previous values for the remainder of the outside
statement. This causes conditional statements to act like local scopes, but only with regard to the numbered
variables.

The Regexp data type
The data type of regular expressions is Regexp. By default, Regexp matches any regular expression value. If you
are looking for a type that matches strings which match arbitrary regular expressions, see the Pattern type. You can
use parameters to restrict which values Regexp matches.

Parameters

The full signature for Regexp is:

Regexp[<SPECIFIC REGULAR EXPRESSION>]

The parameter is optional.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 911

Position Parameter Data type Default value Description

1 Specific regular
expression

Regexp none If specified, this
results in a data
type that only
matches one specific
regular expression
value. Specifying
a parameter here
doesn’t have a
practical use.

Examples:

Regexp

Matches any regular expression.

Regexp[/<regex>/]

Matches the regular expression /<regex>/ only.

Regexp matches only literal regular expression values. Don't confuse it with the abstract Pattern data type, which
uses a regular expression to match a limited set of String values.

Related information
Data type syntax on page 921
Each value in the Puppet language has a data type, like “string.” There is also a set of values whose data type is “data
type.” These values represent the other data types. For example, the value String represents the data type of strings.
The value that represents the data type of these values is Type.

Abstract data types on page 926
If you’re using data types to match or restrict values and need more flexibility than what the core data types (such as
String or Array) allow, you can use one of the abstract data types to construct a data type that suits your needs
and matches the values you want.

Sensitive
Sensitive types in the Puppet language are strings marked as sensitive. The value is displayed in plain text in the
catalog and manifest, but is redacted from logs and reports. Because the value is maintained as plain text, use it only
as an aid to ensure that sensitive values are not inadvertently disclosed.

The Sensitive type can be written as Sensitive.new(val), or the short form Sensitive(val).

Parameters

The full signature for Sensitive is:

Sensitive.new([<STRING VALUE>])

The Sensitive type is parameterized, but the parameterized type (the type of the value it contains) only retains the
basic type. Sensitive information about the length or details about the contained data value can otherwise be leaked.

It is therefore not possible to have detailed data types and expect that the data type match. For example,
Sensitive[Enum[red, blue, green]] fails if a value of Sensitive('red') is given. When a
sensitive type is used, the type parameter must be generic; in this example a Sensitive[String] instead would
match Sensitive('red').

Consider, for example, if you assign a sensitive value and call notice:

$secret = Sensitive('myPassword')
notice($secret)

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 912

The example manifest would log the following notice:

Notice: Scope(Class[main]): Sensitive [value redacted]

To gain access to the original data, use the unwrap function:

$secret = Sensitive('myPassword')
$processed = $secret.unwrap
notice $processed

Use Sensitive and unwrap only as an aid for logs and reports. The data is not encrypted.

Note: Sensitive puts no limit on the wrapped data and can wrap other types, but they do not fully reveal the type of
that data when type checking because it reveals too much detail.

Time-related data types
A Timespan defines the length of a duration of time, and a Timestamp defines a point in time. For example,
“two hours” is a duration that can be represented as a Timespan, while “three o'clock in the afternoon UTC on 8
November, 2018” is a point in time that can be represented as a Timestamp. Both types can use nanosecond values
if it is available on the platform.
The Timespan data type
A Timespan value represents a duration of time. The Timespan data type matches a specified range of durations
and includes all values within the given range. The default represents a positive or negative infinite duration. A
Timespan value can be specified with strings or numbers in various forms. The type takes up to two parameters.

Parameters

The full signature for Timespan is:

Timespan[(<TIMESPAN START OR LENGTH>, (<TIMESPAN END>))]

Position Parameter Data type Default value Description

1 Timespan start or
length

String, Float,
Integer, or
default

default (negative
infinity in a span)

If only one parameter
is passed, it is
the length of the
timespan. If two
parameters are
passed, this is the
start or from value
in a time range.

2 Timespan end String, Float,
Integer, or
default

default (positive
infinity) or none
if only one value
passed.

The end or to value
in a time range.

Timespan values are interpreted depending on their format:

• A String in the format D-HH:MM:SS represents a duration of D days, HH hours, MM minutes, and SS seconds.
• An Integer or Float represents a duration in seconds.

A Timespan defined as a range (two parameters) matches any Timespan durations that can fit within that range.
If either end of a range is defined as default (infinity), it is an open range, while any other range is a closed range.
The range is inclusive.

In other words, Timespan[2] matches a duration of two seconds, but Timespan[0, 2] can match any
Timespan from zero to two seconds, inclusive.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 913

The Timespan type is not enumerable.

For information about converting values of other types to Timespan using the new function, or for converting a
Timespan to a String using strftime, see the function reference documentation.

Examples:

Timespan[2]

Matches a Timespan value of 2 seconds.

Timespan[77.3]

Matches a Timespan value of 1 minute, 17 seconds, and 300 milliseconds (77.3 seconds).

Timespan['1-00:00:00', '2-00:00:00']

Matches a closed range of Timespan values between 1 and 2 days.

The Timestamp data type
A Timestamp value represents a specific point in time. The Timestamp data type can be one single point or any
point within a given range, depending on the number of specified parameters. Timestamp values that include a
default parameter represents an infinite range of either positive or negative Timestamps. A Timestamp value
can be specified with strings or numbers in various forms.

Parameters

The full signature for Timestamp is:

Timestamp[(<TIMESTAMP VALUE>, (<RANGE LIMIT>))]

The type takes up to two parameters, and defaults to an infinite range to the past and future. A Timestamp with one
parameter represents a single point in time, while two parameters represent a range of Timestamps, with the first
parameter being the from value and the second being the to value.

Position Parameter Data type Default value Description

1 Timestamp value String, Float,
Integer, or
default

default (negative
infinity in a range)

Point in time if
passed alone, or
from value in a
range if passed with a
second parameter.

2 Range limit String, Float,
Integer, or
default

default (positive
infinity), or none
if only one value is
passed

The to value in a
range.

A Timestamp that is defined as a single point in time (one parameter) matches exactly that point.

A Timestamp that is defined as a range (two parameters) matches any point in time within that range. If either end
of a range is defined as default (infinity), it is an open range, while any other range is a closed range. The range is
inclusive.

So, Timestamp['2000-01-01T00:00:00.000'] matches 0:00 UTC on 1 January, 2000, while
Timestamp['2000-01-01T00:00:00.000', '2001-01-01T00:00:00.000] matches Timestamp
values from that point in time to a point in time one year later, inclusive.

Timestamp values are interpreted depending on their format.

For information about converting values of other types to Timestamp using the new function, or for converting a
Timespan to a String using the strftime function, see the function reference documentation.

Examples:

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 914

Timestamp['2000-01-01T00:00:00.000', default]

Matches an open range of Timestamps from the start of the 21st century to an infinite point in the future.

Timestamp['2012-10-10']

Matches the exact Timestamp 2012-10-10T00:00:00.0 UTC.

Timestamp[default, 1433116800]

Matches an open range of Timestamps from an infinite point in the past to 2015-06-01T00:00:00 UTC, here
expressed as seconds since the Unix epoch.

Timestamp['2010-01-01', '2015-12-31T23:59:59.999999999']

Matches a closed range of Timestamps between the start of 2010 and the end of 2015.

Undef
Puppet's undef value is roughly equivalent to nil in Ruby. It represents the absence of a value. If the
strict_variables setting isn’t enabled, variables which have never been declared have a value of undef.

The undef value is useful for testing whether a variable has been set. Also, you can use it to un-set resource
attributes that have inherited values from a resource default, causing the attribute to be unmanaged.

The only value in the Undef data type is the bare word undef.

Conversion

When used as a boolean, undef is false.

When interpolated into a string, undef is converted to the empty string.

The Undef data type

The data type of undef is Undef. It matches only the value undef, and takes no parameters.

Several abstract data types can match the undef value:

• The Data type matches undef in addition to several other data types.
• The Any type matches any value, including undef.
• The Optional type wraps one other data type, and returns a type that matches undef in addition to that type.
• The Variant type can accept the Undef type as a parameter, which makes the resulting data type match

undef.
• The NotUndef type matches any value except undef.

Related information
Data type syntax on page 921
Each value in the Puppet language has a data type, like “string.” There is also a set of values whose data type is “data
type.” These values represent the other data types. For example, the value String represents the data type of strings.
The value that represents the data type of these values is Type.

Abstract data types on page 926
If you’re using data types to match or restrict values and need more flexibility than what the core data types (such as
String or Array) allow, you can use one of the abstract data types to construct a data type that suits your needs
and matches the values you want.

Default
Puppet’s default value acts like a keyword in a few specific usages. Less commonly, it can also be used as a value.

Syntax

The only value in the default data type is the bare word default.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 915

Usage with cases and selectors

In case statements and selector expressions, you can use default as a case. Puppet attempts to match a default
case last, after it has tried to match against every other case.

Usage with per-block resource defaults

You can use default as the title in a resource declaration to invoke a particular behavior. Instead of creating a
resource and adding it to the catalog, the default resource sets fallback attributes that can be used by any other
resource in the same resource expression.

In the following example, all of the resources in the block inherits attributes from default unless they specifically
override them:

file {
 default:
 ensure => file,
 mode => '0600',
 owner => 'root',
 group => 'root',
 ;
 '/etc/ssh_host_dsa_key':
 ;
 '/etc/ssh_host_key':
 ;
 '/etc/ssh_host_dsa_key.pub':
 mode => '0644',
 ;
 '/etc/ssh_host_key.pub':
 mode => '0644',
 ;
}

Usage as parameters of data types

Several data types take parameters that have default values. In some cases, like minimum and maximum sizes, the
default value can be difficult or impossible to refer to using the available literal values in the Puppet language. For
example, the default value of the String type’s maximum length parameter is infinity, which can’t be represented in
the Puppet language.

These parameters let you provide a value of default to indicate that you want the default value.

Other default usage

You can use the value default anywhere you aren’t prohibited from using it. In these cases, it generally won’t have
any special meaning.

There are a few reasons you might want to do this. A prime example is if you are writing a class or defined resource
type and want to give users the option to specifically request a parameter’s default value. Some people have used
undef to do this, but that’s no good when dealing with parameters where undef would, itself, be a meaningful
value. Others have used a value like the string "UNSET", but this can be messy.

Using default in this scenario lets you distinguish among:

• A chosen “real” value.
• A chosen value of undef .
• Explicitly declining to choose a value, represented by default .

In other other words, default can be useful when you need a truly meaningless value.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 916

The Default data type

The data type of default is Default. It matches only the value default, and takes no parameters.

Example:

Variant[String, Default, Undef]

Matches undef, default, or any string.

Related information
Data type syntax on page 921
Each value in the Puppet language has a data type, like “string.” There is also a set of values whose data type is “data
type.” These values represent the other data types. For example, the value String represents the data type of strings.
The value that represents the data type of these values is Type.

Abstract data types on page 926
If you’re using data types to match or restrict values and need more flexibility than what the core data types (such as
String or Array) allow, you can use one of the abstract data types to construct a data type that suits your needs
and matches the values you want.

Resource and class references
Resource references identify a specific Puppet resource by its type and title. Several attributes, such as the
relationship metaparameters, require resource references.

The general form of a resource reference is:

• The resource type, capitalized. If the resource type includes a namespace separator ::, then each segment must be
capitalized.

• An opening square bracket [.
• The title of the resource as a string, or a comma-separated list of titles.
• A closing square bracket].

For example, here is a reference to a file resource:

subscribe => File['/etc/ntp.conf'],

Here is a type with a multi-segment name:

before => Concat::Fragment['apache_port_header'],

Unlike variables, resource references are not evaluation-order dependent, and can be used before the resource itself is
declared.

Class references

Class references work the same as resource references, but use the pseudo-resource type Class instead of some
other resource type name:

require => Class['ntp::install'],

Multi-resource references

Resource reference expressions with an array of titles or comma-separated list of titles refer to multiple resources
of the same type. They evaluate to an array of single-title resource references. For example, here is a multi-resource
reference:

require => File['/etc/apache2/httpd.conf', '/etc/apache2/magic', '/etc/
apache2/mime.types'],

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 917

And here is an equivalent multi-resource reference:

$my_files = ['/etc/apache2/httpd.conf', '/etc/apache2/magic', '/etc/apache2/
mime.types']
require => File[$my_files]

Multi-resource references can be used wherever an array of references can be used. They can go on either side of a
chaining arrow or receive a block of additional attributes.

Accessing attribute values

You can use a resource reference to access the values of a resource’s attributes. To access a value, use square brackets
and the name of an attribute (as a string). This works much like accessing hash values.

file { "/etc/first.conf":
 ensure => file,
 mode => "0644",
 owner => "root",
}

file { "/etc/second.conf":
 ensure => file,
 mode => File["/etc/first.conf"]["mode"],
 owner => File["/etc/first.conf"]["owner"],
}

The resource whose values you’re accessing must exist.

Like referencing variables, attribute access depends on evaluation order: Puppet must evaluate the resource you’re
accessing before you try to access it. If it hasn’t been evaluated yet, Puppet raises an evaluation error.

You can only access attributes that are valid for that resource type. If you try to access a nonexistent attribute, Puppet
raises an evaluation error.

Puppet can read the values of only those attributes that are explicitly set in the resource’s declaration. It can’t read the
values of properties that would have to be read from the target system. It also can’t read the values of attributes that
default to some predictable value. For example, in the code above, you wouldn’t be able to access the value of the
path attribute, even though it defaults to the resource’s title.

Like with hash access, the value of an attribute whose value was never set is undef.

Resource references as data types

If you’ve read the Data type syntax page, or perused the lower sections of the other data type pages, you might
have noticed that resource references use the same syntax as values that represent data types. Internally, they’re
implemented the same way, and each resource reference is actually a data type.

For most users, this doesn’t matter at all. Treat resource references as a special case with a coincidentally similar
syntax, and it’ll make your life generally easier. But if you’re interested in the details, see Resource types.

To restrict values for a class or defined type parameter so that users must provide your code a resource reference, do
one of the following.

• To allow a resource reference of any resource type, use a data type of:

Type[Resource]

• To allow resource references and class references, use a data type of:

Type[Catalogentry]

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 918

• To allow a resource reference of a specific resource type — in this example, file — use one of the following:

Type[File] # Capitalized resource type name
Type[Resource["file"]] # Resource data type, with type name in parameter
 as a string
Type[Resource[File]] # Resource data type, with capitalized resource
 type name

Any of these three options allow any File['<TITLE>'] resource reference, while rejecting ones like
Service[<TITLE>].

Resource types
Resource types are a special family of data types that behave differently from other data types. They are subtypes of
the fairly abstract Resource data type. Resource references are a useful subset of this data type family.

In the Puppet language, there are never any values whose data type is one of these resource types. That is, you
can never create an expression where $my_value =~ Resource evaluates to true. For example, a resource
declaration — an expression whose value you might expect would be a resource — executes a side effect and then
produces a resource reference as its value. A resource reference is a data type in this family of data types, rather than
a value that has one of these data types.

In almost all situations, if one of these resource type data types is involved, it makes more sense to treat it as a special
language keyword than to treat it as part of a hierarchy of data types. It does have a place in that hierarchy; it’s just
complicated, and you don’t need to know it to do things in the Puppet language.

For that reason, the information on this page is provided for the sake of technical completeness, but learning it isn't
critical to your ability to use Puppet successfully.

Basics

Puppet automatically creates new known data type values for every resource type it knows about, including custom
resource types and defined types.

These one-off data types share the name of the resource type they correspond to, with the first letter of every
namespace segment capitalized. For example, the file type creates a data type called File.

Additionally, there is a parent Resource data type. All of these one-off data types are more-specific subtypes of
Resource.

Usage of resource types without a title

A resource data type can be used in the following places:

• The resource type slot of a resource declaration.
• The resource type slot of a resource default statement.

For example:

A resource declaration using a resource data type:
File { "/etc/ntp.conf":
 mode => "0644",
 owner => "root",
 group => "root",
}

Equivalent to the above:
Resource["file"] { "/etc/ntp.conf":
 mode => "0644",
 owner => "root",
 group => "root",
}

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 919

A resource default:
File {
 mode => "0644",
 owner => "root",
 group => "root",
}

Usage of resource types with a title

If a resource data type includes a title, it acts as a resource reference, which are useful in several places. For more
information, see Resource and class references on page 916.

The <SOME ARBITRARY RESOURCE TYPE> data type
For each resource type mytype known to Puppet, there is a data type, Mytype. It matches no values that can be
produced in the Puppet language. You can use parameters to restrict which values Mytype matches, but it still
matches no values.

Parameters

The full signature for a resource-type-corresponding data type Mytype is:

Mytype[<RESOURCE TITLE>]

This parameter is optional.

Position Parameter Data type Default value Description

1 Resource title String nothing The title of some
specific resource of
this type. If provided,
this turns this data
type into a usable
resource reference.

Examples:

File

The data type corresponding to the file resource type.

File['/tmp/filename.ext']

A resource reference to the file resource whose title is /tmp/filename.ext.

Type[File]

The data type that matches any resource references to file resources. This is useful for, for example, restricting
the values of class or defined type parameters.

The Resource data type
There is also a general Resource data type, which all <SOME ARBITRARY RESOURCE TYPE> data types are
more-specific subtypes of. Like the Mytype-style data types, it matches no values that can be produced in the Puppet
language. You can use parameters to restrict which values Resource matches, but it still matches no values.

This is useful in the following uncommon circumstances:

• You need to interact with a resource type before you know its name. For example, you can do some clever
business with the iteration functions to re-implement the create_resources function in the Puppet language,
where your lambda receives arguments telling it to create resources of some resource type at runtime.

• Someone has somehow created a resource type whose name is invalid in the Puppet language, possibly by
conflicting with a reserved word — you can use a Resource value to refer to that resource type in resource
declarations and resource default statements, and to create resource references.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 920

Parameters

The full signature for Resource is:

Resource[<RESOURCE TYPE>, <RESOURCE TITLE>...]

All of these parameters are optional. They must be listed in order; if you need to specify a later parameter, you must
specify values for any prior ones.

Position Parameter Data type Default value Description

1 Resource type String or
Resource

nothing A resource type,
either as a string or a
Resource data type
value. If provided,
this turns this data
type into a resource-
specific data type.
Resource[Mytype]
and
Resource["mytype"]
are identical to the
data type Mytype.

2 and higher Resource title String nothing The title of some
specific resource
of this type. If
provided, this turns
this data type into
a usable resource
reference or array of
resource references.
Resource[Mytype,
"mytitle"] and
Resource["mytype",
"mytitle"]
are identical to
the data type
Mytype["mytitle"].

Examples:

Resource[File]

The data type corresponding to the file resource type.

Resource[File, '/tmp/filename.ext']

A resource reference to the file resource whose title is /tmp/filename.ext.

Resource["file", '/tmp/filename.ext']

A resource reference to the file resource whose title is /tmp/filename.ext.

Resource[File, '/tmp/filename.ext', '/tmp/bar']

Equivalent to [File['/tmp/filename.ext'], File['/tmp/bar']].

Type[Resource[File]]

A synonym for the data type that matches any resource references to file resources. This is useful for, for
example, restricting the values of class or defined type parameters.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 921

Type[Resource["file"]]

Another synonym for the data type that matches any resource references to file resources. This is useful for, for
example, restricting the values of class or defined type parameters.

The Class data type
The Class data type is roughly equivalent to the set of Mytype data types, except it is for classes. Like the
Mytype-style data types, it matches no values that can be produced in the Puppet language. You can use parameters
to restrict which values Class matches, but it will matches no values.

Parameters

The full signature for Class is:

Class[<CLASS NAME>]

This parameter is optional.

Position Parameter Data type Default value Description

1 Class name String nothing The name of a class.
If provided, this
turns this data type
into a usable class
reference.

Examples:

Class["apache"]

A class reference to class apache.

Type[Class]

The data type that matches any class references. This is useful for, for example, restricting the values of class or
defined type parameters.

Related data types
The abstract Catalogentry data type is the supertype of Resource and Class. You can use
Type[Catalogentry] as the data type for a class or defined type parameter that can accept both class references
and resource references.
Related information
Resource and class references on page 916
Resource references identify a specific Puppet resource by its type and title. Several attributes, such as the
relationship metaparameters, require resource references.

Data type syntax on page 921
Each value in the Puppet language has a data type, like “string.” There is also a set of values whose data type is “data
type.” These values represent the other data types. For example, the value String represents the data type of strings.
The value that represents the data type of these values is Type.

Abstract data types on page 926
If you’re using data types to match or restrict values and need more flexibility than what the core data types (such as
String or Array) allow, you can use one of the abstract data types to construct a data type that suits your needs
and matches the values you want.

Data type syntax
Each value in the Puppet language has a data type, like “string.” There is also a set of values whose data type is “data
type.” These values represent the other data types. For example, the value String represents the data type of strings.
The value that represents the data type of these values is Type.

You can use these special values to examine a piece of data or enforce rules. For example, you can test whether
something is a string with the expression $possible_string =~ String, or specify that a class parameter

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 922

requires string values with class myclass (String $string_parameter = "default value")
{ ... }.

Syntax

Data types are written as unquoted upper-case words, like String.

Data types sometimes take parameters, which make them more specific. For example, String[8] is the data type
of strings with a minimum of eight characters.

Each known data type defines how many parameters it accepts, what values those parameters take, and the order
in which they must be given. Some of the abstract types require parameters, and most types have some optional
parameters available.

The general form of a data type is:

• An upper-case word matching one of the known data types.
• Sometimes, a set of parameters, which consists of:

• An opening square bracket [after the type’s name. There can’t be any space between the name and the
bracket.

• A comma-separated list of values or expressions. Arbitrary whitespace is allowed, but you can’t have a trailing
comma after the final value.

• A closing square bracket].

The following example uses an abstract data type Variant, which takes any number of data types as parameters.
One of the parameters provided in the example is another abstract data type Enum, which takes any number of strings
as parameters:

Variant[Boolean, Enum['true', 'false', 'running', 'stopped']]

Note: When parameters are required, you must specify them. The only situation when you can leave out required
parameters is if you’re referring to the type itself. For example, Type[Variant] is legal, even though Variant
has required parameters.

Usage
Data types are useful in parameter lists, match (=~) expressions, case statements, and selector expressions. There are
also a few less common uses for them.

Specify data types in your Puppet code whenever you can, aligning them in columns. Type your class parameters
wherever possible, and be specific when using a type. For example, use an Enum for input validation, instead of using
a String and checking the contents of the string in the code. You have the option to specify String[1] instead
of String, because you might want to enforce non-empty strings. Specify data types as deeply as possible, without
affecting readability. If readability becomes a problem, consider creating a custom data type alias.

Parameter lists

Classes, defined types, and lambdas all let you specify parameters, which let your code request data from a user or
some other source. Generally, your code expects each parameter to be a specific kind of data. You can enforce that
expectation by putting a data type before that parameter’s name in the parameter list. At evaluation time, Puppet
raises an error if a parameter receives an illegal value.

For example, consider the following class. If you tried to set $autoupdate to a string like "true", Puppet would
raise an error, because it expects a Boolean value:

class ntp (
 Boolean $service_manage = true,
 Boolean $autoupdate = false,
 String $package_ensure = 'present',
 # ...
) {

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 923

 # ...
}

Abstract data types let you write more sophisticated and flexible restrictions. For example, this
$puppetdb_service_statusparameter accepts values of true, false, "true", "false",
"running", and "stopped", and raises an error for any other value:

class puppetdb::server (
 Variant[Boolean, Enum['true', 'false', 'running', 'stopped']]
 $puppetdb_service_status = $puppetdb::params::puppetdb_service_status,
) inherits puppetdb::params {
 # ...
}

Cases

Case statements and selector expressions allow data types as their cases. Puppet chooses a data type case if the control
expression resolves to a value of that data type. For example:

$enable_real = $enable ? {
 Boolean => $enable,
 String => str2bool($enable),
 Numeric => num2bool($enable),
 default => fail('Illegal value for $enable parameter'),
}

Match expressions

The match operators =~ and !~ accept a data type on the right operand, and test whether the left operand is a value of
that data type.

For example, 5 =~ Integer and 5 =~ Integer[1,10] both resolve to true.

Less common uses

The built-in function assert_type takes a value and a data type, and raises errors if your code encounters an illegal
value. Think of it as shorthand for an if statement with a non-match (!~) expression and a fail() function call.

You can also provide data types as both operands for the comparison operators ==, !=, <, >, <=, and >=, to test
whether two data types are equal, whether one is a subset of another, and so on.

Obtaining data types

The built-in function type returns the type of any value. For example, type(3) returns Integer[3,3].

List of Puppet data types
The following data types are available in the Puppet language.

For details on each data type, see the linked documentation or the specification document.

Data type Purpose Type category

Any The parent type of all types. Abstract

Array The data type of arrays. Data

Binary A type representing a sequence of
bytes.

Data

Boolean The data type of Boolean values. Data, Scalar

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppet-specifications/blob/master/language/types_values_variables.md

Puppet | Developing Puppet code | 924

Data type Purpose Type category

Callable Something that can be called (such as
a function or lambda).

Platform

CatalogEntry The parent type of all types that are
included in a Puppet catalog.

Abstract

Class A special data type used to declare
classes.

Catalog

Collection A parent type of Array and Hash. Abstract

Data A parent type of all data directly
representable as JSON.

Abstract

Default The "default value" type. Platform

Deferred A type describing a call to be
resolved in the future.

Platform

Enum An enumeration of strings. Abstract

Error A type used to communicate when a
function has produced an error.

Float The data type of floating point
numbers.

Data, Scalar

Hash The data type of hashes. Data

Init A type used to accept values that
are compatible of some other type's
"new".

Integer The data type of integers. Data, Scalar

Iterable A type that represents all types that
allow iteration.

Abstract

Iterator A special kind of lazy Iterable
suitable for chaining.

Abstract

NotUndef A type that represents all types not
assignable from the Undef type.

Abstract

Numeric The parent type of all numeric data
types.

Abstract

Object Experimental. Can be a simple object
only having attributes, or a more
complex object also supporting
callable methods.

Optional Either Undef or a specific type. Abstract

Pattern An enumeration of regular expression
patterns.

Abstract

Regexp The data type of regular expressions. Scalar

Resource A special data type used to declare
resources.

Catalog

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 925

Data type Purpose Type category

RichData A parent type of all data types
except the non serializeable
types Callable, Iterator,
Iterable, and Runtime.

Abstract

Runtime The type of runtime (non Puppet)
types.

Platform

Scalar Represents the abstract notion of
"value".

Abstract

ScalarData A parent type of all single valued
data types that are directly
representable in JSON.

Abstract

SemVer A type representing semantic
versions.

Scalar

SemVerRange A range of SemVer versions. Abstract

Sensitive A type that represents a data type that
has "clear text" restrictions.

Platform

String The data type of strings. Data, Scalar

Struct A Hash where each entry is
individually named and typed.

Abstract

Timespan A type representing a duration of
time.

Scalar

Timestamp A type representing a specific point
in time

Scalar

Tuple An Array where each slot is typed
individually

Abstract

Type The type of types. Platform

Typeset Experimental. Represents a collection
of Object-based data types.

Undef The "no value" type. Data, Platform

URI A type representing a Uniform
Resource Identifier

Data

Variant One of a selection of types. Abstract

The Type data type
The data type of literal data type values is Type. By default, Type matches any value that represents a data
type, such as Integer, Integer[0,800], String, or Enum["running", "stopped"]. You can use
parameters to restrict which values Type matches.

Parameters

The full signature for Type is:

Type[<ANY DATA TYPE>]

This parameter is optional.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 926

Position Parameter Data type Default Description

1 Any data type Type Any A data type, which
causes the resulting
Type object to only
match against that
type or types that
are more specific
subtypes of that type.

Examples:

Type

Matches any data type, such as Integer, String, Any, or Type.

Type[String]

Matches the data type String, as well as any of its more specific subtypes like String[3] or
Enum["running", "stopped"].

Type[Resource]

Matches any Resource data type — that is, any resource reference.

Abstract data types
If you’re using data types to match or restrict values and need more flexibility than what the core data types (such as
String or Array) allow, you can use one of the abstract data types to construct a data type that suits your needs
and matches the values you want.

Each of Puppet's core data types has a corresponding value that represents that data type, which can be used to match
values of that type in several contexts. Each of those core data types only match a particular set of values. They let
you further restrict the values they’ll match, but only in limited ways, and there’s no way to expand the set of values
they’ll match. If you need to do this, use the corresponding abstract data type.

Related information
Data type syntax on page 921
Each value in the Puppet language has a data type, like “string.” There is also a set of values whose data type is “data
type.” These values represent the other data types. For example, the value String represents the data type of strings.
The value that represents the data type of these values is Type.

Values, data types, and aliases on page 885
Most of the things you can do with the Puppet language involve some form of data. An individual piece of data is
called a value, and every value has a data type, which determines what kind of information that value can contain and
how you can interact with it.

Flexible data types
These abstract data types can match values with a variety of concrete data types. Some of them are similar to a
concrete type but offer alternate ways to restrict them (for example, Enum), and some of them let you combine types
and match a union of what they would individually match (for example, Variant and Optional).

The Optional data type

The Optional data type wraps one other data type, and results in a data type that matches anything that type would
match plus undef. This is useful for matching values that are allowed to be absent. It takes one required parameter.

The full signature for Optional is:

Optional[<DATA TYPE>]

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 927

Position Parameter Data type Default value Description

1 Data type Type or String none (you must
specify a value)

The data type to add
undef to.

If you specify a string "my string" as the parameter, it's equivalent to using Optional[Enum["my
string"]] — it matches only that exact string value or undef.

Optional[<DATA TYPE>] is equivalent to Variant[<DATA TYPE>, Undef].

Examples:

Optional[String]

Matches any string or undef.

Optional[Array[Integer[0, 10]]]

Matches an array of integers between 0 and 10, or undef.

Optional["present"]

Matches the exact string "present" or undef.

The NotUndef data type

The NotUndef type matches any value except undef. It can also wrap one other data type, resulting in a type that
matches anything the original type would match except undef. It accepts one optional parameter.

The full signature for NotUndef is:

NotUndef[<DATA TYPE>]

Position Parameter Data type Default value Description

1 Data type Type or String Any The data type to
subtract undef
from.

If you specify a string as a parameter for NotUndef, it's equivalent to writing NotUndef[Enum["my
string"]] — it matches only that exact string value. This doesn’t actually subtract anything, because the Enum
wouldn’t have matched undef anyway, but it's a convenient notation for mandatory keys in Struct schema hashes.

The Variant data type

The Variant data type combines any number of other data types, and results in a type that matches the union of
what any of those data types would match. It takes any number of parameters, and requires at least one.

The full signature for Variant is:

Variant[<DATA TYPE>, (<DATA TYPE, ...)]

Position Parameter Data type Default value Description

1 and up Data type Type none (required) A data type to add
to the resulting
compound data type.
You must provide at
least one data type
parameter, and can
provide any number
of additional ones.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 928

Examples:

Variant[Integer, Float]

Matches any integer or floating point number (equivalent to Numeric).

Variant[Enum['true', 'false'], Boolean]

matches 'true', 'false', true, or false.

The Pattern data type

The Pattern data type only matches strings, but it provides an alternate way to restrict which strings it matches. It
takes any number of regular expressions, and results in a data type that matches any strings that would match any of
those regular expressions. It takes any number of parameters, and requires at least one.

The full signature for Pattern is:

Pattern[<REGULAR EXPRESSION>, (<REGULAR EXPRESSION>, ...)]

Position Parameter Data type Default value Description

1 and up Regular expression Regexp none (required) A regular expression
describing a set
of strings that the
resulting data type
should match. You
must provide at
least one regular
expression parameter,
and can provide any
number of additional
ones.

You can use capture groups in the regular expressions, but they won’t cause any variables, like $1, to be set.

Examples:

Pattern[/\A[a-z].*/]

Matches any string that begins with a lowercase letter.

Pattern[/\A[a-z].*/, /\ANone\Z/]

Matches the above or the exact string None.

The Enum data type

The Enum data type only matches strings, but it provides an alternate way to restrict which strings it matches. It takes
any number of strings, and results in a data type that matches any string values that exactly match one of those strings.
Unlike the == operator, this matching is case-sensitive. It takes any number of parameters, and requires at least one.

The full signature for Enum is:

Enum[<OPTION>, (<OPTION>, ...)]

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 929

Position Parameter Data type Default value Description

1 and up Option String none (required) One of the literal
string values that the
resulting data type
should match. You
must provide at least
one option parameter,
and can provide any
number of additional
ones.

Examples:

Enum['stopped', 'running']

Matches the strings 'stopped' and 'running', and no other values.

Enum['true', 'false']

Matches the strings 'true' and 'false', and no other values. Does not match the boolean values true or
false (without quotes).

The Tuple data type

The Tuple type only matches arrays, but it lets you specify different data types for every element of the array, in
order. It takes any number of parameters, and requires at least one.

The full signature for Tuple is:

Tuple[<CONTENT TYPE>, (<CONTENT TYPE>, ..., <MIN SIZE>, <MAX SIZE>)]

Position Parameter Data type Default value Description

1 and up Content type Type none (required) What kind of values
the array contains at
the given position.
You must provide at
least one content type
parameter, and can
provide any number
of additional ones.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 930

Position Parameter Data type Default value Description

-2 (second-last) Minimum size Integer number of content
types

The minimum
number of elements
in the array. If this
is smaller than the
number of content
types you provided,
any elements beyond
the minimum are
optional; however,
if present, they
must still match the
provided content
types. This parameter
accepts the value
default, but this
won’t use the default
value; instead, it
means 0 (all elements
optional).

-1 (last) Maximum size Integer number of content
types

The maximum
number of elements
in the array. You
cannot specify a
maximum without
also specifying a
minimum. If the
maximum is larger
than the number
of content types
you provided, it
means the array
can contain any
number of additional
elements, which all
must match the last
content type. This
parameter accepts
the value default,
but this won’t use the
default value; instead,
it means infinity (any
number of elements
matching the final
content type).

Don't set the
maximum smaller
than the number of
content types you
provide.

Examples:

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 931

Tuple[String, Integer]

Matches a two-element array containing a string followed by an integer, like ["hi", 2].

Tuple[String, Integer, 1]

Matches the above or a one-element array containing only a string.

Tuple[String, Integer, 1, 4]

Matches an array containing one string followed by zero to three integers.

Tuple[String, Integer, 1, default]

Matches an array containing one string followed by any number of integers.

The Struct data type

The Struct type only matches hashes, but it lets you specify:

• The name of every allowed key.
• Whether each key is required or optional.
• The allowed data type for each of those keys’ values.

It takes one mandatory parameter.

The full signature for Struct is:

Struct[<SCHEMA HASH>]

Position Parameter Data type Default value Description

1 Schema hash Hash[Variant[String,
Optional,
NotUndef],
Type]

none (required) A hash that has all
of the allowed keys
and data types for the
struct.

A Struct’s schema hash must have the same keys as the hashes it matches. Each value must be a data type that
matches the allowed values for that key.

The keys in a schema hash are usually strings. They can also be an Optional or NotUndef type with the key’s
name as their parameter.

If a key is a string, Puppet uses the value’s type to determine whether it’s optional — because accessing a missing key
resolves to the value undef, the key is optional if the value type accepts undef (like Optional[Array]).

Note that this doesn’t distinguish between an explicit value of undef and an absent key. If you want to be more
explicit, you can use Optional['my_key'] to indicate that a key can be absent, and NotUndef['my_key']
to make it mandatory. If you use one of these, a value type that accepts undef is only used to decide about explicit
undef values, not missing keys.

The following example Struct matches hashes like {mode => 'read', path => '/etc/fstab'}. Both
the mode and path keys are mandatory; mode’s value must be one of 'read', 'write', or 'update', and
path must be a string of at least one character:

Struct[{mode => Enum[read, write, update],
 path => String[1]}]

The following data type would match the same values as the previous example, but the path key is optional. If
present, path must match String[1] or Undef:

Struct[{mode => Enum[read, write, update],
 path => Optional[String[1]]}]

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 932

In the following data type, the owner key can be absent, but if it’s present, it must be a string; a value of undef isn’t
allowed:

Struct[{mode => Enum[read, write, update],
 path => Optional[String[1]],
 Optional[owner] => String[1]}]

In the following data type, the owner key is mandatory, but it allows an explicit undef value:

Struct[{mode => Enum[read, write, update],
 path => Optional[String[1]],
 NotUndef[owner] => Optional[String[1]]}]

Parent types
These abstract data types are the parents of multiple other types, and match values that would match any of their sub-
types. They’re useful when you have very loose restrictions but not no restrictions.

The Scalar data type

The Scalar data type matches all values of the following concrete data types:

• Numbers (both integers and floats)
• Strings
• Booleans
• Regular expressions

It doesn’t match undef, default, resource references, arrays, or hashes. It takes no parameters.

Scalar is equivalent to Variant[Integer, Float, String, Boolean, Regexp].

The ScalarData data type

The ScalarData data type represents a restricted set of "value" data types that have concrete direct representation
in JSON.

ScalarData is an alias for Variant[Integer, Float, String, Boolean].

The Data data type

The Data data type matches any value that would match Scalar, but it also matches:

• undef

• Arrays that only contain values that also match Data
• Hashes whose keys match Scalar and whose values also match Data

It doesn't match default or resource references. It takes no parameters.

Data is especially useful because it represents the subset of types that can be directly represented in almost all
serialization format, such as JSON.

The Collection data type

The Collection type matches any array or hash, regardless of what kinds of values or keys it contains. It only
partially overlaps with Data— there are values, such as an array of resource references, that match Collection
but do not match Data.

Collection is equivalent to Variant[Array[Any], Hash[Any, Any]].

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 933

The CatalogEntry data type

The CatalogEntry data type is the parent type of Resource and Class. Like those types, the Puppet language
contains no values that it ever matches. However, the type Type[CatalogEntry] matches any class reference or
resource reference. It takes no parameters.

The Any data type

The Any data type matches any value of any data type.

The Iterable data type

The Iterable data type represents all data types that can be iterated; in other words, all data types where the
value is some kind of container of individual values. The Iterable type is abstract in that it does not specify if it
represents a concrete data type (such as Array) that has storage in memory, of if it is an algorithmic construct like a
transformation function (such as the step function).

The Iterator data type

The Iterator data type is an Iterable that does not have a concrete backing data type holding a copy of the
values it will produce when iterated over. It represents an algorithmic transformation of some source (which in turn
can be algorithmic).

An Iterator may not be assigned to an attribute of a resource, and it may not be used as an argument to version
3.x functions. To create a concrete value an Iterator must be "rolled out" by using a function at the end of a chain
that produces a concrete value.

The RichData data type

The RichData data type represents the abstract notion of "serializeable" and includes all the types in the
type system except Runtime, Callable, Iterator, and Iterable. It is expressed as an alias of
Variant[Default, Object, Scalar, SemVerRange, Type, Undef, Array[RichData],
Hash[RichData, RichData]].

Other types
These types aren’t quite like the others.

The Callable data type

The Callable data type matches callable lambdas provided as function arguments.

There is no way to interact with Callable values in the Puppet language, but Ruby functions written to the function
API (Puppet::Functions) can use Callable to inspect the lambda provided to the function.

The full signature for Callable is:

Callable[(<DATA TYPE>, ...,) <MIN COUNT>, <MAX COUNT>, <BLOCK TYPE>]

All of these parameters are optional.

Position Parameter Data type Default value Description

1 to n Data type Type none Any number of data
types, representing
the data type of each
argument the lambda
accepts.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 934

Position Parameter Data type Default value Description

-3 (third last) Minimum count Integer 0 The minimum
number of arguments
the lambda accepts.
This parameter
accepts the value
default, which
uses its default value
0.

-2 (second last) Maximum count Integer infinity The maximum
number of arguments
the lambda accepts.
This parameter
accepts the value
default, which
uses its default value,
infinity.

-1 (last) Block type Type[Callable] none The block_type
of the lambda.

Templates
Templates are written in a specialized templating language that generates text from data. Use templates to manage the
content of your Puppet configuration files via the content attribute of the file resource type.

Templating languages

Puppet supports two templating languages:

• Embedded Puppet (EPP) uses Puppet expressions in special tags. EPP works with Puppet 4.0 and later, and with
Puppet 3.5 through 3.8 with future parser enabled.

• Embedded Ruby (ERB) uses Ruby code in tags, and requires some Ruby knowledge. ERB works with all Puppet
versions.

When to use a template

Templates are more powerful than normal strings, and less powerful than modeling individual settings as resources.
Whether to use a template is mainly a question of the complexity of the work you're performing.

When you're managing simple config files, a template generally isn't necessary because strings in the Puppet language
allow you to interpolate variables and expressions into text. For short and simple config files, you can often use a
heredoc and interpolate a few variables, or do something like ${ $my_array.join(', ') }.

Use a template if you’re doing complex transformations (especially iterating over collections) or working with very
large config files.

Some situations, however, are too complex for a template to be effective. For example, using several modules that
each need to manage parts of the same config file is impractical with either templates or interpolated strings. For
shared configuration like this, model each setting in the file as an individual resource, with either a custom resource
type or an Augeas, concat, or file_line resource. This approach is similar to how core resource types like
ssh_authorized_key and mount work.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/6/type.html
https://forge.puppet.com/puppetlabs/concat
https://forge.puppet.com/puppetlabs/stdlib

Puppet | Developing Puppet code | 935

• Creating templates using Embedded Puppet on page 935
Embedded Puppet (EPP) is a templating language based on the Puppet language. You can use EPP in Puppet 4 and
higher, and with Puppet 3.5 through 3.8 with the future parser enabled. Puppet evaluates EPP templates with the epp
and inline_epp functions.
• Creating templates using Embedded Ruby on page 942
Embedded Ruby (ERB) is a templating language based on Ruby. Puppet evaluates ERB templates with the
template and inline_template functions.

Creating templates using Embedded Puppet
Embedded Puppet (EPP) is a templating language based on the Puppet language. You can use EPP in Puppet 4 and
higher, and with Puppet 3.5 through 3.8 with the future parser enabled. Puppet evaluates EPP templates with the epp
and inline_epp functions.

EPP structure and syntax
An EPP template looks like a plain-text document interspersed with tags containing Puppet expressions. When
evaluated, these tagged expressions can modify text in the template. You can use Puppet variables in an EPP template
to customize its output.

The following example shows parameter tags (<% |), non-printing expression tags (<%), expression-printing tags (<
%=), and comment tags (<%#). A hyphen in a tag (-) strips leading or trailing whitespace when printing the evaluated
template:

<%- | Boolean $keys_enable,
 String $keys_file,
 Array $keys_trusted,
 String $keys_requestkey,
 String $keys_controlkey
| -%>
<% if $keys_enable { -%>

<%# Printing the keys file, trusted key, request key, and control key: -%>
keys <%= $keys_file %>
<% unless $keys_trusted =~ Array[Data,0,0] { -%>
trustedkey <%= $keys_trusted.join(' ') %>
<% } -%>
<% if $keys_requestkey =~ String[1] { -%>
requestkey <%= $keys_requestkey %>
<% } -%>
<% if $keys_controlkey =~ String[1] { -%>
controlkey <%= $keys_controlkey %>
<% } -%>

<% } -%>

EPP tags
Embedded Puppet (EPP) has two tags for Puppet code expressions, optional tags for parameters and comments, and a
way to escape tag delimiters.

The following table provides an overview of the main tag types used with EPP. See the sections below for additional
detail about each tag, including instructions on trimming whitespace and escaping special characters.

I want to ... EPP tag syntax

Insert the value of a single expression. <%= EXPRESSION %>

Execute an expression without inserting a value. <% EXPRESSION %>

Declare the template’s parameters. <% | PARAMETERS | %>

Add a comment. <%# COMMENT %>

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 936

Text outside a tag is treated as literal text, but is subject to any tagged Puppet code surrounding it. For example, text
surrounded by a tagged if statement only appears in the output if the condition is true.

Expression-printing tags

An expression-printing tag inserts the value of a single Puppet expression into the output.

Opening tag <%=

Closing tag %>

Closing tag with trailing whitespace and line break
trimming

-%>

Example tag:

<%= $fqdn %>

An expression-printing tag must contain any single Puppet expression that resolves to a value, including plain
variables, function calls, and arithmetic expressions. If the value isn’t a string, Puppet automatically converts it to a
string based on the rules for value interpolation in double-quoted strings.

All facts are available in EPP templates. For example, to insert the value of the fqdn and hostname facts in an EPP
template for an Apache config file:

ServerName <%= $facts[fqdn] %>
ServerAlias <%= $facts[hostname] %>

Non-printing tags

A non-printing tag executes the code it contains, but doesn’t insert a value into the output.

Opening tag <%

Opening tag with indentation trimming <%-

Closing tag %>

Closing tag with trailing whitespace and line break
trimming

-%>

Non-printing tags that contain iterative and conditional expressions can affect the untagged text they surround.

For example, to insert text only if a certain variable was set, write:

<% if $broadcastclient == true { -%>
broadcastclient
<% } -%>

Expressions in non-printing tags don’t have to resolve to a value or be a complete statement, but the tag must close at
a place where it would be legal to write another expression. For example, this doesn't work:

<%# Syntax error: %>
<% $servers.each -%>
some server
<% |$server| { %> server <%= server %>
<% } -%>

You must keep |$server| { inside the first tag, because you can’t insert an arbitrary statement between a function
call and its required block.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 937

Parameter tags

A parameter tag declares which parameters the template accepts. Each parameter can be typed and can have a default
value.

Opening tag with indentation trimming <%- |

Closing tag with trailing whitespace and line break
trimming

| -%>

Example tag:

<%- | Boolean $keys_enable = false, String $keys_file = '' | -%>

The parameter tag is optional; if used, it must be the first content in a template. Always close the parameter tag with a
right-trimmed delimiter (-%>) to avoid outputting a blank line. Literal text, line breaks, and non-comment tags cannot
precede the template’s parameter tag. (Comment tags that precede a parameter tag must use the right-trimming tag to
trim trailing whitespace.)

The parameter tag’s pair of pipe characters (|) contains a comma-separated list of parameters. Each parameter
follows this format:

Boolean $keys_enable = false

• An optional data type, which restricts the allowed values for the parameter (defaults to Any)
• A variable name
• An optional equals (=) sign and default value, which must match the data type, if one was specified

Parameters with default values are optional, and can be omitted when the template is evaluated. If you want
to use a default value of undef, make sure to also specify a data type that allows undef. For example,
Optional[String] accepts undef as well as any string.

Comment tags

A comment tag’s contents do not appear in the template's output.

Opening tag <%#

Closing tag %>

Closing tag with space trimming -%>

Example tag:

<%# This is a comment. %>

Literal tag delimiters

If you need the template’s final output to contain a literal <% or %>, you can escape the characters as <%% or %%>.
The first literal tag is taken, and the rest of the line is treated as a literal. This means that <%% Test %%> in an EPP
template would turn out as <% Test %%>, not <% Test %>.

Accessing EPP variables
Embedded Puppet (EPP) templates can access variables with the $variable syntax used in Puppet.

A template works like a defined type:

• It has its own anonymous local scope.
• The parent scope is set to node scope (or top scope if there’s no node definition).
• When you call the template (with the epp or inline_epp functions), you can use parameters to set variables in

its local scope.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 938

• Unlike Embedded Ruby (ERB) templates, EPP templates cannot directly access variables in the calling class
without namespacing. Fully qualify variables or pass them in as parameters.

EPP templates can use short names to access global variables (like $os or $trusted) and their own local variables,
but must use qualified names (like $ntp::tinker) to access variables from any class. The exception to this rule is
inline_epp.

Special scope rule for inline_epp

If you evaluate a template with the inline_epp function, and if the template has no parameters, either passed or
declared, you can access variables from the calling class in the template by using the variables’ short names. This
exceptional behavior is only allowed if all of the above conditions are true.

Should I use a parameter or a class variable?

Templates have two ways to use data:

• Directly access class variables, such as $ntp::tinker
• Use parameters passed at call time

Use class variables when a template is closely tied to the class that uses it, you don’t expect it to be used anywhere
else, and you need to use a lot of variables.

Use parameters when a template is used in several different places and you want to keep it flexible. Remember that
declaring parameters with a tag makes a template’s data requirements visible at a glance.

EPP parameters

When you pass parameters when you call a template, the parameters become local variables inside the template. To
use a parameter in this way, pass a hash as the last argument of the epp or inline_epp functions.

For example, calling this:

epp('example/example.epp', { 'logfile' => "/var/log/ntp.log" })

to evaluate this template:

<%- | Optional[String] $logfile = undef | -%>
<%# (Declare the $logfile parameter as optional) -%>

<% unless $logfile =~ Undef { -%>
logfile <%= $logfile %>
<% } -%>

The keys of the hash match the variable names you’ll be using in the template, minus the leading $ sign. Parameters
must follow the normal rules for local variable names.

If the template uses a parameter tag, it must be the first content in a template and you can only pass the parameters it
declares. Passing any additional parameters is a syntax error. However, if a template omits the parameter tag, you can
pass it any parameters.

If a template’s parameter tag includes any parameters without default values, they are mandatory. You must pass
values for them when calling the template.

Example EPP template
The following example is an EPP translation of the ntp.conf.erb template from the puppetlabs-ntp
module.

ntp.conf: Managed by puppet.
#
<% if $ntp::tinker == true and ($ntp::panic or $ntp::stepout) { -%>
Enable next tinker options:

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 939

panic - keep ntpd from panicking in the event of a large clock skew
when a VM guest is suspended and resumed;
stepout - allow ntpd change offset faster
tinker<% if $ntp::panic { %> panic <%= $ntp::panic %><% } %><% if
 $ntp::stepout { -%> stepout <%= $ntp::stepout %><% } %>
<% } -%>

<% if $ntp::disable_monitor == true { -%>
disable monitor
<% } -%>
<% if $ntp::disable_auth == true { -%>
disable auth
<% } -%>

<% if $ntp::restrict =~ Array[Data,1] { -%>
Permit time synchronization with our time source, but do not
permit the source to query or modify the service on this system.
<% $ntp::restrict.flatten.each |$restrict| { -%>
restrict <%= $restrict %>
<% } -%>
<% } -%>

<% if $ntp::interfaces =~ Array[Data,1] { -%>
Ignore wildcard interface and only listen on the following specified
interfaces
interface ignore wildcard
<% $ntp::interfaces.flatten.each |$interface| { -%>
interface listen <%= $interface %>
<% } -%>
<% } -%>

<% if $ntp::broadcastclient == true { -%>
broadcastclient
<% } -%>

Set up servers for ntpd with next options:
server - IP address or DNS name of upstream NTP server
iburst - allow send sync packages faster if upstream unavailable
prefer - select preferrable server
minpoll - set minimal update frequency
maxpoll - set maximal update frequency
<% [$ntp::servers].flatten.each |$server| { -%>
server <%= $server %><% if $ntp::iburst_enable == true { %> iburst<% } %><%
 if $server in $ntp::preferred_servers { %> prefer<% } %><% if $ntp::minpoll
 { %> minpoll <%= $ntp::minpoll %><% } %><% if $ntp::maxpoll { %> maxpoll <
%= $ntp::maxpoll %><% } %>
<% } -%>

<% if $ntp::udlc { -%>
Undisciplined Local Clock. This is a fake driver intended for backup
and when no outside source of synchronized time is available.
server 127.127.1.0
fudge 127.127.1.0 stratum <%= $ntp::udlc_stratum %>
restrict 127.127.1.0
<% } -%>

Driftfile.
driftfile <%= $ntp::driftfile %>

<% unless $ntp::logfile =~ Undef { -%>
Logfile
logfile <%= $ntp::logfile %>
<% } -%>

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 940

<% unless $ntp::peers =~ Array[Data,0,0] { -%>
Peers
<% [$ntp::peers].flatten.each |$peer| { -%>
peer <%= $peer %>
<% } -%>
<% } -%>

<% if $ntp::keys_enable { -%>
keys <%= $ntp::keys_file %>
<% unless $ntp::keys_trusted =~ Array[Data,0,0] { -%>
trustedkey <%= $ntp::keys_trusted.join(' ') %>
<% } -%>
<% if $ntp::keys_requestkey =~ String[1] { -%>
requestkey <%= $ntp::keys_requestkey %>
<% } -%>
<% if $ntp::keys_controlkey =~ String[1] { -%>
controlkey <%= $ntp::keys_controlkey %>
<% } -%>

<% } -%>
<% [$ntp::fudge].flatten.each |$entry| { -%>
fudge <%= $entry %>
<% } -%>

<% unless $ntp::leapfile =~ Undef { -%>
Leapfile
leapfile <%= $ntp::leapfile %>
<% } -%>

To call this template from a manifest (assuming that the template file is located in the templates directory of the
puppetlabs-ntp module), add the following code to the manifest:

epp(<FILE REFERENCE>, [<PARAMETER HASH>])
file { '/etc/ntp.conf':
 ensure => file,
 content => epp('ntp/ntp.conf.epp'),
 # Loads /etc/puppetlabs/code/environments/production/modules/ntp/
templates/ntp.conf.epp
}

Validating and previewing EPP templates
Before deploying a template, validate its syntax and render its output to make sure the template is producing the
results you expect. Use the puppet epp compand-line tool for validating and rendering Embedded Puppet (EPP)
templates.

EPP validation

To validate your template, run: puppet epp validate <TEMPLATE NAME>

The puppet epp command includes an action that checks EPP code for syntax problems. The <TEMPLATE
NAME> can be a file reference or can refer to a <MODULE NAME>/<TEMPLATE FILENAME> as the epp function.
If a file reference can also refer to a module, Puppet validates the module’s template instead.

You can also pipe EPP code directly to the validator: cat example.epp | puppet epp validate

The command is silent on a successful validation. It reports and halts on the first error it encounters. For information
on how to modify this default behavior, see the command’s man page.

EPP rendering

To render your template, run: puppet epp render <TEMPLATE NAME>

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 941

You can render EPP from the command line with puppet epp render. If Puppet can evaluate the template, it
outputs the result.

If your template relies on specific parameters or values to function, you can simulate those values by passing a hash to
the --values option. For example:

puppet epp render example.epp --values '{x => 10, y => 20}'

You can also render inline EPP by using the -e flag or piping EPP code to puppet epp render, and even
simulate facts using YAML. For details, see the command’s man page.

Evaluating EPP templates
After you have an EPP template, you can pass it to a function that evaluates it and returns a final string. The actual
template can be either a separate file or a string value.

Evaluating EPP templates that are in a template file

Put template files in the templates directory of a module. EPP files use the .epp extension.

To use a EPP template file, evaluate it with the epp function. For example:

epp(<FILE REFERENCE>, [<PARAMETER HASH>])
file { '/etc/ntp.conf':
 ensure => file,
 content => epp('ntp/ntp.conf.epp', {'service_name' => 'xntpd',
 'iburst_enable' => true}),
 # Loads /etc/puppetlabs/code/environments/production/modules/ntp/
templates/ntp.conf.epp
}

The first argument to the function is the file reference: a string in the form '<MODULE>/<FILE>', which loads
<FILE> from <MODULE>’s templates directory. For example, the file reference ntp/ntp.conf.epp loads the
<MODULES DIRECTORY>/ntp/templates/ntp.conf.epp file.

Some EPP templates declare parameters, and you can provide values for them by passing a parameter hash to the
epp function.

The keys of the hash must be valid local variable names (minus the $). Inside the template, Puppet creates
variables with those names and assign their values from the hash. For example, with a parameter hash of
{'service_name' => 'xntpd', 'iburst_enable' => true}, an EPP template would receive
variables called $service_name and $iburst_enable.

When structuring your parameter hash, remember:

• If a template declares any mandatory parameters, you must set values for them with a parameter hash.
• If a template declares any optional parameters, you can choose to provide values or let them use their defaults.
• If a template declares no parameters, you can pass any number of parameters with any names; otherwise, you can

only choose from the parameters requested by the template.

Evaluating EPP template strings

If you have a string value that contains template content, you can evaluate it with the inline_epp function.

In older versions of Puppet, inline templates were mostly used to get around limitations — tiny Ruby fragments were
useful for transforming and manipulating data before Puppet had iteration functions like map or puppetlabs/stdlib
functions like chomp and keys.

In modern versions of Puppet, inline templates are usable in some of the same situations template files are. Because
the heredoc syntax makes it easy to write large and complicated strings in a manifest, you can use inline_epp to
reduce the number of files needed for a simple module that manages a small config file.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/stdlib

Puppet | Developing Puppet code | 942

For example:

$ntp_conf_template = @(END)
...template content goes here...
END

inline_epp(<TEMPLATE STRING>, [<PARAMETER HASH>])
file { '/etc/ntp.conf':
 ensure => file,
 content => inline_epp($ntp_conf_template, {'service_name' => 'xntpd',
 'iburst_enable' => true}),
}

Some EPP templates declare parameters, and you can provide values for them by passing a parameter hash to the
epp function.

The keys of the hash must be valid local variable names (minus the $). Inside the template, Puppet creates
variables with those names and assign their values from the hash. For example, with a parameter hash of
{'service_name' => 'xntpd', 'iburst_enable' => true}, an EPP template would receive
variables called $service_name and $iburst_enable.

When structuring your parameter hash, remember:

• If a template declares any mandatory parameters, you must set values for them with a parameter hash.
• If a template declares any optional parameters, you can choose to provide values or let them use their defaults.
• If a template declares no parameters, you can pass any number of parameters with any names; otherwise, you can

only choose from the parameters requested by the template.

Creating templates using Embedded Ruby
Embedded Ruby (ERB) is a templating language based on Ruby. Puppet evaluates ERB templates with the
template and inline_template functions.

If you’ve used ERB in other projects, it might have had different features enabled. This page describes how ERB
works with Puppet .

Note: Puppet has a parallel templating system called Embedded Puppet (EPP), which has similar functionality to
ERB, but is based on the Puppet language. EPP is the preferred and safer method because it isolates environments.
See EPP and environment isolation for more information.

ERB structure and syntax
An ERB template looks like a plain-text document interspersed with tags containing Ruby code. When evaluated, this
tagged code can modify text in the template.

Puppet passes data to templates via special objects and variables, which you can use in the tagged Ruby code to
control the templates' output. The following example shows non-printing tags (<%), expression-printing tags (<%=),
and comment tags (<%#). A hyphen in a tag (-) strips leading or trailing whitespace when printing the evaluated
template:

<% if @keys_enable -%>
<%# Printing the keys file, trusted key, request key, and control key: -%>
keys <%= @keys_file %>
<% unless @keys_trusted.empty? -%>
trustedkey <%= @keys_trusted.join(' ') %>
<% end -%>
<% if @keys_requestkey != '' -%>
requestkey <%= @keys_requestkey %>
<% end -%>
<% if @keys_controlkey != '' -%>
controlkey <%= @keys_controlkey %>
<% end -%>

© 2024 Puppet, Inc., a Perforce company

http://ruby-doc.org/stdlib-2.5.1/libdoc/erb/rdoc/ERB.html

Puppet | Developing Puppet code | 943

<% end -%>

ERB tags
Embedded Ruby (ERB) has two tags for Ruby code expressions, a tag for comments, and a way to escape tag
delimiters.

The following table provides an overview of the main tag types used with ERB. See the sections below for additional
detail about each tag, including instructions on trimming whitespace and escaping special characters.

I want to ... ERB tag syntax

Insert the value of a single expression. <%= EXPRESSION %>

Execute an expression without inserting a value. <% EXPRESSION %>

Add a comment. <%# COMMENT %>

Text outside a tag is treated as literal text, but is subject to any tagged Ruby code surrounding it. For example, text
surrounded by a tagged if statement only appears in the output if the condition is true.

Expression-printing tags

An expression-printing tag inserts the value into the output.

Opening tag <%=

Closing tag %>

Closing tag with trailing whitespace and line break
trimming

-%>

Example tag:

<%= @fqdn %>

It must contain a snippet of Ruby code that resolves to a value; if the value isn’t a string, it is automatically converted
to a string using its to_s method.

For example, to insert the value of the fqdn and hostname facts in an ERB template for an Apache config file:

ServerName <%= @fqdn %>
ServerAlias <%= @hostname %>

Non-printing tags

A non-printing tag executes the code it contains, but doesn’t insert a value into the output.

Opening tag <%

Opening tag with indentation trimming <%-

Closing tag %>

Closing tag with trailing whitespace and line break
trimming

-%>

Non-printing tags that contain iterative and conditional expressions can affect the untagged text they surround.

For example, to insert text only if a certain variable was set, write:

<% if @broadcastclient == true -%>
broadcastclient

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 944

<% end -%>

Expressions in non-printing tags don’t have to resolve to a value or be a complete statement, but the tag must close at
a place where it would be legal to write another expression. For example, this doesn't work:

<%# Syntax error: %>
<% @servers.each -%>
some server
<% do |server| %>server <%= server %>
<% end -%>

You must keep do |server| inside the first tag, because you can’t insert an arbitrary statement between a function
call and its required block.

Comment tags

A comment tag’s contents do not appear in the template's output.

Opening tag <%#

Closing tag %>

Closing tag with line break trimming -%>

Example tag:

<%# This is a comment. %>

Literal tag delimiters

If you need the template’s final output to contain a literal <% or %>, you can escape the characters as <%% or %%>.
The first literal tag is taken, and the rest of the line is treated as a literal. This means that <%% Test %%> in an ERB
template would turn out as <% Test %%>, not <% Test %>.

Accessing Puppet variables
ERB templates can access Puppet variables. This is the main source of data for templates.

An ERB template has its own local scope, and its parent scope is set to the class or defined type that evaluates the
template. This means a template can use short names for variables from that class or type, but it can’t insert new
variables into it.

There are two ways to access variables in an ERB template:

• @variable

• scope['variable'] and its older equivalent, scope.lookupvar('variable')

@variable

All variables in the current scope (including global variables) are passed to templates as Ruby instance variables,
which begin with “at” signs (@). If you can access a variable by its short name in the surrounding manifest, you can
access it in the template by replacing its $ sign with an @, so that $os becomes @os, and $trusted becomes
@trusted.

This is the most legible way to access variables, but it doesn’t support variables from other scopes. For that, you need
to use the scope object.

scope['variable'] or scope.lookupvar('variable')

Puppet also passes templates an object called scope, which can access all variables (including out-of-scope
variables) with a hash-style access expression. For example, to access $ntp::tinker you would use
scope['ntp::tinker'].

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 945

Another way to use the scope object is to call its lookupvar method and pass the variable’s name as its argument,
as in scope.lookupvar('ntp::tinker'). This is exactly equivalent to the above, if slightly less convenient.
This usage predates the hash-style indexing added in Puppet 3.0.

Puppet data types in Ruby

Puppet’s data types are converted to Ruby classes as follows:

Puppet type Ruby class

Boolean Boolean

String String

Number Subtype of Numeric

Array Array

Hash Hash

Default Symbol (value :default)

Regexp Regexp

Resource reference Puppet::Pops::Types::PResourceType or
Puppet::Pops::Types::PHostClassType

Lambda (code block) Puppet::Pops::Evaluator::Closure

Data type (type) A type class under Puppet::Pops::Types, such as
Puppet::Pops::Types::PIntegerType

Undef NilClass (value nil)

Note: If a Puppet variable was never defined, its value is
undef, which means its value in a template is nil.

Using Ruby in ERB templates
To manipulate and print data in ERB templates, you’ll need to know some Ruby. A full introductory Ruby tutorial is
outside the scope of these docs, but this page provides an overview of Ruby basics commonly used in ERB templates.

Using if statements

The if ... end statement in Ruby lets you write conditional text. Put the control statements in non-printing tags,
and the conditional text between the tags:

<% if <CONDITION> %> text goes here <% end %>

For example:

<% if @broadcast != "NONE" %>broadcast <%= @broadcast %><% end %>

The general format of an if statement is:

if <CONDITION>
 ... code ...
elsif <CONDITION>
 ... other code ...
end

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 946

Using iteration

Ruby lets you iterate over arrays and hashes with the each method. This method takes a block of code and executes
it one time for each element in the array or hash. In a template, untagged text is treated as part of the code that gets
repeated. You can think of literal text as an instruction, telling the evaluator to insert that text into the final output.

To write a block of code in Ruby, use either do |arguments| ... end or {|arguments| ... }. Note
that this is different from Puppet lambdas — but they work similarly.

<% @values.each do |val| -%>
Some stuff with <%= val %>
<% end -%>

If $values was set to ['one', 'two'], this example would produce:

Some stuff with one
Some stuff with two

This example also trims line breaks for the non-printing tags, so they won’t appear as blank lines in the output.

Manipulating data

Your templates generally use data from Puppet variables. These values almost always be strings, numbers, arrays, and
hashes.

These become the equivalent Ruby objects when you access them from an ERB template.

For information about the ways you can transform these objects, see the Ruby documentation for strings, integers,
arrays, and hashes.

Also, note that the special undef value in Puppet becomes the special nil value in Ruby in ERB templates.

Calling Puppet functions from ERB templates
You can use Puppet functions inside ERB templates by calling the scope.call_function(<NAME>,
<ARGS>) method.

This method takes two arguments:

• The name of the function, as a string.
• All arguments to the function, as an array. This must be an array even for one argument or zero arguments.

For example, to evaluate one template inside another:

<%= scope.call_function('template', ["my_module/template2.erb"]) %>

To log a warning using the Puppet logging system, so that the warning appears in reports:

<%= scope.call_function('warning', ["Template was missing some data; this
 config file might be malformed."]) %>

Note:

scope.call_function was added in Puppet 4.2.

Previous versions of Puppet created a function_<NAME> method on the scope object for each function. These
could be called with an arguments array, such as <%= scope.function_template(["my_module/
template2.erb"]) %>.

While this method still works in Puppet 4.2 and later versions, the auto-generated methods don’t support the modern
function APIs, which are now used by the majority of built-in functions.

© 2024 Puppet, Inc., a Perforce company

http://ruby-doc.org/core/String.html
http://ruby-doc.org/core/Integer.html
http://ruby-doc.org/core/Array.html
http://ruby-doc.org/core/Hash.html

Puppet | Developing Puppet code | 947

Example ERB template
The following example is taken from the puppetlabs-ntp module.

ntp.conf: Managed by puppet.
#
<% if @tinker == true and (@panic or @stepout) -%>
Enable next tinker options:
panic - keep ntpd from panicking in the event of a large clock skew
when a VM guest is suspended and resumed;
stepout - allow ntpd change offset faster
tinker<% if @panic -%> panic <%= @panic %><% end %><% if @stepout -%>
 stepout <%= @stepout %><% end %>
<% end -%>

<% if @disable_monitor == true -%>
disable monitor
<% end -%>
<% if @disable_auth == true -%>
disable auth
<% end -%>

<% if @restrict != [] -%>
Permit time synchronization with our time source, but do not
permit the source to query or modify the service on this system.
<% @restrict.flatten.each do |restrict| -%>
restrict <%= restrict %>
<% end -%>
<% end -%>

<% if @interfaces != [] -%>
Ignore wildcard interface and only listen on the following specified
interfaces
interface ignore wildcard
<% @interfaces.flatten.each do |interface| -%>
interface listen <%= interface %>
<% end -%>
<% end -%>

<% if @broadcastclient == true -%>
broadcastclient
<% end -%>

Set up servers for ntpd with next options:
server - IP address or DNS name of upstream NTP server
iburst - allow send sync packages faster if upstream unavailable
prefer - select preferrable server
minpoll - set minimal update frequency
maxpoll - set maximal update frequency
<% [@servers].flatten.each do |server| -%>
server <%= server %><% if @iburst_enable == true -%> iburst<% end %><% if
 @preferred_servers.include?(server) -%> prefer<% end %><% if @minpoll -%>
 minpoll <%= @minpoll %><% end %><% if @maxpoll -%> maxpoll <%= @maxpoll %><
% end %>
<% end -%>

<% if @udlc -%>
Undisciplined Local Clock. This is a fake driver intended for backup
and when no outside source of synchronized time is available.
server 127.127.1.0
fudge 127.127.1.0 stratum <%= @udlc_stratum %>
restrict 127.127.1.0
<% end -%>

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 948

Driftfile.
driftfile <%= @driftfile %>

<% unless @logfile.nil? -%>
Logfile
logfile <%= @logfile %>
<% end -%>

<% unless @peers.empty? -%>
Peers
<% [@peers].flatten.each do |peer| -%>
peer <%= peer %>
<% end -%>
<% end -%>

<% if @keys_enable -%>
keys <%= @keys_file %>
<% unless @keys_trusted.empty? -%>
trustedkey <%= @keys_trusted.join(' ') %>
<% end -%>
<% if @keys_requestkey != '' -%>
requestkey <%= @keys_requestkey %>
<% end -%>
<% if @keys_controlkey != '' -%>
controlkey <%= @keys_controlkey %>
<% end -%>

<% end -%>
<% [@fudge].flatten.each do |entry| -%>
fudge <%= entry %>
<% end -%>

<% unless @leapfile.nil? -%>
Leapfile
leapfile <%= @leapfile %>
<% end -%>

Validating ERB templates
Before deploying a template, validate its syntax and render its output to make sure the template is producing the
results you expect. Use the Ruby erb command to check Embedded Ruby (ERB) syntax.

ERB validation

To validate your ERB template, pipe the output from the erb command into ruby:

erb -P -x -T '-' example.erb | ruby -c

The -P switch ignores lines that start with ‘%’, the -x switch outputs the template’s Ruby script, and -T '-' sets
the trim mode to be consistent with Puppet’s behavior. This output gets piped into Ruby’s syntax checker (-c).

If you need to validate many templates quickly, you can implement this command as a shell function in your shell’s
login script, such as .bashrc, .zshrc, or .profile:

validate_erb() {
 erb -P -x -T '-' $1 | ruby -c
}

You can then run validate_erb example.erb to validate an ERB template.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 949

Evaluating ERB templates
After you have an ERB template, you can pass it to a function that evaluates it and returns a final string. The actual
template can be either a separate file or a string value.

Evaluating ERB templates that are in a template file

Put template files in the templates directory of a module. ERB files use the .erb extension.

To use a ERB template file, evaluate it with the template function. For example:

template(<FILE REFERENCE>, [<ADDITIONAL FILES>, ...])
file { '/etc/ntp.conf':
 ensure => file,
 content => template('ntp/ntp.conf.erb'),
 # Loads /etc/puppetlabs/code/environments/production/modules/ntp/
templates/ntp.conf.erb
}

The first argument to the function is the file reference: a string in the form '<MODULE>/<FILE>',
which loads <FILE> from <MODULE>’s templates directory. For example, the file reference activemq/
amq/activemq.xml.erb loads the <MODULES DIRECTORY>/activemq/templates/amq/
activemq.xml.erb file.

The template function can take any number of additional template files, and concatenate their outputs together to
produce the final string.

Evaluating ERB template strings

If you have a string value that contains template content, you can evaluate it with the inline_template function.

In older versions of Puppet, inline templates were mostly used to get around limitations — tiny Ruby fragments were
useful for transforming and manipulating data before Puppet had iteration functions like map or puppetlabs/stdlib
functions like chomp and keys.

In modern versions of Puppet, inline templates are usable in some of the same situations template files are. Because
the heredoc syntax makes it easy to write large and complicated strings in a manifest, you can use inline_erb to
reduce the number of files needed for a simple module that manages a small config file.

For example:

$ntp_conf_template = @(END)
...template content goes here...
END

inline_template(<TEMPLATE STRING>, [<ADDITIONAL STRINGS>, ...])
file { '/etc/ntp.conf':
 ensure => file,
 content => inline_template($ntp_conf_template),
}

The inline_template function can take any number of additional template strings, and concatenate their outputs
together to produce the final value.

Advanced constructs
Advanced Puppet language constructs help you write simpler and more effective Puppet code by reducing
complexity.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/stdlib

Puppet | Developing Puppet code | 950

• Iteration and loops on page 950
Use iteration and loops to write more succinct code, and use data more effectively.
• Lambdas on page 953
Lambdas are blocks of Puppet code passed to functions. When a function receives a lambda, it provides values for the
lambda’s parameters and evaluates its code. If you use other programming languages, think of lambdas as anonymous
functions that are passed to other functions.
• Resource default statements on page 955
Resource default statements enable you to set default attribute values for a given resource type. Resource declarations
within the area of effect that omits those attributes inherit the default values.
• Resource collectors on page 956
Resource collectors select a group of resources by searching the attributes of each resource in the catalog, even
resources which haven’t yet been declared at the time the collector is written. Collectors realize virtual resources, are
used in chaining statements, and override resource attributes. Collectors have an irregular syntax that enables them to
function as a statement and a value.
• Virtual resources on page 958
A virtual resource declaration specifies a desired state for a resource without enforcing that state. Puppet manages the
resource by realizing it elsewhere in your manifests. This divides the work done by a normal resource declaration into
two steps. Although virtual resources are declared one time, they can be realized any number of times, similar to a
class.
• Exported resources on page 960
An exported resource declaration specifies a desired state for a resource, and publishes the resource for use by other
nodes. It does not manage the resource on the target system. Any node, including the node that exports it, can collect
the exported resource and manage its own copy of it.
• Tags on page 962
Tags are useful for collecting resources, analyzing reports, and restricting catalog runs. Resources, classes, and
defined type instances can have multiple tags associated with them, and they receive some tags automatically.
• Run stages on page 963
Run stages are an additional way to order resources. Groups of classes run before or after everything else, without
having to explicitly create relationships with other classes. The run stage feature has two parts: a stage resource
type, and a stage metaparameter, which assigns a class to a named run stage.

Iteration and loops
Use iteration and loops to write more succinct code, and use data more effectively.

Iteration functions

Instead of using loop keywords, the Puppet language uses iterative functions that accept blocks of code called
lambdas.

Tip: Iteration functions take an array or a hash as their main argument, and iterate over its values.

Iterative functions accept a block of code and run it in a specific way:

• each - Repeats a block of code a number of times, using a collection of values to provide different parameters
each time.

• slice - Repeats a block of code a number of times, using groups of values from a collection as parameters.
• filter - Uses a block of code to transform a data structure by removing non-matching elements.
• map - Uses a block of code to transform every value in a data structure.
• reduce - Uses a block of code to create a new value, or data structure, by combining values from a provided data

structure.
• with - Evaluates a block of code one time, isolating it in its own local scope. It doesn’t iterate, but has a family

resemblance to the iteration functions.

See the slice and reduce documentation for information on how these functions handle parameters differently.

The each, filter, and map functions accept a lambda with either one or two parameters. Depending on the
number of parameters, and the type of data structure you’re iterating over, the values passed into a lambda vary:

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/function.html#slice
https://puppet.com/docs/puppet/latest/function.html#reduce
https://puppet.com/docs/puppet/latest/function.html#each
https://puppet.com/docs/puppet/latest/function.html#filter
https://puppet.com/docs/puppet/latest/function.html#map

Puppet | Developing Puppet code | 951

Collection type Single parameter Two parameters

Array <VALUE> <INDEX>, <VALUE>

Hash [<KEY>, <VALUE>] (two-element
array)

<KEY>, <VALUE>

Arrays:

This example:

['a','b','c'].each |Integer $index, String $value| { notice("${index} =
 ${value}") }

Results in:

Notice: Scope(Class[main]): 0 = a
Notice: Scope(Class[main]): 1 = b
Notice: Scope(Class[main]): 2 = c

2D Arrays:

This example:

$a = [['1', '2'], ['3', '4']]

$a.each |$array| {
 $array.each |$int| {
 notice($int)
 }
}

Results in:

Notice: Scope(Class[main]): 1
Notice: Scope(Class[main]): 2
Notice: Scope(Class[main]): 3
Notice: Scope(Class[main]): 4

Hashes:

This example:

$pets = {
 'pet1' => 'dog',
 'pet2' => 'cat',
 'pet3' => 'goldfish'}

$pets.each |$key, $value| {notice($value)}

Results in:

Notice: Scope(Class[main]): dog
Notice: Scope(Class[main]): cat
Notice: Scope(Class[main]): goldfish

Hashes preserve the order in which their keys and values were written. When iterating over a hash’s members, the
loops occur in the order that they are written. When interpolating a hash into a string, the resulting string is also
constructed in the same order.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 952

Declaring resources

The focus of the Puppet language is declaring resources, so most people want to use iteration to declare many similar
resources at the same time. In this example, there is an array of command names to be used in each symlink’s path
and target. The each function makes this succinct.

$binaries = ['facter', 'hiera', 'mco', 'puppet', 'puppetserver']

$binaries.each |String $binary| {
 file {"/usr/bin/${binary}":
 ensure => link,
 target => "/opt/puppetlabs/bin/${binary}",
 }
}

Iteration with defined resource types

In previous versions of Puppet, iteration functions did not exist and lambdas weren’t supported. By writing defined
resource types and using arrays as resource titles you could achieve a clunkier form of iteration.

Similar to the declaring resources example, include an unique defined resource type in the symlink.pp file:

define puppet::binary::symlink ($binary = $title) {
 file {"/usr/bin/${binary}":
 ensure => link,
 target => "/opt/puppetlabs/bin/${binary}",
 }
}

Use the defined type for the iteration somewhere ele in your manifest file:

$binaries = ['facter', 'hiera', 'mco', 'puppet', 'puppetserver']

puppet::binary::symlink { $binaries: }

The main problems with this approach are:

• The block of code doing the work was separated from the place where you used it, which makes a simple task
complicated.

• Every type of thing to iterate over would require its own one-off defined type.

The current Puppet style of iteration is much improved, but you might encounter code that uses this old style, and
might have to use it to target older versions of Puppet.

Using iteration to transform data

To transform data into more useful forms, use iteration. For example:

This returns [1,3]:

$filtered_array = [1,20,3].filter |$value| { $value < 10 }

This returns 6:

$sum = reduce([1,2,3]) |$result, $value| { $result + $value }

This returns {"key1"=>"first value", "key2"=>"second value", "key3"=>"third value"}:

$hash_as_array = ['key1', 'first value',
 'key2', 'second value',
 'key3', 'third value']

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 953

$real_hash = $hash_as_array.slice(2).reduce({}) |Hash $memo, Array $pair|
 {
 $memo + $pair
}

Breaking out of the a loop

You can break out of a loop or skip the next iteration using the break() or next() functions respectively.

Lambdas
Lambdas are blocks of Puppet code passed to functions. When a function receives a lambda, it provides values for the
lambda’s parameters and evaluates its code. If you use other programming languages, think of lambdas as anonymous
functions that are passed to other functions.

Location

Lambdas are used only in function calls. They cannot be assigned to variables, and are not valid anywhere else in the
Puppet language. While any function accepts a lambda, only some functions do anything with them. For information
on useful lambda-accepting functions, see Iteration and loops.

Syntax

Lambdas consist of a list of parameters surrounded by pipe (|) characters, followed by a block of arbitrary Puppet
code in curly braces. They must be used as part of a function call.

$binaries = ['facter', 'hiera', 'mco', 'puppet', 'puppetserver']

function call with lambda:
$binaries.each |String $binary| {
 file {"/usr/bin/${binary}":
 ensure => link,
 target => "/opt/puppetlabs/bin/${binary}",
 }
}

The general form of a lambda is:

• A mandatory parameter list, which can be empty. This consists of:

• An opening pipe character (|).
• A comma-separated list of zero or more parameters (for example, String $myparam = "default

value"). Each parameter consists of:

• An optional data type, which restricts the values it allows (defaults to Any).
• A variable name to represent the parameter, including the $ prefix.
• An optional equals (=) sign and default value.
• A closing pipe character (|).

• Optionally, another comma and an extra arguments parameter (for example, String *$others =
["default one", "default two"]), which consists of:

• An optional data type, which restricts the values allowed for extra arguments (defaults to Any).
• An asterisk character (*).
• A variable name to represent the parameter, including the $ prefix.
• An optional equals (=) sign and default value, which can be one value that matches the specified data type,

or an array of values that all match the data type.
• An optional trailing comma after the last parameter.
• A closing pipe character (|).

• An opening curly brace.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/function.html#break
https://puppet.com/docs/puppet/latest/function.html#next

Puppet | Developing Puppet code | 954

• A block of arbitrary Puppet code.
• A closing curly brace.

Parameters and variables

When functions call the lambda it sets values for the list of parameters that a lambda contains. and each parameter can
be used as a variable.

Functions pass lambda parameters by position, similar to passing arguments in a function call. Each function decides
how many parameters, and in what order, it passes to a lambda. See the function’s documentation for details.

Important: The order of parameters is important and there are no restrictions on naming — unlike class or defined
type parameters, where the names are the main interface for users.

Within the parameter list, the data type preceding a parameter is optional. To ensure the correct data is included,
Puppet checks the parameter value at runtime, and raises an error when the value is illegal. When no data type is
provided, values of any data type are accepted by the parameter.

When a parameter contains a default value, it’s optional — the lambda uses the default value when the caller doesn’t
provide a value for that parameter.

Important: Parameters are passed by position. Optional parameters must be poistioned after the required parameters,
otherwise it causes an evaluation error. When you have multiple optional parameters, the later ones only receive
values if all of the prior ones do.

The final parameter of a lambda can be a special extra arguments parameter, which collects an unlimited number
of extra arguments into an array. This is useful when you don’t know in advance how many arguments the caller
provides.

To specify that the last parameter collects extra arguments, write an asterisk (*) in front of its name in the parameter
list (like *$others). An extra arguments parameter is always optional. You can’t put an asterisk (*) in front of
any parameter except the last one. The value of an extra arguments parameter is always an array, containing every
argument in excess of the earlier parameters. If there are no extra arguments and no default value, it will be an empty
array.

An extra arguments parameter can contain a default value, which has automatic array wrapping for convenience:

• When the provided default is a non-array value, the real default is a single-element array containing that value.
• When the provided default is an array, the real default is that array.

An extra arguments parameter can also contain a data type. Puppet uses this data type to validate the elements of
the array. When you specify a data type of String, the final data type of the extra arguments parameter will be
Array[String].

Behavior

Similar to a defined type, a lambda delays evaluation of the Puppet code it contains and makes it available for later.
Unlike defined types, lambdas are not directly invoked by a user. The user provides a lambda to some other piece of
code (a function), and that code decides:

• Whether (and when) to call/evaluate the lambda.
• How many times to call it.
• What values its parameters must have.
• What to do with any values it produces.

Some functions call a single lambda multiple times and provide different parameter values each time. For information
on how a particular function uses its lambda, see its documentation. In this version of the Puppet language, calling a
lambda is to pass it to a function that calls it.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 955

You must use unique resource declarations in the body of a lambda, duplicate resources cause compilation failures.
This means that when a function calls its lambda multiple times, any resource titles in the lambda must include a
parameter value that changes with every call.

In this example, we use the $binary parameter in the title of the lambda’s file resource:

file {"/usr/bin/$binary":
 ensure => link,
 target => "/opt/puppetlabs/bin/$binary",
}

When the each function is called, the array we pass has no repeated values to ensure unique file resources.
However, if we are working with an array that came from less reliable external data, we could use the unique
function from stdlib to protect against duplicates. This uniqueness requirement is similar to defined types, which
are also blocks of Puppet code that are evaluated multiple times.

Each time a lambda is called it produces the value of the last expression in the code block. The function that calls
the lambda has access to this value, but not every function does anything with it. Some functions return it, some
transform it, some ignore it, and some use it to do something else entirely.

For example:

• The with function calls its lambda one time and returns the resulting value.
• The map function calls its lambda multiple times and returns an array of every resulting value.
• The each function throws away its lambda's values and returns a copy of its main argument.

Every lambda creates its own local scope which is anonymous, and contains variables which can not be accessed
by qualified names from any other scope. The parent scope of a lambda is the local scope in which that lambda is
written. When a lambda is written inside a class definition, its code block accesses local variables from that class,
as well as variables from that class’s ancestor scopes, and from the top scope. Lambdas can contain other lambdas,
which makes the outer lambda the parent scope of the inner one.

A lambda is a value with the Callable data type, and functions using the modern function API
(Puppet::Functions) use that data type to validate any lambda values it receives. However, the Puppet language
doesn’t provide any way to store or interact with Callable values except as lambdas provided to a function.

Resource default statements
Resource default statements enable you to set default attribute values for a given resource type. Resource declarations
within the area of effect that omits those attributes inherit the default values.

Syntax

Exec {
 path => '/usr/bin:/bin:/usr/sbin:/sbin',
 environment => 'RUBYLIB=/opt/puppetlabs/puppet/lib/ruby/site_ruby/2.1.0/',
 logoutput => true,
 timeout => 180,
}

The general form of resource defaults is:

• The capitalized resource type name. If the resource type name has a namespace separator (::), every segment
must be capitalized, for example Concat::Fragment.

• An opening curly brace.
• Any number of attribute and value pairs.
• A closing curly brace.

You can specify defaults for any resource type in Puppet, including defined types.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppetlabs.com/puppetlabs/stdlib#unique
https://forge.puppetlabs.com/puppetlabs/stdlib#unique

Puppet | Developing Puppet code | 956

Behavior

Within the area of effect, each resource type that omits a given attribute uses that attribute’s default value.

Important: Attributes set explicitly in a resource declaration override any default value.

Resource defaults are evaluation order dependent. Defaults are assigned to a created resource when a resource
expression is evaluated; that is, when it is declared for inclusion in the catalog. Puppet uses the default values that are
in effect for the type at evaluation.

Puppet uses dynamic scoping for resource defaults, even though it no longer uses dynamic variable lookup. This
means that when you use a resource default statement in a class, it could affect any classes or defined types that class
declares. Therefore, they should not be set outside of site.pp. Use per-resource default attributes when possible.

Resource defaults declared in the local scope override any defaults received from parent scopes. Overriding of
resource defaults is per attribute, not per block of attributes. This means local and parent resource defaults that don’t
conflict with each other are merged together.

Resource collectors
Resource collectors select a group of resources by searching the attributes of each resource in the catalog, even
resources which haven’t yet been declared at the time the collector is written. Collectors realize virtual resources, are
used in chaining statements, and override resource attributes. Collectors have an irregular syntax that enables them to
function as a statement and a value.

Syntax

User <| title == 'luke' |> # Collect a single user resource whose title is
 'luke'
User <| groups == 'admin' |> # Collect any user resource whose list of
 supplemental groups includes 'admin'
Yumrepo['custom_packages'] -> Package <| tag == 'custom' |> # Creates an
 order relationship with several package resources

The general form of a resource collector is:

• A capitalized resource type name. This cannot be Class, and there is no way to collect classes.
• <|- An opening angle bracket (less-than sign) and pipe character.
• Optionally, a search expression.
• |> - A pipe character and closing angle bracket (greater-than sign)

Note: Exported resource collectors have a slightly different syntax; see below.

Using a special expression syntax, collectors search the values of resource titles and attributes. This resembles the
normal syntax for Puppet expressions, but is not the same.

Note: Collectors can search only on attributes that are present in the manifests, and cannot read the state of the
target system. For example, the collector Package <| provider == yum |> collects only packages whose
provider attribute is explicitly set to yum in the manifests. It does not match packages that would default to the
yum provider based on the state of the target system.

A collector with an empty search expression matches every resource of the specified resource type.

Use parentheses to improve readability, and to modify the priority and grouping of and and or operators. You can
create complex expressions using four operators.

== (equality search)

This operator is non-symmetric:

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 957

• The left operand (attribute) is a string, and must be the name of a resource attribute or the word title
(which searches on the resource’s title). If the resource attribute name is a reserved word (for example, site,
unit, or application), it must be in quotes.

• The right operand (search key) must be a string, boolean, number, resource reference, or undef. The behavior
of arrays and hashes in the right operand is undefined in this version of Puppet.

For a given resource, this operator matches if the value of the attribute (or one of the value’s members, if the
value is an array) is identical to the search key.

!= (non-equality search)

This operator is non-symmetric:

• The left operand (attribute) is a string, and must be the name of a resource attribute or the word title
(which searches on the resource’s title). If the resource attribute name is a reserved word (for example, site,
unit, or application), it must be in quotes.

• The right operand (search key) must be a string, boolean, number, resource reference, or undef. The behavior
of arrays and hashes in the right operand is undefined in this version of Puppet.

For a given resource, this operator matches if the value of the attribute is not identical to the search key.

Note: This operator always matches if the attribute’s value is an array.

and

Both operands must be valid search expressions. For a given resource, this operator matches if both of the
operands match for that resource. This operator has higher priority than or.

or

Both operands must be valid search expressions. For a given resource, this operator matches if either of the
operands match for that resource. This operator has lower priority than and.

Location

Use resource collectors in a collector attribute block for amending resource attributes, or as the operand of a chaining
statement, or as independent statements.

Collectors cannot be used in the following contexts:

• As the value of a resource attribute
• As the argument of a function
• Within an array or hash
• As the operand of an expression other than a chaining statement

Behavior

A resource collector realizes any virtual resources matching its search expression. Empty search expressions match
every resource of the specified resource type.

Note: A collector also collects and realizes any exported resources from the current node. When you use exported
resources that you don’t want realized, exclude them from the collector’s search expression.

Collectors function as a value in two places:

• In a chaining statement, a collector acts as a proxy for every resource (virtual or not) that matches its search
expression.

• When given a block of attributes and values, a collector sets and overrides those attributes for every resource
(virtual or not) matching its search expression.

Note: Collectors used as values also realize any matching virtual resources. When you use virtualized resources, be
careful when chaining collectors or using them for overrides.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 958

Exported resource collectors

An exported resource collector uses a modified syntax that realizes exported resources and imports resources
published by other nodes.

To use exported resource collectors, enable catalog storage and searching (storeconfigs). See Exported
resources for more details. To enable exported resources, follow the installation instructions and Puppet
configuration instructions in the PuppetDB docs.

Like normal collectors, use exported resource collectors with attribute blocks and chaining statements.

Note: The search for exported resources also searches the catalog being compiled, to avoid having to perform an
additional run before finding them in the store of exported resources.

Exported resource collectors are identical to collectors, except that their angle brackets are doubled.

Nagios_service <<| |>> # realize all exported nagios_service resources

The general form of an exported resource collector is:

• The resource type name, capitalized.
• <<| — Two opening angle brackets (less-than signs) and a pipe character.
• Optionally, a search expression.
• |>> — A pipe character and two closing angle brackets (greater-than signs).

Virtual resources
A virtual resource declaration specifies a desired state for a resource without enforcing that state. Puppet manages the
resource by realizing it elsewhere in your manifests. This divides the work done by a normal resource declaration into
two steps. Although virtual resources are declared one time, they can be realized any number of times, similar to a
class.

Purpose

Virtual resources are useful for:

• Resources whose management depends on at least one of multiple conditions being met.
• Overlapping sets of resources required by any number of classes.
• Resources which are managed only if multiple cross-class conditions are met.

Because they both offer a safe way to add a resource to the catalog in multiple locations, virtual resources can be used
in some of the same situations as classes. The features that distinguish virtual resources are:

• Searchability via resource collectors, which helps to realize overlapping clumps of virtual resources.
• Flatness, such that you can declare a virtual resource and realize it a few lines later without having to clutter your

modules with many single-resource classes.

Syntax

Virtual resources are used in two steps: declaring and realizing. In this example, the apache class declares a virtual
resource, and both the wordpress and freight classes realize it. The resource is managed on any node that has
the wordpress or freight classes applied to it.

Declare: modules/apache/manifests/init.pp

@a2mod { 'rewrite':
 ensure => present,
} # note: The a2mod resource type is from the puppetlabs-apache module.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetdb/latest/install_via_module.html
https://puppet.com/docs/puppetdb/latest/connect_puppet_master.html
https://puppet.com/docs/puppetdb/latest/connect_puppet_master.html

Puppet | Developing Puppet code | 959

Realize: modules/wordpress/manifests/init.pp

realize A2mod['rewrite']

Realize again: modules/freight/manifests/init.pp

realize A2mod['rewrite']

To declare a virtual resource, prepend @ (the “at” sign) to the resource type of a normal resource declaration:

@user {'deploy':
 uid => 2004,
 comment => 'Deployment User',
 groups => ["enterprise"],
 tag => [deploy, web],
}

To realize one or more virtual resources by title, use the realize function, which accepts one or more resource
references:

realize(User['deploy'], User['zleslie'])

Note: The realize function can be used multiple times on the same virtual resource and the resource is managed
only one time.

A resource collector realizes any virtual resources that match its search expression:

User <| tag == web |>

If multiple resource collectors match a given virtual resource, Puppet manages only that resource one time.

Note: A collector also collects and realizes any exported resources from the current node. If you use exported
resources that you don’t want realized, take care to exclude them from the collector’s search expression. Also, a
collector used in an override block or a chaining statement also realizes any matching virtual resources.

Behavior

A virtual resource declaration does not manage the state of a resource. Instead, it makes a virtual resource available to
resource collectors and the realize function. When a resource is realized, Puppet manages its state.

Unrealized virtual resources are included in the catalog, but are marked inactive.

Note: Virtual resources do not depend on evaluation order. You can realize a virtual resource before the resource has
been declared.

CAUTION: The realize function causes a compilation failure when attempting to realize a virtual
resource that has not been declared. Resource collectors fail silently when they do not match any resources.

When a virtual resource is contained in a class, it cannot be realized unless the class is declared at some point during
the compilation. A common pattern is to declare a class full of virtual resources and then use a collector to choose the
set of resources you need:

include virtual::users
User <| groups == admin or group == wheel |>

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 960

Note: You can declare virtual resources of defined resource types. This causes every resource contained in the
defined resource to behave virtually — they are not managed unless their virtual container is realized.

Virtual resources are evaluated in the run stage in which they are declared, not the run stage in which they are
realized.

Exported resources
An exported resource declaration specifies a desired state for a resource, and publishes the resource for use by other
nodes. It does not manage the resource on the target system. Any node, including the node that exports it, can collect
the exported resource and manage its own copy of it.

Purpose

Exported resources enable the Puppet compiler to share information among nodes by combining information from
multiple nodes’ catalogs. This helps manage things that rely on nodes knowing the states or activity of other nodes.

Note: Exported resources rely on the compiler accessing the information, and can not use information that’s never
sent to the compiler, such as the contents of arbitrary files on a node.

The common use cases are monitoring and backups. A class that manages a service like PostgreSQL, exports
a nagios_service resource which describes how to monitor the service, including information such as
its hostname and port. The Nagios server collects every nagios_service resource, and automatically starts
monitoring the Postgres server.

Note: Exported resources require catalog storage and searching (storeconfigs) enabled on your primary Puppet
server. Both the catalog storage and the searchin, among other features, are provided by PuppetDB. To enable
exported resources, see:

• Install PuppetDB on a server at your site
• Connect your Puppet server to PuppetDB

Syntax

Using exported resources requires two steps: declaring and collecting. In the following examples, every node with the
ssh class exports its own SSH host key and then collects the SSH host key of every node (including its own). This
causes every node in the site to trust SSH connections from every other node.

class ssh {
 # Declare:
 @@sshkey { $::hostname:
 type => dsa,
 key => $::sshdsakey,
 }
 # Collect:
 Sshkey <<| |>>
 }

To declare an exported resource, prepend @@ to the resource type of a standard resource declaration:

@@nagios_service { "check_zfs${::hostname}":
 use => 'generic-service',
 host_name => $::fqdn,
 check_command => 'check_nrpe_1arg!check_zfs',
 service_description => "check_zfs${::hostname}",
 target => '/etc/nagios3/conf.d/nagios_service.cfg',
 notify => Service[$nagios::params::nagios_service],
}

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetdb/latest/install_via_module.html
https://puppet.com/docs/puppetdb/latest/connect_puppet_master.html

Puppet | Developing Puppet code | 961

To collect exported resources, use an exported resource collector. Collect all exported nagios_service resources:

Nagios_service <<| |>>

This example, taken from puppetlabs-bacula, which uses the ripienaar-concat module, collects exported file fragments
for building a Bacula config file:

Concat::Fragment <<| tag == "bacula-storage-dir-${bacula_director}" |>>

Tip: It's difficult to predict the title of an exported resource, because any node could be exporting it. It’s best to
search on a more general attribute, and this is one of the main use cases for tags.

For more information on the collector syntax and search expressions, see Exported resource collectors.

Behavior

When catalog storage and searching (storeconfigs) are enabled, the primary server sends a copy of every
compiled catalog to PuppetDB. PuppetDB retains the recent catalog for every node and provides the server with a
search interface to each catalog.

Declaring an exported resource adds the resource to the catalog marked with an exported flag. Unless it was collected,
this prevents the agent from managing the resource. When PuppetDB receives the catalog, it takes note of this flag.

Collecting an exported resource causes the primary server to send a search query to PuppetDB. PuppetDB responds
with every exported resource that matches the search expression, and the server adds those resources to the catalog.

An exported resource becomes available to other nodes as soon as PuppetDB finishes storing the catalog that contains
it. This is a multi-step process and might not happen immediately. The primary server must have compiled a given
node’s catalog at least one time before its resources become available. When the primary server submits a catalog to
PuppetDB, it is added to a queue and stored as soon as possible. Depending on the PuppetDB server’s workload, there
might be a delay between a node’s catalog being compiled and its resources becoming available.

Normally, exported resource types include their default attribute values. However, defined types are evaluated for the
catalog after the resource is collected, so their default values are not exported. To make sure a defined type's values
are exported, set them explicitly.

To remove stale exported resources, expire or deactive the node that exported them. This ensures that any resources
exported by that node stop appearing in the catalogs served to the remaining agent nodes. For details, see the
documentation for deactivating or expiring nodes.

CAUTION: Each exported resource must be globally unique across every single node. If two nodes export
resources with the same title or same name/namevar, the compilation fails when you attempt to collect both.
Some pre-1.0 versions of PuppetDB do not fail in this case. To ensure uniqueness, every resource you export
must include a substring unique to the node exporting it into its title and name/namevar. The most expedient
way is to use the hostname or fqdn facts.

Restriction: Exported resource collectors do not collect normal or virtual resources. They cannot retrieve non-
exported resources from other nodes’ catalogs.

The following example shows Puppet native types for managing Nagios configuration files. These types become
powerful when you export and collect them.

For example, to create a class for Apache that adds a service definition on your Nagios host, automatically monitoring
the web server:

/etc/puppetlabs/puppet/modules/nagios/manifests/target/apache.pp:

class nagios::target::apache {
 @@nagios_host { $::fqdn:
 ensure => present,

© 2024 Puppet, Inc., a Perforce company

https://forge.puppetlabs.com/puppetlabs/bacula
http://forge.puppetlabs.com/ripienaar/concat
https://puppet.com/docs/puppetdb/latest/
https://puppet.com/docs/puppetdb/latest/maintain_and_tune.html#maintain_and_tune

Puppet | Developing Puppet code | 962

 alias => $::hostname,
 address => $::ipaddress,
 use => 'generic-host',
 }
 @@nagios_service { "check_ping_${::hostname}":
 check_command => 'check_ping!100.0,20%!500.0,60%',
 use => 'generic-service',
 host_name => $::fqdn,
 notification_period => '24x7',
 service_description => "${::hostname}_check_ping"
 }
}

/etc/puppetlabs/puppet/modules/nagios/manifests/monitor.pp:

class nagios::monitor {
 package { ['nagios', 'nagios-plugins']: ensure => installed, }
 service { 'nagios':
 ensure => running,
 enable => true,
 #subscribe => File[$nagios_cfgdir],
 require => Package['nagios'],
 }

Collect resources and populate /etc/nagios/nagios_*.cfg:

 Nagios_host <<||>>
 Nagios_service <<||>>

Tags
Tags are useful for collecting resources, analyzing reports, and restricting catalog runs. Resources, classes, and
defined type instances can have multiple tags associated with them, and they receive some tags automatically.

Tag names

For information about the characters allowed in tag names, see reserved words and acceptable names.

Assigning tags to resources

Every resource automatically receives the following tags:

• Its resource type.
• The full name of the class or defined type in which the resource was declared.
• Every namespace segment of the resource’s class or defined type.

For example, a file resource in class apache::ssl is automatically assigned the tags file, apache::ssl,
apache, and ssl. Do not manually assign tags with names that are the same as these automatically assigned tags.

Tip: Class tags are useful when setting up the tagmail module or testing refactored manifests.

Similar to relationships and most metaparameters, tags are passed along by containment. This means a resource
receives all of the tags from the class and/or defined type that contains it. In the case of nested containment (a class
that declares a defined resource, or a defined type that declares other defined resources), a resource receives tags from
all of its containers.

The tag metaparameter accepts a single tag or an array, and these are added to the tags the resource already has. A
tag can also be used with normal resources, defined resources, and classes (when using the resource-like declaration
syntax).

Because containment applies to tags, the example below assigns the us_mirror1 and us_mirror2 tags to every
resource contained by Apache::Vhost['docs.puppetlabs.com'].

© 2024 Puppet, Inc., a Perforce company

https://forge.puppetlabs.com/puppetlabs/tagmail

Puppet | Developing Puppet code | 963

To add multiple tags, use the tag metaparameter in a resource declaration:

apache::vhost {'docs.puppetlabs.com':
 port => 80,
 tag => ['us_mirror1', 'us_mirror2'],
}

To assign tags to the surrounding container and all of the resources it contains, use the tag function inside a class
definition or defined type. The example below assigns the us_mirror1 and us_mirror2 tags to all of the defined
resources being declared in the class role::public_web, as well as to all of the resources each of them contains.

class role::public_web {
 tag 'us_mirror1', 'us_mirror2'

 apache::vhost {'docs.puppetlabs.com':
 port => 80,
 }
 ssh::allowgroup {'www-data': }
 @@nagios::website {'docs.puppetlabs.com': }
}

Using tags

Tip: Tags are useful when used as an attribute in the search expression of a resource collector for realizing virtual
and exported resources.

Puppet agent and Puppet apply use the tags setting to apply a subset of the node’s catalog. This is useful when
refactoring modules, and enables you to apply a single class on a test node.

The tags setting can be set in puppet.conf to restrict the catalog, or on the command line to temporarily restrict
it. The value of the tags setting must be a comma-separated list of tags, with no spaces between tags:

$ sudo puppet agent --test --tags apache,us_mirror1

The tagmail module sends emails to arbitrary email addresses whenever resources with certain tags are changed.

Resource tags are available to custom report handlers and out-of-band report processors: Each
Puppet::Resource::Status object and Puppet::Util::Log object has a tags key whose value is an
array containing every tag for the resource in question.

For more information, see:

• Processing reports
• Report format

Run stages
Run stages are an additional way to order resources. Groups of classes run before or after everything else, without
having to explicitly create relationships with other classes. The run stage feature has two parts: a stage resource
type, and a stage metaparameter, which assigns a class to a named run stage.

Default main stage

By default there is only one stage, named main. All resources are automatically associated with this stage unless
explicitly assigned to a different one. If you do not use run stages, every resource is in the main stage.

Custom stages

Additional stages are declared as normal resources. Each additional stage must have an order relationship with
another stage, such as Stage['main']. As with normal resources, these relationships are specified with
metaparameters or with chaining arrows.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppetlabs.com/puppetlabs/tagmail

Puppet | Developing Puppet code | 964

In this example, all classes assigned to the first stage are applied before the classes associated with the main
stage, and both of those stages are applied before the last stage.

stage { 'first':
 before => Stage['main'],
}
stage { 'last': }
Stage['main'] -> Stage['last']

Assigning classes to stages

After stages have been declared, use the stage metaparameter to assign a class to a custom stage.

This example ensures that the apt-keys class happens before all other classes, which is useful if most of your
package resources rely on those keys.

class { 'apt-keys':
 stage => first,
}

Limitations

Run stages have these limitations:

• To assign a class to a stage, you must use the resource-like class declaration syntax and supply the stage explicitly.
You cannot assign classes to stages with the include function, or by relying on automatic parameter lookup
from hiera while using resource-like class declarations.

• You cannot subscribe to or notify resources across a stage boundary.
• Classes that contain other classes, with either the contain function or the anchor pattern, can sometimes behave

badly if declared with a run stage. If the contained class is declared only by its container, it works fine, but if it's
declared anywhere outside its container, it often creates a dependency cycle that prevents the involved classes
being applied.

CAUTION: Due to these limitations, use stages with the simplest of classes, and only when absolutely
necessary. A valid use case is mass dependencies like package repositories.

Details of complex behaviors
Within Puppet language there are complex behavior patterns regarding classes, defined types, and specific areas of
code called scopes.

• Containment on page 964
Containment is what controls the order in which the various parts of your Puppet code are executed. Containment is
the relationship that resources have to classes and defined types, determining what has to happen before other things
can happen.
• Scope on page 966
A scope is a specific area of code that is partially isolated from other areas of code.
• Namespaces and autoloading on page 971
Class and defined type names can be broken up into segments called namespaces which enable the autoloader to find
the class or defined type in your modules.

Containment
Containment is what controls the order in which the various parts of your Puppet code are executed. Containment is
the relationship that resources have to classes and defined types, determining what has to happen before other things
can happen.

Classes and defined type instances contain the resources they declare. Contained resources are not applied before the
container begins, and they finish before the container finishes.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 965

This means that if any resource or class forms a relationship with the container, it forms the same relationship with
every resource inside the container.

Consider this example:

class ntp {
 file { '/etc/ntp.conf':
 ...
 require => Package['ntp'],
 notify => Service['ntp'],
 }
 service { 'ntp':
 ...
 }
 package { 'ntp':
 ...
 }
}

include ntp
exec {'/usr/local/bin/update_custom_timestamps.sh':
 require => Class['ntp'],
}

Here, exec['/usr/local/bin/update_custom_timestamps.sh'] would happen after every resource
in the ntp class, including the package, file, and service.

Containment allows you to notify and subscribe to classes and defined resource types as though they were a single
resource.

Containment of resources

Resources of both native and defined resource types are automatically contained by the class or defined type in which
they are declared.

Containment of classes
Unlike with resources, Puppet does not automatically contain classes when they are declared inside another class
(by using the include function or resource-like declaration). But in certain situations, having classes contain other
classes can be useful, especially in larger modules where you want to improve code readability by moving chunks of
implementation into separate files.

You can declare a class in any number of places in the code, allowing classes to announce their needs without
worrying about whether other code also needs the same classes at the same time. Puppet includes the declared class
only one time, regardless of how many times it's declared (that is, the include function is idempotent). Usually, this
is fine, and code shouldn't attempt to strictly contain the class. However, there are ways to explicitly set more strict
containment relationships of contained classes when it is called for.

When you're deciding whether to set up explicit containment relationships for declared classes, follow these
guidelines:

• include: When you need to declare a class and nothing in it is required for the enforcement of the current class
you're working on, use the include function. It ensures that the named class is included. It sets no ordering
relationships. Use include as your default choice for declaring classes. Use the other functions only if they meet
specific criteria.

• require: When resources from another class should be enforced before the current class you're working on can
be enforced properly, use the require function to declare classes. It ensures that the named class is included. It
sets relationships so that everything in the named class is enforced before the current class.

• contain: When you are writing a class in which users should be able to set relationships, use the contain
function to declare classes. It ensures that the named class is included. It sets relationships so that any
relationships specified on the current class also apply to the class you're containing.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 966

The require function

The require function is useful when the class you're writing needs another class to be successfully enforced before
it can be enforced properly.

For example, suppose you're writing classes to install two apps, both of which are distributed by the Chocolatey
package manager, for which you've created a class called chocolatey. Both classes require that Chocolatey
be properly managed before they can each proceed. Instead of using include, which won't ensure Chocolatey's
resources are managed before it installs each app, use require.

class myapp::install {
 # works just like include, but also creates a relationship
 # Class['chocolatey'] -> Class['myapp::install']
 require chocolatey
 package { 'myapp':
 ensure => present,
 }
}

class my_other_app::install {
 require chocolatey
 package { 'my_other_app':
 ensure => present,
 }
}

The contain function

Use the contain function to declare that a class is contained. This is useful for when you're writing a class in
which other users should be able to express relationships. Any classes contained in your class will have containment
relationships with any other classes that declare your class. The contain function uses include-like behavior,
containing a class within a surrounding class.

For example, suppose you have three classes that an app package (myapp::install), creating its configuration
file (myapp::config), and managing its service (myapp::service). Using the contain function explicitly
tells Puppet that the internal classes should be contained within the class that declares them. The contain function
works like include, but also adds class relationships that ensure that relationships made on the parent class also
propagate inside, just like they do with resources.

class myapp {
 # Using the contain function ensures that relationships on myapp also
 apply to these classes
 contain myapp::install
 contain myapp::config
 contain myapp::service

 Class['myapp::install'] -> Class['myapp::config'] ~>
 Class['myapp::service']
}

Although it may be tempting to use contain everywhere, it's better to use include unless there's an explicit
reason why it won't work.

Scope
A scope is a specific area of code that is partially isolated from other areas of code.

Scopes limit the reach of:

• Variables.
• Resource defaults.

Scopes do not limit the reach of:

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 967

• Resource titles, which are all global.
• Resource references, which can refer to a resource declared in any scope.

A particular scope has access to its own contents, and also receives additional contents from its parent scope, node
scope, and top scope. The rules for how Puppet determines a local scope’s parent are described in scope lookup rules.

In the diagram above:

• Top scope can access variables and defaults only from its own scope.
• Node scope can access variables and defaults from its own scope and top scope.
• Each of the example::parent, example::other, and example::four classes can access variables and

defaults from their own scope, node scope, and top scope.
• The example::child class can access variables and defaults from its own scope, the example::parent

scope, node scope, and top scope.

Top scope

Code that is outside any class definition, type definition, or node definition exists at top scope. Variables and defaults
declared at top scope are available everywhere.

site.pp
$variable = "Hi!"

class example {
 notify {"Message from elsewhere: $variable":}
}

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 968

include example

$ puppet apply site.pp
notice: Message from elsewhere: Hi!

Node scope

Code inside a node definition exists at node scope. Only one node scope can exist at a time because only one node
definition can match a given node.

Variables and defaults declared at node scope are available everywhere except top scope.

Note: Classes and resources declared at top scope bypass node scope entirely, and so cannot access variables or
defaults from node scope.

In this example, node scope can access top scope variables, but not vice-versa.

site.pp
$top_variable = "Available!"
node 'puppet.example.com' {
 $variable = "Hi!"
 notify {"Message from here: $variable":}
 notify {"Top scope: $top_variable":}
}
notify {"Message from top scope: $variable":}

$ puppet apply site.pp
notice: Message from here: Hi!
notice: Top scope: Available!
notice: Message from top scope:

Local scopes

Code inside a class definition, defined type, or lambda exists in a local scope.

Variables and defaults declared in a local scope are only available in that scope and its children. There are two
different sets of rules for when scopes are considered related. For more information, see scope lookup rules.

In this example, a local scope can see out into node and top scope, but outer scopes cannot see in:

/etc/puppetlabs/code/modules/scope_example/manifests/init.pp
class scope_example {
 $variable = "Hi!"
 notify {"Message from here: $variable":}
 notify {"Node scope: $node_variable Top scope: $top_variable":}
}

/etc/puppetlabs/code/environments/production/manifests/site.pp
$top_variable = "Available!"
node 'puppet.example.com' {
 $node_variable = "Available!"
 include scope_example
 notify {"Message from node scope: $variable":}
}
notify {"Message from top scope: $variable":}

$ puppet apply site.pp
notice: Message from here: Hi!
notice: Node scope: Available! Top scope: Available!
notice: Message from node scope:

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 969

notice: Message from top scope:

Overriding received values

Variables and defaults declared at node scope can override those received from top scope. Those declared at local
scope can override those received from node and top scope, as well as any parent scopes. If multiple variables with
the same name are available, Puppet uses the most local one.

/etc/puppetlabs/code/modules/scope_example/manifests/init.pp
class scope_example {
 $variable = "Hi, I'm local!"
 notify {"Message from here: $variable":}
}

/etc/puppetlabs/code/environments/production/manifests/site.pp
$variable = "Hi, I'm top!"

node 'puppet.example.com' {
 $variable = "Hi, I'm node!"
 include scope_example
}

$ puppet apply site.pp
notice: Message from here: Hi, I'm local!

Resource defaults are processed by attribute rather than as a block. Thus, defaults that declare different attributes are
merged, and only the attributes that conflict are overridden.

In this example, /tmp/example would be a directory owned by the puppet user, and would combine the defaults
from top and local scope:

/etc/puppetlabs/code/modules/scope_example/manifests/init.pp
class scope_example {
 File { ensure => directory, }

 file {'/tmp/example':}
}

/etc/puppetlabs/code/environments/production/manifests/site.pp
File {
 ensure => file,
 owner => 'puppet',
}

include scope_example

Scope of external node classifier data

Variables provided by an ENC are set at the top scope. However, all of the classes assigned by an ENC are declared
at the node scope.

This results the most expected behavior: variables from an ENC are available everywhere, and classes can use node-
specific variables.

Note: This means compilation fails if a site manifest tries to set a variable that was already set at top scope by an
ENC.

Node scope only exists if there is at least one node definition in the main manifest. If no node definitions exist, then
ENC classes get declared at top scope.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 970

Named scopes and anonymous scopes

A class definition creates a named scope, whose name is the same as the class’s name. Top scope is also a named
scope; its name is the empty string.

Node scope and the local scopes created by lambdas and defined resources are anonymous and cannot be directly
referenced.

Accessing out-of-scope variables

Variables declared in named scopes can be referenced directly from anywhere, including scopes that otherwise would
not have access to them, by using their qualified global name.

Qualified variable names are formatted using the double-colon namespace separator between segments:

$<NAME OF SCOPE>::<NAME OF VARIABLE>

In the following example, the variable $local_copy is set to the value of the $confdir variable from the
apache::params class:

include apache::params
$local_copy = $apache::params::confdir

Note:

A class must be declared to access its variables; just having the class available in your modules is insufficient.

This means the availability of out-of-scope variables is evaluation-order dependent. Make sure you only access
out-of-scope variables if the class accessing them can guarantee that the other class is already declared, usually by
explicitly declaring it with include before trying to read its variables.

Because the top scope’s name is the empty string, $::my_variable refers to the top-scope value of
$my_variable, even if $my_variable has a different value in local scope.

Variables declared in anonymous scopes can only be accessed normally and do not have qualified global names.

Scope lookup rules
The scope lookup rules determine when a local scope becomes the parent of another local scope.

There are two sets of scope lookup rules: static scope and dynamic scope. Puppet uses:

• Static scope for variables.
• Dynamic scope for resource defaults.

Static scope

In static scope, which Puppet uses for looking up variables, parent scopes are assigned in the following ways:

• Classes can receive parent scopes by class inheritance, using the inherits keyword. A derived class receives
the contents of its base class in addition to the contents of node and top scope.

• A lambda’s parent scope is the local scope in which the lambda is written. It can access variables in that scope by
their short names.

All other local scopes have no parents — they receive their own contents, the contents of node scope (if applicable),
and top scope.

Note: Static scope has the following characteristics:

• Scope contents are predictable and do not depend on evaluation order.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 971

• Scope contents can be determined simply by looking at the relevant class definition; the place where a class or
defined type is declared has no effect. The only exception is node definitions — if a class is declared outside a
node, it does not receive the contents of node scope.

Dynamic scope

In dynamic scope, which Puppet uses for looking up resource defaults, parent scopes are assigned by both inheritance
and declaration, with preference given to inheritance. The full list of rules is:

• Each scope has only one parent, but can have an unlimited chain of grandparents, and receives the merged
contents of all of them, with nearer ancestors overriding more distant ones.

• The parent of a derived class is its base class.
• The parent of any other class or defined resource is the first scope in which it was declared.
• When you declare a derived class whose base class hasn’t already been declared, the base class is immediately

declared in the current scope, and its parent assigned accordingly. This effectively “inserts” the base class between
the derived class and the current scope. If the base class has already been declared elsewhere, its existing parent
scope is not changed.

Note: Dynamic scope has the following characteristics:

• A scope’s parent cannot be identified by looking at the definition of a class — you must examine every place
where the class or resource might have been declared.

• In some cases, you can only determine a scope’s contents by executing the code.
• Because classes can be declared multiple times with the include function, the contents of a given scope are

evaluation-order dependent.

Namespaces and autoloading
Class and defined type names can be broken up into segments called namespaces which enable the autoloader to find
the class or defined type in your modules.

Syntax

Puppet class and defined type names can consist of any number of namespace segments separated by the double colon
(::) namespace separator, analogous to the slash (/) in a file path.

class apache { ... }
class apache::mod { ... }
class apache::mod::passenger { ... }
define apache::vhost { ... }

Autoloader behavior

When a class or defined resource is declared, Puppet uses its full name to find the class or defined type in your
modules. Every class and defined type must be in its own file in the module’s manifests directory, and each file
must have the .pp file extension.

Names map to file locations as follows:

• The first segment in a name, excluding the empty top namespace, identifies the module. If this is the only
segment, the file name is init.pp.

• The last segment identifies the file name, minus the .pp extension.
• Any segments between the first and last are subdirectories under the manifests directory.

As a result, every class or defined type name maps directly to a file path within Puppet’s modulepath :

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 972

Name File path

apache <MODULE DIRECTORY>/apache/manifests/
init.pp

apache::mod <MODULE DIRECTORY>/apache/manifests/
mod.pp

apache::mod::passenger <MODULE DIRECTORY>/apache/manifests/
mod/passenger.pp

Note: The init.pp file always contains a class or defined type with the same name as the module, and any other
.pp file contains a class or defined type with at least two namespace segments. For example, apache.pp would
contain a class named apache::apache. This means you can’t name a class <MODULE NAME>::init.

Nested definitions and missing files

If a class or defined type is defined inside another class or defined type definition, its name goes under the outer
definition’s namespace.

This causes its real name to be something other than the name it was defined with. For example, in the following
code, the interior class's real name is first::second:

class first {
 class second {
 ...
 }
}

However, searching your code for that real name returns nothing. Also, it causes class first::second to be
defined in the wrong file. Avoid structuring your code like this.

If the manifest file that corresponds to a name doesn’t exist, Puppet continues to look for the requested class or
defined type. It does this by removing the final segment of the name and trying to load the corresponding file,
continuing to fall back until it reaches the module’s init.pp file.

Puppet loads the first file it finds like this, and raises an error if that file doesn’t contain the requested class or defined
type.

This behavior allows you to put a class or defined type in the wrong file and still have it work. But structuring things
this way is not recommended.

Securing sensitive data in Puppet
Puppet's catalog contains sensitive information in clear text. Puppet uses the Sensitive data type to mark your
sensitive data — for example secrets, passwords and private keys — with a flag that hides the value from certain parts
of Puppet, such as reports. However, you can still see this information in plain text files in the cached catalog and
other administrative functions.

There are several methods you can use to keep your sensitive data secure in all parts of Puppet — depending on what
you want to secure — using one or a combination of the methods outlined below.

Securing sensitive data on-disk and in your repository with hiera-eyaml

The hiera-eyaml gem — a backend for Hiera — can protect your sensitive data on-disk and in your repository.
It works by encrypting the sensitive data in plain text YAML files, without securing your entire code base. This
means that you can allow other people access to the code, without access to the sensitive data in that code. To encrypt
sensitive data with hiera-yaml, run through the following steps:

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 973

Install hiera-eyaml:

puppetserver gem install hiera-eyaml

Use the -l parameter to pass a label for the encrypted value:

eyaml encrypt -l 'some_easy_to_use_label' -s 'yourSecretString'

Add the encrypted value to the class parameter in your Hiera configuration:

mymodule::mykey: >
ENC[PKCS7,...
...
...]

During catalog compilation, puppetserver automatically decrypts the secret using hiera-eyaml and injects
the decrypted secret into the catalog.

For more information on using hiera-eyaml, and other hiera-eyaml use cases, see the hiera-eyaml README.

Securing sensitive data in the catalog with lookup_options

If you have class parameters that accept passwords, you need to declare the class parameter as Sensitive. For
example, to define the mykey as Sensitive, you would add the following code to your manifest:

class mymodule (
Sensitive[String[1]] mykey
) { .. }

Note: Sensitive[String[1]] means it's a sensitive string with a length of 1 or greater — not empty.

If you use hiera-emyal, you need Puppet to convert the values returned to a sensitive value that your class
recognizes. Using Hiera’s lookup_options, you can use the convert_to key, to cast a parameter to the
Sensitive type, to ensure that unsecured values are not returned when searched for with automatic parameter
lookup. For example:

mymodule::mykey: 42
lookup_options:
 mymodule::mykey:
 convert_to: "Sensitive"

You can also specify a regex instead of a literal parameter name, and Puppet automatically converts the matching
parameters to Sensitive. For example:

lookup_options:
'^profile::.+::sensitive_\w+$':
convert_to: 'Sensitive'

Securing sensitive data in the cached catalog with the node_encrypt module

While the previous two methods secure your data in most parts of Puppet, your data is still exposed in the cached
catalog. The node_encrypt module encrypts data on puppetserver before it goes into the catalog, and it is
only decrypted on the agent when needed, for example, to manage configuration files.

For example:

file { '/etc/secretfile.cfg':
 ensure => file,
 content => lookup('secret_key').node_encrypt::secret

© 2024 Puppet, Inc., a Perforce company

https://github.com/voxpupuli/hiera-eyaml

Puppet | Developing Puppet code | 974

}

For more information, see the node_encrypt module on the Forge.

Securing sensitive data in EPP templates

Puppet (version 6.20 and later) can render an Embedded Puppet (EPP) template containing a Sensitive value,
without unwrapping it. For example:

host=<%= scope['db_host'] %>
password=<%= scope['sensitive::db_password'] %>

The rendered output is automatically marked as sensitive and used as the file content:

file { '/etc/service.conf':
 ensure => file,
 content => epp('<module>/service.conf.erb')
}

Note: Embedded Ruby (ERB) templates do not support interpolation of sensitive values — you have to manually
unwrap and re-wrap these.

Writing deferred functions to retrieve secrets

Deferred functions allow you to retrieve sensitive information on the agent at runtime. This means that the primary
server does not require access to secrets and allows you to manage secrets with a dedicated secret server and policies
consistent with the rest of your infrastructure.

Using the deferred type, you can create a function to integrate with any secret storage you have access to. The
deferred type allows you to call this function during catalog enforcement to lookup secrets — using information
known only to the agent. The secret is not in plain text during compilation, and therefore not in the catalog. When the
function returns the looked up value, it adds a flag to indicate that the information is sensitive. Puppet then redacts the
sensitive information from its reports.

Note: There are several modules on Puppet Forge that integrate with external secret servers.

Related information
Sensitive on page 911
Sensitive types in the Puppet language are strings marked as sensitive. The value is displayed in plain text in the
catalog and manifest, but is redacted from logs and reports. Because the value is maintained as plain text, use it only
as an aid to ensure that sensitive values are not inadvertently disclosed.

Write a deferred function to store secrets on page 518
Use the Deferred type to create a function that you add to a module to redact sensitive information.

Integrations with secret stores on page 519

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/modules/binford2k/node_encrypt

Puppet | Developing Puppet code | 975

The Forge already hosts some community modules that provide integrations with secret stores.

Modules
Modules manage a specific technology in your infrastructure and serve as the basic building blocks of Puppet desired
state management.

Helpful modules docs links Other useful places

Understanding Puppet modules

Modules overview

Plug-ins in modules

Modules cheatsheet

Managing modules

Installing modules

Upgrading modules

Uninstalling modules

puppet-module command reference

Writing modules

Beginner's guide to modules

Module metadata

Publishing modules

Documenting modules

Writing module documentation

Puppet Strings

Puppet Strings style guide

Publishing modules

On the Forge

Contributing to modules

Contributing to Puppet modules

Reviewing community pull requests

Modules on the Puppet Forge

The Forge module repository

Puppet approved modules

Puppet supported modules

module quality scoring

Modules in Code Manager

Managing modules with the Puppetfile

Puppet language reference

Classes

Defined types

Puppet tasks and plans

Developing and testing modules

Puppet Development Kit (PDK)

Developing types and providers

Puppet Resource API

Community resources

Puppet Community Slack

puppet-users email group

Modules overview
You'll keep nearly all of your Puppet code in modules. Each module manages a specific task in your infrastructure,
such as installing and configuring a piece of software. Modules serve as the basic building blocks of Puppet and are
reusable and shareable.

Modules contain Puppet classes, defined types, tasks, task plans, functions, resource types and providers, and plug-
ins such as custom types or facts. Modules must be installed in the Puppet modulepath. Puppet loads all content from
every module in the modulepath, making this code available for use.

You can download and install modules from the Puppet Forge. The Forge contains thousands of modules written by
Puppet developers and the open source community for a wide variety of use cases. Expect to write at least a few of
your own modules to meet specific needs in your infrastructure.

If you're using Code Manager or r10k, you'll manage modules with a Puppetfile. For smaller, manually managed
infrastructures or proof of concept projects, you can install and manage modules with the puppet module
command. See the related topic about installing modules for details.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/
https://forge.puppet.com/approved
https://forge.puppet.com/supported
https://forge.puppet.com/about/scoring
https://puppet.com/docs/pe/latest/puppetfile.html
https://puppet.com/docs/bolt/0.x/writing_tasks_and_plans.html
https://puppet.com/docs/pdk/1.x/pdk.html
https://slack.puppet.com/
https://groups.google.com/forum/#!forum/puppet-users

Puppet | Developing Puppet code | 976

The following video gives you an overview of modules:

Module structure
Modules have a specific directory structure that allows Puppet to find and load classes, defined types, facts, custom
types and providers, functions, and tasks.

Each module subdirectory has a specific function, and not all directories are required. Use the following directory
structure:

data/

Contains data files specifying parameter defaults.

examples/

Contains examples showing how to declare the module's classes and defined types.

init.pp: The main class of the module.

example.pp: Provide examples for major use cases.

facts.d/

Contains external facts, which are an alternative to Ruby-based custom facts. These are synced to all agent nodes,
so they can submit values for those facts to the primary Puppet server.

files/

Contains static files, which managed nodes can download.

service.conf

This file's source => URL is puppet:///modules/my_module/service.conf. Its
contents can also be accessed with the file function, such as content => file('my_module/
service.conf').

functions/

Contains custom functions written in the Puppet language.

lib/

Contains plug-ins, such as custom facts and custom resource types. These are used by both the primary Puppet
server and the Puppet agent, and they are synced to all agent nodes in the environment on each Puppet run.

facter/

Contains custom facts, written in Ruby.

puppet/

Contains custom functions, resource types, and resource providers:

puppet/functions/: Contains functions written in Ruby for the modern Puppet::Functions API.

puppet/parser/functions/: Contains functions written in Ruby for the legacy
Puppet::Parser::Functions API.

puppet/provider/: Contains custom resource providers written in the Puppet language.

puppet/type/: Contains custom resource types written in the Puppet language.

locales/

Contains files relating to module localization into languages other than English.

manifests/

Contains all of the manifests in the module.

init.pp

The init.pp class, if used, is the main class of the module. This class's name must match the module's
name.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 977

other_class.pp

Classes and defined types are named with the namespace of the module and the name of the class or defined
type. For example, this class is named my_module::other_class.

implementation/

You can group related classes and defined types in subdirectories of the manifests/ directory. The name of this
subdirectory is reflected in the names of the classes and types it contains. Classes and defined types are named
with the namespace of the module, any subdirectories, and the name of the class or defined type.

implementation/my_defined_type.pp: This defined type is named
my_module::implementation::my_defined_type.

implementation/class.pp: This defined type is named
my_module::implementation::class.

plans/

Contains Puppet task plans, which are sets of tasks that can be combined with other logic. Plans are written in the
Puppet language.

readmes/

The module's README localized into languages other than English.

spec/

Contains spec tests for any plug-ins in the lib directory.

tasks/

Contains Puppet tasks, which can be written in any programming language that can be read by the target node.

templates/

Contains templates, which the module's manifests can use to generate content or variable values.

component.erb

A manifest can render this template with template('my_module/component.erb').

component.epp

A manifest can render this template with epp('my_module/component.epp').

types/

Contains resource type aliases.

Module names

Module names must match the expression: [a-z][a-z0-9_]*. In other words, they can contain only lowercase
letters, numbers, and underscores, and begin with a lowercase letter.

These restrictions are similar to those that apply to class names, with the added restriction that module names cannot
contain the namespace separator (::), because modules cannot be nested. Certain module names are disallowed; see
the list of reserved words and names.

Manifests

Manifests, contained in the module's manifests/ folder, each contain one class or defined type.

The init.pp manifest is the main class of a module and, unlike other classes or defined types, it is referred to only
by the name of the module itself. For example, the class in init.pp in the puppetlabs-motd module is the
motd class. You cannot name a class init.

All other classes or defined types names are composed of name segments, separated from each other by a namespace
separator, ::

• The module short name, followed by the namespace separator.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 978

• Any manifests/ subdirectories that the class or defined type is contained in, followed by a namespace
separato.

• The manifest file name, without the extension.

For example, each module class or defined type would have the following names based on their module name and
location within the manifests/ directory:

Module name Filepath to class or defined type Class or defined type name

username-my_module my_module/manifests/
init.pp

my_module

username-my_module my_module/manifests/
other_class.pp

my_module::other_class

puppetlabs-apache apache/manifests/
security/rule_link.pp

apache::security::rule_link

puppetlabs-apache apache/manifests/fastcgi/
server.pp

apache::fastcgi::server

Files in modules

You can serve files from a module's files/ directory to agent nodes.

Download files to the agent by setting the file resource's source attribute to the puppet:/// URL for the file.
Alternately, you can access module files with the file function.

To download the file with a URL, use the following format for the puppet:/// URL:

puppet:///<MODULE_DIRECTORY>/<MODULE_NAME>/<FILE_NAME>

For example, given a file located in my_module/files/service.conf, the URL is:

puppet:///modules/my_module/service.conf

To access files with the file function, pass the reference <MODULE NAME>/<FILE NAME> to the function,
which returns the content of the requested file from the module's files/ directory. Puppet URLs work for both
puppet agent and puppet apply; in either case they retrieve the file from a module.

To learn more about the file function, see the function reference.

Templates in modules

You can use ERB or EPP templates in your module to manage the content of configuration files. Templates combine
code, data, and literal text to produce a string output, which can be used as the content attribute of a file resource or
as a variable value. Templates are contained in the module's templates/ directory.

For ERB templates, which use Ruby, use the template function. For EPP templates, which use the Puppet
language, use the epp function. See the page about templates for detailed information.

The template and epp functions look up templates identified by module and template name, passed as a string in
parentheses: function('module_name/template_name.extension'). For example:

template('my_module/component.erb')

epp('my_module/component.epp')

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 979

Writing modules
Every Puppet user can expect to write at least some of their own modules. You must give your modules a specific
directory structure and include correctly formatted metadata. Puppet Development Kit (PDK) provides tools for
writing, validating, and testing modules.

PDK creates a complete module structure, class, defined type, and task templates, and configures a module testing
framework. To test your modules, use PDK commands to run unit tests and to validate your module's metadata,
syntax, and style. You can download and install PDK on any development machine; no Puppet installation is
required. See the PDK documentation to get started.

For help getting started writing modules, see our beginner's guide to writing modules. For details on best practices
and code style, see the Puppet Language style guide.

Related information
Beginner's guide to writing modules on page 990
Create great Puppet modules by following best practices and guidelines.

Documenting modules on page 1001
Document any module you write, whether your module is for internal use only or for publication on the Forge.
Complete, clear documentation helps your module users understand what your module can do and how to use it.

The Puppet language style guide on page 546
This style guide promotes consistent formatting in the Puppet language, giving you a common pattern, design, and
style to follow when developing modules. This consistency in code and module structure makes it easier to update
and maintain the code.

Plug-ins in modules
Puppet supports several kinds of plug-ins, which are distributed in modules. These plug-ins enable features such as
custom facts and functions for managing your nodes. Modules that you download from the Forge can include these
kinds of plug-ins, and you can also develop your own.

When you install a module that contains plug-ins, they are automatically enabled. At the start of every Puppet run,
Puppet Server loads all the plug-ins available in the environment's modulepath. Agents download those plug-ins, so
module plug-ins are available for use on the first Puppet run after you install them in an environment.

Plug-ins are available whether or not a node uses classes or defined types from a given module. In other words, even
if you don't declare any classes from the stdlib module, nodes still use the stdlib custom facts. There is no way
to exclude plug-ins in an environment in which they are installed.

If the agent and primary server are both running Puppet 5.3.4 or newer, the agent also downloads any non-English
translations included in the module.

Puppet supports several kinds of plug-ins. Puppet looks for each plug-in in a different subdirectory of the module. If
you are adding plug-ins to a module, be sure to place them in the correct module subdirectory. In all cases, you must
name files and additional subdirectories according to the plug-in type's loading requirements.

Important:

Environments aren't completely isolated for certain kinds of plug-ins. If you are using custom resource types or
legacy custom functions, you can encounter conflicts if your environments contain differing versions of a given plug-
in.In such cases, Puppet loads the first version it encounters of the plug-in, and then continues to use that version for
all environments.

To avoid plug-in conflicts for resource types, use the puppet generate types command as described in the
environment isolation documentation. To fix issues with legacy custom functions, rewrite them with the modern API,
which is not affected by this issue.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pdk/1.x/pdk.html

Puppet | Developing Puppet code | 980

Module plug-in types
Modules can contain different types of plug-ins, each in a specific subdirectory.

Plug-in Description Used by Module subdirectory

Custom facts Written in Ruby, facts can
provide a specified piece of
information about system
state. For information about
writing custom facts, see
the Facter custom facts
documentation.

Agents only. lib/facter

External facts External facts provide
a way to use arbitrary
executables or scripts as
facts, or set facts statically
with structured data. For
information about external
facts, see the Facter custom
facts documentation.

Agents only. facts.d

Puppet functions Functions written in Puppet
to return calculated values.
For more information, see
the topic about writing
custom functions in Puppet.

Puppet Server only. functions

Ruby functions Functions written in
Ruby to return calculated
values. Modern Ruby
functions are written for the
Puppet::Functions
API.

Puppet Server only. lib/puppet/
functions

Resource types Written in Puppet to add
new resource types to
Puppet. For information
about developing resource
types, see custom types
documentation.

Puppet Server and agents. lib/puppet/type

Resource providers Written in Puppet to add
new resource providers to
Puppet. For information
about developing resource
providers, see the custom
providers documentation.

Puppet Server and agents. lib/puppet/
provider

Augeas lenses Augeas provides a way
to modify config files. To
learn more about using
Augeas with Puppet, see
the Forge for Augeas tips
and tricks.

Agents only. lib/augeas/lenses

Module cheat sheet
A quick reference to Puppet module terms and concepts.

For detailed explanations of Puppet module structure, terms, and concepts, see the related topics about modules.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/facter/3.11/custom_facts.html
https://puppet.com/docs/facter/3.11/custom_facts.html
https://puppet.com/docs/facter/3.11/custom_facts.html
https://forge.puppet.com/puppetlabs/augeas_core/readme
https://forge.puppet.com/puppetlabs/augeas_core/readme

Puppet | Developing Puppet code | 981

manifests/

The manifests/ directory holds the module's Puppet code.

Each .pp file contains one and only one class or defined type. The filename, without the extension, is part of the full
class or defined type name.

The init.pp manifest is unique: it contains a class or defined type that is called by the module name. For example:

apache/manifests/init.pp:

class apache {
...
}

Other classes and defined types are named with a modulename::filename convention. If a manifest is in a
subdirectory of manifests/ , the subdirectory is included as a segment of the name.

For example:

apache/manifests/vhost.pp:

define apache::vhost
($port, $docroot)
{
...
}

apache/manifests/config/ssl.pp:

class apache::config::ssl {
...
}

files/

You can download files in a module's files/ directory to any node. Files in this directory are served at
puppet:///modules/modulename/filename.

Use the source attribute to download file contents from the server, specifying the file with a puppet:/// URL.

For example, to fetch apache/files/httpd.conf :

file {'/etc/apache2/httpd.conf':
 ensure => file,
 source => 'puppet:///modules/apache/httpd.conf',

You can also fetch files from subdirectories of files/. For example, to fetch apache/files/extra/ssl.

file {'/etc/apache2/httpd-ssl.conf':
 ensure => file,
 source => 'puppet:///modules/apache/extra/ssl',
}

lib/

The lib/ directory contains different types of Puppet plug-ins, which add features to Puppet and Facter. Each type
of plug-in has its own subdirectory. For example:

The lib/types directory contains custom resource types:

apache/lib/puppet/type/apache_setting.rb

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 982

The lib/puppet/functions directory contains custom functions:

apache/lib/puppet/functions/apache/bool2httpd.rb

The lib/facter directory contains custom facts:

apache/lib/facter/apache_confdir.rb

templates/

The templates/ directory holds ERB and EPP templates.

Templates output strings that can be used in files. To use template output for a file, set the content attribute to the
template function, specifying the template in a <modulename>/<filename>.<extension> format.

For example, to use the apache/templates/vhost.erb template output as file contents:

file {'/etc/apache2/sites-enabled/wordpress.conf':
 ensure => file,
 content => template('apache/vhost.erb'),
}

Related information
Modules overview on page 975
You'll keep nearly all of your Puppet code in modules. Each module manages a specific task in your infrastructure,
such as installing and configuring a piece of software. Modules serve as the basic building blocks of Puppet and are
reusable and shareable.

Plug-ins in modules on page 979
Puppet supports several kinds of plug-ins, which are distributed in modules. These plug-ins enable features such as
custom facts and functions for managing your nodes. Modules that you download from the Forge can include these
kinds of plug-ins, and you can also develop your own.

Installing and managing modules from the command line
Install, upgrade, and uninstall Forge modules from the command line with the puppet module command.

The puppet module command provides an interface for managing modules from the Forge. Its interface is similar
to other common package managers, such as gem, apt-get, or yum. You can install, upgrade, uninstall, list, and
search for modules with this command.

Restriction: If you are using Code Manager or r10k, do not install, update, or uninstall modules with the puppet
module command. With code management, you must install modules with a Puppetfile. Code management purges
modules that were installed with the puppet module command. See the Puppetfile documentation for instructions.

Setting up puppet module behind a proxy

To use the puppet module command behind a proxy, set the proxy's IP address and port by running the following
two commands:

export http_proxy=http://<PROXY IP>:<PROXY PORT>
export https_proxy=http://<PROXY IP>:<PROXY PORT>

For instance, for an proxy at 192.168.0.10 on port 8080, run:

export http_proxy=http://192.168.0.10:8080
export https_proxy=http://192.168.0.10:8080

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pe/latest/puppetfile.html

Puppet | Developing Puppet code | 983

Alternatively, you can set these two proxy settings in the puppet.conf file, by setting http_proxy_host and
http_proxy_port in the user section of puppet.conf. For more information, see the Puppetconfiguration
reference.

Important: Set these two proxy settings only in the [user] section of the puppet.conf file. Setting them in
other sections can cause problems.

Finding Forge modules
The Forge houses thousands of modules, which you can find on the Forge website or by searching on the command
line.

The easiest way to search for or browse modules is on the Forge website. Each module on the Forge has its own page
with the module's quality score, community rating, and documentation. Alternatively, you can search for modules on
the command line with the puppet module search command.

Some modules are Puppet supported or Puppet approved. Approved modules are often developed by Puppet
community members and pass our specific quality and usability requirements. We recommend these modules, but
they are not supported as part of a Puppet Enterprise license agreement. Puppet supported modules have been tested
with PE and are fully supported. To learn more, see the Puppet approved and Puppet supported pages.

If there are no supported or approved modules that meet your needs, evaluate available modules by compatibility,
documentation, last release date, number of downloads, and the module's Forge quality score.

Searching modules from the command line

The puppet module search command accepts a single search term and returns a list of modules whose names,
descriptions, or keywords match the search term.

For example, a search like:

puppet module search apache

returns results such as:

Searching http://forge.puppetlabs.com ...
NAME DESCRIPTION AUTHOR
 KEYWORDS
puppetlabs-apache This is a generic ... @puppetlabs apache
 web
puppetlabs-passenger Module to manage P... @puppetlabs apache
DavidSchmitt-apache Manages apache, mo... @DavidSchmitt apache
jamtur01-httpauth Puppet HTTP Authen... @jamtur01 apache
jamtur01-apachemodules Puppet Apache Modu... @jamtur01 apache
adobe-hadoop Puppet module to d... @adobe apache

Finding and downloading deleted modules
You can still search for and download a specific release of a module on the Forge, even if the release has been
deleted.

Normally, deleted modules do not appear in Forge search results. To include deleted modules in your search on the
Forge website, check Include deleted modules in the search filter panel.

To download a deleted release of a specific module, select the release from the Select another release drop-down
list on the module's page. The release is marked in this menu as deleted. If you select the deleted release, a warning
banner appears on the page with the reason for deletion. To download the deleted release anyway, click Download or
install it with the puppet module install command.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/approved
https://forge.puppet.com/supported

Puppet | Developing Puppet code | 984

Installing modules from the command line
The puppet module install command installs a module and all of its dependencies. You can install modules
from the Forge, a module repository, or a release tarball.

By default, this command installs modules into the first directory in the Puppet modulepath, which defaults to
$codedir/environments/production/modules. For example, to install the puppetlabs-apache
module, run:

puppet module install puppetlabs-apache

You can customize the module version, installation directory, or environment, get debugging information, or ignore
dependencies by passing options with the puppet module install command.

Note: If any installed module has an invalid version number, Puppet issues a warning:

Warning: module (/Users/youtheuser/.puppet/modules/module) has an invalid
version number (0.1). The version has been set to 0.0.0. If you are the
 maintainer for this module, please update the
metadata.json with a valid Semantic Version (http://semver.org).

Despite the warning, Puppet still downloads your module and does not permanently change the module's metadata.
The version is changed only in memory during the run of the program, so that Puppet can calculate dependencies.

Installing modules from the Forge

To install a module from the Forge, run the puppet module install command with the long name of the
module. The long name of a module is formatted as <username>-<modulename>. For example, to install
puppetlabs-apache, run:

puppet module install puppetlabs-apache

Restriction: On Solaris 10, when you try to install modules with the puppet module install command,
you'll get an error like:

 Error: Could not connect via HTTPS to https://forgeapi.puppetlabs.com
 Unable to verify the SSL certificate
 The certificate may not be signed by a valid CA
 The CA bundle included with OpenSSL may not be valid or up to date

This error occurs because there is no CA-cert bundle on Solaris 10 to trust the Forge certificate. To work around this
issue, download the module from the Forge website, and then install the module tarball with the puppet module
install command, as described in the topic about installing from a release tarball.

Installing from another module repository

You can install modules from other repositories that mimic the Forge interface. You can change the module
repository for one installation, or you can change your default repository.

To change the module repository for a single module installation, specify the base URL of the repository on the
command line with the --module_repository option. For example:

puppet module install --module_repository http://dev-forge.example.com
 puppetlabs-apache

To change the default module repository, edit the module_repository setting in the puppet.conf to
the base URL of the repository you want to use. The default value for the module_repository is the Forge
URL, https://forgeapi.puppetlabs.com. See the module_repository setting in the puppet.conf
configuration documentation.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 985

Installing from a release tarball

To install a module from a release tarball, specify the path to the tarball instead of the module name.

If you cannot connect to the Forge, or you are installing modules that have not yet been published to the Forge, use
the --ignore-dependencies option and manually install any dependencies. For example:

puppet module install ~/puppetlabs-apache-0.10.0.tar.gz --ignore-
dependencies

Installing and upgrading Puppet Enterprise-only modules

Some Puppet modules are available only to PE users. Generally, you manage these modules in the same way you
would manage other modules. You can use these modules with licensed PE nodes, a PE 10-node trial license, or with
Bolt for a limited evaluation period. See your module's license for complete details.

Install modules on nodes without internet
To manually install a module on a node with no internet, download the module on a connected machine, and then
move a module package to the unconnected node. If the module is a PE-only module, the download machine must
have a valid PE license.

Before you begin

Make sure you have PDK installed. You'll use PDK to build a module package that you can move to your
unconnected node. For installation instructions, see the PDK install docs.

Tip: On machines with no internet access, you must install any module dependencies manually. Check your
dependencies at the beginning of this process, so that you can move all of the necessary modules to the unconnected
node at one time.

1. On a node with internet access, run puppet module install puppetlabs-<MODULE>

2. Change into the module's directory by running cd <MODULE_NAME>

3. Build a package from the installed module by running pdk build

4. Move the *.tar.gz to the machine on which you want to install the module.

5. Install the tar.gz package with the puppet module install command. For example:

puppet module install puppetlabs-pe_module-0.1.0.tar.gz

6. Manually install the module's dependencies. Without internet access, puppet module install cannot
install dependencies automatically.

Upgrading modules
To upgrade a module to a newer version, use the puppet module upgrade command.

This command upgrades modules to the most recent released version of the module. This includes upgrading the
module to the most recent major version.

Specify the module you want to upgrade with the module's full name. For example:

puppet module upgrade puppetlabs-apache

To upgrade to a specific version, specify the version you want with the --version option. For example, to upgrade
puppetlabs-apache version 2.2.0 without any breaking changes, specify the 2.x release to upgrade to:

puppet module upgrade puppetlabs-apache --version 2.3.1

You can also ignore changes or dependencies when upgrading with command line options. See the puppet
module command reference for a complete list of options.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pdk/1.x/pdk_install.html

Puppet | Developing Puppet code | 986

Uninstalling modules
Completely remove installed modules with the puppet module uninstall command.

This command uninstalls modules from the modulepath specified in the puppet.conf file. To remove a module,
run the uninstall command with the full name of the module. For example:

puppet module uninstall puppetlabs-apache

By default, the command exits and returns an error if you try to uninstall a module that other modules depend on or
if the module's files have been modified after it was installed. You can forcibly uninstall dependencies or changed
modules with command line options.

For example, to uninstall a module that other modules depend on, run:

puppet module uninstall --force

See the puppet module command reference for a complete list of options.

puppet module command reference
The puppet module command manages modules with several actions and options.

puppet module actions

Important:

Solaris Note: To use puppet module commands on Solaris systems, you must first install gtar.

Action Description Arguments Example

build Deprecated. Prepares a
local module for release
on the Forge by building
a ready-to-upload archive
file. Will be removed in a
future release; use Puppet
Development Kit instead.

A valid directory path to a
module.

puppet module
build modules/
apache

changes Compares the files on disk
to the md5 checksums and
returns an array of paths of
modified files.

A valid directory path to a
module.

puppet module
changes /etc/code/
modules/stdlib

install Installs a module. The full name
<username-
module_name> of the
module to uninstall.

puppet module
install
puppetlabs-apache

list Lists the modules installed
in the modulepath specified
in the [main] block in the
puppet.conf file.

None. puppet module list

search Searches the Forge for
modules matching search
values.

A single search term. puppet module
search apache

uninstall Uninstalls a module. The full name
<username-
module_name> of the
module to uninstall.

puppet module
uninstall
puppetlabs-apache

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 987

Action Description Arguments Example

upgrade Upgrades a module to the
most recent release or to
the specified version. Does
not upgrade dependencies.

The full name
<username-
module_name> of the
module to upgrade.

puppet module
upgrade
puppetlabs-apache
--version 0.0.3

puppet module install action

Installs a module from the Forge or another specified release archive.

Usage:

puppet module install [--debug] [--environment] [--force | -f] [--ignore-
dependencies]
 [--module_repository <REPOSITORY_URL>] [--strict-semver]
 [--target-dir <DIRECTORY/PATH> | -i <DIRECTORY/PATH>] [--version <x.x.x> |
 -v <x.x.x>]
 <full_module_name>

For example:

puppet module install --environment testing --ignore-dependencies
 --version 1.0.0-pre1 --strict-semver false puppetlabs-apache

Option Description Value Default

--debug, -d Displays additional
information about what
the puppet module
command is doing.

None. If not specified, additional
information is not
displayed.

--environment Installs the module into the
specified environment.

An environment name. By default, installs the
module into the default
environment specified in
the puppet.conf file.

--force, -f Installs the module
regardless of dependency
tree, checksum changes,
or whether the module
is already installed. By
default, installs the module
in the default modulepath,
even if the module is
already installed in another
directory. Does not install
dependencies.

None. If not specified, puppet
module install exits
and returns information if
it encounters installation
errors or conflicts.

--ignore-
dependencies

Does not install any
modules required by this
module.

None. If not specified, the
puppet module
install action installs
the module and its
dependencies.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 988

Option Description Value Default

--
module_repository

Specifies a module
repository.

A valid URL for a module
repository.

If not specified, installs
modules from the module
repository specified in from
the puppet.conf file.
By default, this is the URL
for the Forge.

--strict-semver Whether to exclude pre-
release versions. A value of
false allows installation of
pre-release versions.

true, false Defaults to true,
excluding pre-release
versions.

--target-dir, -i Specifies a directory to
install modules.

A valid directory path. By default, installs
modules into $codedir/
environments/
production/modules

--version, -v Specifies the module
version to install.

A semantic version
number, such as 1.2.1
or a string specifying
a requirement, such as
">=1.0.3".

If not specified, installs
the most recent version
available on the Forge.

puppet module list action

Lists the Puppet modules installed in the modulepath specified in the puppet.conf file's [main] block. Use the
--modulepath option to change which directories are scanned.

Usage:

puppet module list [--tree] [--strict-semver]

For example:

puppet module list --tree --modulepath etc/testing/modules

Option Description Value Default

--modulepath Specifies another
modulepath to scan for
modules.

A valid directory path. By default, scans the
default modulepath from
the [main] block in the
puppet.conf file.

--strict-semver Whether to exclude pre-
release versions. A value of
false allows uninstallation
of pre-release versions.

true, false Defaults to true,
excluding pre-release
versions.

--tree Displays the module
list as a tree showing
dependencies.

None. By default, puppet
module list lists
installed modules but does
not show dependency
relationships.

puppet module uninstall action

Uninstalls a module from the default modulepath.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 989

Usage:

puppet module uninstall [--force | -f] [--ignore-changes | -c] [--strict-
semver] [--version=] <full_module_name>

For example:

puppet module uninstall --ignore-changes --version 0.0.2 puppetlabs-apache

Option Description Value Default

--force, -f Uninstalls the module
regardless of dependency
tree or checksum changes.

None. By default, puppet
module uninstall
exits and returns an error
if it encounters changes,
namespace errors, or
dependencies.

--ignore-changes Does not use the checksum
and uninstalls regardless of
modified files.

None. By default, if the puppet
module uninstall
action finds modified files
in the module, it exits and
returns an error.

--strict-semver Whether to exclude pre-
release versions. A value of
false allows uninstallation
of pre-release versions.

true, false Defaults to true,
excluding pre-release
versions.

--version, -v Specifies the module
version to uninstall.

A semantic version
number, such as 1.2.1
or a string specifying
a requirement, such as
">=1.0.3"..

By default, puppet
module uninstall
uninstalls the version
installed in the modulepath.

puppet module upgrade action

This command upgrades modules to the most recent released version of the module. This includes upgrades to the
most recent major version.

Usage:

puppet module upgrade [--force | -f] [--ignore-changes | -c] [--ignore-
dependencies]
 [--strict-semver] [--version=] <full_module_name>

For example:

puppet module upgrade --force --version 2.1.2 puppetlabs-apache

Option Description Value Default

--force, -f Upgrades the module
regardless of dependency
tree or checksum changes.

None. By default, puppet
module upgrade exits
and returns an error if
it encounters changes,
namespace errors, or
dependencies.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 990

Option Description Value Default

--ignore-changes Does not use the checksum
and upgrades regardless of
modified files.

None. By default, if the puppet
module upgrade action
finds modified files in the
module, it exits and returns
an error.

--ignore-
dependencies

Does not attempt to install
any missing modules
required by this module.

None. If not specified, the
puppet module
upgrade action
installs missing module
dependencies.

--strict-semver Whether version ranges
must exclude pre-release
versions.

true, false Defaults to true,
excluding pre-release
versions.

--version, -v Specifies the module
version to uninstall.

A semantic version
number, such as 1.2.1
or a string specifying
a requirement, such as
">=1.0.3".

By default, puppet
module uninstall
uninstalls the version
installed in the modulepath.

PE-only module troubleshooting
If you get an error when installing a PE-only module, check for common issues.

When installing or upgrading a PE-only module, you might get the following error:

Error: Request to Puppet Forge failed.
 The server being queried was https://forgeapi.puppetlabs.com/v3/releases?
module=puppetlabs-f5&module_groups=base+pe_only
 The HTTP response we received was '403 Forbidden'
 The message we received said 'You must have a valid Puppet Enterprise
 license on this
 node in order to download puppetlabs-f5. If you have a Puppet Enterprise
 license,
 please see https://docs.puppetlabs.com/pe/latest/
modules_installing.html#puppet-enterprise-modules
 for more information.'

If you aren't a PE user, you won't be able to use this module unless you purchase a PE license. If you are a PE user,
check the following:

1. Are you logged in as the root user? If not, log in as root and try again.
2. Does the node you're on have a valid PE license? If not, switch to a node that has a valid license on it.
3. Are you running a version of PE that supports this module? If not, you might need to upgrade.
4. Does the node you are installing on have access to the internet? If not, switch to a node that has access to the

internet.

Beginner's guide to writing modules
Create great Puppet modules by following best practices and guidelines.

This guide is intended to provide an approachable introduction to module best practices. Before you begin, we
recommend that you are familiar enough with Puppet that you have a basic understanding of the language, you know
what constitutes a class, and you understand the basic module structure.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 991

Defining your module

Before you begin writing your module, define what it will do. Defining the range of your module's work helps you
create concise modules that are easy to work with. A good module has only one area of responsibility. For example,
the module addresses installing MySQL, but it doesn't install other programs or services that require MySQL.

Ideally, a module manages a single piece of software from installation through setup, configuration, and service
management. When you plan your module, consider what task your module will accomplish and what functions it
requires in your Puppet environment. Many users have 200 or more modules in an environment, so simple is better.
For more complex needs, create multiple modules. Having many small, focused modules promotes code reuse and
turns modules into building blocks.

For example, the puppetlabs-puppetdb module deals solely with the the setup, configuration, and management
of PuppetDB. However, PuppetDB stores its data in a PostgreSQL database. Instead of trying to manage PostgreSQL
with the puppetdb module, we included the puppetlabs-postgresql module as a dependency. This way, the
puppetdb module can use the postgresql module's classes and resources to build out the right configuration.

Class design

A good module is made up of small, self-contained classes that each do only one thing. Classes within a module are
similar to functions in programming, using parameters to perform related steps that create a coherent whole.

In general, files must have the same named as the class or definition that it contains, and classes must be named after
their function. The one exception to this rule is the main class of a module, which is defined in the init.pp file, but
is called by the same name as the module. Generally, a module includes:

• The <MODULE> class: The main class of the module shares the name of the module and is defined in the
init.pp file.

• The install class: Contains all of the resources related to installing the software that the module manages.
• The config class: Contains resources related to configuring the installed software.
• The service class: Contains service resources, as well as anything else related to the running state of the

software.

For more information and an example of this structure and the code contained in classes, see the topic about module
classes.

Parameters

Parameters form the public API of your module. They are the most important interface you expose, so be sure to
balance to the number and variety of parameters so that users can customize their interactions with the module.

Name your parameters in a consistent thing_property pattern, such as package_ensure. Consistency in
names helps users understand your parameters and aids in troubleshooting and collaborative development. If you
have a parameter that manages the entire installation of a package, you can use the package_manage convention.
The package_manage pattern allows you to wrap all of the resources in an if $package_manage {} test, as
shown in this ntp example:

class ntp::install {

 if $ntp::package_manage {
 package { $ntp::package_name:
 ensure => $ntp::package_ensure,
 }
 }
}

To make sure users can customize your module as needed, add parameters. Do not hardcode data in your module,
because this makes it inflexible and harder to use in even slightly different circumstances. For the same reason, avoid
adding parameters that allow users to override templates. When you allow template overrides, users can override your
template with a custom template containing additional hardcoded parameters. Instead, it's better to add flexible, user
configurable parameters as needed.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 992

For an example of a module that offers many parameters to increase flexibility, see the puppetlabs-apache module.

Ordering

Base all order-related dependencies (such as require and before) on classes rather than resources. Class-
based ordering allows you to isolate the implementation details of each class. For example, rather than specifiying
require for several packages, you can use one class dependency. This allows you to make adjustments to the
module::install class only, instead of adjusting multiple class manifests:

file { 'configuration':
 ensure => present,
 require => Class['module::install'],
 }

Containment

Ensure that your main classes explicitly contain any subordinate classes they declare. Classes do not automatically
contain the classes they declare, because classes can be declared in several places via include and similar
functions. If your classes contain the subordinate classes, it makes it easier for other modules to form ordering
relationships with your module.

To contain classes, use the contain function. For example, the puppetlabs-ntp module uses containment in
the main ntp class:

contain ntp::install
contain ntp::config
contain ntp::service

Class['ntp::install']
-> Class['ntp::config']
~> Class['ntp::service']

For more information about containment, see the containment documentation.

Dependencies

If your module's functionality depends on another module, list these dependencies in the module and include them
directly in the module's main class with an include statement. This ensures that the dependency is included in the
catalog. List the dependency to the module's metadata.json file and the .fixtures.yml file used for RSpec
unit testing.

Testing modules

Test your module to make sure that it works in a variety of conditions and that its options and parameters work
together. PDK includes tools for validating and running unit tests on your module, including RSpec, RSpec Puppet,
and Puppet Spec Helper.

Write unit tests to verify that your module works as intended in a variety of circumstances. For example, to ensure
that the module works in different operating systems, write tests that call the osfamily fact to verify that the
package and service exist in the catalog for each operating system your module supports.

To learn more about how to write unit tests, see the RSpec testing tutorial. For more information on testing tools, see
the tools list below.

rspec-puppet

Extends the RSpec testing framework to understand and work with Puppet catalogs, the artifact it specializes in
testing. This allows you to write tests that verify that your module works as intended. This tool is included in
PDK.

© 2024 Puppet, Inc., a Perforce company

http://forge.puppet.com/puppetlabs/apache
http://rspec-puppet.com/tutorial

Puppet | Developing Puppet code | 993

For example, you can call facts, such as osfamily, with RSpec, iterating over a list of operating systems to
make sure that the package and service exist in the catalog for every operating system your module supports.

To learn more about rspec-puppet use and unit testing, see the rspec-puppet page.

puppetlabs_spec_helper

Automates some of the tasks required to test modules. This is especially useful in conjunction with rspec-
puppet, because puppetlabs_spec_helper provides default Rake tasks that allow you to standardize
testing across modules. It also provides some code to connect rspec-puppet with modules. This tool is
included in PDK.

To learn more, see the puppetlabs_spec_helper project.

beaker-rspec

An acceptance and integration testing framework. It provisions one or more virtual machines on various
hypervisors (such as Vagrant) and then checks the result of applying your module in a realistic environment. To
learn more, see the beaker-spec project.

serverspec

Provides additional testing constructs (such as be_running and be_installed) for beaker-rspec.
Serverspec allows you to test against different distributions by executing test commands locally. To learn more,
see the Serverspec site.

Documenting your module

Document your module's use cases, usage examples, and parameter details with README.md and REFERENCE.md
files. In the README, explain why and how users would use your module, and provide usage examples. Use Puppet
Strings to create the REFERENCE, which is a detailed list of information about your module's classes, defined types,
functions, tasks, task plans, and resource types and providers. For more about writing your README and creating the
REFERENCE, see our module documentation guide and the Strings documentation.

Versioning your module

Whenever you make changes to your module, update the version number. Version your module semantically to help
users understand the level of changes in your updated module. To learn more about the specific rules of semantic
versioning, see the semantic versioning specification.

After you've decided on the new version number, adjust the version number in the metadata.json file. This
allows you to create a list of dependencies in the `metadata.json` file of your modules with specific versions of
dependent modules, which ensures your module isn't used with an old dependency that won't work. Versioning also
enables workflow management by allowing you to easily use different versions of modules in different environments.

Releasing your module

Publish your modules on the Forge to share your modules with other Puppet users. Sharing modules allows other
users to not only download and use your module to solve their infrastructure problems, but also to contribute their
own improvements to your modules. Sharing modules fosters community among Puppet users, and helps improve
the quality of modules available to everyone. To learn how to publish your modules to the Forge, see the module
publishing documentation.

Module classes
A typical module contains a main module class, as well as classes for managing installation, configuration, and the
running state of the managed software. The puppetlabs-ntp module provides examples of the classes in such a
module structure.

module

The main class of any module shares the name of the module, but the file itself is named init.pp. This class is
the module's main interface point with Puppet. If possible, make the main class the only parameterized class in your

© 2024 Puppet, Inc., a Perforce company

http://rspec-puppet.com/
https://github.com/puppetlabs/puppetlabs_spec_helper
https://github.com/puppetlabs/beaker-rspec
https://serverspec.org/
https://semver.org

Puppet | Developing Puppet code | 994

module. Limiting the parameterized classes to only the main class means that you only have to include a single
class to control usage of the entire module. This class provides sensible defaults so that a user can get going by just
declaring the main class with include module.

For instance, the main ntp class in the puppetlabs-ntp module is the only parameterized class in the module:

class ntp (
 Boolean $broadcastclient,
 Stdlib::Absolutepath $config,
 Optional[Stdlib::Absolutepath] $config_dir,
 String $config_file_mode,
 Optional[String] $config_epp,
 Optional[String] $config_template,
 Boolean $disable_auth,
 Boolean $disable_dhclient,
 Boolean $disable_kernel,
 Boolean $disable_monitor,
 Optional[Array[String]] $fudge,
 Stdlib::Absolutepath $driftfile,
 ...

module::install

The install class must be located in the install.pp file. It contains all of the resources related to getting the
software that the module manages onto the node. The install class must be named module::install. In the
puppetlabs-ntp module, this class is private, which means users do not interact with the class directly.

class ntp::install {

 if $ntp::package_manage {
 package { $ntp::package_name:
 ensure => $ntp::package_ensure,
 }
 }
}

module::config

Place the resources related to configuring the installed software in a config class. The config class must be named
module::config and must be located in the config.pp file. In the puppetlabs-ntp module, this class is
private, which means users do not interact with the class directly.

class ntp::config {

 # The servers-netconfig file overrides NTP config on SLES 12, interfering
 with our configuration.
 if $facts['operatingsystem'] == 'SLES' and
 $facts['operatingsystemmajrelease'] == '12' {
 file { '/var/run/ntp/servers-netconfig':
 ensure => 'absent'
 }
 }

 if $ntp::keys_enable {
 case $ntp::config_dir {
 '/', '/etc', undef: {}
 default: {
 file { $ntp::config_dir:
 ensure => directory,
 owner => 0,
 group => 0,

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 995

 mode => '0775',
 recurse => false,
 }
 }
 }

 file { $ntp::keys_file:
 ensure => file,
 owner => 0,
 group => 0,
 mode => '0644',
 content => epp('ntp/keys.epp'),
 }
 }
...

module::service

Put the remaining service resources, and anything else related to the running state of the software in the service
class. The service class must be named module::service and must be located in the service.pp file. In the
puppetlabs-ntp module, this class is private, which means users do not interact with the class directly.

class ntp::service {

 if ! ($ntp::service_ensure in ['running', 'stopped']) {
 fail('service_ensure parameter must be running or stopped')
 }

 if $ntp::service_manage == true {
 service { 'ntp':
 ensure => $ntp::service_ensure,
 enable => $ntp::service_enable,
 name => $ntp::service_name,
 provider => $ntp::service_provider,
 hasstatus => true,
 hasrestart => true,
 }
 }
}

Module metadata
When you author a module, it must contain certain metadata in a metadata.json file, which contains important
information that Puppet, the Forge, and your module's users rely on.

The metadata.json file is located in the module's main directory, outside any subdirectories. If you created
your module with Puppet Development Kit (PDK), the metadata.json file is already created and contains the
information you provided during the module creation interview. If you skipped the interview, the module metadata is
populated with PDK default values. You can manually edit the values in the metadata.json file as needed.

The Forge requires modules to contain the metadata.json file. The Forge uses the metadata to create
the module's information page and to provide important information to users installing the module. The
metadata.json file uses standard JSON syntax and contains a single JSON object, mapping keys to values.

metadata.json example

{
 "name": "puppetlabs-ntp",
 "version": "6.1.0",
 "author": "puppetlabs",
 "summary": "Installs, configures, and manages the NTP service.",
 "license": "Apache-2.0",

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 996

 "source": "https://github.com/puppetlabs/puppetlabs-ntp",
 "project_page": "https://github.com/puppetlabs/puppetlabs-ntp",
 "issues_url": "https://tickets.puppetlabs.com/browse/MODULES",
 "dependencies": [
 { "name":"puppetlabs/stdlib","version_requirement":">= 4.13.1 < 5.0.0" }
],
 "data_provider": "hiera",
 "operatingsystem_support": [
 {
 "operatingsystem": "RedHat",
 "operatingsystemrelease": [
 "5",
 "6",
 "7"
]
 },
 {
 "operatingsystem": "CentOS",
 "operatingsystemrelease": [
 "5",
 "6",
 "7"
]
 }
],
 "requirements": [
 {
 "name": "puppet",
 "version_requirement": ">= 4.5.0 < 5.0.0"
 }
]
}

Specifying dependencies

If your module depends on functionality from another module, specify this in the "dependencies" key of the
metadata.json file. The "dependencies" key accepts an array of hashes. This key is required, but if your
module has no dependencies, you can pass an empty array.

Dependencies are not added to the metadata during module creation, so you must edit your metadata.json file
to include dependency information. For information about how to format dependency versions, see the related topic
about version specifiers in module metadata.

The hash for each dependency must contain the "name" and "version_requirement" keys. For example:

"dependencies": [
 { "name": "puppetlabs/stdlib", "version_requirement": ">= 3.2.0 <
 5.0.0" },
 { "name": "puppetlabs/firewall", "version_requirement": ">= 0.0.4" },
 { "name": "puppetlabs/apt", "version_requirement": ">= 1.1.0 < 2.0.0" },
 { "name": "puppetlabs/concat", "version_requirement": ">= 1.0.0 < 2.0.0" }
]

When installing modules with the puppet module install command, Puppet installs any missing
dependencies. When installing modules with Code Manager and the Puppetfile, dependencies are not automatically
installed, so they must be explicitly specified in the Puppetfile.

Specifying Puppet version requirements

The requirements key specifies external requirements for the module, particularly the Puppet version required.
Although you can express any requirement here, the Forge module pages and search function support only the
"puppet" value, which specifies the Puppet version.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 997

The "requirements" key accepts an array of hashes with the following keys:

• "name": The name of the requirement.
• "version_requirement": A semantic version range, including lower and upper version bounds.

For example, this key specifies that the module works with any Puppet version of 5.5.0 or greater, but not with Puppet
6 or later:

"requirements": [
 {"name": "puppet”, “version_requirement”: ">= 5.5.0 < 6.0.0"}
]

Important: The Forge requires both lower and upper bounds for the Puppet version requirement. If you upload a
module that does not specify an upper bound, the Forge adds an upper bound of the next major version. For example,
if you upload a module that specifies a lower bound of 5.5.0 and no upper bound, the Forge applies an upper bound of
< 6.0.0 .

For Puppet Enterprise versions, specify the core Puppet version included in that version of PE. For example, PE
2017.1 contained Puppet 4.9. Do not express requirements for Puppet versions earlier than 3.0, because those versions
do not follow semantic versioning. For information about formatting version requirements, see the related topic about
version specifiers in module metadata.

Specifying operating system compatibility

Specify the operating system your module is compatible with in the operatingsystem_support key. This key
accepts an array of hashes, where each hash contains operatingsystem and operatingsystemrelease
keys. The Forge uses these keys for search filtering and to display versions on module pages.

• The operatingsystem key accepts a string. The Forge uses this value for search filters.
• The operatingsystemrelease accepts an array of strings. The Forge displays these versions on module

pages, and you can format them in whatever way makes sense for the operating system in question.

For example:

"operatingsystem_support": [
 {
 "operatingsystem":"RedHat",
 "operatingsystemrelease":["5.0", "6.0"]
 },
 {
 "operatingsystem": "Ubuntu",
 "operatingsystemrelease": [
 "12.04",
 "10.04"
]
 }
]

Specifying versions

Your module metadata specifies your own module's version as well as the versions for your module's dependencies
and requirements. Version your module semantically; for details about semantic versioning (also known as SemVer),
see the Semantic Versioning specification. This helps others know what to expect from your module when you make
changes.

When you specify versions for a module dependencies or requirements, you can specify multiple versions.

If your module is compatible with only one major or minor version, use the semantic major and minor version
shorthand, such as 1.x or 1.2.1. If your module is compatible with multiple major versions, you can set a supported
version range.

© 2024 Puppet, Inc., a Perforce company

http://semver.org

Puppet | Developing Puppet code | 998

For example, 1.x indicates that your module is compatible with any minor update of version 1, but is not compatible
with version 2 or larger. Specifying a version range such as >= 1.0.0 < 3.0.0 indicates the the module is compatible
with any version that greater than or equal to 1.0.0 and less than 3.0.0.

Always set an upper version boundary in your version range. If your module is compatible with the most recent
released versions of a dependencies, set the upper bound to exclude the next, unreleased major version. Without this
upper bound, users might run into compatibility issues across major version boundaries, where incompatible changes
occur.

For example, to accept minor updates to a dependency but avoid breaking changes, specify a major version. This
example accepts any minor version of puppetlabs-stdlib version 4:

"dependencies": [
 { "name": "puppetlabs/stdlib", "version_requirement": "4.x" },
]

In the example below, the current version of puppetlabs-stdlib is 4.8.0, and version 5.0.0 is not yet released.
Because 5.0.0 might have breaking changes, the upper bound of the version dependency is set to that major version.

"dependencies": [
 { "name": "puppetlabs/stdlib", "version_requirement": ">= 3.2.0 < 5.0.0" }
]

The version specifiers allowed in module dependencies are:

Format Description

1.2.3 A specific version.

1.x A semantic major version. This example includes 1.0.1
but not 2.0.1.

1.2.x A semantic major and minor version. This example
includes 1.2.3 but not 1.3.0.

> 1.2.3 Greater than the specified version.

< 1.2.3 Less than the specified version.

>= 1.2.3 Greater than or equal to the specified version.

<= 1.2.3 Less than or equal to the specified version.

>= 1.0.0 < 2.0.0 Range of versions; both conditions must be satisfied.
This example includes version 1.0.1 but not version
2.0.1.

Note: You cannot mix semantic versioning shorthand (such as .x) with syntax for greater than or less than
versioning. For example, you could not specify ">= 3.2.x < 4.x"

Adding tags

Optionally, you can add tags to your metadata to help users find your module in Forge searches. Generally, include
four to six tags for any given module.

Pass tags as an array, like ["msyql", "database", "monitoring"].Tags cannot contain whitespace.
Certain tags are prohibited, such as profanity or tags resembling the $::operatingsystem fact (such as
"redhat", "rhel", "debian", " windows", or "osx"). Use of prohibited tags lowers your module's quality
score on the Forge.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 999

Available metadata.json keys
Required and optional metadata.json keys specify metadata for your module.

Key Required? Value Example

"name" Required. The full name of your
module, including your
Forge username, in the
format username-
module.

"puppetlabs-
stdlib"

"version" Required. The current version of your
module. This must follow
semantic versioning. For
details, see the Semantic
Versioning specification.

"1.2.1"

"author" Required. The person who gets credit
for creating the module. If
absent, this key defaults to
the username portion of the
name key.

"puppetlabs"

"license" Required. The license under which
your module is made
available. License metadata
must match an identifier
provided by SPDX. For a
complete list, see the SPDX
license list.

"Apache-2.0"

"summary" Required. A one-line description of
your module.

"Standard library
of resources for
Puppet modules."

© 2024 Puppet, Inc., a Perforce company

http://semver.org/spec/v1.0.0.html
http://semver.org/spec/v1.0.0.html
https://spdx.org/licenses/
https://spdx.org/licenses/

Puppet | Developing Puppet code | 1000

Key Required? Value Example

"source" Required. The source repository for
your module.

"https://
github.com/
puppetlabs/
puppetlabs-stdlib"

"dependencies" Required. An array of other
modules that your module
depends on to function.
If the module has no
dependencies, pass an
empty array. See the related
topic about specifying
dependencies for more
details.

"dependencies":
 [
 {
 "name":
 "puppetlabs/
stdlib",

 "version_requirement":
 ">= 4.13.1 <
 6.0.0"
 }
],

"requirements" Optional. A list of external
requirements for your
module, given as an array
of hashes.

"requirements":
 [
 {
 "name":
 "puppet",

 "version_requirement":
 ">= 4.7.0 <
 6.0.0"
 }
],

"project_page" Optional. A link to your module's
website, to be included on
the module's Forge page.

"https://
github.com/
puppetlabs/
puppetlabs-stdlib"

"issues_url" Optional. A link to your module's
issue tracker.

"https://
tickets.puppetlabs.com/
browse/MODULES"

"operatingsystem_support"Optional. An array of hashes listing
the operating systems that
your module is compatible
with. See the topic about
specifying operating
compatibility for details.

{

 "operatingsystem":
 "RedHat",

 "operatingsystemrelease":
 [
 "5",
 "6",
 "7"
]
}

"tags" Optional. An array of four to six key
words to help people find
your module.

["msyql",
"database",
"monitoring",
"reporting"]

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1001

Documenting modules
Document any module you write, whether your module is for internal use only or for publication on the Forge.
Complete, clear documentation helps your module users understand what your module can do and how to use it.

Write your module usage documentation in Markdown, in a README based on our module README template. Use
Puppet Strings to generate reference information for your module's classes, defined types, functions, tasks, task plans,
and resource types and providers.

Use clear and consistent language in your Module documentation. It should be easy to read both on the web and in the
terminal. Whether you are writing your README or code comments for Puppet Strings docs generation, following
some basic formatting guidelines and best writing practices can help make your module documentation great.

Documentation best practices

If you want your documentation to really shine, a few best practices can help make your documentation clear and
readable.

• Use the second person; that is, write directly to the person reading your document. For example, “If you’re
installing the cat module on Windows....”

• Use the imperative; that is, directly tell the user what they must do. For example, "Secure your dog door before
installing the cat module."

• Use the active voice whenever possible. For example, "Install the cat and bird modules on separate instances"
rather than "The cat and bird modules should be installed on separate instances."

• Use the present tense, almost always. Events that regularly occur should be present tense: "This parameter
sets your cat to 'purebred'. The purebred cat alerts you for breakfast at 6 a.m." Use future tense only when you
are specifically referring to something that takes place at a time in the future, such as "The `tail` parameter is
deprecated and will be removed in a future version. Use `manx` instead."

• Avoid subjective words. For example, don't write "It's quick and easy to teach an old cat new tricks." Subjective
words like "quick" and "easy" can frustrate and even alienate a reader who finds teaching a cat difficult or time-
consuming.

• Lists, whether ordered or unordered, make things clearer for the reader. When you're writing about steps
that happen in a sequence, use an ordered list (1, 2, 3…). If order doesn’t matter, like in a list of options or
requirements, use an unordered (bulleted) list.

Related information
Documenting modules with Puppet Strings on page 1005
Produce complete, user-friendly module documentation by using Puppet Strings. Strings uses tags and code
comments, along with the source code, to generate documentation for a module's classes, defined types, functions,
tasks, plans, and resource types and providers.

Puppet Strings style guide on page 1012
To document your module with Puppet Strings, add descriptive tags and comments to your module code. Write
consistent, clear code comments, and include at least basic information about each element of your module (such as
classes or defined types).

Writing the module README
In your README, include basic module information and extended usage examples for the most common use cases.

Your README tells users what your module does and how they can use it. Include reference information as a
separate REFERENCE.md file in the module's root directory.

Important: The Reference section of the README is deprecated.Puppet Strings generates a REFERENCE.md file
containing all the reference information for your module, including a complete list of your module's classes, defined
types, functions, resource types and providers, Puppet tasks and plans, along with parameters for each. See the topic
about creating reference documentation for details.

Write your README in Markdown and use the .md or .markdown extension for the file. If you used Puppet
Development Kit (PDK), you already have a copy of the README template in .md format in your module. For more
information about Markdown usage, see the Commonmark reference.

© 2024 Puppet, Inc., a Perforce company

http://commonmark.org/help/

Puppet | Developing Puppet code | 1002

Use the following sections in your README:

Description

What the module does and why it is useful.

Setup

Prerequisites for module use and getting started information.

Usage

Instructions and examples for common use cases or advanced configuration options.

Reference

If the module contains facts or type aliases, include them in a short supplementary reference section. All other
reference information, such as classes and their parameters, are in the REFERENCE.md file generated by Strings.

Limitations

OS compatibility and known issues.

Development

Guide for contributing to the module.

Table of contents

The table of contents helps your users find their way around your module README.

Start with the module name as a Level 1 heading at the top of the module, followed by "Table of Contents" as
a Level 4 heading. Under the table of contents heading, include a numbered list of top-level sections, with any
necessary subsections in a bulleted list below the section heading. Link each section to its corresponding heading in
the README.

modulename

Table of Contents

1. [Module Description - What the module does and why it is useful](#module-
description)
1. [Setup - The basics of getting started with [modulename]](#setup)
 * [What [modulename] affects](#what-[modulename]-affects)
 * [Setup requirements](#setup-requirements)
 * [Beginning with [modulename]](#beginning-with-[modulename])
1. [Usage - Configuration options and additional functionality](#usage)
1. [Limitations - OS compatibility, etc.](#limitations)
1. [Development - Guide for contributing to the module](#development)

Module description

In your module description, briefly tell users why they might want to use your module. Explain what your module
does and what kind of problems users can solve with it.

The short description helps the user decide if your module is what they want. What are the most common use cases
for your module? Does your module just install software? Does it install and configure it? Give your user information
about what to expect from the module.

Module description

The `cat` module installs, configures, and maintains your cat in both
 apartment and residential house settings.

The cat module automates the installation of a cat to your apartment or
 house, and then provides options for configuring the cat to fit your
 environment's needs. After it's installed and configured, the cat module

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1003

 automates maintenance of your cat through a series of resource types and
 providers.

Setup section

In the setup section, detail how your user can successfully get your module functioning. Include requirements, steps
to get started, and any other information users might need to know before they start using your module.

Module installation instructions are covered both on the module's Forge page and in the Puppet docs, so don't reiterate
them here. In this section, include the following subsections, as applicable:

What <modulename> affects

Include this section only if:

• The module alters, overwrites, or otherwise touches files, packages, services, or operations other than the
named software; OR

• The module's general performance can overwrite, purge, or otherwise remove entries, files, or directories in a
user's environment. For example:

Setup

What cat affects

* Your dog door might be overwritten if not secured before
 installation.

Setup requiremements

Include this section only if the module requires additional software or some tweak to a user's environment. For
instance, the puppetlabs-firewall module uses Ruby-based providers which required pluginsync to
be enabled.

Beginning with <modulename>

Always include this section to explain the minimum steps required to get the module up and running in a user's
environment. You can use basic proof of concept use cases here; it doesn't have to be something you would run in
production. For simple modules, "Declare the main `::cat` class" is enough.

Usage section

Include examples for common use cases in the usage section. Provide usage information and code examples to show
your users how to use your module to solve problems.

If there are many use cases for your module, include three to five examples of the most important or common tasks
a user can accomplish. The usage section is a good place to include more complex examples that involve different
types, classes, and functions working together. For example, the usage section for the puppetlabs-apache
module includes an example for setting up a virtual host with SSL, which involves several classes.

Usage

You can manage all interaction with your cat through the main `cat`
 class. With the default options, the module installs a basic cat with no
 optimizations.

I just want cat, what's the minimum I need?

```
include '::cat'
```

I want to configure my lasers

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1004

Use the following to configure your lasers for a random-pattern, 20-minute
 playtime at 3 a.m. local time.

```
    class { 'cat':
      laser => {
        pattern    => 'random',
        duration   => '20',
        start_time => '0300',
      }
    }
```

Limitations section

In the limitations section, list any incompatibilities, known issues, or other warnings.

Limitations

This module cannot be used with the smallchild module.

Development section

In the development section, tell other users the ground rules for contributing to your project and explain how they
should submit their work.

Creating reference documentation
List reference information --- a complete list of classes, defined types, functions, resource types and providers, tasks,
and plans --- in a separate REFERENCE.md file in the root directory of your module.

Use Puppet Strings to generate this documentation based on your comments and module code. If you aren't yet using
Strings to generate documentation, you can manually create a REFERENCE.md file.

Tip: Previously, we recommended that module authors include reference information in the README itself.
However, the reference section often became quite long and difficult to maintain. Moving reference information to a
separate file keeps the README more readable, and using Strings to generate this file makes it easier to maintain.

The Forge displays information from a module's REFERENCE.md file in a reference tab on the module's detail page,
so the information remains easily accessible to users. To create a REFERENCE.md file for your module, add Strings
comments to the code for each of your classes, defined types, functions, task plans, and resource types and providers,
and then run Strings to generate documentation in Markdown. You can create a REFERENCE.md file manually, but
remember that if you then generate a REFERENCE.md with Strings, it overwrites any existing REFERENCE.md file.

For details on adding comments to your code, see the Strings style guide. For instructions on how to install and use
Strings, see the topics about Puppet Strings.

Manually writing reference documentation

If you aren't using Strings yet to generate your reference documentation, you can manually create a REFERENCE.md
file listing each of your classes, defined types, resource types and providers, functions, and facts, along with any
parameters.

To manually document reference information, start your reference document with a small table of contents that first
lists the classes, defined types, and resource types of your module. If your module contains both public and private
classes or defined types, list the public and the private separately. Include a brief description of what these items do in
your module.

Reference

Classes

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1005

Public classes

*[`pet::cat`](#petcat): Installs and configures a cat in your environment.

Private classes

*[`pet::cat::install`]: Handles the cat packages.
*[`pet::cat::configure`]: Handles the configuration file.

After this table of contents, list the parameters, providers, or features for each element (class, defined type, function,
and so on) of your module. Be sure to include valid or acceptable values and any defaults that apply. Each element in
this list must include:

• The data type, if applicable.
• A description of what the element does.
• Valid values, if the data type doesn't make it obvious.
• Default value, if any.

`pet::cat`

Parameters

`purr`

Data type: Boolean.

Enables purring in your cat.

Default: `true`.

`meow`

Enables vocalization in your cat. Valid options: 'string'.

Default: 'medium-loud'.

`laser`

Specifies the type, duration, and timing of your cat's laser show.

Default: `undef`.

Valid options: A hash with the following keys:

* `pattern` - accepts 'random', 'line', or a string mapped to a custom
 laser_program, defaults to 'random'.
* `duration` - accepts an integer in seconds, defaults to '5'.
* `frequency` - accepts an integer, defaults to 1.
* `start_time` - accepts an integer specifying the 24-hr formatted start
 time for the program.

Documenting modules with Puppet Strings
Produce complete, user-friendly module documentation by using Puppet Strings. Strings uses tags and code
comments, along with the source code, to generate documentation for a module's classes, defined types, functions,
tasks, plans, and resource types and providers.

If you are a module author, add descriptive tags and comments with the code for each element (class, defined type,
function, or plan) in your module. Strings extracts information from the module's Puppet and Ruby code, such as
data types and attribute defaults. Whenever you update code, update your documentation comments at the same time.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1006

Both module users and authors can generate module documentation with Strings. Even if the module contains no code
comments, Strings generates minimal documentation based on the information it can extract from the code.

Strings outputs documentation in HTML, JSON, or Markdown formats.

• HTML output, which you can read in any web browser, includes the module README and reference
documentation for all classes, defined types, functions, tasks, task plans, and resource types.

• JSON output includes the reference documentation only, and writes it to either STDOUT or to a file.
• Markdown output includes the reference documentation only, and writes the information to a REFERENCE.md

file.

Puppet Strings is based on the YARD Ruby documentation tool. To learn more about YARD, see the YARD
documentation.

Related information
Documenting modules on page 1001
Document any module you write, whether your module is for internal use only or for publication on the Forge.
Complete, clear documentation helps your module users understand what your module can do and how to use it.

Puppet Strings style guide on page 1012
To document your module with Puppet Strings, add descriptive tags and comments to your module code. Write
consistent, clear code comments, and include at least basic information about each element of your module (such as
classes or defined types).

Install Puppet Strings
Before you can generate module documentation, you must install the Puppet Strings gem.

Before you begin

Puppet Strings requires:

• Ruby 2.1.9 or newer.
• Puppet 4.0 or newer.
• The yard Ruby gem.

1. If you don't have the yard gem installed yet, install it by running gem install yard

2. Install the puppet-strings gem by running gem install puppet-strings

Generating documentation with strings
Generate documentation in HTML, JSON, or Markdown by running Puppet Strings.

Strings creates reference documentation based on the code and comments in all Puppet and Ruby source files in the
following module subdirectories:

• manifests/

• functions/

• lib/

• types/

• tasks/

• plans/

By default, Strings outputs HTML of the reference information and the module README to the module's doc/
directory. You can open and read the generated HTML documentation in any browser. If you specify JSON or
Markdown output, documentation includes the reference information only. Strings writes Markdown output to
a REFERENCE.md file and sends JSON output to STDOUT , but you can specify a custom file destination for
Markdown and JSON output.

Generate and view documentation in HTML
To generate HTML documentation for a Puppet module, run Strings from that module's directory.

1. Change directory into the module by running cd /modules/<MODULE_NAME>

© 2024 Puppet, Inc., a Perforce company

https://yardoc.org/
https://yardoc.org/

Puppet | Developing Puppet code | 1007

2. Generate documentation with the puppet strings command:

a) To generate the documentation for the entire module, run puppet strings
b) To generate the documentation for specific files or directories in a module, run the puppet strings

generate subcommand, and specify the files or directories as a space-separated list.

For example:

puppet strings generate first.pp second.pp

puppet strings generate 'modules/apache/lib/**/*.rb' 'modules/apache/
manifests/**/*.pp' 'modules/apache/functions/**/*.pp'

Strings outputs HTML to the doc/ directory in the module. To view the generated HTML documentation for a
module, open the index.html file in the module's doc/ folder. To view HTML documentation for all of your
local modules, run puppet strings server from any directory. This command serves documentation for
all modules in the module path at http://localhost:8808. To learn more about the modulepath, see the
modulepath documentation.

Generate and view documentation in Markdown
To generate reference documentation in Markdown, specify the markdown format when you run Puppet Strings.

The reference documentation includes descriptions, usage details, and parameter information for classes, defined
types, functions, tasks, plans, and resource types and providers.

Strings generates Markdown output as a REFERENCE.md file in the main module directory, but you can specify a
different filename or location with command line options.

1. Change directory into the module: cd /modules/<MODULE_NAME>

2. Run the command: puppet strings generate --format markdown . To specify a different file, use
the --out option and specify the path and filename:

puppet strings generate --format markdown --out docs/INFO.md

View the Markdown file by opening it in a text editor or Markdown viewer.

Generate documentation in JSON
To generate reference documentation as JSON output to a file or to standard output, specify the json format when
you run Strings.

Generate JSON output if you want to use the documentation in a custom application that reads JSON. By default,
Strings prints JSON output to STDOUT. For details about Strings JSON output, see the Strings JSON schema.

1. Change directory into the module: cd /modules/<MODULE_NAME>

2. Run the command: puppet strings generate --format json . To generate JSON documentation to
a file instead, use the --out option and specify a filename:

puppet strings generate --format json --out documentation.json

Publish module documentation to GitHub Pages
To make your module documentation available on GitHub Pages, generate and publish HTML documentation with a
Strings Rake task.

The strings:gh_pages:update Rake task is available in the puppet-strings/tasks directory. This
Rake task keeps the gh-pages branch up to date with your current code, performing the following actions:

1. Creates a doc directory in the root of your project, if it doesn't already exist.
2. Creates a gh-pages branch of the current repository, if it doesn't already exist.
3. Checks out the gh-pages branch of the current repository.
4. Generates Strings HTML documentation.

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppet-strings/blob/master/JSON.md

Puppet | Developing Puppet code | 1008

5. Commits the documentation file and pushes it to the gh-pages branch with the --force flag.

To learn more about publishing on GitHub Pages, see the GitHub Pages documentation.

1. If this is the first time you are running this task, you must first update your Gemfile and Rakefile.

a) Add the following to your Gemfile to use puppet-strings: ruby gem 'puppet-strings'
b) Add the following to your Rakefile to use the puppet-strings tasks: ruby require 'puppet-

strings/tasks'

2. To generate, push, and publish your module's Strings documentation, run strings:gh_pages:update

The documentation is published after the task pushes the updated documentation to GitHub Pages.

Puppet Strings command reference
Modify the behavior of Puppet Strings by specifying command actions and options.

puppet strings command

Generates module documentation based on code and code comments. By default, running puppet strings
generates HTML documentation for a module into a ./doc/ directory within that module.

To pass options or arguments, such as specifying Markdown or JSON output, use the generate action.

Usage:

puppet strings [--generate] [--server]

Action Description

generate Generates documentation with any specified parameters,
including format and output location.

server Serves documentation locally at http://
localhost:8808 for all modules in the modulepath.
For information about the modulepath, see the
modulepath documentation.

puppet strings generate action

Generates documentation with any specified parameters, including format and output location.

Usage:

puppet strings generate [--format <FORMAT>][--out <DESTINATION>]
 [<ARGUMENTS>]

For example:

puppet strings generate --format markdown --out docs/info.md

puppet strings generate manifest1.pp manifest2.pp

Option Description Values Default

--format Specifies a format for
documentation.

Markdown, JSON If not specified, outputs
HTML documentation.

© 2024 Puppet, Inc., a Perforce company

https://pages.github.com/

Puppet | Developing Puppet code | 1009

Option Description Values Default

--out Specifies an output location
for documentation.

A valid directory location
and filename.

If not specified, outputs to
default locations depending
on format:

• HTML: ./doc/
• Markdown: main

module directory)
• JSON: STDOUT

Filenames or directory
paths

Outputs documentation
for only specified files or
directories.

Valid filenames or
directory paths

If not specified, outputs
documentation for the
entire module.

--debug, -d Logs debug information. None. If not specified, does not
log debug information.

--help Displays help
documentation for the
command.

None. If specified, returns help
information.

--markup <FORMAT> The markup format to use
for documentation

• "markdown"
• "textile"
• "rdoc"
• "ruby"
• "text"
• "html"
• "none"

If no --format is
specified, outputs HTML.

--verbose, -v Logs verbosely. None. If not specified, logs basic
information.

puppet strings server action

Serves documentation locally at http://localhost:8808 for all modules in the module path.

Usage:

puppet strings server [--markup <FORMAT>][[module_name]...][--modulepath
 <PATH>]

For example:

puppet strings server --modulepath path/to/modules

puppet strings server concat

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1010

Option Description Values Default

--markup <FORMAT> The markup format to use
for documentation

• "markdown"
• "textile"
• "rdoc"
• "ruby"
• "text"
• "html"
• "none"

If no --format is
specified, outputs HTML.

--debug, -d Logs debug information. None. If not specified, does not
log debug information.

--help Displays help
documentation for the
command.

None. If specified, returns help
information.

Module name Generates documentation
for the named module only.

A valid module name. If not specified, generates
documentation for all
modules in the modulepath.

--modulepath Puppet option for setting
the modulepath.

A valid path. Defaults to the module
path specified in the
puppet.conf file.

--verbose, -v Logs verbosely. None. If not specified, logs basic
information.

Available Strings tags

@author

List the author or authors of a class, module, or method.

@author Foo Bar
class MyClass; end

@api

Describes the resource as belonging to the private or public API. To mark a module element, such as a class, as
private, specify as private:

@api private

@example

Shows an example snippet of code for an object. The first line is an optional title, and any subsequent lines are
automatically formatted as a code snippet. Use for specific examples of a given component. Use one example tag
per example.

@param

Documents a parameter with a given name, type and optional description.

@!puppet.type.param

Documents dynamic type parameters. See the documenting resource types in the Strings style guide for detailed
information.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1011

@!puppet.type.property

Documents dynamic type properties. See the documenting resource types in the Strings style guide for detailed
information.

@option

Used with a @param tag to defines what optional parameters the user can pass in an options hash to the method.
For example:

 # @param [Hash] opts
 # List of options
 # @option opts [String] :option1
 # option 1 in the hash
 # @option opts [Array] :option2
 # option 2 in the hash

@raise

Documents any exceptions that can be raised by the given component. For example:

 # @raise PuppetError this error is raised if x

@return

Describes the return value (and type or types) of a method. You can list multiple return tags for a method if the
method has distinct return cases. In this case, begin each case with "if". For example:

An example 4.x function.
 Puppet::Functions.create_function(:example) do
 # @param first The first parameter.
 # @param second The second parameter.
 # @return [String] If second argument is less than 10, the name of
 one item.
 # @return [Array] If second argument is greater than 10, a list of
 item names.
 # @example Calling the function.
 # example('hi', 10)
 dispatch :example do
 param 'String', :first
 param 'Integer', :second
 end
 # ...
 end

@see

Adds "see also" references. Accepts URLs or other code objects with an optional description at the end. The
URL or object is automatically linked by YARD and does not need markup formatting. Appears in the generated
documentation as a "See Also" section. Use one tag per reference, such as a website or related method.

@since

Lists the version in which the object was first added. Strings does not verify that the specified version exists. You
are responsible for providing accurate information.

@summary

A description of the documented item, of 140 characters or fewer.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1012

Puppet Strings style guide
To document your module with Puppet Strings, add descriptive tags and comments to your module code. Write
consistent, clear code comments, and include at least basic information about each element of your module (such as
classes or defined types).

Strings uses YARD-style tags and comments, along with the structure of the module code, to generate complete
reference information for your module. Whenever you update your code, update your documentation comments at the
same time.

This style guide applies to:

• Puppet Strings version 2.0 or later
• Puppet 4.0 or later

For information about the specific meaning of the terms 'must,' 'must not,' 'required,' 'should,' 'should not,'
'recommend,' 'may,' and 'optional,' see RFC 2119.

The module README

In your module README, include basic module information and extended usage examples for common use cases.
The README tells users what your module does and how to use it. Strings generates reference documentation, so
typically, there is no need to include a reference section in your README. Strings generates information for type
aliases or facts.

Include the following sections in the README:

Module description

What the module does and why it is useful.

Setup

Prerequisites for module use and getting started information.

Usage

Instructions and examples for common use cases or advanced configuration options.

Reference

Only if the module contains facts or type aliases, include a short Reference section. Other reference information
is handled by Strings, so don't repeat it in the README.

Limitations

Operating system compatibility and known issues.

Development

Guidelines for contributing to the module

Comment style guidelines

Strings documentation comments inside module code follow these rules and guidelines:

• Place an element's documentation comment immediately before the code for that element. Do not put a blank line
between the comment and its corresponding code.

• Each comment tag (such as @example) may have more than one line of comments. Indent additional lines with
two spaces.

• Keep each comment line to no more than 140 characters, to improve readability.
• Separate comment sections (such as @summary, @example, or the @param list) with a blank comment line

(that is, a # with no additional content), to improve readability.
• Untagged comments for a given element are output in an overview section that precedes all tagged information for

that code element.
• If an element, such as a class or parameter, is deprecated, indicate it in the description for that element with

Deprecated in bold.

© 2024 Puppet, Inc., a Perforce company

https://www.ietf.org/rfc/rfc2119.txt

Puppet | Developing Puppet code | 1013

Classes and defined types

Document each class and defined type, along with its parameters, with comments before the code. List the class and
defined type information in the following order:

1. A @summary tag, a space, and then a summary describing the class or defined type.
2. Other tags such as @see, @note, or @api private.
3. Usage examples, each consisting of:

a. An @example tag with a description of a usage example on the same line.
b. A code example showing how the class or defined type is used. Place this example directly under the

@example tag and description, indented two spaces.
4. One @param tag for each parameter in the class or defined type. See the parameters section for formatting

guidelines.

Parameters

Add parameter information as part of any class, defined type, or function that accepts parameters. Include the
parameter information in the following order:

1. The @param tag, a space, and then the name of the parameter.
2. A description of what the parameter does. This may be either on the same line as the @param tag or on the next

line, indented with two spaces.
3. Additional information about valid values that is not clear from the data type. For example, if the data type is

[String], but the value must specifically be a path, say so here.
4. Other information about the parameter, such as warnings or special behavior. For example:

@param noselect_servers
Specifies one or more peers to not sync with. Puppet appends
 'noselect' to each matching item in the `servers` array.

Example class

@summary configures the Apache PHP module
#
@example Basic usage
class { 'apache::mod::php':
package_name => 'mod_php5',
source => '/etc/php/custom_config.conf',
php_version => '7',
}
#
@see http://php.net/manual/en/security.apache.php
#
@param package_name
Names the package that installs mod_php
@param package_ensure
Defines ensure for the PHP module package
@param path
Defines the path to the mod_php shared object (.so) file.
@param extensions
Defines an array of extensions to associate with PHP.
@param content
Adds arbitrary content to php.conf.
@param template
Defines the path to the php.conf template Puppet uses to generate the
 configuration file.
@param source
Defines the path to the default configuration. Values include a
 puppet:/// path.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1014

@param root_group
Names a group with root access
@param php_version
Names the PHP version Apache is using.
#
class apache::mod::php (
 $package_name = undef,
 $package_ensure = 'present',
 $path = undef,
 Array $extensions = ['.php'],
 $content = undef,
 $template = 'apache/mod/php.conf.erb',
 $source = undef,
 $root_group = $::apache::params::root_group,
 $php_version = $::apache::params::php_version,
)
 {
 …
 }

Example defined type

@summary
Create and configure a MySQL database.
#
@example Create a database
mysql::db { 'mydb':
user => 'myuser',
password => 'mypass',
host => 'localhost',
grant => ['SELECT', 'UPDATE'],
}
#
@param name
The name of the database to create. (dbname)
@param user
The user for the database you're creating.
@param password
The password for $user for the database you're creating.
@param dbname
The name of the database to create.
@param charset
The character set for the database.
@param collate
The collation for the database.
@param host
The host to use as part of user@host for grants.
@param grant
The privileges to be granted for user@host on the database.
@param sql
The path to the sqlfile you want to execute. This can be single file
 specified as string, or it can be an array of strings.
@param enforce_sql
Specifies whether to execute the sqlfiles on every run. If set to false,
 sqlfiles runs only one time.
@param ensure
Specifies whether to create the database. Valid values are 'present',
 'absent'. Defaults to 'present'.
@param import_timeout
Timeout, in seconds, for loading the sqlfiles. Defaults to 300.
@param import_cat_cmd

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1015

Command to read the sqlfile for importing the database. Useful for
 compressed sqlfiles. For example, you can use 'zcat' for .gz files.

Functions

For custom Ruby functions, place documentation strings immediately before each dispatch call. For functions written
in Puppet, place documentation strings immediately before the function name.

Include the following information for each function:

1. An untagged docstring describing what the function does.
2. One @param tag for each parameter in the function. See the parameters section for formatting guidelines.
3. A @return tag with the data type and a description of the returned value.
4. Optionally, a usage example, consisting of:

a. An @example tag with a description of a usage example on the same line.
b. A code example showing how the function is used. Place this example directly under the @example tag and

description, indented two spaces.

Example Ruby function with one potential return type

An example 4.x function.
Puppet::Functions.create_function(:example) do
 # @param first The first parameter.
 # @param second The second parameter.
 # @return [String] Returns a string.
 # @example Calling the function
 # example('hi', 10)
 dispatch :example do
 param 'String', :first
 param 'Integer', :second
 end

 # ...
end

Example Ruby function with multiple potential return types

If the function has more than one potential return type, specify a @return tag for each. Begin each tag string with
"if" to differentiate between cases.

An example 4.x function.
Puppet::Functions.create_function(:example) do
 # @param first The first parameter.
 # @param second The second parameter.
 # @return [String] If second argument is less than 10, the name of one
 item.
 # @return [Array] If second argument is greater than 10, a list of item
 names.
 # @example Calling the function.
 # example('hi', 10)
 dispatch :example do
 param 'String', :first
 param 'Integer', :second
 end

 # ...
end

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1016

Puppet function example

@param name the name to say hello to.
@return [String] Returns a string.
@example Calling the function.
example(‘world’)
function example(String $name) {
 “hello, $name”
}

Resource types

Add descriptions to the type and its attributes by passing either a here document (or "heredoc") or a short string to the
desc method.

Strings automatically detects much of the information for types, including the parameters and properties, collectively
known as attributes. To document the resource type itself, pass a heredoc to the desc method immediately after
the type definition. Using a heredoc allows you to use multiple lines and Strings comment tags for your type
documentation. For details about heredocs in Puppet, see the topic about heredocs in the language reference.

For attributes, where a short description is usually enough, pass a string to desc in the attribute. As with the @param
tag, keep descriptions to 140 or fewer characters. If you need a longer description for an attribute, pass a heredoc to
desc in the attribute itself.

You do not need to add tags for other method calls. Every other method call present in a resource type is
automatically included and documented by Strings, and each attribute is updated accordingly in the final
documentation. This includes method calls such as defaultto, newvalue, and namevar. If your type
dynamically generates attributes, document those attributes with the @!puppet.type.param and @!
puppet.type.property tags before the type definition. You may not use any other tags before the resource type
definition.

Document the resource type description in the following order:

1. Directly under the type definition, indented two spaces, the desc method, with a heredoc including a descriptive
delimiting keyword, such as DESC.

2. A @summary tag with a summary describing the type.
3. Optionally, usage examples, each consisting of:

a. An @example tag with a description of a usage example on the same line.
b. Code example showing how the type is used. Place this example directly under the @example tag and

description, indented two spaces.

For types created with the resource API, follow the guidelines for standard resource types, but pass the heredoc or
documentation string to a desc key in the data structure. You can include tags and multiple lines with the heredoc.
Strings extracts the heredoc information along with other information from this data structure.

Example resource API type

The heredoc and documentation strings that Strings uses are called out in bold in this code example:

Puppet::ResourceApi.register_type(
 name: 'apt_key',
 docs: <<-EOS,
@summary Fancy new type.
@example Fancy new example.
 apt_key { '6F6B15509CF8E59E6E469F327F438280EF8D349F':
 source => 'http://apt.puppetlabs.com/pubkey.gpg'
 }

This type provides Puppet with the capabilities to

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1017

manage GPG keys needed by apt to perform package validation. Apt has its own
 GPG keyring that can be manipulated through the `apt-key` command.

Autorequires:
If Puppet is given the location of a key file which looks like an absolute
 path this type will autorequire that file.
EOS
 attributes: {
 ensure: {
 type: 'Enum[present, absent]',
 desc: 'Whether this apt key should be present or absent on the target
 system.'**
 },
 id: {
 type: 'Variant[Pattern[/\A(0x)?[0-9a-fA-F]{8}\Z/], Pattern[/
\A(0x)?[0-9a-fA-F]{16}\Z/], Pattern[/\A(0x)?[0-9a-fA-F]{40}\Z/]]',
 behaviour: :namevar,
 desc: 'The ID of the key you want to manage.',**
 },
 # ...
 created: {
 type: 'String',
 behavior: :read_only,
 desc: 'Date the key was created, in ISO format.',**
 },
 },
 autorequires: {
 file: '$source', # will evaluate to the value of the `source`
 attribute
 package: 'apt',
 },
)

Puppet tasks and plans

Strings documents Puppet tasks automatically, taking all information from the task metadata. Document task plans
just as you would a class or defined type, with tags and descriptions in the plan file.

List the plan information in the following order:

1. A @summary tag, a space, and then a summary describing the plan.
2. Other tags such as @see, @note, or @api private.
3. Usage examples, each consisting of:

a. An @example tag with a description of a usage example on the same line.
b. Code example showing how the plan is used. Place this example directly under the @example tag and

description, indented two spaces.
4. One @param tag for each parameter in the plan. See the parameters section for formatting guidelines. For

example:

@summary A simple plan.
#
@param param1
First parameter description.
@param param2
Second parameter description.
@param param3
Third parameter description.
plan mymodule::my_plan(String $param1, $param2, Integer $param3 = 1) {
 run_task('mymodule::lb_remove', $param1, target => $param2)
}

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1018

Publishing modules
To share your module with other Puppet users, get contributions to your modules, and maintain your module releases,
publish your module on the Puppet Forge. The Forge is a community repository of modules, written and contributed
by open source Puppet and Puppet Enterprise users.

To publish your module, you'll:

1. Create a Forge account, if you don't already have one.
2. Prepare your module for packaging.
3. Add module metadata in the metadata.json file.
4. Build an uploadable tarball of your module.
5. Upload your module using the Forge web interface.

Naming your module

Your module has two names: a short name, like "mysql", and a long name that includes your Forge username, like
"puppetlabs-mysql". When you upload your module to the Forge, use the module's long name.

Your module's short name is the same as that module's directory on your disk. This name must consist of letters,
numbers, and underscores only; it can't contain dashes or periods.

The long name is composed of your Forge username and the short name of your module. For example, the
"puppetlabs" user maintains a "mysql" module, which is located in a ./modules/mysql directory and is known to
the Forge as "puppetlabs-mysql".

In your module's metadata.json file, always use the long name of your module. This helps disambiguate
modules that might have common short names, such as "mysql" or "apache." If you created your module with
Puppet Development Kit (PDK), and you provided your Forge username to PDK, the metadata.json file already
contains the correct long name for the module. Otherwise, edit your module's metadata with the correct long name.

Tip: Although the Forge expects to receive modules named username-module, its web interface presents them
as username/module. Always use the username-module style in your metadata files and when issuing
commands.

Related information
Module metadata on page 995
When you author a module, it must contain certain metadata in a metadata.json file, which contains important
information that Puppet, the Forge, and your module's users rely on.

Create a Forge account
To publish your modules to the Forge, you must first create a Forge account.

1. In your web browser, navigate to the Forge website and click Sign Up.

2. Fill in the fields on the sign-up form. The username you pick becomes part of your module long name, such as
"bobcat-apache".

3. Check your email for a verification email from the Forge, and then follow the instructions in the email to verify
your email address.

After you have verified your email address, you can publish modules to the Forge.

Prepare your module for publishing
Before you build your module package for publishing, make sure it's ready to be packaged.

Exclude unnecessary files from your package, remove or ignore any symlinks your module contains, and make sure
your metadata.json file contains the correct information.

Tip: To publish your module to the Forge, your README, license file, changelog, and metadata.json must be
UTF-8 encoded. If you used Puppet Development Kit (or the deprecated puppet module generate command)
to create your module, these files are already UTF-8 encoded.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/

Puppet | Developing Puppet code | 1019

Excluding files from the package

To exclude certain files from your module build, include them in either an ignore file. Ignore files are useful for
excluding files that are not needed to run the module, such as temporary files or files generated by spec tests. The
ignore file must be in the root directory. You can use .pdkignore, .gitignore, or.pmtignore files in your
module.

If you are building your module with PDK, your module package contains a .pdkignore file that already includes
a list of commonly ignored files. To add or remove files to this list, define them in the module's .sync.yml file. For
more information about customizing your module's configuration with .sync.yml, see the PDK documentation.

If you are building your module with the puppet module build command, create a .pmtignore file and in it,
list the files you want to exclude from the module package.

To prevent files, such as those in temporary directories, from ever being checked into your module's Git repo, list the
files in a .gitignore file.

For example, a typical ignore file might look like this:

import/
/spec/fixtures/
.tmp
*.lock
*.local
.rbenv-gemsets
.ruby-version
build/
docs/
tests/
log/
junit/
tmp/

Removing symlinks from your module

Symlinks in modules are unsupported. If your module contains symlinks, either remove them or ignore them before
you build your module.

If you try to build a module package that contains symlinks, you receive the following error:

Warning: Symlinks in modules are unsupported. Please investigate symlink
 manifests/my-module.pp->manifests/init.pp.
Error: Found symlinks. Symlinks in modules are not allowed, please remove
 them.
Error: Try 'puppet help module build' for usage

Verifying metadata

To publish your module on the Forge, it must contain required metadata in a metadata.json file. If you
created your module with PDK or the deprecated puppet module generate command, you'll already have
a metadata.json file. Open the file in any text editor, and make any necessary edits. For details on writing or
editing the metadata.json file, see the related topic about module metadata.

Build a module package
To upload your module to the Forge, first build an uploadable module package with Puppet Development Kit.

PDK builds a .tar.gz package with the naming convention <USERNAME>-<MODULE_SHORT_NAME>-
<VERSION>.tar.gz. in the module's pkg/ subdirectory. For complete details about this task, see the PDK topic
about building module packages.

1. Change into the module directory by running cd <MODULE_DIRECTORY>

2. Build the package by running pdk build

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pdk/1.x/customizing_module_config.html
https://puppet.com/docs/pdk/1.x/pdk_building_module_packages.html

Puppet | Developing Puppet code | 1020

3. Answer the question prompts as needed. You can use default answers to optional questions by pressing Enter at
the prompt.

4. At the confirmation prompt, confirm or cancel package creation.

Upload a module to the Forge
To publish a new module release to the Forge, upload the module tarball using the web interface.

The module package must be a compiled tar.gz package of 10MB or less.

1. In your web browser, navigate to the Forge and log in.

2. Click Publish in the upper right hand corner of the screen.

3. On the upload page, click Choose File and use the file browser to locate and select the release tarball. Then click
Upload Release.

After a successful upload, your browser loads the new release page for your module. If there were any errors on your
upload, they appear on the same screen. Your module's README, Changelog, and License files are displayed on
your module's Forge page.

Publish modules to the Forge with Travis CI
You can automatically publish new versions of your module to the Forge using Travis CI.

1. If this is your first time using Travis CI for automatic publishing, you must first enable Travis CI to publish to the
Forge.

a) Enable Travis CI for the module repository.
b) Generate a Travis-encrypted Forge password string. For instructions, see the Travis CI encryption keys docs.
c) Create a .travis.yml file in the module's repository base. Include a deployment section that includes your

Forge username and the encrypted Forge password, such as:

deploy:
 provider: puppetforge
 user: <FORGE_USER>
 password:
 secure: "<ENCRYPTED_FORGE_PASSWORD>"
 on:
 tags: true
 # all_branches is required to use tags
 all_branches: true

2. To publish to the Forge with Travis CI, update, tag, and push your repository.

a) Update the version number in the module's metadata.json file and commit the change to the module
repository.

b) Tag the module repo with the desired version number. For more information about how to do this, see Git docs
on basic tagging.

c) Push the commit and tag to your Git repository. Travis CI builds and publish the module.

Deprecate a module on the Forge
To let your module users know that you are no longer maintaining your module, deprecate your module on the Forge.

File a ticket in the FORGE project on the Puppet JIRA site. The ticket must include:

• The full name of the module to be deprecated, such as puppetlabs-apache.
• The reason for the deprecation. The reason is publicly displayed on the Forge.
• A recommended alternative module or workaround.

© 2024 Puppet, Inc., a Perforce company

https://docs.travis-ci.com/user/encryption-keys/
https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://tickets.puppetlabs.com/projects/FORGE

Puppet | Developing Puppet code | 1021

Delete a module release from the Forge
To delete a release of your module, use the Forge web interface. A deleted release is still downloadable via the Forge
page or puppet module command if a user requests the module by specific version.

Restriction: You cannot delete a released version and then upload a new version of the same release.

1. In your web browser, navigate to the Forge and log in.

2. Click Your Modules.

3. Go to the page of the module release you want to delete.

4. Click Select another release, choose the release you want from the drop-down list, and click Delete.

5. On the confirmation page that loads, supply a reason for the deletion and submit.

The reason you give for deleting your module is visible to Forge users.

6. Click Yes, delete it.

On your module page, the confirmation of the deletion is displayed.

Related information
Finding and downloading deleted modules on page 983
You can still search for and download a specific release of a module on the Forge, even if the release has been
deleted.

Contributing to Puppet modules
Contribute to Puppet modules to help add new functionality, fix bugs, or make other improvements.

Your contributions help us serve a greater spectrum of platforms, hardware, software, and deployment configurations.
We appreciate all kinds of user contributions, including:

• Bug reports.
• Feature requests.
• Participation in our community discussion group or chat.
• Code changes, such as bug fixes or new functionality.
• Documentation changes, such as corrections or new usage examples.
• Reviewing pull requests.

To make bug reports or feature requests, create a JIRA ticket in the Puppet MODULES project. If you are requesting
a feature, describe the use case for it and the goal of the feature. If you are filing a bug report, clearly describe the
problem and the steps to reproduce it.

Participating in community discussions is a great way to get involved. Join the community conversations in the
puppet-users discussion group or our community Slack chat:

• To join the discussion group, see the puppet-users Google group.
• To join our community chat, see the Puppet Community Slack.

We ask everyone participating in Puppet communities to abide by our code of conduct. See our community guidelines
page for details.

Contributing changes to module repositories
To contribute bug fixes, new features, expanded functionality, or documentation to Puppet modules, submit a pull
request to our module repositories on GitHub.

When working on Puppet modules, follow this basic workflow:

1. Discuss your change with the Puppet community.
2. Fork the repository on GitHub.
3. Make changes on a topic branch of your fork, documenting and testing your changes.
4. Submit changes as a pull request to the Puppet repository.
5. Respond to any questions or feedback on your pull request.

© 2024 Puppet, Inc., a Perforce company

https://tickets.puppetlabs.com/projects/MODULES
https://groups.google.com/forum/#!forum/puppet-users
https://slack.puppet.com/
https://puppet.com/community/community-guidelines

Puppet | Developing Puppet code | 1022

Before submitting a pull request

• To submit code changes, you must have a GitHub account. If you don't already have an account, sign up on
GitHub.

• Know what Git best practices we use and expect.
• Sign our Contributor License Agreement.

Discussing your change with the community

We love when people submit code changes to our projects, and we appreciate bug and typo fixes as much as we
appreciate major features.

If you are proposing a significant or complex change to a Puppet module, we encourage you to discuss potential
changes and their impact with the Puppet community.

To propose and discuss a change, send a message to the puppet-users discussion group or bring it up in the Puppet
Community Slack #forge-modules channel.

Forking the repository and creating a topic branch

Fork the repository you want to make changes to, and create a topic branch for your work.

Give your topic branch a name that describes the work you're contributing. Always base the topic branch on the
repository's primary server branch, unless one of our module developers specifically asks you to base it on a different
branch.

Remember: Never work directly on the primary server branch or any other core branch.

Making changes

When you make changes to a Puppet module, make changes that are compatible with all currently supported versions
of Puppet. Do not break users' existing installations or configurations with your changes. For a list of supported
versions, see the Puppet component version page.

To add new classes, defined types, or tasks to a module, use Puppet Development Kit (PDK). PDK creates manifests
and test templates, validates, and runs unit tests on your changes.

If you make a backward-incompatible change, you must include a deprecation warning for the old functionality, as
well as documentation that tells users how to migrate to the new functionality. If you aren't sure how to proceed, ask
for help in the puppet-users group or the community Slack chat.

Documenting changes

When you add documentation to modules, follow our documentation style and formatting guidelines. These
guidelines help make our docs clear and easier to translate into other languages.

If you make code changes to modules, you must document your changes. We can't merge undocumented changes.

To provide usage examples, add them to the README's usage section. Include information about what the user can
accomplish with each usage example.

Add reference information, such as class descriptions and parameters, as Puppet Strings-compatible code comments,
so that we can generate complete documentation before we release the new version of the module. Do not manually
edit generated REFERENCE.md files; any changes you make are overwritten when we generate a new file. For
complete information about writing good module documentation, see Documenting modules.

In Puppet module documentation, adhere to the following conventions:

• Lowercase module names, such as apache. This helps differentiate the module from the software the module
is managing. When talking about the software being managed, capitalize names as they would normally be
capitalized, such as Apache.

© 2024 Puppet, Inc., a Perforce company

https://github.com/signup/free
https://sethrobertson.github.io/GitBestPractices/
https://cla.puppet.com

Puppet | Developing Puppet code | 1023

• Set string values in single quotes, to make it clear that they are strings. For example, 'string' or 'C:/user/
documents/example.txt'.

• Set the values true, false, and undef in backticks, such as `true`.
• Set data types in backticks, such as `Boolean`.
• Set filenames, settings, directories, classes, types, defined types, functions, and similar code elements in backticks,

unless the user passes them as a string value. If the user passes the value as a string, use quotes to make that clear.
• Do not use any special marking for integer values, such as 1024.
• Use empty lines between new lines to help with readability.

Testing your changes

Before you submit a pull request, make sure that you have added tests for your changes.

If you create new classes or defined types, PDK creates basic tests templates for you. Use PDK to validate and run
unit tests on the module, to ensure that your changes don't accidentally break anything.

If you need further help writing tests or getting tests to work, ask for help in the puppet-user discussion group, in our
community Slack chat, or if you created a JIRA ticket regarding your change, in the ticket.

If you don't know how to write tests for your changes, clearly say so in your pull request. We don't necessarily reject
pull requests without tests, but someone needs to add the tests before we can merge your contribution.

Committing your changes

As you add code, commit your work for one function at a time. Ensure the code for each commit does only one thing.
This makes it easier to remove one commit and accept another, if necessary. We would rather see too many commits
than too few.

In your commit message, provide:

1. A brief description of the behavior before your changes.
2. Why that behavior was a problem.
3. How your changes fix the problem.

For example, this commit message is for adding to the CONTRIBUTING document:

Make the example in CONTRIBUTING concrete

Without this patch applied, there is no example commit message in the
 CONTRIBUTING document. The contributor is left to imagine what the commit
 message should look. This patch adds a more specific example.

Submitting changes

Submit your changes as a pull request to the puppetlabs organization repository on GitHub.

Push your changes to the topic branch in your fork of the repository. Submit a pull request to the puppetlabs
repository for the module.

Someone with the permissions to merge and commit to the Puppet repository (a committer) checks whether the pull
request meets the following requirements:

• It is on its own correctly named branch.
• It contains only commits relevant to the specific issue.
• It has clear commit messages that describe the problem and the solution.
• It is appropriately and clearly documented.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1024

Responding to feedback

Be sure to respond to any questions or feedback you receive from the Puppet modules team on your pull request.
Puppet community members might also make comments or suggestions that you want to consider.

When making changes to your pull request, push your commits to the same topic branch you used for your pull
request. When you push changes to the branch, it automatically updates your pull request. After the team has
approved your request, someone from the modules team merges it, and your changes are included in the next release
of the module.

If you do not respond to the modules team's requests, your pull request might be rejected or closed. To address such
comments or questions later, create a new pull request.

Related information
Puppet platform lifecycle on page 15
Open source Puppet is made up of several packages: puppet-agent, puppetserver, and, optionally,
puppetdb. Understanding what versions are maintained and which versions go together is important when
upgrading and troubleshooting.

Reviewing community pull requests
As a Puppet community member, you can offer feedback on someone else's contributed code.

When reviewing pull requests, any of the following contributions are helpful:

• Review the code for any obvious problems.
• Provide feedback based on personal experience on the subject.
• Test relevant examples on an untested platform.
• Look at potential side effects of the change.
• Examine discrepancies between the original issue and the pull request.

Add your comments and questions to the pull request, pointing out any specific lines that need attention. Be sure to
respond to any questions the contributor has about your comments.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1025

Designing system configs: roles and profiles
Your typical goal with Puppet is to build complete system configurations, which manage all of the software, services,
and configuration that you care about on a given system. The roles and profiles method can help keep complexity
under control and make your code more reusable, reconfigurable, and refactorable.

• The roles and profiles method on page 1025
The roles and profiles method is the most reliable way to build reusable, configurable, and refactorable system
configurations.
• Roles and profiles example on page 1028
This example demonstrates a complete roles and profiles workflow. Use it to understand the roles and profiles method
as a whole. Additional examples show how to design advanced configurations by refactoring this example code to a
higher level of complexity.
• Designing advanced profiles on page 1030
In this advanced example, we iteratively refactor our basic roles and profiles example to handle real-world concerns.
The final result is — with only minor differences — the Jenkins profile we use in production here at Puppet.
• Designing convenient roles on page 1047
There are several approaches to building roles, and you must decide which ones are most convenient for you and your
team.

The roles and profiles method
The roles and profiles method is the most reliable way to build reusable, configurable, and refactorable system
configurations.

It's not a straightforward recipe: you must think hard about the nature of your infrastructure and your team. It's
also not a final state: expect to refine your configurations over time. Instead, it's an approach to designing your
infrastructure's interface — sealing away incidental complexity, surfacing the significant complexity, and making
sure your data behaves predictably.

Building configurations without roles and profiles

Without roles and profiles, people typically build system configurations in their node classifier or main manifest,
using Hiera to handle tricky inheritance problems. A standard approach is to create a group of similar nodes and
assign classes to it, then create child groups with extra classes for nodes that have additional needs. Another common
pattern is to put everything in Hiera, using a very large hierarchy that reflects every variation in the infrastructure.

If this works for you, then it works! You might not need roles and profiles. But most people find direct building gets
difficult to understand and maintain over time.

Configuring roles and profiles
Roles and profiles are two extra layers of indirection between your node classifier and your component modules.

The roles and profiles method separates your code into three levels:

• Component modules — Normal modules that manage one particular technology, for example puppetlabs/apache.
• Profiles — Wrapper classes that use multiple component modules to configure a layered technology stack.
• Roles — Wrapper classes that use multiple profiles to build a complete system configuration.

These extra layers of indirection might seem like they add complexity, but they give you a space to build practical,
business-specific interfaces to the configuration you care most about. A better interface makes hierarchical data easier
to use, makes system configurations easier to read, and makes refactoring easier.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1026

In short, from top to bottom:

• Your node classifier assigns one role class to a group of nodes. The role manages a whole system configuration,
so no other classes are needed. The node classifier does not configure the role in any way.

• That role class declares some profile classes with include, and does nothing else. For example:

 class role::jenkins::master {
 include profile::base
 include profile::server
 include profile::jenkins::master
 }

• Each profile configures a layered technology stack, using multiple component modules and the built-in resource
types. (In the diagram, profile::jenkins::master uses puppet/jenkins, puppetlabs/apt, a home-built
backup module, and some package and file resources.)

• Profiles can take configuration data from the console, Hiera, or Puppet lookup. (In the diagram, three different
hierarchy levels contribute data.)

• Classes from component modules are always declared via a profile, and never assigned directly to a node.

• If a component class has parameters, you specify them in the profile; never use Hiera or Puppet lookup to
override component class params.

Rules for profile classes
There are rules for writing profile classes.

• Make sure you can safely include any profile multiple times — don't use resource-like declarations on them.
• Profiles can include other profiles.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1027

• Profiles own all the class parameters for their component classes. If the profile omits one, that means you
definitely want the default value; the component class shouldn't use a value from Hiera data. If you need to set a
class parameter that was omitted previously, refactor the profile.

• There are three ways a profile can get the information it needs to configure component classes:

• If your business always uses the same value for a given parameter, hardcode it.
• If you can't hardcode it, try to compute it based on information you already have.
• Finally, if you can't compute it, look it up in your data. To reduce lookups, identify cases where multiple

parameters can be derived from the answer to a single question.

This is a game of trade-offs. Hardcoded parameters are the easiest to read, and also the least flexible. Putting
values in your Hiera data is very flexible, but can be very difficult to read: you might have to look through a lot of
files (or run a lot of lookup commands) to see what the profile is actually doing. Using conditional logic to derive
a value is a middle-ground. Aim for the most readable option you can get away with.

Rules for role classes
There are rules for writing role classes.

• The only thing roles should do is declare profile classes with include. Don't declare any component classes or
normal resources in a role.

Optionally, roles can use conditional logic to decide which profiles to use.
• Roles should not have any class parameters of their own.
• Roles should not set class parameters for any profiles. (Those are all handled by data lookup.)
• The name of a role should be based on your business's conversational name for the type of node it manages.

This means that if you regularly call a machine a "Jenkins master," it makes sense to write a role named
role::jenkins::master. But if you call it a "web server," you shouldn't use a name like role::nginx
— go with something like role::web instead.

Methods for data lookup
Profiles usually require some amount of configuration, and they must use data lookup to get it.

This profile uses the automatic class parameter lookup to request data.

Example Hiera data
profile::jenkins::jenkins_port: 8000
profile::jenkins::java_dist: jre
profile::jenkins::java_version: '8'

Example manifest
class profile::jenkins (
 Integer $jenkins_port,
 String $java_dist,
 String $java_version
) {
...

This profile omits the parameters and uses the lookup function:

class profile::jenkins {
 $jenkins_port = lookup('profile::jenkins::jenkins_port', {value_type =>
 String, default_value => '9091'})
 $java_dist = lookup('profile::jenkins::java_dist', {value_type =>
 String, default_value => 'jdk'})
 $java_version = lookup('profile::jenkins::java_version', {value_type =>
 String, default_value => 'latest'})
 # ...

In general, class parameters are preferable to lookups. They integrate better with tools like Puppet strings, and
they're a reliable and well-known place to look for configuration. But using lookup is a fine approach if you aren't

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1028

comfortable with automatic parameter lookup. Some people prefer the full lookup key to be written in the profile, so
they can globally grep for it.

Roles and profiles example
This example demonstrates a complete roles and profiles workflow. Use it to understand the roles and profiles method
as a whole. Additional examples show how to design advanced configurations by refactoring this example code to a
higher level of complexity.

Configure Jenkins master servers with roles and profiles
Jenkins is a continuous integration (CI) application that runs on the JVM. The Jenkins master server provides a web
front-end, and also runs CI tasks at scheduled times or in reaction to events.

In this example, we manage the configuration of Jenkins master servers.

Set up your prerequisites
If you're new to using roles and profiles, do some additional setup before writing any new code.

1. Create two modules: one named role, and one named profile.

If you deploy your code with Code Manager or r10k, put these two modules in your control repository instead of
declaring them in your Puppetfile, because Code Manager and r10k reserve the modules directory for their own
use.

a. Make a new directory in the repo named site.
b. Edit the environment.conf file to add site to the modulepath. (For example: modulepath =

site:modules:$basemodulepath).
c. Put the role and profile modules in the site directory.

2. Make sure Hiera or Puppet lookup is set up and working, with a hierarchy that works well for you.

Choose component modules
For our example, we want to manage Jenkins itself using the puppet/jenkins module.

Jenkins requires Java, and the puppet/jenkins module can manage it automatically. But we want finer control
over Java, so we're going to disable that. So, we need a Java module, and puppetlabs/java is a good choice.

That's enough to start with. We can refactor and expand when we have those working.

To learn more about these modules, see puppet/jenkins and puppetlabs/java.

Write a profile
From a Puppet perspective, a profile is just a normal class stored in the profile module.

Make a new class called profile::jenkins::master, located at .../profile/manifests/jenkins/
master.pp, and fill it with Puppet code.

/etc/puppetlabs/code/environments/production/site/profile/manifests/
jenkins/master.pp
class profile::jenkins::master (
 String $jenkins_port = '9091',
 String $java_dist = 'jdk',
 String $java_version = 'latest',
) {

 class { 'jenkins':
 configure_firewall => true,
 install_java => false,
 port => $jenkins_port,
 config_hash => {
 'HTTP_PORT' => { 'value' => $jenkins_port },
 'JENKINS_PORT' => { 'value' => $jenkins_port },
 },
 }

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppet/jenkins
https://forge.puppet.com/puppetlabs/java?_ga=2.126344074.623882382.1502209414-2028041969.1502209414

Puppet | Developing Puppet code | 1029

 class { 'java':
 distribution => $java_dist,
 version => $java_version,
 before => Class['jenkins'],
 }
}

This is pretty simple, but is already benefiting us: our interface for configuring Jenkins has gone from 30 or so
parameters on the Jenkins class (and many more on the Java class) down to three. Notice that we’ve hardcoded the
configure_firewall and install_java parameters, and have reused the value of $jenkins_port in
three places.

Related information
Rules for profile classes on page 1026
There are rules for writing profile classes.

Methods for data lookup on page 1027
Profiles usually require some amount of configuration, and they must use data lookup to get it.

Set data for the profile

Let’s assume the following:

• We use some custom facts:

• group: The group this node belongs to. (This is usually either a department of our business, or a large-scale
function shared by many nodes.)

• stage: The deployment stage of this node (dev, test, or prod).
• We have a five-layer hierarchy:

• console_data for data defined in the console.
• nodes/%{trusted.certname} for per-node overrides.
• groups/%{facts.group}/%{facts.stage} for setting stage-specific data within a group.
• groups/%{facts.group} for setting group-specific data.
• common for global fallback data.

• We have a few one-off Jenkins masters, but most of them belong to the ci group.
• Our quality engineering department wants masters in the ci group to use the Oracle JDK, but one-off machines

can just use the platform’s default Java.
• QE also wants their prod masters to listen on port 80.

Set appropriate values in the data, using either Hiera or configuration data in the console.

/etc/puppetlabs/code/environments/production/data/nodes/ci-
master01.example.com.yaml
 # --Nothing. We don't need any per-node values right now.

 # /etc/puppetlabs/code/environments/production/data/groups/ci/prod.yaml
 profile::jenkins::master::jenkins_port: '80'

 # /etc/puppetlabs/code/environments/production/data/groups/ci.yaml
 profile::jenkins::master::java_dist: 'oracle-jdk8'
 profile::jenkins::master::java_version: '8u92'

 # /etc/puppetlabs/code/environments/production/data/common.yaml
 # --Nothing. Just use the default parameter values.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1030

Write a role
To write roles, we consider the machines we’ll be managing and decide what else they need in addition to that Jenkins
profile.

Our Jenkins masters don’t serve any other purpose. But we have some profiles (code not shown) that we expect every
machine in our fleet to have:

• profile::base must be assigned to every machine, including workstations. It manages basic policies, and
uses some conditional logic to include OS-specific profiles as needed.

• profile::server must be assigned to every machine that provides a service over the network. It makes sure
ops can log into the machine, and configures things like timekeeping, firewalls, logging, and monitoring.

So a role to manage one of our Jenkins masters should include those classes as well.

class role::jenkins::master {
 include profile::base
 include profile::server
 include profile::jenkins::master
}

Related information
Rules for role classes on page 1027
There are rules for writing role classes.

Assign the role to nodes
Finally, we assign role::jenkins::master to every node that acts as a Jenkins master.

Puppet has several ways to assign classes to nodes, so use whichever tool you feel best fits your team. Your main
choices are:

• The console node classifier, which lets you group nodes based on their facts and assign classes to those groups.
• The main manifest which can use node statements or conditional logic to assign classes.
• Hiera or Puppet lookup — Use the lookup function to do a unique array merge on a special classes key, and

pass the resulting array to the include function.

/etc/puppetlabs/code/environments/production/manifests/site.pp
lookup('classes', {merge => unique}).include

To learn more about how to assign custom roles to individual nodes, visit https://puppet.com/docs/puppet/6/
fact_overview.html

Designing advanced profiles
In this advanced example, we iteratively refactor our basic roles and profiles example to handle real-world concerns.
The final result is — with only minor differences — the Jenkins profile we use in production here at Puppet.

Along the way, we explain our choices and point out some of the common trade-offs you encounter as you design
your own profiles.

Here's the basic Jenkins profile we're starting with:

/etc/puppetlabs/code/environments/production/site/profile/manifests/
jenkins/master.pp
class profile::jenkins::master (
 String $jenkins_port = '9091',
 String $java_dist = 'jdk',
 String $java_version = 'latest',
) {

 class { 'jenkins':
 configure_firewall => true,
 install_java => false,

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/6/fact_overview.html
https://puppet.com/docs/puppet/6/fact_overview.html

Puppet | Developing Puppet code | 1031

 port => $jenkins_port,
 config_hash => {
 'HTTP_PORT' => { 'value' => $jenkins_port },
 'JENKINS_PORT' => { 'value' => $jenkins_port },
 },
 }

 class { 'java':
 distribution => $java_dist,
 version => $java_version,
 before => Class['jenkins'],
 }
}

Related information
Rules for profile classes on page 1026
There are rules for writing profile classes.

First refactor: Split out Java
We want to manage Jenkins masters and Jenkins agent nodes. We won't cover agent profiles in detail, but the first
issue we encountered is that they also need Java.

We could copy and paste the Java class declaration; it's small, so keeping multiple copies up-to-date might not be too
burdensome. But instead, we decided to break Java out into a separate profile. This way we can manage it one time,
then include the Java profile in both the agent and master profiles.

Note: This is a common trade-off. Keeping a chunk of code in only one place (often called the DRY — "don't
repeat yourself" — principle) makes it more maintainable and less vulnerable to rot. But it has a cost: your individual
profile classes become less readable, and you must view more files to see what a profile actually does. To reduce that
readability cost, try to break code out in units that make inherent sense. In this case, the Java profile's job is simple
enough to guess by its name — your colleagues don't have to read its code to know that it manages Java 8. Comments
can also help.

First, decide how configurable Java needs to be on Jenkins machines. After looking at our past usage, we realized that
we use only two options: either we install Oracle's Java 8 distribution, or we default to OpenJDK 7, which the Jenkins
module manages. This means we can:

• Make our new Java profile really simple: hardcode Java 8 and take no configuration.
• Replace the two Java parameters from profile::jenkins::master with one Boolean parameter (whether

to let Jenkins handle Java).

Note: This is rule 4 in action. We reduce our profile's configuration surface by combining multiple questions into
one.

Here's the new parameter list:

class profile::jenkins::master (
 String $jenkins_port = '9091',
 Boolean $install_jenkins_java = true,
) { # ...

And here's how we choose which Java to use:

 class { 'jenkins':
 configure_firewall => true,
 install_java => $install_jenkins_java, # <--- here
 port => $jenkins_port,
 config_hash => {
 'HTTP_PORT' => { 'value' => $jenkins_port },
 'JENKINS_PORT' => { 'value' => $jenkins_port },

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1032

 },
 }

 # When not using the jenkins module's java version, install java8.
 unless $install_jenkins_java { include profile::jenkins::usage::java8 }

And our new Java profile:

::jenkins::usage::java8
Sets up java8 for Jenkins on Debian
#
class profile::jenkins::usage::java8 {
 motd::register { 'Java usage profile (profile::jenkins::usage::java8)': }

 # OpenJDK 7 is already managed by the Jenkins module.
 # ::jenkins::install_java or ::jenkins::agent::install_java should be
 false to use this profile
 # this can be set through the class parameter $install_jenkins_java
 case $::osfamily {
 'debian': {
 class { 'java':
 distribution => 'oracle-jdk8',
 version => '8u92',
 }

 package { 'tzdata-java':
 ensure => latest,
 }
 }
 default: {
 notify { "profile::jenkins::usage::java8 cannot set up JDK on
 ${::osfamily}": }

Diff of first refactor

@@ -1,13 +1,12 @@
 # /etc/puppetlabs/code/environments/production/site/profile/manifests/
jenkins/master.pp
 class profile::jenkins::master (
- String $jenkins_port = '9091',
- String $java_dist = 'jdk',
- String $java_version = 'latest',
+ String $jenkins_port = '9091',
+ Boolean $install_jenkins_java = true,
) {

 class { 'jenkins':
 configure_firewall => true,
- install_java => false,
+ install_java => $install_jenkins_java,
 port => $jenkins_port,
 config_hash => {
 'HTTP_PORT' => { 'value' => $jenkins_port },
@@ -15,9 +14,6 @@ class profile::jenkins::master (
 },
 }

- class { 'java':
- distribution => $java_dist,
- version => $java_version,
- before => Class['jenkins'],
- }

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1033

+ # When not using the jenkins module's java version, install java8.
+ unless $install_jenkins_java { include profile::jenkins::usage::java8 }
 }

Second refactor: Manage the heap
At Puppet, we manage the Java heap size for the Jenkins app. Production servers didn't have enough memory for
heavy use.

The Jenkins module has a jenkins::sysconfig defined type for managing system properties, so let's use it:

 # Manage the heap size on the master, in MB.
 if($::memorysize_mb =~ Number and $::memorysize_mb > 8192)
 {
 # anything over 8GB we should keep max 4GB for OS and others
 $heap = sprintf('%.0f', $::memorysize_mb - 4096)
 } else {
 # This is calculated as 50% of the total memory.
 $heap = sprintf('%.0f', $::memorysize_mb * 0.5)
 }
 # Set java params, like heap min and max sizes. See
 # https://wiki.jenkins-ci.org/display/JENKINS/Features+controlled+by
+system+properties
 jenkins::sysconfig { 'JAVA_ARGS':
 value => "-Xms${heap}m -Xmx${heap}m -Djava.awt.headless=true
 -XX:+UseConcMarkSweepGC -XX:+CMSClassUnloadingEnabled -
Dhudson.model.DirectoryBrowserSupport.CSP=\\\"default-src 'self'; img-src
 'self'; style-src 'self';\\\"",
 }

Note: Rule 4 again — we couldn't hardcode this, because we have some smaller Jenkins masters that can't spare the
extra memory. But because our production masters are always on more powerful machines, we can calculate the heap
based on the machine's memory size, which we can access as a fact. This lets us avoid extra configuration.

Diff of second refactor

@@ -16,4 +16,20 @@ class profile::jenkins::master (

 # When not using the jenkins module's java version, install java8.
 unless $install_jenkins_java { include profile::jenkins::usage::java8 }
+
+ # Manage the heap size on the master, in MB.
+ if($::memorysize_mb =~ Number and $::memorysize_mb > 8192)
+ {
+ # anything over 8GB we should keep max 4GB for OS and others
+ $heap = sprintf('%.0f', $::memorysize_mb - 4096)
+ } else {
+ # This is calculated as 50% of the total memory.
+ $heap = sprintf('%.0f', $::memorysize_mb * 0.5)
+ }
+ # Set java params, like heap min and max sizes. See
+ # https://wiki.jenkins-ci.org/display/JENKINS/Features+controlled+by
+system+properties
+ jenkins::sysconfig { 'JAVA_ARGS':
+ value => "-Xms${heap}m -Xmx${heap}m -Djava.awt.headless=true
 -XX:+UseConcMarkSweepGC -XX:+CMSClassUnloadingEnabled -
Dhudson.model.DirectoryBrowserSupport.CSP=\\\"default-src 'self'; img-src
 'self'; style-src 'self';\\\"",
+ }
+
 }

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1034

Third refactor: Pin the version
We dislike surprise upgrades, so we pin Jenkins to a specific version. We do this with a direct package URL instead
of by adding Jenkins to our internal package repositories. Your organization might choose to do it differently.

First, we add a parameter to control upgrades. Now we can set a new value in .../data/groups/ci/
dev.yaml while leaving .../data/groups/ci.yaml alone — our dev machines get the new Jenkins version
first, and we can ensure everything works as expected before upgrading our prod machines.

class profile::jenkins::master (
 Variant[String[1], Boolean] $direct_download = 'http://pkg.jenkins-ci.org/
debian-stable/binary/jenkins_1.642.2_all.deb',
 # ...
) { # ...

Then, we set the necessary parameters in the Jenkins class:

 class { 'jenkins':
 lts => true, # <-- here
 repo => true, # <-- here
 direct_download => $direct_download, # <-- here
 version => 'latest', # <-- here
 service_enable => true,
 service_ensure => running,
 configure_firewall => true,
 install_java => $install_jenkins_java,
 port => $jenkins_port,
 config_hash => {
 'HTTP_PORT' => { 'value' => $jenkins_port },
 'JENKINS_PORT' => { 'value' => $jenkins_port },
 },
 }

This was a good time to explicitly manage the Jenkins service, so we did that as well.

Diff of third refactor

@@ -1,10 +1,17 @@
 # /etc/puppetlabs/code/environments/production/site/profile/manifests/
jenkins/master.pp
 class profile::jenkins::master (
- String $jenkins_port = '9091',
- Boolean $install_jenkins_java = true,
+ String $jenkins_port = '9091',
+ Variant[String[1], Boolean] $direct_download = 'http://pkg.jenkins-
ci.org/debian-stable/binary/jenkins_1.642.2_all.deb',
+ Boolean $install_jenkins_java = true,
) {

 class { 'jenkins':
+ lts => true,
+ repo => true,
+ direct_download => $direct_download,
+ version => 'latest',
+ service_enable => true,
+ service_ensure => running,
 configure_firewall => true,
 install_java => $install_jenkins_java,
 port => $jenkins_port,

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1035

Fourth refactor: Manually manage the user account
We manage a lot of user accounts in our infrastructure, so we handle them in a unified way. The
profile::server class pulls in virtual::users, which has a lot of virtual resources we can selectively
realize depending on who needs to log into a given machine.

Note: This has a cost — it's action at a distance, and you need to read more files to see which users are enabled for
a given profile. But we decided the benefit was worth it: because all user accounts are written in one or two files, it's
easy to see all the users that might exist, and ensure that they're managed consistently.

We're accepting difficulty in one place (where we can comfortably handle it) to banish difficulty in another place
(where we worry it would get out of hand). Making this choice required that we know our colleagues and their
comfort zones, and that we know the limitations of our existing code base and supporting services.

So, for this example, we change the Jenkins profile to work the same way; we manage the jenkins user alongside
the rest of our user accounts. While we're doing that, we also manage a few directories that can be problematic
depending on how Jenkins is packaged.

Some values we need are used by Jenkins agents as well as masters, so we're going to store them in a params class,
which is a class that sets shared variables and manages no resources. This is a heavyweight solution, so wait until
it provides real value before using it. In our case, we had a lot of OS-specific agent profiles (not shown in these
examples), and they made a params class worthwhile.

Note: Just as before, "don't repeat yourself" is in tension with "keep it readable." Find the balance that works for you.

 # We rely on virtual resources that are ultimately declared by
 profile::server.
 include profile::server

 # Some default values that vary by OS:
 include profile::jenkins::params
 $jenkins_owner = $profile::jenkins::params::jenkins_owner
 $jenkins_group = $profile::jenkins::params::jenkins_group
 $master_config_dir = $profile::jenkins::params::master_config_dir

 file { '/var/run/jenkins': ensure => 'directory' }

 # Because our account::user class manages the '${master_config_dir}'
 directory
 # as the 'jenkins' user's homedir (as it should), we need to manage
 # `${master_config_dir}/plugins` here to prevent the upstream
 # rtyler-jenkins module from trying to manage the homedir as the config
 # dir. For more info, see the upstream module's `manifests/plugin.pp`
 # manifest.
 file { "${master_config_dir}/plugins":
 ensure => directory,
 owner => $jenkins_owner,
 group => $jenkins_group,
 mode => '0755',
 require => [Group[$jenkins_group], User[$jenkins_owner]],
 }

 Account::User <| tag == 'jenkins' |>

 class { 'jenkins':
 lts => true,
 repo => true,
 direct_download => $direct_download,
 version => 'latest',
 service_enable => true,
 service_ensure => running,
 configure_firewall => true,

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1036

 install_java => $install_jenkins_java,
 manage_user => false, # <-- here
 manage_group => false, # <-- here
 manage_datadirs => false, # <-- here
 port => $jenkins_port,
 config_hash => {
 'HTTP_PORT' => { 'value' => $jenkins_port },
 'JENKINS_PORT' => { 'value' => $jenkins_port },
 },
 }

Three things to notice in the code above:

• We manage users with a homegrown account::user defined type, which declares a user resource plus a few
other things.

• We use an Account::User resource collector to realize the Jenkins user. This relies on profile::server
being declared.

• We set the Jenkins class's manage_user, manage_group, and manage_datadirs parameters to false.
• We're now explicitly managing the plugins directory and the run directory.

Diff of fourth refactor

@@ -5,6 +5,33 @@ class profile::jenkins::master (
 Boolean $install_jenkins_java = true,
) {

+ # We rely on virtual resources that are ultimately declared by
 profile::server.
+ include profile::server
+
+ # Some default values that vary by OS:
+ include profile::jenkins::params
+ $jenkins_owner = $profile::jenkins::params::jenkins_owner
+ $jenkins_group = $profile::jenkins::params::jenkins_group
+ $master_config_dir = $profile::jenkins::params::master_config_dir
+
+ file { '/var/run/jenkins': ensure => 'directory' }
+
+ # Because our account::user class manages the '${master_config_dir}'
 directory
+ # as the 'jenkins' user's homedir (as it should), we need to manage
+ # `${master_config_dir}/plugins` here to prevent the upstream
+ # rtyler-jenkins module from trying to manage the homedir as the config
+ # dir. For more info, see the upstream module's `manifests/plugin.pp`
+ # manifest.
+ file { "${master_config_dir}/plugins":
+ ensure => directory,
+ owner => $jenkins_owner,
+ group => $jenkins_group,
+ mode => '0755',
+ require => [Group[$jenkins_group], User[$jenkins_owner]],
+ }
+
+ Account::User <| tag == 'jenkins' |>
+
 class { 'jenkins':
 lts => true,
 repo => true,
@@ -14,6 +41,9 @@ class profile::jenkins::master (
 service_ensure => running,
 configure_firewall => true,
 install_java => $install_jenkins_java,

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1037

+ manage_user => false,
+ manage_group => false,
+ manage_datadirs => false,
 port => $jenkins_port,
 config_hash => {
 'HTTP_PORT' => { 'value' => $jenkins_port },

Fifth refactor: Manage more dependencies
Jenkins always needs Git installed (because we use Git for source control at Puppet), and it needs SSH keys to access
private Git repos and run commands on Jenkins agent nodes. We also have a standard list of Jenkins plugins we use,
so we manage those too.

Managing Git is pretty easy:

 package { 'git':
 ensure => present,
 }

SSH keys are less easy, because they are sensitive content. We can't check them into version control with the rest of
our Puppet code, so we put them in a custom mount point on one specific Puppet server.

Because this server is different from our normal Puppet servers, we made a rule about accessing it: you must look
up the hostname from data instead of hardcoding it. This lets us change it in only one place if the secure server ever
moves.

 $secure_server = lookup('puppetlabs::ssl::secure_server')

 file { "${master_config_dir}/.ssh":
 ensure => directory,
 owner => $jenkins_owner,
 group => $jenkins_group,
 mode => '0700',
 }

 file { "${master_config_dir}/.ssh/id_rsa":
 ensure => file,
 owner => $jenkins_owner,
 group => $jenkins_group,
 mode => '0600',
 source => "puppet://${secure_server}/secure/delivery/id_rsa-jenkins",
 }

 file { "${master_config_dir}/.ssh/id_rsa.pub":
 ensure => file,
 owner => $jenkins_owner,
 group => $jenkins_group,
 mode => '0640',
 source => "puppet://${secure_server}/secure/delivery/id_rsa-
jenkins.pub",
 }

Plugins are also a bit tricky, because we have a few Jenkins masters where we want to manually configure plugins. So
we put the base list in a separate profile, and use a parameter to control whether we use it.

class profile::jenkins::master (
 Boolean $manage_plugins = false,
 # ...
) {
 # ...
 if $manage_plugins {
 include profile::jenkins::master::plugins

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1038

 }

In the plugins profile, we can use the jenkins::plugin resource type provided by the Jenkins module.

/etc/puppetlabs/code/environments/production/site/profile/manifests/
jenkins/master/plugins.pp
class profile::jenkins::master::plugins {
 jenkins::plugin { 'audit2db': }
 jenkins::plugin { 'credentials': }
 jenkins::plugin { 'jquery': }
 jenkins::plugin { 'job-import-plugin': }
 jenkins::plugin { 'ldap': }
 jenkins::plugin { 'mailer': }
 jenkins::plugin { 'metadata': }
 # ... and so on.
}

Diff of fifth refactor

@@ -1,6 +1,7 @@
 # /etc/puppetlabs/code/environments/production/site/profile/manifests/
jenkins/master.pp
 class profile::jenkins::master (
 String $jenkins_port = '9091',
+ Boolean $manage_plugins = false,
 Variant[String[1], Boolean] $direct_download = 'http://pkg.jenkins-
ci.org/debian-stable/binary/jenkins_1.642.2_all.deb',
 Boolean $install_jenkins_java = true,
) {
@@ -14,6 +15,20 @@ class profile::jenkins::master (
 $jenkins_group = $profile::jenkins::params::jenkins_group
 $master_config_dir = $profile::jenkins::params::master_config_dir

+ if $manage_plugins {
+ # About 40 jenkins::plugin resources:
+ include profile::jenkins::master::plugins
+ }
+
+ # Sensitive info (like SSH keys) isn't checked into version control like
 the
+ # rest of our modules; instead, it's served from a custom mount point on
 a
+ # designated server.
+ $secure_server = lookup('puppetlabs::ssl::secure_server')
+
+ package { 'git':
+ ensure => present,
+ }
+
 file { '/var/run/jenkins': ensure => 'directory' }

 # Because our account::user class manages the '${master_config_dir}'
 directory
@@ -69,4 +84,29 @@ class profile::jenkins::master (
 value => "-Xms${heap}m -Xmx${heap}m -Djava.awt.headless=true
 -XX:+UseConcMarkSweepGC -XX:+CMSClassUnloadingEnabled -
Dhudson.model.DirectoryBrowserSupport.CSP=\\\"default-src 'self'; img-src
 'self'; style-src 'self';\\\"",
 }

+ # Deploy the SSH keys that Jenkins needs to manage its agent machines and
+ # access Git repos.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1039

+ file { "${master_config_dir}/.ssh":
+ ensure => directory,
+ owner => $jenkins_owner,
+ group => $jenkins_group,
+ mode => '0700',
+ }
+
+ file { "${master_config_dir}/.ssh/id_rsa":
+ ensure => file,
+ owner => $jenkins_owner,
+ group => $jenkins_group,
+ mode => '0600',
+ source => "puppet://${secure_server}/secure/delivery/id_rsa-jenkins",
+ }
+
+ file { "${master_config_dir}/.ssh/id_rsa.pub":
+ ensure => file,
+ owner => $jenkins_owner,
+ group => $jenkins_group,
+ mode => '0640',
+ source => "puppet://${secure_server}/secure/delivery/id_rsa-
jenkins.pub",
+ }
+
 }

Sixth refactor: Manage logging and backups
Backing up is usually a good idea.

We can use our homegrown backup module, which provides a backup::job resource type
(profile::server takes care of its prerequisites). But we should make backups optional, so people don't
accidentally post junk to our backup server if they're setting up an ephemeral Jenkins instance to test something.

class profile::jenkins::master (
 Boolean $backups_enabled = false,
 # ...
) {
 # ...
 if $backups_enabled {
 backup::job { "jenkins-data-${::hostname}":
 files => $master_config_dir,
 }
 }
}

Also, our teams gave us some conflicting requests for Jenkins logs:

• Some people want it to use syslog, like most other services.
• Others want a distinct log file so syslog doesn't get spammed, and they want the file to rotate more quickly than it

does by default.

That implies a new parameter. We can make one called $jenkins_logs_to_syslog and default it to undef. If
you set it to a standard syslog facility (like daemon.info), Jenkins logs there instead of its own file.

We use jenkins::sysconfig and our homegrown logrotate::job to do the work:

class profile::jenkins::master (
 Optional[String[1]] $jenkins_logs_to_syslog = undef,
 # ...
) {
 # ...
 if $jenkins_logs_to_syslog {
 jenkins::sysconfig { 'JENKINS_LOG':

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1040

 value => "$jenkins_logs_to_syslog",
 }
 }
 # ...
 logrotate::job { 'jenkins':
 log => '/var/log/jenkins/jenkins.log',
 options => [
 'daily',
 'copytruncate',
 'missingok',
 'rotate 7',
 'compress',
 'delaycompress',
 'notifempty'
],
 }
}

Diff of sixth refactor

@@ -1,8 +1,10 @@
 # /etc/puppetlabs/code/environments/production/site/profile/manifests/
jenkins/master.pp
 class profile::jenkins::master (
 String $jenkins_port = '9091',
+ Boolean $backups_enabled = false,
 Boolean $manage_plugins = false,
 Variant[String[1], Boolean] $direct_download = 'http://pkg.jenkins-
ci.org/debian-stable/binary/jenkins_1.642.2_all.deb',
+ Optional[String[1]] $jenkins_logs_to_syslog = undef,
 Boolean $install_jenkins_java = true,
) {

@@ -84,6 +86,15 @@ class profile::jenkins::master (
 value => "-Xms${heap}m -Xmx${heap}m -Djava.awt.headless=true
 -XX:+UseConcMarkSweepGC -XX:+CMSClassUnloadingEnabled -
Dhudson.model.DirectoryBrowserSupport.CSP=\\\"default-src 'self'; img-src
 'self'; style-src 'self';\\\"",
 }

+ # Forward jenkins master logs to syslog.
+ # When set to facility.level the jenkins_log uses that value instead of a
+ # separate log file, for example daemon.info
+ if $jenkins_logs_to_syslog {
+ jenkins::sysconfig { 'JENKINS_LOG':
+ value => "$jenkins_logs_to_syslog",
+ }
+ }
+
 # Deploy the SSH keys that Jenkins needs to manage its agent machines and
 # access Git repos.
 file { "${master_config_dir}/.ssh":
@@ -109,4 +120,29 @@ class profile::jenkins::master (
 source => "puppet://${secure_server}/secure/delivery/id_rsa-
jenkins.pub",
 }

+ # Back up Jenkins' data.
+ if $backups_enabled {
+ backup::job { "jenkins-data-${::hostname}":
+ files => $master_config_dir,
+ }

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1041

+ }
+
+ # (QENG-1829) Logrotate rules:
+ # Jenkins' default logrotate config retains too much data: by default, it
+ # rotates jenkins.log weekly and retains the last 52 weeks of logs.
+ # Considering we almost never look at the logs, let's rotate them daily
+ # and discard after 7 days to reduce disk usage.
+ logrotate::job { 'jenkins':
+ log => '/var/log/jenkins/jenkins.log',
+ options => [
+ 'daily',
+ 'copytruncate',
+ 'missingok',
+ 'rotate 7',
+ 'compress',
+ 'delaycompress',
+ 'notifempty'
+],
+ }
+
 }

Seventh refactor: Use a reverse proxy for HTTPS
We want the Jenkins web interface to use HTTPS, which we can accomplish with an Nginx reverse proxy. We also
want to standardize the ports: the Jenkins app always binds to its default port, and the proxy always serves over 443
for HTTPS and 80 for HTTP.

If we want to keep vanilla HTTP available, we can provide an $ssl parameter. If set to false (the default), you can
access Jenkins via both HTTP and HTTPS. We can also add a $site_alias parameter, so the proxy can listen on
a hostname other than the node's main FQDN.

class profile::jenkins::master (
 Boolean $ssl = false,
 Optional[String[1]] $site_alias = undef,
 # IMPORTANT: notice that $jenkins_port is removed.
 # ...

Set configure_firewall => false in the Jenkins class:

 class { 'jenkins':
 lts => true,
 repo => true,
 direct_download => $direct_download,
 version => 'latest',
 service_enable => true,
 service_ensure => running,
 configure_firewall => false, # <-- here
 install_java => $install_jenkins_java,
 manage_user => false,
 manage_group => false,
 manage_datadirs => false,
 # IMPORTANT: notice that port and config_hash are removed.
 }

We need to deploy SSL certificates where Nginx can reach them. Because we serve a lot of things over HTTPS, we
already had a profile for that:

 # Deploy the SSL certificate/chain/key for sites on this domain.
 include profile::ssl::delivery_wildcard

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1042

This is also a good time to add some info for the message of the day, handled by puppetlabs/motd:

 motd::register { 'Jenkins CI master (profile::jenkins::master)': }

 if $site_alias {
 motd::register { 'jenkins-site-alias':
 content => @("END"),
 profile::jenkins::master::proxy

 Jenkins site alias: ${site_alias}
 |-END
 order => 25,
 }
 }

The bulk of the work is handled by a new profile called profile::jenkins::master::proxy. We're
omitting the code for brevity; in summary, what it does is:

• Include profile::nginx.
• Use resource types from the jfryman/nginx to set up a vhost, and to force a redirect to HTTPS if we haven't

enabled vanilla HTTP.
• Set up logstash forwarding for access and error logs.
• Include profile::fw::https to manage firewall rules, if necessary.

Then, we declare that profile in our main profile:

 class { 'profile::jenkins::master::proxy':
 site_alias => $site_alias,
 require_ssl => $ssl,
 }

Important:

We are now breaking rule 1, the most important rule of the roles and profiles method. Why?

Because profile::jenkins::master::proxy is a "private" profile that belongs solely to
profile::jenkins::master. It will never be declared by any role or any other profile.

This is the only exception to rule 1: if you're separating out code for the sole purpose of readability --- that is, if you
could paste the private profile's contents into the main profile for the exact same effect --- you can use a resource-like
declaration on the private profile. This lets you consolidate your data lookups and make the private profile's inputs
more visible, while keeping the main profile a little cleaner. If you do this, you must make sure to document that the
private profile is private.

If there is any chance that this code might be reused by another profile, obey rule 1.

Diff of seventh refactor

@@ -1,8 +1,9 @@
 # /etc/puppetlabs/code/environments/production/site/profile/manifests/
jenkins/master.pp
 class profile::jenkins::master (
- String $jenkins_port = '9091',
 Boolean $backups_enabled = false,
 Boolean $manage_plugins = false,
+ Boolean $ssl = false,
+ Optional[String[1]] $site_alias = undef,
 Variant[String[1], Boolean] $direct_download = 'http://pkg.jenkins-
ci.org/debian-stable/binary/jenkins_1.642.2_all.deb',
 Optional[String[1]] $jenkins_logs_to_syslog = undef,

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1043

 Boolean $install_jenkins_java = true,
@@ -11,6 +12,9 @@ class profile::jenkins::master (
 # We rely on virtual resources that are ultimately declared by
 profile::server.
 include profile::server

+ # Deploy the SSL certificate/chain/key for sites on this domain.
+ include profile::ssl::delivery_wildcard
+
 # Some default values that vary by OS:
 include profile::jenkins::params
 $jenkins_owner = $profile::jenkins::params::jenkins_owner
@@ -22,6 +26,31 @@ class profile::jenkins::master (
 include profile::jenkins::master::plugins
 }

+ motd::register { 'Jenkins CI master (profile::jenkins::master)': }
+
+ # This adds the site_alias to the message of the day for convenience when
+ # logging into a server via FQDN. Because of the way motd::register
 works, we
+ # need a sort of funny formatting to put it at the end (order => 25) and
 to
+ # list a class so there isn't a random "--" at the end of the message.
+ if $site_alias {
+ motd::register { 'jenkins-site-alias':
+ content => @("END"),
+ profile::jenkins::master::proxy
+
+ Jenkins site alias: ${site_alias}
+ |-END
+ order => 25,
+ }
+ }
+
+ # This is a "private" profile that sets up an Nginx proxy -- it's only
 ever
+ # declared in this class, and it would work identically pasted inline.
+ # But because it's long, this class reads more cleanly with it separated
 out.
+ class { 'profile::jenkins::master::proxy':
+ site_alias => $site_alias,
+ require_ssl => $ssl,
+ }
+
 # Sensitive info (like SSH keys) isn't checked into version control like
 the
 # rest of our modules; instead, it's served from a custom mount point on
 a
 # designated server.
@@ -56,16 +85,11 @@ class profile::jenkins::master (
 version => 'latest',
 service_enable => true,
 service_ensure => running,
- configure_firewall => true,
+ configure_firewall => false,
 install_java => $install_jenkins_java,
 manage_user => false,
 manage_group => false,
 manage_datadirs => false,
- port => $jenkins_port,
- config_hash => {
- 'HTTP_PORT' => { 'value' => $jenkins_port },
- 'JENKINS_PORT' => { 'value' => $jenkins_port },

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1044

- },
 }

 # When not using the jenkins module's java version, install java8.

The final profile code
After all of this refactoring (and a few more minor adjustments), here’s the final code for
profile::jenkins::master.

/etc/puppetlabs/code/environments/production/site/profile/manifests/
jenkins/master.pp
Class: profile::jenkins::master
#
Install a Jenkins master that meets Puppet's internal needs.
#
class profile::jenkins::master (
 Boolean $backups_enabled = false,
 Boolean $manage_plugins = false,
 Boolean $ssl = false,
 Optional[String[1]] $site_alias = undef,
 Variant[String[1], Boolean] $direct_download = 'http://pkg.jenkins-ci.org/
debian-stable/binary/jenkins_1.642.2_all.deb',
 Optional[String[1]] $jenkins_logs_to_syslog = undef,
 Boolean $install_jenkins_java = true,
) {

 # We rely on virtual resources that are ultimately declared by
 profile::server.
 include profile::server

 # Deploy the SSL certificate/chain/key for sites on this domain.
 include profile::ssl::delivery_wildcard

 # Some default values that vary by OS:
 include profile::jenkins::params
 $jenkins_owner = $profile::jenkins::params::jenkins_owner
 $jenkins_group = $profile::jenkins::params::jenkins_group
 $master_config_dir = $profile::jenkins::params::master_config_dir

 if $manage_plugins {
 # About 40 jenkins::plugin resources:
 include profile::jenkins::master::plugins
 }

 motd::register { 'Jenkins CI master (profile::jenkins::master)': }

 # This adds the site_alias to the message of the day for convenience when
 # logging into a server via FQDN. Because of the way motd::register works,
 we
 # need a sort of funny formatting to put it at the end (order => 25) and
 to
 # list a class so there isn't a random "--" at the end of the message.
 if $site_alias {
 motd::register { 'jenkins-site-alias':
 content => @("END"),
 profile::jenkins::master::proxy

 Jenkins site alias: ${site_alias}
 |-END
 order => 25,
 }
 }

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1045

 # This is a "private" profile that sets up an Nginx proxy -- it's only
 ever
 # declared in this class, and it would work identically pasted inline.
 # But because it's long, this class reads more cleanly with it separated
 out.
 class { 'profile::jenkins::master::proxy':
 site_alias => $site_alias,
 require_ssl => $ssl,
 }

 # Sensitive info (like SSH keys) isn't checked into version control like
 the
 # rest of our modules; instead, it's served from a custom mount point on a
 # designated server.
 $secure_server = lookup('puppetlabs::ssl::secure_server')

 # Dependencies:
 # - Pull in apt if we're on Debian.
 # - Pull in the 'git' package, used by Jenkins for Git polling.
 # - Manage the 'run' directory (fix for busted Jenkins packaging).
 if $::osfamily == 'Debian' { include apt }

 package { 'git':
 ensure => present,
 }

 file { '/var/run/jenkins': ensure => 'directory' }

 # Because our account::user class manages the '${master_config_dir}'
 directory
 # as the 'jenkins' user's homedir (as it should), we need to manage
 # `${master_config_dir}/plugins` here to prevent the upstream
 # rtyler-jenkins module from trying to manage the homedir as the config
 # dir. For more info, see the upstream module's `manifests/plugin.pp`
 # manifest.
 file { "${master_config_dir}/plugins":
 ensure => directory,
 owner => $jenkins_owner,
 group => $jenkins_group,
 mode => '0755',
 require => [Group[$jenkins_group], User[$jenkins_owner]],
 }

 Account::User <| tag == 'jenkins' |>

 class { 'jenkins':
 lts => true,
 repo => true,
 direct_download => $direct_download,
 version => 'latest',
 service_enable => true,
 service_ensure => running,
 configure_firewall => false,
 install_java => $install_jenkins_java,
 manage_user => false,
 manage_group => false,
 manage_datadirs => false,
 }

 # When not using the jenkins module's java version, install java8.
 unless $install_jenkins_java { include profile::jenkins::usage::java8 }

 # Manage the heap size on the master, in MB.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1046

 if($::memorysize_mb =~ Number and $::memorysize_mb > 8192)
 {
 # anything over 8GB we should keep max 4GB for OS and others
 $heap = sprintf('%.0f', $::memorysize_mb - 4096)
 } else {
 # This is calculated as 50% of the total memory.
 $heap = sprintf('%.0f', $::memorysize_mb * 0.5)
 }
 # Set java params, like heap min and max sizes. See
 # https://wiki.jenkins-ci.org/display/JENKINS/Features+controlled+by
+system+properties
 jenkins::sysconfig { 'JAVA_ARGS':
 value => "-Xms${heap}m -Xmx${heap}m -Djava.awt.headless=true
 -XX:+UseConcMarkSweepGC -XX:+CMSClassUnloadingEnabled -
Dhudson.model.DirectoryBrowserSupport.CSP=\\\"default-src 'self'; img-src
 'self'; style-src 'self';\\\"",
 }

 # Forward jenkins master logs to syslog.
 # When set to facility.level the jenkins_log uses that value instead of a
 # separate log file, for example daemon.info
 if $jenkins_logs_to_syslog {
 jenkins::sysconfig { 'JENKINS_LOG':
 value => "$jenkins_logs_to_syslog",
 }
 }

 # Deploy the SSH keys that Jenkins needs to manage its agent machines and
 # access Git repos.
 file { "${master_config_dir}/.ssh":
 ensure => directory,
 owner => $jenkins_owner,
 group => $jenkins_group,
 mode => '0700',
 }

 file { "${master_config_dir}/.ssh/id_rsa":
 ensure => file,
 owner => $jenkins_owner,
 group => $jenkins_group,
 mode => '0600',
 source => "puppet://${secure_server}/secure/delivery/id_rsa-jenkins",
 }

 file { "${master_config_dir}/.ssh/id_rsa.pub":
 ensure => file,
 owner => $jenkins_owner,
 group => $jenkins_group,
 mode => '0640',
 source => "puppet://${secure_server}/secure/delivery/id_rsa-
jenkins.pub",
 }

 # Back up Jenkins' data.
 if $backups_enabled {
 backup::job { "jenkins-data-${::hostname}":
 files => $master_config_dir,
 }
 }

 # (QENG-1829) Logrotate rules:
 # Jenkins' default logrotate config retains too much data: by default, it
 # rotates jenkins.log weekly and retains the last 52 weeks of logs.
 # Considering we almost never look at the logs, let's rotate them daily

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1047

 # and discard after 7 days to reduce disk usage.
 logrotate::job { 'jenkins':
 log => '/var/log/jenkins/jenkins.log',
 options => [
 'daily',
 'copytruncate',
 'missingok',
 'rotate 7',
 'compress',
 'delaycompress',
 'notifempty'
],
 }

}

Designing convenient roles
There are several approaches to building roles, and you must decide which ones are most convenient for you and your
team.

High-quality roles strike a balance between readability and maintainability. For most people, the benefit of seeing the
entire role in a single file outweighs the maintenance cost of repetition. Later, if you find the repetition burdensome,
you can change your approach to reduce it. This might involve combining several similar roles into a more complex
role, creating sub-roles that other roles can include, or pushing more complexity into your profiles.

So, begin with granular roles and deviate from them only in small, carefully considered steps.

Here's the basic Jenkins role we're starting with:

class role::jenkins::master {
 include profile::base
 include profile::server
 include profile::jenkins::master
}

Related information
Rules for role classes on page 1027
There are rules for writing role classes.

First approach: Granular roles
The simplest approach is to make one role per type of node, period. For example, the Puppet Release Engineering
(RE) team manages some additional resources on their Jenkins masters.

With granular roles, we'd have at least two Jenkins master roles. A basic one:

class role::jenkins::master {
 include profile::base
 include profile::server
 include profile::jenkins::master
}

...and an RE-specific one:

class role::jenkins::master::release {
 include profile::base
 include profile::server
 include profile::jenkins::master
 include profile::jenkins::master::release
}

The benefits of this setup are:

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1048

• Readability — By looking at a single class, you can immediately see which profiles make up each type of node.
• Simplicity — Each role is just a linear list of profiles.

Some drawbacks are:

• Role bloat — If you have a lot of only-slightly-different nodes, you quickly have a large number of roles.
• Repetition — The two roles above are almost identical, with one difference. If they're two separate roles, it's

harder to see how they're related to each other, and updating them can be more annoying.

Second approach: Conditional logic
Alternatively, you can use conditional logic to handle differences between closely-related kinds of nodes.

class role::jenkins::master::release {
 include profile::base
 include profile::server
 include profile::jenkins::master

 if $facts['group'] == 'release' {
 include profile::jenkins::master::release
 }
}

The benefits of this approach are:

• You have fewer roles, and they're easy to maintain.

The drawbacks are:

• Reduced readability...maybe. Conditional logic isn't usually hard to read, especially in a simple case like this, but
you might feel tempted to add a bunch of new custom facts to accommodate complex roles. This can make roles
much harder to read, because a reader must also know what those facts mean.

In short, be careful of turning your node classification system inside-out. You might have a better time if you
separate the roles and assign them with your node classifier.

Third approach: Nested roles
Another way of reducing repetition is to let roles include other roles.

class role::jenkins::master {
 # Parent role:
 include role::server
 # Unique classes:
 include profile::jenkins::master
}

class role::jenkins::master::release {
 # Parent role:
 include role::jenkins::master
 # Unique classes:
 include profile::jenkins::master::release
}

In this example, we reduce boilerplate by having role::jenkins::master include role::server.
When role::jenkins::master::release includes role::jenkins::master, it automatically gets
role::server as well. With this approach, any given role only needs to:

• Include the "parent" role that it most resembles.
• Include the small handful of classes that differentiate it from its parent.

The benefits of this approach are:

• You have fewer roles, and they're easy to maintain.
• Increased visibility in your node classifier.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1049

The drawbacks are:

• Reduced readability: You have to open more files to see the real content of a role. This isn't much of a problem if
you go only one level deep, but it can get cumbersome around three or four.

Fourth approach: Multiple roles per node
In general, we recommend that you assign only one role to a node. In an infrastructure where nodes usually provide
one primary service, that's the best way to work.

However, if your nodes tend to provide more than one primary service, it can make sense to assign multiple roles.

For example, say you have a large application that is usually composed of an application server, a database server,
and a web server. To enable lighter-weight testing during development, you've decided to provide an "all-in-one"
node type to your developers. You could do this by creating a new role::our_application::monolithic
class, which includes all of the profiles that compose the three normal roles, but you might find it simpler to use your
node classifier to assign all three roles (role::our_application::app, role::our_application::db,
and role::our_application::web) to those all-in-one machines.

The benefit of this approach are:

• You have fewer roles, and they're easy to maintain.

The drawbacks are:

• There's no actual "role" that describes your multi-purpose nodes; instead, the source of truth for what's on them
is spread out between your roles and your node classifier, and you must cross-reference to understand their
configurations. This reduces readability.

• The normal and all-in-one versions of a complex application are likely to have other subtle differences you need
to account for, which might mean making your "normal" roles more complex. It's possible that making a separate
role for this kind of node would reduce your overall complexity, even though it increases the number of roles and
adds repetition.

Fifth approach: Super profiles
Because profiles can already include other profiles, you can decide to enforce an additional rule at your business: all
profiles must include any other profiles needed to manage a complete node that provides that service.

For example, our profile::jenkins::master class could include both profile::server
and profile::base, and you could manage a Jenkins master server by directly assigning
profile::jenkins::master in your node classifier. In other words, a "main" profile would do all the work
that a role usually does, and the roles layer would no longer be necessary.

The benefits of this approach are:

• The chain of dependencies for a complex service can be more clear this way.
• Depending on how you conceptualize code, this can be easier in a lot of ways!

The drawbacks are:

• Loss of flexibility. This reduces the number of ways in which your roles can be combined, and reduces your
ability to use alternate implementations of dependencies for nodes with different requirements.

• Reduced readability, on a much grander scale. Like with nested roles, you lose the advantage of a clean,
straightforward list of what a node consists of. Unlike nested roles, you also lose the clear division between "top-
level" complete system configurations (roles) and "mid-level" groupings of technologies (profiles). Not every
profile makes sense as an entire system, so you some way to keep track of which profiles are the top-level ones.

Some people really find continuous hierarchies easier to reason about than sharply divided layers. If everyone in
your organization is on the same page about this, a "profiles and profiles" approach might make sense. But we
strongly caution you against it unless you're very sure; for most people, a true roles and profiles approach works
better. Try the well-traveled path first.

© 2024 Puppet, Inc., a Perforce company

Puppet | Developing Puppet code | 1050

Sixth approach: Building roles in the node classifier
Instead of building roles with the Puppet language and then assigning them to nodes with your node classifier, you
might find your classifier flexible enough to build roles directly.

For example, you might create a "Jenkins masters" group in the console and assign it the profile::base,
profile::server, and profile::jenkins::master classes, doing much the same job as our basic
role::jenkins::master class.

Important:

If you're doing this, make sure you don't set parameters for profiles in the classifier. Continue to use Hiera / Puppet
lookup to configure profiles.

This is because profiles are allowed to include other profiles, which interacts badly with the resource-like behavior
that node classifiers use to set class parameters.

The benefits of this approach are:

• Your node classifier becomes much more powerful, and can be a central point of collaboration for managing
nodes.

• Increased readability: A node's page in the console displays the full content of its role, without having to cross-
reference with manifests in your role module.

The drawbacks are:

• Loss of flexibility. The Puppet language's conditional logic is often more flexible and convenient than most node
classifiers, including the console.

• Your roles are no longer in the same code repository as your profiles, and it's more difficult to make them follow
the same code promotion processes.

Puppet Forge
Puppet Forge is a collection of modules and how-to guides developed by Puppet and its community.

Modules manage a specific technology in your infrastructure and serve as the basic building blocks of Puppet desired
state management. On the Puppet Forge, there is a module to manage almost any part of your infrastructure. Whether
you want to manage packages or patch operating systems, a module is already set up for you. See each module’s
README for installation instructions, usage, and code examples.

When using an existing module from the Forge, most of the Puppet code is written for you. You just need to install
the module and its dependencies and write a small amount of code (known as a profile) to tie things together. Take
a look at our Getting started with PE guide to see an example of writing a profile for an existing module. For more
information about existing modules, see the module fundamentals documentation and Puppet Forge.

Puppet Development Kit (PDK)
You can write your own Puppet code and modules using Puppet Development Kit (PDK), which is a framework to
successfully build, test and validate your modules.

Note that most Puppet users won’t have to write full Puppet code at all, though you can if you want to. For
installation instructions and more information, see the PDK documentation.

Puppet VSCode extension
Puppet has an extension for Visual Studio Code (VSCode) — Microsoft’s cross-platform source-code editor.

The Puppet VSCode extension makes writing and managing Puppet code easier and ensures your code is high
quality. Its features include Puppet DSL intellisense, linting, and built-in commands. You can use the extension with

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pe/latest/getting_started_pe_overview.html
https://puppet.com/docs/puppet/latest/modules_fundamentals.html
https://forge.puppet.com/
https://puppet.com/docs/pdk/1.x/pdk_overview.html#develop-modules-pdk

Puppet | Bolt | 1051

Windows, Linux, or macOS. For installation instructions and a full list of features, see the Puppet VSCode extension
documentation.

Bolt

Bolt is an open source orchestration tool. You can use Bolt as a stand-alone tool or integrate it with Puppet.

Bolt allows you to automate tasks on an as-needed basis or as part of a greater orchestration workflow. To get started,
see the Bolt documentation.

Example configurations

Try out some common configuration tasks to see how you can use Puppet to manage your IT infrastructure.

• Manage an NTP service on page 1051
Network Time Protocol (NTP) is one of the most crucial, yet easiest, services to configure and manage with Puppet,
to properly synchronize time across all your nodes. Follow this guide to get started managing a NTP service using the
Puppet ntp module.
• Manage sudo privileges on page 1054
Managing sudo on your agents allows you to control which system users have access to elevated privileges. This
guide helps you get started managing sudo privileges across your nodes, using a module from the Puppet Forge in
conjunction with a simple module you write.
• Manage a DNS nameserver file on page 1058
A nameserver ensures that the human-readable URLs you type in your browser (for example, example.com)
resolve to IP addresses that computers can read. This guide helps you get started managing a simple Domain Name
System (DNS) nameserver file with Puppet.
• Manage firewall rules on page 1061
With a firewall, admins define firewall rules, which sets a policy for things like application ports (TCP/UDP),
network ports, IP addresses, and accept-deny statements. This guide helps you get started managing firewall rules
with Puppet.
• Forge examples on page 1064
Puppet Forge is a collection of modules and how-to guides developed by Puppet and its community.

Manage an NTP service
Network Time Protocol (NTP) is one of the most crucial, yet easiest, services to configure and manage with Puppet,
to properly synchronize time across all your nodes. Follow this guide to get started managing a NTP service using the
Puppet ntp module.

Before you begin

Ensure you’ve already installed Puppet, and at least one *nix agent. Also, log in as root or Administrator on your
nodes.

The clocks on your servers are not inherently accurate. They need to synchronize with something to let them know
what the right time is. NTP is a protocol that synchronizes the clocks of computers over a network. NTP uses
Coordinated Universal Time (UTC) to synchronize computer clock times to within a millisecond.

Your entire datacenter, from the network to the applications, depends on accurate time for security services,
certificate validation, and file sharing across Puppet agents. If the time is wrong, your Puppet primary server might
mistakenly issue agent certificates from the distant past or future, which other agents treat as expired.

Using the Puppet NTP module, you can:

© 2024 Puppet, Inc., a Perforce company

https://puppet-vscode.github.io/
https://puppet-vscode.github.io/
https://puppet.com/docs/bolt/latest/bolt.html

Puppet | Example configurations | 1052

• Ensure time is correctly synced across all the servers in your infrastructure.
• Ensure time is correctly synced across your configuration management tools.
• Roll out updates quickly if you need to change or specify your own internal NTP server pool.

This guide walks you through the following steps in setting up NTP configuration management:

• Installing the puppetlabs-ntp module.
• Adding classes to the default node in your main manifest.
• Viewing the status of your NTP service.
• Using multiple nodes in the main manifest to configure NTP for different permissions.

Note: You can add the NTP service to as many agents as needed. For simplicity, this guide describes adding it to
only one.

1. The first step is installing the puppetlabs-ntp module. The puppetlabs-ntp module is part of
the supported modules program; these modules are supported, tested, and maintained by Puppet. For more
information on puppetlabs-ntp, see the README. To install it, run:

puppet module install puppetlabs-ntp

The resulting output is similar to this:

 Preparing to install into /etc/puppetlabs/puppet/modules ...
 Notice: Downloading from http://forgeapi.puppetlabs.com ...
 Notice: Installing -- do not interrupt ...
 /etc/puppetlabs/puppet/environments/production/modules
 ### puppetlabs-ntp (v3.1.2)

That’s it! You’ve just installed the puppetlabs-ntp module.

© 2024 Puppet, Inc., a Perforce company

http://forge.puppetlabs.com/supported
https://forge.puppet.com/puppetlabs/ntp

Puppet | Example configurations | 1053

2. The next step is adding classes from the NTP module to the main manifest.

The NTP module contains several classes. Classes are named chunks of Puppet code and are the primary means
by which Puppet configures nodes. The NTP module contains the following classes:

• ntp: the main class, which includes all other NTP classes, including the classes in this list.
• ntp::install: handles the installation packages.
• ntp::config: handles the configuration file.
• ntp::service: handles the service.

You’re going to add the ntp class to the default node in your main manifest. Depending on your needs or
infrastructure, you might have a different group that you’ll assign NTP to, but you would take similar steps.

a) From the command line on the primary server, navigate to the directory that contains the main manifest:

cd /etc/puppetlabs/code/environments/production/manifests

b) Use your text editor to open site.pp.
c) Add the following Puppet code to site.pp:

node default {
 class { 'ntp':
 servers => ['nist-time-server.eoni.com','nist1-
lv.ustiming.org','ntp-nist.ldsbc.edu']
 }
}

Note: If your site.pp file already has a default node in it, add just the class and servers lines to it.

Note: For additional time server options, see the list at https://www.ntppool.org/.

d) On your agent, start a Puppet run:

puppet agent -t

Your Puppet-managed node is now configured to use NTP.

3. To check if the NTP service is running, run:

puppet resource service ntpd

On Ubuntu operating systems, the service is ntp instead of ntpd.

The result looks like this:

service { 'ntpd':
 ensure => 'running',
 enable => 'true',
 }

© 2024 Puppet, Inc., a Perforce company

https://www.ntppool.org/

Puppet | Example configurations | 1054

4. If you want to configure the NTP service to run differently on different nodes, you can set up NTP on nodes other
than default in the site.pp file.

In previous steps, you’ve been configuring the default node.

In the example below, two NTP servers (kermit and grover) are configured to talk to outside time servers.
The other NTP servers (snuffie, bigbird, and hooper) use those two primary servers to sync their time.

One of the primary NTP servers, kermit, is very cautiously configured — it can’t afford outages, so it’s not
allowed to automatically update its NTP server package without testing. The other servers are more permissively
configured.

The site.pp looks like this:

node "kermit.example.com" {
 class { "ntp":
 servers => ['0.us.pool.ntp.org
 iburst','1.us.pool.ntp.org iburst','2.us.pool.ntp.org
 iburst','3.us.pool.ntp.org iburst'],
 autoupdate => false,
 restrict => [],
 service_enable => true,
 }
}

node "grover.example.com" {
 class { "ntp":
 servers => ['kermit.example.com','0.us.pool.ntp.org
 iburst','1.us.pool.ntp.org iburst','2.us.pool.ntp.org iburst'],
 autoupdate => true,
 restrict => [],
 service_enable => true,
 }
}

node "snuffie.example.com", "bigbird.example.com", "hooper.example.com" {
 class { "ntp":
 servers => ['grover.example.com', 'kermit.example.com'],
 autoupdate => true,
 enable => true,
 }
}

In this way, it is possible to configure NTP on multiple nodes to suit your needs.

For more information about working with the puppetlabs-ntp module, check out our How to Manage NTP
webinar.

Puppet offers many opportunities for learning and training, from formal certification courses to guided online lessons.
See the Learning Puppet page for more information.

Manage sudo privileges
Managing sudo on your agents allows you to control which system users have access to elevated privileges. This
guide helps you get started managing sudo privileges across your nodes, using a module from the Puppet Forge in
conjunction with a simple module you write.

Before you begin

Before starting this walk-through, complete the previous exercises.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/resources/webinar/how-manage-ntp
https://learn.puppet.com/

Puppet | Example configurations | 1055

Ensure you’ve already installed Puppet, and at least one *nix agent. Also, log in as root or Administrator on your
nodes.

Using this guide, you learn how to:

• Install the saz-sudo module as the foundation for managing sudo privileges.
• Write a module that contains a class called privileges to manage a resource that sets privileges for certain

users.
• Add classes from the privileges and sudo modules to your agents.

Note: You can add the sudo and privileges classes to as many agents as needed. For simplicity, this guide
describes only one.

1. Start by installing the saz-sudo module. It's available on the Forge, and is one of many modules written by a
member of the Puppet user community. You can learn more about the module at forge.puppet.com/saz/sudo. To
install the saz-sudo module, run the following command on the primary server:

puppet module install saz-sudo

The resulting output is similar to this:

Preparing to install into /etc/puppetlabs/code/environments/production/
modules …
Notice: Downloading from http://forgeapi.puppetlabs.com ...
 Notice: Installing -- do not interrupt ...
 /etc/puppetlabs/puppet/modules
 ### saz-sudo (v2.3.6)
 ### puppetlabs-stdlib (3.2.2) [/opt/puppet/share/puppet/modules]

That’s it! You’ve installed the saz-sudo module.

© 2024 Puppet, Inc., a Perforce company

http://forge.puppet.com/saz/sudo

Puppet | Example configurations | 1056

2. Next, you'll create a module that contains the privileges class.

Like in the DNS exercise, this is a small module with just one class. You'll create the privileges module
directory, its manifests subdirectory, and an init.pp manifest file that contains the privileges class.

a) From the command line on the primary server, navigate to the modules directory:

cd /etc/puppetlabs/code/environments/production/modules

b) Create the module directory and its manifests directory:

mkdir -p privileges/manifests

c) In the manifests directory, use your text editor to create the init.pp file, and edit it so it contains the
following Puppet code:

class privileges {

 sudo::conf { 'admins':
 ensure => present,
 content => '%admin ALL=(ALL) ALL',
 }

 }

The sudo::conf 'admins' line creates a sudoers rule that ensures that members of the admins group
have the ability to run any command using sudo. This resource creates a configuration fragment file to define
this rule in /etc/sudoers.d/. It's called something like 10_admins.

d) Save and exit the file.

That’s it! You’ve created a module that contains a class that, after it's applied, ensures that your agents have
the correct sudo privileges set for the root user and the admins and wheel groups.

© 2024 Puppet, Inc., a Perforce company

Puppet | Example configurations | 1057

3. Next, add the privileges and sudo classes to default nodes.

a) From the command line on the primary server, navigate to the main manifest:

cd /etc/puppetlabs/code/environments/production/manifests

b) Open site.pp with your text editor and add the following Puppet code to the default node:

class { 'sudo': }
sudo::conf { 'web':
 content => "web ALL=(ALL) NOPASSWD: ALL",
}
class { 'privileges': }
sudo::conf { 'jargyle':
 priority => 60,
 content => "jargyle ALL=(ALL) NOPASSWD: ALL",
}

The sudo::conf ‘web’ line creates a sudoers rule to ensure that members of the web group can run
any command using sudo. This resource creates a configuration fragment file to define this rule in /etc/
sudoers.d/.

The sudo::conf ‘jargyle’ line creates a sudoers rule to ensure that the user jargyle can run
any command using sudo. This resource creates a configuration fragment to define this rule in /etc/
sudoers.d/. It's called something like 60_jargyle.

c) Save and exit the file.
d) On your primary server, ensure that there are no errors:

puppet parser validate site.pp

The parser returns nothing if there are no errors.
e) From the command line on your agent, run Puppet: puppet agent -t

That’s it! You have successfully applied sudo and privileges classes to nodes.
f) To confirm it worked, run the following command on an agent:

sudo -l -U jargyle

The results resemble the following:

 Matching Defaults entries for jargyle on this host:
!visiblepw, always_set_home, env_reset, env_keep="COLORS DISPLAY
 HOSTNAME HISTSIZE
INPUTRC KDEDIR LS_COLORS", env_keep+="MAIL PS1 PS2 QTDIR USERNAME LANG
 LC_ADDRESS
LC_CTYPE", env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT
 LC_MESSAGES",
env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER LC_TELEPHONE",
 env_keep+="LC_TIME
LC_ALL LANGUAGE LINGUAS _XKB_CHARSET XAUTHORITY",
secure_path=/usr/local/bin\:/sbin\:/bin\:/usr/sbin\:/usr/bin

 User jargyle may run the following commands on this host:
(ALL) NOPASSWD: ALL

For more information about working with Puppet and sudo users, see our Module of The Week: saz/sudo - Manage
sudo configuration blog post.

Puppet offers many opportunities for learning and training, from formal certification courses to guided online lessons.
See the Learning Puppet page for more information.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/blog/module-of-the-week-sazsudo-manage-sudo-configuration
https://puppet.com/blog/module-of-the-week-sazsudo-manage-sudo-configuration
https://learn.puppet.com/

Puppet | Example configurations | 1058

Manage a DNS nameserver file
A nameserver ensures that the human-readable URLs you type in your browser (for example, example.com)
resolve to IP addresses that computers can read. This guide helps you get started managing a simple Domain Name
System (DNS) nameserver file with Puppet.

Before you begin

Before starting this walk-through, complete the previous exercise of setting up NTP management. Log in as root or
Administrator on your nodes.

Sysadmins typically need to manage a nameserver file for internal resources that aren’t published in public
nameservers. For example, suppose you have several employee-maintained servers in your infrastructure, and the
DNS network assigned to those servers use Google’s public nameserver located at 8.8.8.8. However, there are
several resources behind your company’s firewall that your employees need to access on a regular basis. In this case,
you’d build a private nameserver (for example at 10.16.22.10), and use Puppet to ensure all the servers in your
infrastructure have access to it.

In this exercise, you learn how to:

• Write a module that contains a class called resolver to manage a nameserver file called /etc/
resolv.conf.

• Enforce the desired state of that class from the command line of your Puppet agent.

Note: You can add the DNS nameserver class to as many agents as needed. For simplicity, this guide describes
adding it to only one.

© 2024 Puppet, Inc., a Perforce company

Puppet | Example configurations | 1059

1. The first step is creating the resolver module and a template.

While some modules are large and complex, this module module contains just one class and one template

By default, Puppet keeps modules in an environment’s modulepath, which for the production environment
defaults to /etc/puppetlabs/code/environments/production/modules. This directory contains
modules that Puppet installs, those that you download from the Forge, and those you write yourself.

Note: Puppet creates another module directory: /opt/puppetlabs/puppet/modules. Don’t modify or
add anything in this directory.

For thorough information about creating and using modules, see Modules fundamentals, the Beginner’s guide to
modules, and the Puppet Forge .

Modules are directory trees. For this task, you’ll create a directory for the resolver module, a subdirectory for
its templates, and a template file that Puppet uses to create the /etc/resolv.conf file that manages DNS.

a) From the command line on the Puppet primary server, navigate to the modules directory:

cd /etc/puppetlabs/code/environments/production/modules

b) Create the module directory and its templates directory:

mkdir -p resolver/templates

c) Use your text editor to create a file called resolv.conf.erb inside the resolver/templates
directory.

d) Edit the resolv.conf.erb file to add the following Ruby code:

 # Resolv.conf generated by Puppet

 <% [@nameservers].flatten.each do |ns| -%>
 nameserver <%= ns %>
 <% end -%>

This Ruby code is a template for populating /etc/resolv.conf correctly, no matter what changes are
manually made to /etc/resolv.conf, as you see in a later step.

e) Save and exit the file.

That’s it! You’ve created a Ruby template to populate /etc/resolv.conf.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/

Puppet | Example configurations | 1060

2. Add managing the resolv.conf file to your main manifest.

a) On the primary server, open /etc/resolv.conf with your text editor, and copy the IP address of your
primary server’s nameserver. In this example, the nameserver is 10.0.2.3.

b) Navigate to the main manifest:

cd /etc/puppetlabs/code/environments/production/manifests

c) Use your text editor to open the site.pp file and add the following Puppet code to the default node, making
the nameservers value match the one you found in /etc/resolv.conf:

 $nameservers = ['10.0.2.3']

 file { '/etc/resolv.conf':
 ensure => file,
 owner => 'root',
 group => 'root',
 mode => '0644',
 content => template('resolver/resolv.conf.erb'),
 }

d) From the command line on your agent, run Puppet: puppet agent -t

To see the results in the resolve.conf file, run:

cat /etc/resolv.conf

The file contains the nameserver you added to your main manifest.

That’s it! You’ve written and applied a module that contains a class that ensures your agents resolve to your
internal nameserver.

Note the following about your new class:

• It ensures the creation of the file /etc/resolv.conf.
• The content of /etc/resolv.conf is modified and managed by the template, resolv.conf.erb.

3. Finally, let’s take a look at how Puppet ensures the desired state of the resolver class on your agents. In the
previous task, you set the nameserver IP address. Now, simulate a scenario where a member of your team changes
the contents of /etc/resolv.conf to use a different nameserver and, as a result, can no longer access any
internal resources:

a) On the agent to which you applied the resolver class, edit /etc/resolv.conf to contain any
nameserver IP address other than the one you want to use.

b) Save and exit the file.
c) Now, fix the mistake you've introduced. From the command line on your agent, run: puppet agent -t

--onetime

To see the resulting contents of the managed file, run:

cat /etc/resolv.conf

Puppet has enforced the desired state of the agent node by changing the nameserver value back to what you
specified in site.pp on the primary server.

For more information about working with Puppet and DNS, see our Dealing with Name Resolution Issues blog post.

Puppet offers many opportunities for learning and training, from formal certification courses to guided online lessons.
See the Learning Puppet page for more information.

© 2024 Puppet, Inc., a Perforce company

http://puppet.com/blog/resolving-dns-issues
https://learn.puppet.com/

Puppet | Example configurations | 1061

Manage firewall rules
With a firewall, admins define firewall rules, which sets a policy for things like application ports (TCP/UDP),
network ports, IP addresses, and accept-deny statements. This guide helps you get started managing firewall rules
with Puppet.

Before you begin

Before starting this walk-through, complete the previous exercises in the common configuration tasks.

Ensure you’ve already installed Puppet, and at least one *nix agent. Also, log in as root or Administrator on your
nodes.

Firewall rules are applied with a top-to-bottom approach. For example, when a service, say SSH, attempts to
access resources on the other side of a firewall, the firewall applies a list of rules to determine if or how SSH
communications are handled. If a rule allowing SSH access can’t be found, the firewall denies access to that SSH
attempt.

To best way to manage firewall rules with Puppet is to divide them into pre and post groups to ensure Puppet
checks them in the correct order.

Using this guide, you learn how to:

• Install the puppetlabs-firewall module.
• Write a module to define the firewall rules for your Puppet managed infrastructure.
• Add the firewall module to the main manifest.
• Enforce the desired state using the my_firewall class.

1. The first step is installing the puppetlabs-firewall module from the Puppet Forge. The module introduces
the firewall resource, which is used to manage and configure firewall rules. For more information about the
puppetlabs-firewall module, see its README. To install the module, on the primary server, run:

puppet module install puppetlabs-firewall

The resulting output is similar to this:

Preparing to install into /etc/puppetlabs/puppet/environments/production/
modules ...
 Notice: Downloading from https://forgeapi.puppetlabs.com ...
 Notice: Installing -- do not interrupt ...
 /etc/puppetlabs/puppet/environments/production/modules
 ### puppetlabs-firewall (v1.6.0)

That's it! You’ve just installed the firewall module.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/firewall/readme

Puppet | Example configurations | 1062

2. Next, you'll write the my_firewall module, which contains three classes. You'll create the my_firewall
module directory, its manifests subdirectory, a pre.pp manifest file and a post.pp manifest file.

a) From the command line on the primary server, navigate to the modules directory:

cd /etc/puppetlabs/code/environments/production/modules

b) Create the module directory and its manifests directory:

mkdir -p my_firewall/manifests

c) From the manifests directory, use your text editor to create pre.pp.
d) The pre rules are rules that the firewall applies when a service requests access. It is run before any other rules.

Edit pre.pp so it contains the following Puppet code:

class my_firewall::pre {
 Firewall {
 require => undef,
 }
 firewall { '000 accept all icmp':
 proto => 'icmp',
 action => 'accept',
 }
 firewall { '001 accept all to lo interface':
 proto => 'all',
 iniface => 'lo',
 action => 'accept',
 }
 firewall { '002 reject local traffic not on loopback interface':
 iniface => '! lo',
 proto => 'all',
 destination => '127.0.0.1/8',
 action => 'reject',
 }
 firewall { '003 accept related established rules':
 proto => 'all',
 state => ['RELATED', 'ESTABLISHED'],
 action => 'accept',
 }
 }

These default rules allow basic networking to ensure that existing connections are not closed.
e) Save and exit the file.
f) From the manifests directory, use your text editor to create post.pp.
g) The post rules tell the firewall to drop requests that haven’t met the rules defined by pre.pp or in site.pp.

Edit post.pp so it contains the following Puppet code:

 class my_firewall::post {
 firewall { '999 drop all':
 proto => 'all',
 action => 'drop',
 before => undef,
 }
 }

h) Save and exit the file.

That’s it! You’ve written a module that contains a class that, after it's applied, ensures your firewall has rules
in it that are managed by Puppet.

© 2024 Puppet, Inc., a Perforce company

Puppet | Example configurations | 1063

3. Now you'll add the firewall module to the main manifest so that Puppet is managing firewall configuration on
nodes.

a) On the primary server, navigate to the main manifest:

cd /etc/puppetlabs/code/environments/production/manifests

b) Use your text editor to open site.pp.
c) Add the following Puppet code to your site.pp file:

 resources { 'firewall':
 purge => true,
 }

This clears any existing rules and make sure that only rules defined in Puppet exist on the machine.
d) Add the following Puppet code to your site.pp file:

 Firewall {
 before => Class['my_firewall::post'],
 require => Class['my_firewall::pre'],
 }

 class { ['my_firewall::pre', 'my_firewall::post']: }

These settings ensure that the pre and post classes are run in the correct order to avoid locking you out of your
node during the first Puppet run, and declaring my_firewall::pre and my_firewall::post satisfies
the specified dependencies.

e) Add the firewall class to your site.pp to ensure the correct packages are installed:

class { 'firewall': }

f) To apply the configuration, on the agent, run Puppet: puppet agent -t

That's it! Puppet is now managing the firewall configuration on the agent.
g) To check your firewall configuration, on the agent, run: iptables --list

The resulting output is similar to this:

Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT icmp -- anywhere anywhere /* 000
 accept all icmp */
ACCEPT all -- anywhere anywhere /* 001
 accept all to lo interface */
REJECT all -- anywhere loopback/8 /* 002
 reject local traffic not on loopback interface */ reject-with icmp-
port-unreachable
ACCEPT all -- anywhere anywhere /* 003
 accept related established rules */ state RELATED,ESTABLISHED
DROP all -- anywhere anywhere /* 999 drop
 all */

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

© 2024 Puppet, Inc., a Perforce company

Puppet | Example configurations | 1064

4. Finally, let’s take a look at how Puppet ensures the desired state of the my_firewall class on your agents. In
the previous step, you applied the firewall rules. Now, simulate a scenario where a member of your team changes
the contents the iptables to allow connections on a random port that was not specified in my_firewall:

a) On an agent where you applied the my_firewall class, run:

iptables --list

Note that the rules from the my_firewall class have been applied.
b) From the command line, add a rule to allow connections to port 8449 by running:

iptables -I INPUT -m state --state NEW -m tcp -p tcp --dport 8449 -j
 ACCEPT

c) Run iptables --list again and see that this new rule is now listed.
d) Run Puppet on that agent:

puppet agent -t --onetime

e) Run iptables --list on that node one more time, and notice that Puppet has enforced the desired state
you specified for the firewall rules

That’s it! Puppet has enforced the desired state of your agent.

You can learn more about the Puppet firewall module by visiting the Forge .

Puppet offers many opportunities for learning and training, from formal certification courses to guided online lessons.
See the Learning Puppet page for more information.

Forge examples
Puppet Forge is a collection of modules and how-to guides developed by Puppet and its community.

The Forge has existing modules and code examples that assist with automating the following use cases:

• Base system configuration

• Including registry, NTP, firewalls, services
• Manage web servers

• Including apache, tomcat, IIS, nginx
• Manage database systems

• Including Oracle, Microsoft SQL Server, MySQL, PostgreSQL
• Manage middleware/application systems

• Including Java, WebLogic/Fusion, IBM MQ, IBM IIB, RabbitMQ, ActiveMQ, Redis, ElasticSearch
• Source control

• Including Github, Gitlab
• Monitoring

• Including Splunk, Nagios, Zabbix, Sensu, Prometheus, NewRelic, Icinga, SNMP
• Patch management

• OS patching on Enterprise Linux, Debian, SLES, Ubuntu, Windows
• Package management

• Linux: Puppet integrates directly with native package managers
• Windows: Use Puppet to install software directly on Windows, or integrate with Chocolatey

• Containers and cloud native

• Including Docker, Kubernetes, Terraform, OpenShift

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/firewall/readme
https://learn.puppet.com/
https://forge.puppet.com/
https://forge.puppet.com/puppetlabs/registry
https://forge.puppet.com/puppetlabs/ntp
https://forge.puppet.com/puppetlabs/firewall
https://forge.puppet.com/puppetlabs/service
https://forge.puppet.com/puppetlabs/apache
https://forge.puppet.com/puppetlabs/tomcat
https://forge.puppet.com/puppetlabs/iis
https://forge.puppet.com/puppet/nginx
https://forge.puppet.com/enterprisemodules/ora_config
https://forge.puppet.com/puppetlabs/sqlserver
https://forge.puppet.com/puppetlabs/mysql
https://forge.puppet.com/puppetlabs/postgresql
https://forge.puppet.com/puppetlabs/java
https://forge.puppet.com/enterprisemodules/wls_config
https://forge.puppet.com/enterprisemodules/mq_config
https://forge.puppet.com/enterprisemodules/iib_install
https://forge.puppet.com/puppet/rabbitmq
https://forge.puppet.com/puppetlabs/activemq
https://forge.puppet.com/puppet/redis
https://forge.puppet.com/elastic/elasticsearch
https://forge.puppet.com/enterprisemodules/github_config
https://forge.puppet.com/puppet/gitlab
https://forge.puppet.com/puppetlabs/splunk_hec
https://forge.puppet.com/herculesteam/augeasproviders_nagios
https://forge.puppet.com/puppet/zabbix
https://forge.puppet.com/sensu/sensu
https://forge.puppet.com/puppet/prometheus
https://forge.puppet.com/claranet/newrelic
https://forge.puppet.com/icinga/icinga2
https://forge.puppet.com/puppet/snmp
https://forge.puppet.com/albatrossflavour/os_patching
https://forge.puppet.com/puppetlabs/chocolatey
https://forge.puppet.com/puppetlabs/docker
https://forge.puppet.com/puppetlabs/kubernetes
https://forge.puppet.com/puppetlabs/terraform
https://forge.puppet.com/openshift/openshift_origin

Puppet | References | 1065

• Networking

• Including Cisco Catalyst, Cisco Nexus, F5, Palo Alto, Barracuda
• Secrets management

• Including Hashicorp Vault, CyberArk Conjur, Azure Key Vault, Consul Data

See each module’s README for installation, usage, and code examples.

References

Puppet references, including configuration settings, functions, and metaparameters.

• Experimental features on page 1065
Released versions of Puppet can include experimental features to be considered for adoption but are not yet ready for
production. These features need to be tested in the field before they can be considered safe, and therefore are turned
off by default.
• Configuration Reference on page 167
• Metaparameter reference on page 1096
Metaparameters are attributes that work with any resource type, including custom types and defined types. They
change the way Puppet handles resources.
• Built-in function reference on page 763
• Ruby API for developing extensions
• Puppet Man Pages on page 1179

Experimental features
Released versions of Puppet can include experimental features to be considered for adoption but are not yet ready for
production. These features need to be tested in the field before they can be considered safe, and therefore are turned
off by default.

Experimental features can have a solid design but with an unknown performance and resource usage. Sometimes even
the design is tentative, and because of this, we need feedback from users. By shipping these features early in disabled
form, we want it to be easier for testing and giving feedback.

Risks and support

CAUTION: Experimental features are not officially supported by Puppet, and we do not recommend
that you turn them on in a production environment. They are available for testing in relatively safe scratch
environments, and are used at your own risk.

Puppet employees and community members do their best to help you in informal channels like IRC, and the puppet-
users and puppet-dev mailing lists, but we make no promises about experimental functionality.

Enabling experimental features might degrade the performance of your Puppet infrastructure, interfere with the
normal operation of your managed nodes, introduce unexpected security risks, or have other undesired effects.

This is especially relevant to Puppet Enterprise customers. If Puppet support is assisting you with a problem, we
might ask you to disable any experimental features.

Changes to experimental features

Experimental features are exempt from semantic versioning, which means that they can change at any time, and are
not limited to major or minor release boundaries.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/cisco_ios
https://forge.puppet.com/puppetlabs/ciscopuppet
https://forge.puppet.com/f5/f5
https://forge.puppet.com/puppetlabs/panos
https://forge.puppet.com/barracuda/cudawaf
https://forge.puppet.com/puppetlabs/vault
https://forge.puppet.com/cyberark/conjur
https://forge.puppet.com/tragiccode/azure_key_vault
https://forge.puppet.com/ploperations/consul_data/readme
http://www.rubydoc.info/gems/puppet/

Puppet | References | 1066

These changes might include adding or removing functionality, changing the names of settings and other affordances,
and more.

Documentation of experimental features

The Puppet documentation contains pages for currently available experimental features. These pages are focused on
enabling a feature and running through the interesting parts of its functionality; they might lag slightly behind the
feature as implemented.

When a feature has experienced major changes across minor versions, we note the differences at the top of that
feature page.

Each feature page attempts to give some context about the status of that feature and its prospects for official release.

Giving feedback on experimental features

To help us keep improving Puppet, tell us more about your experience.

The best places to talk about experimental features are the puppet-users and puppet-dev mailing lists. This tells us
what’s working and what isn’t, while also helping others learn from your experience. For more information about the
Puppet mailing lists, see the community guidelines for mailing lists.

For more immediate conversations, you can use the #puppet and #puppet-dev channels on irc.freenode.net. For more
information about these channels, see the community guidelines for IRC.

• Msgpack support on page 1066
Puppet agents and primary servers communicate over HTTPS, exchanging structured data in JSON, or PSON which
allows binary data.

Msgpack support
Puppet agents and primary servers communicate over HTTPS, exchanging structured data in JSON, or PSON which
allows binary data.

Msgpack is an efficient serialization protocol that behaves similarly to JSON. It provides faster and more robust
serialization for agent-server communications, without requiring many changes in our code.

Important: When msgpack is enabled, the primary Puppet server and agent communicates using msgpack instead of
PSON.

Enabling Msgpack serialization
Enabling msgpack is easy, but first, it must be installed because the gem is not included in the puppet-agent or
puppetserver packages.

1. Install the msgpack gem on your primary server and all agent nodes.

If you are using the Puppet Enterprise test environment, make sure to use PE gem command instead of the system
gem command.

On *nix nodes, run the following command:

/opt/puppetlabs/puppet/bin/gem install msgpack

On Windows nodes, run the following command:

"C:\Program Files\Puppet Labs\Puppet\sys\ruby\bin\gem" install msgpack

On Puppet Server, run the following command and then restart the Puppet Server service:

puppetserver gem install msgpack

© 2024 Puppet, Inc., a Perforce company

https://groups.google.com/group/puppet-users
https://groups.google.com/group/puppet-dev
https://docs.puppet.com/community/community_guidelines.html
https://docs.puppet.com/community/community_guidelines.html
https://msgpack.org/
http://rubygems.org/gems/msgpack

Puppet | References | 1067

2. In the [agent] or [main] section of puppet.conf on any number of agent nodes, set the
preferred_serialization_format setting to msgpack.

After this is configured, the primary Puppet server uses msgpack when serving any agents that have
preferred_serialization_format set to msgpack. Any agents without that setting continue to receive
PSON as normal.

Configuration Reference
NOTE: This page was generated from the Puppet source code on 2022-02-07 10:11:18 -0800

This page is autogenerated; any changes will get overwritten

Configuration settings

• Each of these settings can be specified in puppet.conf or on the command line.
• Puppet Enterprise (PE) and open source Puppet share the configuration settings documented here. However,

PE defaults differ from open source defaults for some settings, such as node_terminus, storeconfigs,
always_retry_plugins, disable18n, environment_timeout (when Code Manager is enabled),
and the Puppet Server JRuby max-active-instances setting. To verify PE configuration defaults, check the
puppet.conf or pe-puppet-server.conf file after installation.

• When using boolean settings on the command line, use --setting and --no-setting instead of --
setting (true|false). (Using --setting false results in "Error: Could not parse application
options: needless argument".)

• Settings can be interpolated as $variables in other settings; $environment is special, in that puppet master
will interpolate each agent node's environment instead of its own.

• Multiple values should be specified as comma-separated lists; multiple directories should be separated with the
system path separator (usually a colon).

• Settings that represent time intervals should be specified in duration format: an integer immediately followed
by one of the units 'y' (years of 365 days), 'd' (days), 'h' (hours), 'm' (minutes), or 's' (seconds). The unit cannot
be combined with other units, and defaults to seconds when omitted. Examples are '3600' which is equivalent to
'1h' (one hour), and '1825d' which is equivalent to '5y' (5 years).

• If you use the splay setting, note that the period that it waits changes each time the Puppet agent is restarted.
• Settings that take a single file or directory can optionally set the owner, group, and mode for their value: rundir

= $vardir/run { owner = puppet, group = puppet, mode = 644 }

• The Puppet executables ignores any setting that isn't relevant to their function.

See the configuration guide for more details.

agent_catalog_run_lockfile

A lock file to indicate that a puppet agent catalog run is currently in progress. The file contains the pid of the process
that holds the lock on the catalog run.

• Default: $statedir/agent_catalog_run.lock

agent_disabled_lockfile

A lock file to indicate that puppet agent runs have been administratively disabled. File contains a JSON object with
state information.

• Default: $statedir/agent_disabled.lock

allow_duplicate_certs

Whether to allow a new certificate request to overwrite an existing certificate request. If true, then the old certificate
must be cleaned using puppetserver ca clean, and the new request signed using puppetserver ca
sign.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/config_about_settings.html

Puppet | References | 1068

• Default: false

always_retry_plugins

Affects how we cache attempts to load Puppet resource types and features. If true, then calls to
Puppet.type.<type>? Puppet.feature.<feature>? will always attempt to load the type or feature
(which can be an expensive operation) unless it has already been loaded successfully. This makes it possible for a
single agent run to, e.g., install a package that provides the underlying capabilities for a type or feature, and then
later load that type or feature during the same run (even if the type or feature had been tested earlier and had not been
available).

If this setting is set to false, then types and features will only be checked once, and if they are not available, the
negative result is cached and returned for all subsequent attempts to load the type or feature. This behavior is almost
always appropriate for the server, and can result in a significant performance improvement for types and features that
are checked frequently.

• Default: true

autoflush

Whether log files should always flush to disk.

• Default: true

autosign

Whether (and how) to autosign certificate requests. This setting is only relevant on a Puppet Server acting as a
certificate authority (CA).

Valid values are true (autosigns all certificate requests; not recommended), false (disables autosigning certificates), or
the absolute path to a file.

The file specified in this setting may be either a configuration file or a custom policy executable. Puppet will
automatically determine what it is: If the Puppet user (see the user setting) can execute the file, it will be treated as a
policy executable; otherwise, it will be treated as a config file.

If a custom policy executable is configured, the CA Puppet Server will run it every time it receives a CSR. The
executable will be passed the subject CN of the request as a command line argument, and the contents of the CSR in
PEM format on stdin. It should exit with a status of 0 if the cert should be autosigned and non-zero if the cert should
not be autosigned.

If a certificate request is not autosigned, it will persist for review. An admin user can use the puppetserver ca
sign command to manually sign it, or can delete the request.

For info on autosign configuration files, see the guide to Puppet's config files.

• Default: $confdir/autosign.conf

basemodulepath

The search path for global modules. Should be specified as a list of directories separated by the system path separator
character. (The POSIX path separator is ':', and the Windows path separator is ';'.)

These are the modules that will be used by all environments. Note that the modules directory of the active
environment will have priority over any global directories. For more info, see https://puppet.com/docs/puppet/latest/
environments_about.html

• Default: $codedir/modules:/opt/puppetlabs/puppet/modules

binder_config

The binder configuration file. Puppet reads this file on each request to configure the bindings system. If set to nil (the
default), a $confdir/binder_config.yaml is optionally loaded. If it does not exists, a default configuration is used. If the
setting :binding_config is specified, it must reference a valid and existing yaml file.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/config_file_autosign.html
https://puppet.com/docs/puppet/latest/environments_about.html
https://puppet.com/docs/puppet/latest/environments_about.html

Puppet | References | 1069

• Default: ``

bucketdir

Where FileBucket files are stored.

• Default: $vardir/bucket

ca_fingerprint

The expected fingerprint of the CA certificate. If specified, the agent will compare the CA certificate fingerprint that
it downloads against this value and reject the CA certificate if the values do not match. This only applies during the
first download of the CA certificate.

• Default: ``

ca_name

The name to use the Certificate Authority certificate.

• Default: Puppet CA: $certname

ca_port

The port to use for the certificate authority.

• Default: $serverport

ca_server

The server to use for certificate authority requests. It's a separate server because it cannot and does not need to
horizontally scale.

• Default: $server

ca_ttl

The default TTL for new certificates. This setting can be a time interval in seconds (30 or 30s), minutes (30m), hours
(6h), days (2d), or years (5y).

• Default: 5y

cacert

The CA certificate.

• Default: $cadir/ca_crt.pem

cacrl

The certificate revocation list (CRL) for the CA.

• Default: $cadir/ca_crl.pem

cadir

The root directory for the certificate authority.

• Default: /Users/heston.hoffman/.puppetlabs/etc/puppet/ssl/ca

cakey

The CA private key.

• Default: $cadir/ca_key.pem

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1070

capub

The CA public key.

• Default: $cadir/ca_pub.pem

catalog_cache_terminus

How to store cached catalogs. Valid values are 'json', 'msgpack' and 'yaml'. The agent application defaults to 'json'.

• Default: ``

catalog_terminus

Where to get node catalogs. This is useful to change if, for instance, you'd like to pre-compile catalogs and store them
in memcached or some other easily-accessed store.

• Default: compiler

cert_inventory

The inventory file. This is a text file to which the CA writes a complete listing of all certificates.

• Default: $cadir/inventory.txt

certdir

The certificate directory.

• Default: $ssldir/certs

certificate_revocation

Whether certificate revocation checking should be enabled, and what level of checking should be performed.

When certificate revocation is enabled, Puppet expects the contents of its CRL to be one or more PEM-encoded CRLs
concatenated together. When using a cert bundle, CRLs for all CAs in the chain of trust must be included in the crl
file. The chain should be ordered from least to most authoritative, with the first CRL listed being for the root of the
chain and the last being for the leaf CA.

When certificate_revocation is set to 'true' or 'chain', Puppet ensures that each CA in the chain of trust has not been
revoked by its issuing CA.

When certificate_revocation is set to 'leaf', Puppet verifies certs against the issuing CA's revocation list, but it does
not verify the revocation status of the issuing CA or any CA above it within the chain of trust.

When certificate_revocation is set to 'false', Puppet disables all certificate revocation checking and does not attempt to
download the CRL.

• Default: chain

certname

The name to use when handling certificates. When a node requests a certificate from the CA Puppet Server, it uses the
value of the certname setting as its requested Subject CN.

This is the name used when managing a node's permissions in auth.conf. In most cases, it is also used as the
node's name when matching node definitions and requesting data from an ENC. (This can be changed with the
node_name_value and node_name_fact settings, although you should only do so if you have a compelling
reason.)

A node's certname is available in Puppet manifests as $trusted['certname']. (See Facts and Built-In
Variables for more details.)

• For best compatibility, you should limit the value of certname to only use lowercase letters, numbers, periods,
underscores, and dashes. (That is, it should match /A[a-z0-9._-]+Z/.)

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/config_file_auth.html
https://puppet.com/docs/puppet/latest/lang_node_definitions.html
https://puppet.com/docs/puppet/latest/lang_facts_and_builtin_vars.html
https://puppet.com/docs/puppet/latest/lang_facts_and_builtin_vars.html

Puppet | References | 1071

• The special value ca is reserved, and can't be used as the certname for a normal node.

Note: You must set the certname in the main section of the puppet.conf file. Setting it in a different section causes
errors.

Defaults to the node's fully qualified domain name.

• Default: the Host's fully qualified domain name, as determined by Facter

ciphers

The list of ciphersuites for TLS connections initiated by puppet. The default value is chosen to support TLS 1.0 and
up, but can be made more restrictive if needed. The ciphersuites must be specified in OpenSSL format, not IANA.

• Default: ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-
ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-
POLY1305:ECDHE-RSA-CHACHA20-POLY1305:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-
AES256-GCM-SHA384:DHE-RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES128-SHA256:ECDHE-
RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES128-SHA:ECDHE-
ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA:ECDHE-
RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:AES128-GCM-
SHA256:AES256-GCM-SHA384:AES128-SHA256:AES256-SHA256

classfile

The file in which puppet agent stores a list of the classes associated with the retrieved configuration. Can be loaded in
the separate puppet executable using the --loadclasses option.

• Default: $statedir/classes.txt

client_datadir

The directory in which serialized data is stored on the client.

• Default: $vardir/client_data

clientbucketdir

Where FileBucket files are stored locally.

• Default: $vardir/clientbucket

clientyamldir

The directory in which client-side YAML data is stored.

• Default: $vardir/client_yaml

code

Code to parse directly. This is essentially only used by puppet, and should only be set if you're writing your own
Puppet executable.

codedir

The main Puppet code directory. The default for this setting is calculated based on the user. If the process is running
as root or the user that Puppet is supposed to run as, it defaults to a system directory, but if it's running as any other
user, it defaults to being in the user's home directory.

• Default: Unix/Linux: /etc/puppetlabs/code -- Windows: C:\ProgramData\PuppetLabs
\code -- Non-root user: ~/.puppetlabs/etc/code

color

Whether to use colors when logging to the console. Valid values are ansi (equivalent to true), html, and false,
which produces no color.

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1072

• Default: ansi

confdir

The main Puppet configuration directory. The default for this setting is calculated based on the user. If the process is
running as root or the user that Puppet is supposed to run as, it defaults to a system directory, but if it's running as any
other user, it defaults to being in the user's home directory.

• Default: Unix/Linux: /etc/puppetlabs/puppet -- Windows: C:\ProgramData
\PuppetLabs\puppet\etc -- Non-root user: ~/.puppetlabs/etc/puppet

config

The configuration file for the current puppet application.

• Default: $confdir/${config_file_name}

config_file_name

The name of the puppet config file.

• Default: puppet.conf

config_version

How to determine the configuration version. By default, it will be the time that the configuration is parsed, but you
can provide a shell script to override how the version is determined. The output of this script will be added to every
log message in the reports, allowing you to correlate changes on your hosts to the source version on the server.

Setting a global value for config_version in puppet.conf is not allowed (but it can be overridden from the
commandline). Please set a per-environment value in environment.conf instead. For more info, see https://
puppet.com/docs/puppet/latest/environments_about.html

configprint

Prints the value of a specific configuration setting. If the name of a setting is provided for this, then the value is
printed and puppet exits. Comma-separate multiple values. For a list of all values, specify 'all'. This setting is
deprecated, the 'puppet config' command replaces this functionality.

crl_refresh_interval

How often the Puppet agent refreshes its local CRL. By default the CRL is only downloaded once, and never
refreshed. If a duration is specified, then the agent will refresh its CRL whenever it next runs and the elapsed time
since the CRL was last refreshed exceeds the duration.

In general, the duration should be greater than the runinterval. Setting it to an equal or lesser value will cause the
CRL to be refreshed on every run.

If the agent downloads a new CRL, the agent will use it for subsequent network requests. If the refresh request fails or
if the CRL is unchanged on the server, then the agent run will continue using the local CRL it already has.This setting
can be a time interval in seconds (30 or 30s), minutes (30m), hours (6h), days (2d), or years (5y).

• Default: ``

csr_attributes

An optional file containing custom attributes to add to certificate signing requests (CSRs). You should ensure that
this file does not exist on your CA Puppet Server; if it does, unwanted certificate extensions may leak into certificates
created with the puppetserver ca generate command.

If present, this file must be a YAML hash containing a custom_attributes key and/or an
extension_requests key. The value of each key must be a hash, where each key is a valid OID and each value
is an object that can be cast to a string.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/environments_about.html
https://puppet.com/docs/puppet/latest/environments_about.html

Puppet | References | 1073

Custom attributes can be used by the CA when deciding whether to sign the certificate, but are then discarded.
Attribute OIDs can be any OID value except the standard CSR attributes (i.e. attributes described in RFC 2985
section 5.4). This is useful for embedding a pre-shared key for autosigning policy executables (see the autosign
setting), often by using the 1.2.840.113549.1.9.7 ("challenge password") OID.

Extension requests will be permanently embedded in the final certificate. Extension OIDs must be in the
"ppRegCertExt" (1.3.6.1.4.1.34380.1.1), "ppPrivCertExt" (1.3.6.1.4.1.34380.1.2), or
"ppAuthCertExt" (1.3.6.1.4.1.34380.1.3) OID arcs. The ppRegCertExt arc is reserved for four of the
most common pieces of data to embed: pp_uuid (.1), pp_instance_id (.2), pp_image_name (.3), and
pp_preshared_key (.4) --- in the YAML file, these can be referred to by their short descriptive names instead
of their full OID. The ppPrivCertExt arc is unregulated, and can be used for site-specific extensions. The ppAuthCert
arc is reserved for two pieces of data to embed: pp_authorization (.1) and pp_auth_role (.13). As with
ppRegCertExt, in the YAML file, these can be referred to by their short descriptive name instead of their full OID.

• Default: $confdir/csr_attributes.yaml

csrdir

Where the CA stores certificate requests.

• Default: $cadir/requests

daemonize

Whether to send the process into the background. This defaults to true on POSIX systems, and to false on Windows
(where Puppet currently cannot daemonize).

• Default: true

data_binding_terminus

This setting has been deprecated. Use of any value other than 'hiera' should instead be configured in a version 5
hiera.yaml. Until this setting is removed, it controls which data binding terminus to use for global automatic data
binding (across all environments). By default this value is 'hiera'. A value of 'none' turns off the global binding.

• Default: hiera

default_file_terminus

The default source for files if no server is given in a uri, e.g. puppet:///file. The default of rest causes the file to be
retrieved using the server setting. When running apply the default is file_server, causing requests to be
filled locally.

• Default: rest

default_manifest

The default main manifest for directory environments. Any environment that doesn't set the manifest setting in its
environment.conf file will use this manifest.

This setting's value can be an absolute or relative path. An absolute path will make all environments default to the
same main manifest; a relative path will allow each environment to use its own manifest, and Puppet will resolve the
path relative to each environment's main directory.

In either case, the path can point to a single file or to a directory of manifests to be evaluated in alphabetical order.

• Default: ./manifests

default_schedules

Boolean; whether to generate the default schedule resources. Setting this to false is useful for keeping external report
processors clean of skipped schedule resources.

• Default: true

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1074

deviceconfdir

The root directory of devices' $confdir.

• Default: $confdir/devices

deviceconfig

Path to the device config file for puppet device.

• Default: $confdir/device.conf

devicedir

The root directory of devices' $vardir.

• Default: $vardir/devices

diff

Which diff command to use when printing differences between files. This setting has no default value on Windows,
as standard diff is not available, but Puppet can use many third-party diff tools.

• Default: diff

diff_args

Which arguments to pass to the diff command when printing differences between files. The command to use can be
chosen with the diff setting.

• Default: -u

digest_algorithm

Which digest algorithm to use for file resources and the filebucket. Valid values are md5, sha256, sha384, sha512,
sha224. Default is md5.

• Default: md5

disable_i18n

If true, turns off all translations of Puppet and module log messages, which affects error, warning, and info log
messages, as well as any translations in the report and CLI.

• Default: false

disable_per_environment_manifest

Whether to disallow an environment-specific main manifest. When set to true, Puppet will use the manifest
specified in the default_manifest setting for all environments. If an environment specifies a different main
manifest in its environment.conf file, catalog requests for that environment will fail with an error.

This setting requires default_manifest to be set to an absolute path.

• Default: false

disable_warnings

A comma-separated list of warning types to suppress. If large numbers of warnings are making Puppet's logs too large
or difficult to use, you can temporarily silence them with this setting.

If you are preparing to upgrade Puppet to a new major version, you should re-enable all warnings for a while.

Valid values for this setting are:

• deprecations --- disables deprecation warnings.
• undefined_variables --- disables warnings about non existing variables.
• undefined_resources --- disables warnings about non existing resources.

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1075

• Default: []

dns_alt_names

A comma-separated list of alternate DNS names for Puppet Server. These are extra hostnames (in addition to its
certname) that the server is allowed to use when serving agents. Puppet checks this setting when automatically
creating a certificate for Puppet agent or Puppet Server. These can be either IP or DNS, and the type should be
specified and followed with a colon. Untyped inputs will default to DNS.

In order to handle agent requests at a given hostname (like "puppet.example.com"), Puppet Server needs a certificate
that proves it's allowed to use that name; if a server shows a certificate that doesn't include its hostname, Puppet
agents will refuse to trust it. If you use a single hostname for Puppet traffic but load-balance it to multiple Puppet
Servers, each of those servers needs to include the official hostname in its list of extra names.

Note: The list of alternate names is locked in when the server's certificate is signed. If you need to change the list
later, you can't just change this setting; you also need to regenerate the certificate. For more information on that
process, see the cert regen docs.

To see all the alternate names your servers are using, log into your CA server and run puppetserver ca list
--all, then check the output for (alt names: ...). Most agent nodes should NOT have alternate names; the
only certs that should have them are Puppet Server nodes that you want other agents to trust.

document_all

Whether to document all resources when using puppet doc to generate manifest documentation.

• Default: false

environment

The environment in which Puppet is running. For clients, such as puppet agent, this determines the environment
itself, which Puppet uses to find modules and much more. For servers, such as puppet server, this provides the
default environment for nodes that Puppet knows nothing about.

When defining an environment in the [agent] section, this refers to the environment that the agent requests from
the primary server. The environment doesn't have to exist on the local filesystem because the agent fetches it from the
primary server. This definition is used when running puppet agent.

When defined in the [user] section, the environment refers to the path that Puppet uses to search for code and
modules related to its execution. This requires the environment to exist locally on the filesystem where puppet is
being executed. Puppet subcommands, including puppet module and puppet apply, use this definition.

Given that the context and effects vary depending on the config section in which the environment setting is
defined, do not set it globally.

• Default: production

environment_data_provider

The name of a registered environment data provider used when obtaining environment specific data. The three built
in and registered providers are 'none' (no data), 'function' (data obtained by calling the function 'environment::data()')
and 'hiera' (data obtained using a data provider configured using a hiera.yaml file in root of the environment). Other
environment data providers may be registered in modules on the module path. For such custom data providers see the
respective module documentation. This setting is deprecated.

• Default: ``

environment_timeout

How long the Puppet server should cache data it loads from an environment.

A value of 0 will disable caching. This setting can also be set to unlimited, which will cache environments
until the server is restarted or told to refresh the cache. All other values will result in Puppet server evicting expired

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/ssl_regenerate_certificates.html
https://puppet.com/docs/puppet/latest/config_file_main.html#config-sections

Puppet | References | 1076

environments. The expiration time is computed based on either when the environment was created or last accessed,
see environment_timeout_mode.

You should change this setting once your Puppet deployment is doing non-trivial work. We chose the default value
of 0 because it lets new users update their code without any extra steps, but it lowers the performance of your Puppet
server. We recommend either:

• Setting this to unlimited and explicitly refreshing your Puppet server as part of your code deployment process.
• Setting this to a number that will keep your most actively used environments cached, but allow testing

environments to fall out of the cache and reduce memory usage. A value of 3 minutes (3m) is a reasonable value.
This option requires setting environment_timeout_mode to from_last_used.

Once you set environment_timeout to a non-zero value, you need to tell Puppet server to read new code from
disk using the environment-cache API endpoint after you deploy new code. See the docs for the Puppet Server
administrative API.

• Default: 0

environment_timeout_mode

How Puppet interprets the environment_timeout setting when environment_timeout is neither 0
nor unlimited. If set to from_created, then the environment will be evicted environment_timeout
seconds from when it was created. If set to from_last_used then the environment will be evicted
environment_timeout seconds from when it was last used.

• Default: from_created

environmentpath

A search path for directory environments, as a list of directories separated by the system path separator character.
(The POSIX path separator is ':', and the Windows path separator is ';'.)

This setting must have a value set to enable directory environments. The recommended value is $codedir/
environments. For more details, see https://puppet.com/docs/puppet/latest/environments_about.html

• Default: $codedir/environments

evaltrace

Whether each resource should log when it is being evaluated. This allows you to interactively see exactly what is
being done.

• Default: false

external_nodes

The external node classifier (ENC) script to use for node data. Puppet combines this data with the main manifest to
produce node catalogs.

To enable this setting, set the node_terminus setting to exec.

This setting's value must be the path to an executable command that can produce node information. The command
must:

• Take the name of a node as a command-line argument.
• Return a YAML hash with up to three keys:

• classes --- A list of classes, as an array or hash.
• environment --- A string.
• parameters --- A list of top-scope variables to set, as a hash.

• For unknown nodes, exit with a non-zero exit code.

Generally, an ENC script makes requests to an external data source.

For more info, see the ENC documentation.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/latest/admin-api/v1/environment-cache.html
https://puppet.com/docs/puppet/latest/environments_about.html
https://puppet.com/docs/puppet/latest/nodes_external.html

Puppet | References | 1077

• Default: none

facterng

Whether to enable a pre-Facter 4.0 release of Facter (distributed as the "facter-ng" gem). This is not necessary if
Facter 3.x or later is installed. This setting is still experimental.

• Default: false

factpath

Where Puppet should look for facts. Multiple directories should be separated by the system path separator character.
(The POSIX path separator is ':', and the Windows path separator is ';'.)

• Default: $vardir/lib/facter:$vardir/facts

facts_terminus

The node facts terminus.

• Default: facter

fileserverconfig

Where the fileserver configuration is stored.

• Default: $confdir/fileserver.conf

filetimeout

The minimum time to wait between checking for updates in configuration files. This timeout determines how
quickly Puppet checks whether a file (such as manifests or puppet.conf) has changed on disk. The default will
change in a future release to be 'unlimited', requiring a reload of the Puppet service to pick up changes to its internal
configuration. Currently we do not accept a value of 'unlimited'. To reparse files within an environment in Puppet
Server please use the environment_cache endpoint

• Default: 15s

forge_authorization

The authorization key to connect to the Puppet Forge. Leave blank for unauthorized or license based connections

• Default: ``

freeze_main

Freezes the 'main' class, disallowing any code to be added to it. This essentially means that you can't have any code
outside of a node, class, or definition other than in the site manifest.

• Default: false

func3x_check

Causes validation of loaded legacy Ruby functions (3x API) to raise errors about illegal constructs that could cause
harm or that simply does not work. This flag is on by default. This flag is made available so that the validation can be
turned off in case the method of validation is faulty - if encountered, please file a bug report.

• Default: true

future_features

Whether or not to enable all features currently being developed for future major releases of Puppet. Should be used
with caution, as in development features are experimental and can have unexpected effects.

• Default: false

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1078

genconfig

When true, causes Puppet applications to print an example config file to stdout and exit. The example will include
descriptions of each setting, and the current (or default) value of each setting, incorporating any settings overridden
on the CLI (with the exception of genconfig itself). This setting only makes sense when specified on the command
line as --genconfig.

• Default: false

genmanifest

Whether to just print a manifest to stdout and exit. Only makes sense when specified on the command line as --
genmanifest. Takes into account arguments specified on the CLI.

• Default: false

graph

Whether to create .dot graph files, which let you visualize the dependency and containment relationships in Puppet's
catalog. You can load and view these files with tools like OmniGraffle (OS X) or graphviz (multi-platform).

Graph files are created when applying a catalog, so this setting should be used on nodes running puppet agent or
puppet apply.

The graphdir setting determines where Puppet will save graphs. Note that we don't save graphs for historical runs;
Puppet will replace the previous .dot files with new ones every time it applies a catalog.

See your graphing software's documentation for details on opening .dot files. If you're using GraphViz's dot
command, you can do a quick PNG render with dot -Tpng <DOT FILE> -o <OUTPUT FILE>.

• Default: false

graphdir

Where to save .dot-format graphs (when the graph setting is enabled).

• Default: $statedir/graphs

group

The group Puppet Server will run as. Used to ensure the agent side processes (agent, apply, etc) create files and
directories readable by Puppet Server when necessary.

• Default: puppet

hiera_config

The hiera configuration file. Puppet only reads this file on startup, so you must restart the puppet server every time
you edit it.

• Default: $confdir/hiera.yaml. However, for backwards compatibility, if a file
exists at $codedir/hiera.yaml, Puppet uses that instead.

hostcert

Where individual hosts store and look for their certificates.

• Default: $certdir/$certname.pem

hostcrl

Where the host's certificate revocation list can be found. This is distinct from the certificate authority's CRL.

• Default: $ssldir/crl.pem

© 2024 Puppet, Inc., a Perforce company

http://www.omnigroup.com/applications/omnigraffle/
http://www.graphviz.org/

Puppet | References | 1079

hostcsr

This setting is deprecated.

• Default: $ssldir/csr_$certname.pem

hostprivkey

Where individual hosts store and look for their private key.

• Default: $privatekeydir/$certname.pem

hostpubkey

Where individual hosts store and look for their public key.

• Default: $publickeydir/$certname.pem

http_connect_timeout

The maximum amount of time to wait when establishing an HTTP connection. The default value is 2 minutes. This
setting can be a time interval in seconds (30 or 30s), minutes (30m), hours (6h), days (2d), or years (5y).

• Default: 2m

http_debug

Whether to write HTTP request and responses to stderr. This should never be used in a production environment.

• Default: false

http_extra_headers

The list of extra headers that will be sent with http requests to the primary server. The header definition consists of a
name and a value separated by a colon.

• Default: []

http_keepalive_timeout

The maximum amount of time a persistent HTTP connection can remain idle in the connection pool, before
it is closed. This timeout should be shorter than the keepalive timeout used on the HTTP server, e.g. Apache
KeepAliveTimeout directive. This setting can be a time interval in seconds (30 or 30s), minutes (30m), hours (6h),
days (2d), or years (5y).

• Default: 4s

http_proxy_host

The HTTP proxy host to use for outgoing connections. The proxy will be bypassed if the server's hostname matches
the NO_PROXY environment variable or no_proxy setting. Note: You may need to use a FQDN for the server
hostname when using a proxy. Environment variable http_proxy or HTTP_PROXY will override this value.

• Default: none

http_proxy_password

The password for the user of an authenticated HTTP proxy. Requires the http_proxy_user setting.

Note that passwords must be valid when used as part of a URL. If a password contains any characters with special
meanings in URLs (as specified by RFC 3986 section 2.2), they must be URL-encoded. (For example, # would
become %23.)

• Default: none

http_proxy_port

The HTTP proxy port to use for outgoing connections

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1080

• Default: 3128

http_proxy_user

The user name for an authenticated HTTP proxy. Requires the http_proxy_host setting.

• Default: none

http_read_timeout

The time to wait for data to be read from an HTTP connection. If nothing is read after the elapsed interval then the
connection will be closed. The default value is 10 minutes. This setting can be a time interval in seconds (30 or 30s),
minutes (30m), hours (6h), days (2d), or years (5y).

• Default: 10m

http_user_agent

The HTTP User-Agent string to send when making network requests.

• Default: Puppet/6.26.0 Ruby/2.6.3-p62 (x86_64-darwin19)

ignore_plugin_errors

Whether the puppet run should ignore errors during pluginsync. If the setting is false and there are errors during
pluginsync, then the agent will abort the run and submit a report containing information about the failed run.

• Default: true

ignoremissingtypes

Skip searching for classes and definitions that were missing during a prior compilation. The list of missing objects is
maintained per-environment and persists until the environment is cleared or the primary server is restarted.

• Default: false

ignoreschedules

Boolean; whether puppet agent should ignore schedules. This is useful for initial puppet agent runs.

• Default: false

key_type

The type of private key. Valid values are rsa and ec. Default is rsa.

• Default: rsa

keylength

The bit length of keys.

• Default: 4096

lastrunfile

Where puppet agent stores the last run report summary in yaml format.

• Default: $statedir/last_run_summary.yaml

lastrunreport

Where Puppet Agent stores the last run report, by default, in yaml format. The format of the report can be changed
by setting the cache key of the report terminus in the routes.yaml file. To avoid mismatches between content and
file extension, this setting needs to be manually updated to reflect the terminus changes.

• Default: $statedir/last_run_report.yaml

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/config_file_routes.html

Puppet | References | 1081

ldapattrs

The LDAP attributes to include when querying LDAP for nodes. All returned attributes are set as variables in the top-
level scope. Multiple values should be comma-separated. The value 'all' returns all attributes.

• Default: all

ldapbase

The search base for LDAP searches. It's impossible to provide a meaningful default here, although the LDAP libraries
might have one already set. Generally, it should be the 'ou=Hosts' branch under your main directory.

ldapclassattrs

The LDAP attributes to use to define Puppet classes. Values should be comma-separated.

• Default: puppetclass

ldapparentattr

The attribute to use to define the parent node.

• Default: parentnode

ldappassword

The password to use to connect to LDAP.

ldapport

The LDAP port.

• Default: 389

ldapserver

The LDAP server.

• Default: ldap

ldapssl

Whether SSL should be used when searching for nodes. Defaults to false because SSL usually requires certificates to
be set up on the client side.

• Default: false

ldapstackedattrs

The LDAP attributes that should be stacked to arrays by adding the values in all hierarchy elements of the tree.
Values should be comma-separated.

• Default: puppetvar

ldapstring

The search string used to find an LDAP node.

• Default: (&(objectclass=puppetClient)(cn=%s))

ldaptls

Whether TLS should be used when searching for nodes. Defaults to false because TLS usually requires certificates to
be set up on the client side.

• Default: false

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1082

ldapuser

The user to use to connect to LDAP. Must be specified as a full DN.

libdir

An extra search path for Puppet. This is only useful for those files that Puppet will load on demand, and is only
guaranteed to work for those cases. In fact, the autoload mechanism is responsible for making sure this directory is in
Ruby's search path

• Default: $vardir/lib

localcacert

Where each client stores the CA certificate.

• Default: $certdir/ca.pem

localedest

Where Puppet should store translation files that it pulls down from the central server.

• Default: $vardir/locales

localesource

From where to retrieve translation files. The standard Puppet file type is used for retrieval, so anything that is a
valid file source can be used here.

• Default: puppet:///locales

location_trusted

This will allow sending the name + password and the cookie header to all hosts that puppet may redirect to. This may
or may not introduce a security breach if puppet redirects you to a site to which you'll send your authentication info
and cookies.

• Default: false

log_level

Default logging level for messages from Puppet. Allowed values are:

• debug
• info
• notice
• warning
• err
• alert
• emerg
• crit

• Default: notice

logdest

Where to send log messages. Choose between 'syslog' (the POSIX syslog service), 'eventlog' (the Windows Event
Log), 'console', or the path to a log file. Multiple destinations can be set using a comma separated list (eg: /path/
file1,console,/path/file2)

• Default: ``

logdir

The directory in which to store log files

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1083

• Default: Unix/Linux: /var/log/puppetlabs/puppet -- Windows: C:\ProgramData
\PuppetLabs\puppet\var\log -- Non-root user: ~/.puppetlabs/var/log

manage_internal_file_permissions

Whether Puppet should manage the owner, group, and mode of files it uses internally. Note: For Windows agents, the
default is false for versions 4.10.13 and greater, versions 5.5.6 and greater, and versions 6.0 and greater.

• Default: true

manifest

The entry-point manifest for the primary server. This can be one file or a directory of manifests to be evaluated in
alphabetical order. Puppet manages this path as a directory if one exists or if the path ends with a / or .

Setting a global value for manifest in puppet.conf is not allowed (but it can be overridden from the commandline).
Please use directory environments instead. If you need to use something other than the environment's manifests
directory as the main manifest, you can set manifest in environment.conf. For more info, see https://puppet.com/
docs/puppet/latest/environments_about.html

• Default: ``

masterport

The default port puppet subcommands use to communicate with Puppet Server. (eg puppet facts upload,
puppet agent). May be overridden by more specific settings (see ca_port, report_port).

• Default: 8140

max_deprecations

Sets the max number of logged/displayed parser validation deprecation warnings in case multiple deprecation
warnings have been detected. A value of 0 blocks the logging of deprecation warnings. The count is per manifest.

• Default: 10

max_errors

Sets the max number of logged/displayed parser validation errors in case multiple errors have been detected. A value
of 0 is the same as a value of 1; a minimum of one error is always raised. The count is per manifest.

• Default: 10

max_warnings

Sets the max number of logged/displayed parser validation warnings in case multiple warnings have been detected. A
value of 0 blocks logging of warnings. The count is per manifest.

• Default: 10

maximum_uid

The maximum allowed UID. Some platforms use negative UIDs but then ship with tools that do not know how to
handle signed ints, so the UIDs show up as huge numbers that can then not be fed back into the system. This is a
hackish way to fail in a slightly more useful way when that happens.

• Default: 4294967290

maxwaitforcert

The maximum amount of time the Puppet agent should wait for its certificate request to be signed. A value of
unlimited will cause puppet agent to ask for a signed certificate indefinitely. This setting can be a time interval in
seconds (30 or 30s), minutes (30m), hours (6h), days (2d), or years (5y).

• Default: unlimited

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/environments_about.html
https://puppet.com/docs/puppet/latest/environments_about.html

Puppet | References | 1084

maxwaitforlock

The maximum amount of time the puppet agent should wait for an already running puppet agent to finish before
starting a new one. This is set by default to 1 minute. A value of unlimited will cause puppet agent to wait
indefinitely. This setting can be a time interval in seconds (30 or 30s), minutes (30m), hours (6h), days (2d), or years
(5y).

• Default: 1m

merge_dependency_warnings

Whether to merge class-level dependency failure warnings.

When a class has a failed dependency, every resource in the class generates a notice level message about the
dependency failure, and a warning level message about skipping the resource.

If true, all messages caused by a class dependency failure are merged into one message associated with the class.

• Default: false

mkusers

Whether to create the necessary user and group that puppet agent will run as.

• Default: false

module_groups

Extra module groups to request from the Puppet Forge. This is an internal setting, and users should never change it.

• Default: ``

module_repository

The module repository

• Default: https://forgeapi.puppet.com

module_working_dir

The directory into which module tool data is stored

• Default: $vardir/puppet-module

modulepath

The search path for modules, as a list of directories separated by the system path separator character. (The POSIX
path separator is ':', and the Windows path separator is ';'.)

Setting a global value for modulepath in puppet.conf is not allowed (but it can be overridden from the
commandline). Please use directory environments instead. If you need to use something other than the default
modulepath of <ACTIVE ENVIRONMENT'S MODULES DIR>:$basemodulepath, you can set modulepath
in environment.conf. For more info, see https://puppet.com/docs/puppet/latest/environments_about.html

name

The name of the application, if we are running as one. The default is essentially $0 without the path or .rb.

• Default: ``

named_curve

The short name for the EC curve used to generate the EC private key. Valid values must be one of the curves in
OpenSSL::PKey::EC.builtin_curves. Default is prime256v1.

• Default: prime256v1

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/environments_about.html

Puppet | References | 1085

no_proxy

List of host or domain names that should not go through http_proxy_host. Environment variable no_proxy
or NO_PROXY will override this value. Names can be specified as an FQDN host.example.com, wildcard
*.example.com, dotted domain .example.com, or suffix example.com.

• Default: localhost, 127.0.0.1

node_cache_terminus

How to store cached nodes. Valid values are (none), 'json', 'msgpack', or 'yaml'.

• Default: ``

node_name

How the puppet master determines the client's identity and sets the 'hostname', 'fqdn' and 'domain' facts for use in the
manifest, in particular for determining which 'node' statement applies to the client. Possible values are 'cert' (use the
subject's CN in the client's certificate) and 'facter' (use the hostname that the client reported in its facts).

This setting is deprecated, please use explicit fact matching for classification.

• Default: cert

node_name_fact

The fact name used to determine the node name used for all requests the agent makes to the primary server.
WARNING: This setting is mutually exclusive with node_name_value. Changing this setting also requires changes
to the default auth.conf configuration on the Puppet Master. Please see http://links.puppet.com/node_name_fact for
more information.

node_name_value

The explicit value used for the node name for all requests the agent makes to the primary server. WARNING:
This setting is mutually exclusive with node_name_fact. Changing this setting also requires changes to the default
auth.conf configuration on the Puppet Master. Please see http://links.puppet.com/node_name_value for more
information.

• Default: $certname

node_terminus

Which node data plugin to use when compiling node catalogs.

When Puppet compiles a catalog, it combines two primary sources of info: the main manifest, and a node data plugin
(often called a "node terminus," for historical reasons). Node data plugins provide three things for a given node name:

1. A list of classes to add to that node's catalog (and, optionally, values for their parameters).
2. Which Puppet environment the node should use.
3. A list of additional top-scope variables to set.

The three main node data plugins are:

• plain --- Returns no data, so that the main manifest controls all node configuration.
• exec --- Uses an external node classifier (ENC), configured by the external_nodes setting. This lets you

pull a list of Puppet classes from any external system, using a small glue script to perform the request and format
the result as YAML.

• classifier (formerly console) --- Specific to Puppet Enterprise. Uses the PE console for node data."

• Default: plain

noop

Whether to apply catalogs in noop mode, which allows Puppet to partially simulate a normal run. This setting affects
puppet agent and puppet apply.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/nodes_external.html

Puppet | References | 1086

When running in noop mode, Puppet will check whether each resource is in sync, like it does when running normally.
However, if a resource attribute is not in the desired state (as declared in the catalog), Puppet will take no action,
and will instead report the changes it would have made. These simulated changes will appear in the report sent to the
primary Puppet server, or be shown on the console if running puppet agent or puppet apply in the foreground. The
simulated changes will not send refresh events to any subscribing or notified resources, although Puppet will log that
a refresh event would have been sent.

Important note: The noop metaparameter allows you to apply individual resources in noop mode, and will override
the global value of the noop setting. This means a resource with noop => false will be changed if necessary,
even when running puppet agent with noop = true or --noop. (Conversely, a resource with noop => true
will only be simulated, even when noop mode is globally disabled.)

• Default: false

onetime

Perform one configuration run and exit, rather than spawning a long-running daemon. This is useful for interactively
running puppet agent, or running puppet agent from cron.

• Default: false

passfile

Where puppet agent stores the password for its private key. Generally unused.

• Default: $privatedir/password

path

The shell search path. Defaults to whatever is inherited from the parent process.

This setting can only be set in the [main] section of puppet.conf; it cannot be set in [server], [agent], or an
environment config section.

• Default: none

pidfile

The file containing the PID of a running process. This file is intended to be used by service management frameworks
and monitoring systems to determine if a puppet process is still in the process table.

• Default: $rundir/${run_mode}.pid

plugindest

Where Puppet should store plugins that it pulls down from the central server.

• Default: $libdir

pluginfactdest

Where Puppet should store external facts that are being handled by pluginsync

• Default: $vardir/facts.d

pluginfactsource

Where to retrieve external facts for pluginsync

• Default: puppet:///pluginfacts

pluginsignore

What files to ignore when pulling down plugins.

• Default: .svn CVS .git .hg

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/metaparameter.html#noop

Puppet | References | 1087

pluginsource

From where to retrieve plugins. The standard Puppet file type is used for retrieval, so anything that is a valid file
source can be used here.

• Default: puppet:///plugins

pluginsync

Whether plugins should be synced with the central server. This setting is deprecated.

• Default: true

postrun_command

A command to run after every agent run. If this command returns a non-zero return code, the entire Puppet run will be
considered to have failed, even though it might have performed work during the normal run.

preferred_serialization_format

The preferred means of serializing ruby instances for passing over the wire. This won't guarantee that all instances
will be serialized using this method, since not all classes can be guaranteed to support this format, but it will be used
for all classes that support it.

• Default: json

prerun_command

A command to run before every agent run. If this command returns a non-zero return code, the entire Puppet run will
fail.

preview_outputdir

The directory where catalog previews per node are generated.

• Default: $vardir/preview

priority

The scheduling priority of the process. Valid values are 'high', 'normal', 'low', or 'idle', which are mapped to platform-
specific values. The priority can also be specified as an integer value and will be passed as is, e.g. -5. Puppet must be
running as a privileged user in order to increase scheduling priority.

• Default: ``

privatedir

Where the client stores private certificate information.

• Default: $ssldir/private

privatekeydir

The private key directory.

• Default: $ssldir/private_keys

profile

Whether to enable experimental performance profiling

• Default: false

publickeydir

The public key directory.

• Default: $ssldir/public_keys

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1088

puppet_trace

Whether to print the Puppet stack trace on some errors. This is a noop if trace is also set.

• Default: false

puppetdlog

The fallback log file. This is only used when the --logdest option is not specified AND Puppet is running on an
operating system where both the POSIX syslog service and the Windows Event Log are unavailable. (Currently, no
supported operating systems match that description.)

Despite the name, both puppet agent and puppet server will use this file as the fallback logging destination.

For control over logging destinations, see the --logdest command line option in the manual pages for puppet
server, puppet agent, and puppet apply. You can see man pages by running puppet <SUBCOMMAND> --help, or
read them online at https://puppet.com/docs/puppet/latest/man/.

• Default: $logdir/puppetd.log

report

Whether to send reports after every transaction.

• Default: true

report_include_system_store

Whether the 'http' report processor should include the system certificate store when submitting reports to HTTPS
URLs. If false, then the 'http' processor will only trust HTTPS report servers whose certificates are issued by the
puppet CA or one of its intermediate CAs. If true, the processor will additionally trust CA certificates in the system's
certificate store.

• Default: false

report_port

The port to communicate with the report_server.

• Default: $serverport

report_server

The server to send transaction reports to.

• Default: $server

reportdir

The directory in which to store reports. Each node gets a separate subdirectory in this directory. This setting is only
used when the store report processor is enabled (see the reports setting).

• Default: $vardir/reports

reports

The list of report handlers to use. When using multiple report handlers, their names should be comma-separated, with
whitespace allowed. (For example, reports = http, store.)

This setting is relevant to puppet server and puppet apply. The primary Puppet server will call these report handlers
with the reports it receives from agent nodes, and puppet apply will call them with its own report. (In all cases, the
node applying the catalog must have report = true.)

See the report reference for information on the built-in report handlers; custom report handlers can also be loaded
from modules. (Report handlers are loaded from the lib directory, at puppet/reports/NAME.rb.)

To turn off reports entirely, set this to none

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1089

• Default: store

reporturl

The URL that reports should be forwarded to. This setting is only used when the http report processor is enabled
(see the reports setting).

• Default: http://localhost:3000/reports/upload

requestdir

Where host certificate requests are stored.

• Default: $ssldir/certificate_requests

resourcefile

The file in which puppet agent stores a list of the resources associated with the retrieved configuration.

• Default: $statedir/resources.txt

rest_authconfig

The configuration file that defines the rights to the different rest indirections. This can be used as a fine-grained
authorization system for puppet master. The puppet master command is deprecated and Puppet Server uses
its own auth.conf that must be placed within its configuration directory.

• Default: $confdir/auth.conf

resubmit_facts

Whether to send updated facts after every transaction. By default puppet only submits facts at the beginning of the
transaction before applying a catalog. Since puppet can modify the state of the system, the value of the facts may
change after puppet finishes. Therefore, any facts stored in puppetdb may not be consistent until the agent next runs,
typically in 30 minutes. If this feature is enabled, puppet will resubmit facts after applying its catalog, ensuring facts
for the node stored in puppetdb are current. However, this will double the fact submission load on puppetdb, so it is
disabled by default.

• Default: false

rich_data

Enables having extended data in the catalog by storing them as a hash with the special key __ptype. When enabled,
resource containing values of the data types Binary, Regexp, SemVer, SemVerRange, Timespan and
Timestamp, as well as instances of types derived from Object retain their data type.

• Default: true

route_file

The YAML file containing indirector route configuration.

• Default: $confdir/routes.yaml

rundir

Where Puppet PID files are kept.

• Default: Unix/Linux: /var/run/puppetlabs -- Windows: C:\ProgramData\PuppetLabs
\puppet\var\run -- Non-root user: ~/.puppetlabs/var/run

runinterval

How often puppet agent applies the catalog. Note that a runinterval of 0 means "run continuously" rather than "never
run." This setting can be a time interval in seconds (30 or 30s), minutes (30m), hours (6h), days (2d), or years (5y).

• Default: 30m

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1090

runtimeout

The maximum amount of time an agent run is allowed to take. A Puppet agent run that exceeds this timeout will be
aborted. A value of 0 disables the timeout. Defaults to 1 hour. This setting can be a time interval in seconds (30 or
30s), minutes (30m), hours (6h), days (2d), or years (5y).

• Default: 1h

serial

Where the serial number for certificates is stored.

• Default: $cadir/serial

server

The primary Puppet server to which the Puppet agent should connect.

• Default: puppet

server_datadir

The directory in which serialized data is stored, usually in a subdirectory.

• Default: $vardir/server_data

server_list

The list of primary Puppet servers to which the Puppet agent should connect, in the order that they will be tried.

• Default: []

serverport

The default port puppet subcommands use to communicate with Puppet Server. (eg puppet facts upload,
puppet agent). May be overridden by more specific settings (see ca_port, report_port).

• Default: 8140

show_diff

Whether to log and report a contextual diff when files are being replaced. This causes partial file contents to pass
through Puppet's normal logging and reporting system, so this setting should be used with caution if you are sending
Puppet's reports to an insecure destination. This feature currently requires the diff/lcs Ruby library.

• Default: false

signeddir

Where the CA stores signed certificates.

• Default: $cadir/signed

skip_tags

Tags to use to filter resources. If this is set, then only resources not tagged with the specified tags will be applied.
Values must be comma-separated.

sourceaddress

The address the agent should use to initiate requests.

• Default: ``

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1091

splay

Whether to sleep for a random amount of time, ranging from immediately up to its $splaylimit, before
performing its first agent run after a service restart. After this period, the agent runs periodically on its
$runinterval.

For example, assume a default 30-minute $runinterval, splay set to its default of false, and an agent starting
at :00 past the hour. The agent would check in every 30 minutes at :01 and :31 past the hour.

With splay enabled, it waits any amount of time up to its $splaylimit before its first run. For example, it might
randomly wait 8 minutes, then start its first run at :08 past the hour. With the $runinterval at its default 30
minutes, its next run will be at :38 past the hour.

If you restart an agent's puppet service with splay enabled, it recalculates its splay period and delays its first agent
run after restarting for this new period. If you simultaneously restart a group of puppet agents with splay enabled,
their checkins to your primary servers can be distributed more evenly.

• Default: false

splaylimit

The maximum time to delay before an agent's first run when splay is enabled. Defaults to the agent's
$runinterval. The splay interval is random and recalculated each time the agent is started or restarted. This
setting can be a time interval in seconds (30 or 30s), minutes (30m), hours (6h), days (2d), or years (5y).

• Default: $runinterval

srv_domain

The domain which will be queried to find the SRV records of servers to use.

• Default: hoffman-C02Q72LKFVH6

ssl_client_ca_auth

Certificate authorities who issue server certificates. SSL servers will not be considered authentic unless they possess a
certificate issued by an authority listed in this file. If this setting has no value then the Puppet master's CA certificate
(localcacert) will be used.

• Default: ``

ssl_client_header

The header containing an authenticated client's SSL DN. This header must be set by the proxy to the authenticated
client's SSL DN (e.g., /CN=puppet.puppetlabs.com). Puppet will parse out the Common Name (CN) from the
Distinguished Name (DN) and use the value of the CN field for authorization.

Note that the name of the HTTP header gets munged by the web server common gateway interface: an HTTP_ prefix
is added, dashes are converted to underscores, and all letters are uppercased. Thus, to use the X-Client-DN header,
this setting should be HTTP_X_CLIENT_DN.

• Default: HTTP_X_CLIENT_DN

ssl_client_verify_header

The header containing the status message of the client verification. This header must be set by the proxy to
'SUCCESS' if the client successfully authenticated, and anything else otherwise.

Note that the name of the HTTP header gets munged by the web server common gateway interface: an HTTP_ prefix
is added, dashes are converted to underscores, and all letters are uppercased. Thus, to use the X-Client-Verify
header, this setting should be HTTP_X_CLIENT_VERIFY.

• Default: HTTP_X_CLIENT_VERIFY

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1092

ssl_lockfile

A lock file to indicate that the ssl bootstrap process is currently in progress.

• Default: $ssldir/ssl.lock

ssl_server_ca_auth

The setting is deprecated and has no effect. Ensure all root and intermediate certificate authorities used to issue client
certificates are contained in the server's cacert file on the server.

• Default: ``

ssl_trust_store

A file containing CA certificates in PEM format that puppet should trust when making HTTPS requests. This only
applies to https requests to non-puppet infrastructure, such as retrieving file metadata and content from https file
sources, puppet module tool and the 'http' report processor. This setting is ignored when making requests to puppet://
URLs such as catalog and report requests.

• Default: ``

ssldir

Where SSL certificates are kept.

• Default: $confdir/ssl

statedir

The directory where Puppet state is stored. Generally, this directory can be removed without causing harm (although
it might result in spurious service restarts).

• Default: $vardir/state

statefile

Where Puppet agent and Puppet Server store state associated with the running configuration. In the case of Puppet
Server, this file reflects the state discovered through interacting with clients.

• Default: $statedir/state.yaml

statettl

How long the Puppet agent should cache when a resource was last checked or synced. This setting can be a time
interval in seconds (30 or 30s), minutes (30m), hours (6h), days (2d), or years (5y). A value of 0 or unlimited will
disable cache pruning.

This setting affects the usage of schedule resources, as the information about when a resource was last checked
(and therefore when it needs to be checked again) is stored in the statefile. The statettl needs to be large
enough to ensure that a resource will not trigger multiple times during a schedule due to its entry expiring from the
cache.

• Default: 32d

static_catalogs

Whether to compile a static catalog, which occurs only on Puppet Server when the code-id-command and code-
content-command settings are configured in its puppetserver.conf file.

• Default: true

storeconfigs

Whether to store each client's configuration, including catalogs, facts, and related data. This also enables the import
and export of resources in the Puppet language - a mechanism for exchange resources between nodes.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/static_catalogs.html#enabling-or-disabling-static-catalogs

Puppet | References | 1093

By default this uses the 'puppetdb' backend.

You can adjust the backend using the storeconfigs_backend setting.

• Default: false

storeconfigs_backend

Configure the backend terminus used for StoreConfigs. By default, this uses the PuppetDB store, which must be
installed and configured before turning on StoreConfigs.

• Default: puppetdb

strict

The strictness level of puppet. Allowed values are:

• off - do not perform extra validation, do not report
• warning - perform extra validation, report as warning (default)
• error - perform extra validation, fail with error

The strictness level is for both language semantics and runtime evaluation validation. In addition to controlling the
behavior with this primary server switch some individual warnings may also be controlled by the disable_warnings
setting.

No new validations will be added to a micro (x.y.z) release, but may be added in minor releases (x.y.0). In major
releases it expected that most (if not all) strictness validation become standard behavior.

• Default: warning

strict_environment_mode

Whether the agent specified environment should be considered authoritative, causing the run to fail if the retrieved
catalog does not match it.

• Default: false

strict_hostname_checking

Whether to only search for the complete hostname as it is in the certificate when searching for node information in the
catalogs or to match dot delimited segments of the cert's certname and the hostname, fqdn, and/or domain facts.

This setting is deprecated and will be removed in a future release.

• Default: true

strict_variables

Causes an evaluation error when referencing unknown variables. (This does not affect referencing variables that are
explicitly set to undef).

• Default: false

summarize

Whether to print a transaction summary.

• Default: false

supported_checksum_types

Checksum types supported by this agent for use in file resources of a static catalog. Values must be comma-separated.
Valid types are md5, md5lite, sha256, sha256lite, sha384, sha512, sha224, sha1, sha1lite, mtime, ctime. Default is
md5, sha256, sha384, sha512, sha224.

• Default: ["md5", "sha256", "sha384", "sha512", "sha224"]

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1094

syslogfacility

What syslog facility to use when logging to syslog. Syslog has a fixed list of valid facilities, and you must choose one
of those; you cannot just make one up.

• Default: daemon

tags

Tags to use to find resources. If this is set, then only resources tagged with the specified tags will be applied. Values
must be comma-separated.

tasks

Turns on experimental support for tasks and plans in the puppet language. This is for internal API use only. Do not
change this setting.

• Default: false

trace

Whether to print stack traces on some errors. Will print internal Ruby stack trace interleaved with Puppet function
frames.

• Default: false

transactionstorefile

Transactional storage file for persisting data between transactions for the purposes of infering information (such as
corrective_change) on new data received.

• Default: $statedir/transactionstore.yaml

trusted_external_command

The external trusted facts script or directory to use. This setting's value can be set to the path to an executable
command that can produce external trusted facts or to a directory containing those executable commands. The
command(s) must:

• Take the name of a node as a command-line argument.
• Return a JSON hash with the external trusted facts for this node.
• For unknown or invalid nodes, exit with a non-zero exit code.

If the setting points to an executable command, then the external trusted facts will be stored in the 'external' key of
the trusted facts hash. Otherwise for each executable file in the directory, the external trusted facts will be stored in
the <basename> key of the trusted['external'] hash. For example, if the files foo.rb and bar.sh are in the
directory, then trusted['external'] will be the hash { 'foo' => <foo.rb output>, 'bar' =>
<bar.sh output> }.

• Default: ``

trusted_oid_mapping_file

File that provides mapping between custom SSL oids and user-friendly names

• Default: $confdir/custom_trusted_oid_mapping.yaml

use_cached_catalog

Whether to only use the cached catalog rather than compiling a new catalog on every run. Puppet can be run with this
enabled by default and then selectively disabled when a recompile is desired. Because a Puppet agent using cached
catalogs does not contact the primary server for a new catalog, it also does not upload facts at the beginning of the
Puppet run.

• Default: false

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1095

use_last_environment

Puppet saves both the initial and converged environment in the last_run_summary file. If they differ, and this setting
is set to true, we will use the last converged environment and skip the node request.

When set to false, we will do the node request and ignore the environment data from the last_run_summary file.

• Default: true

use_srv_records

Whether the server will search for SRV records in DNS for the current domain.

• Default: false

usecacheonfailure

Whether to use the cached configuration when the remote configuration will not compile. This option is useful for
testing new configurations, where you want to fix the broken configuration rather than reverting to a known-good
one.

• Default: true

user

The user Puppet Server will run as. Used to ensure the agent side processes (agent, apply, etc) create files and
directories readable by Puppet Server when necessary.

• Default: puppet

vardir

Where Puppet stores dynamic and growing data. The default for this setting is calculated specially, like confdir_.

• Default: Unix/Linux: /opt/puppetlabs/puppet/cache -- Windows: C:\ProgramData
\PuppetLabs\puppet\cache -- Non-root user: ~/.puppetlabs/opt/puppet/cache

vendormoduledir

The directory containing vendored modules. These modules will be used by all environments like those in the
basemodulepath. The only difference is that modules in the basemodulepath are pluginsynced, while
vendored modules are not

• Default: /opt/puppetlabs/puppet/vendor_modules

versioned_environment_dirs

Whether or not to look for versioned environment directories, symlinked from $environmentpath/
<environment>. This is an experimental feature and should be used with caution.

• Default: false

waitforcert

How frequently puppet agent should ask for a signed certificate.

When starting for the first time, puppet agent will submit a certificate signing request (CSR) to the server named in
the ca_server setting (usually the primary Puppet server); this may be autosigned, or may need to be approved by
a human, depending on the CA server's configuration.

Puppet agent cannot apply configurations until its approved certificate is available. Since the certificate may or may
not be available immediately, puppet agent will repeatedly try to fetch it at this interval. You can turn off waiting
for certificates by specifying a time of 0, or a maximum amount of time to wait in the maxwaitforcert setting,
in which case puppet agent will exit if it cannot get a cert. This setting can be a time interval in seconds (30 or 30s),
minutes (30m), hours (6h), days (2d), or years (5y).

• Default: 2m

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1096

waitforlock

How frequently puppet agent should try running when there is an already ongoing puppet agent instance.

This argument is by default disabled (value set to 0). In this case puppet agent will immediately exit if it cannot run
at that moment. When a value other than 0 is set, this can also be used in combination with the maxwaitforlock
argument. This setting can be a time interval in seconds (30 or 30s), minutes (30m), hours (6h), days (2d), or years
(5y).

• Default: 0

write_catalog_summary

Whether to write the classfile and resourcefile after applying the catalog. It is enabled by default, except
when running puppet apply.

• Default: true

yamldir

The directory in which YAML data is stored, usually in a subdirectory.

• Default: $vardir/yaml

Metaparameter reference
Metaparameters are attributes that work with any resource type, including custom types and defined types. They
change the way Puppet handles resources.

With metaparameters, you can change how Puppet handles specific resources. For example, you can:

• Add metadata to a resource with the alias or tag metaparameters.
• Set limits on when the resource should be applied, by using relationship metaparameters like notify or

require.
• Prevent Puppet from making changes, by setting the noop metaparameter.
• Change logging verbosity with the loglevel metaparameter.

alias

Creates an alias for the resource. You can explicitly specify the alias metaparameter, but it's usually safer to give the
resource the alias value as the title and provide the full namevar value explicitly.

For example, this sample gives the title as sshdconfig, which acts as the alias. The namevar value is the path,
which is set to '/etc/ssh/sshd_config'.

file { 'sshdconfig':
 path => '/etc/ssh/sshd_config',
 source => '...'
}

service { 'sshd':
 subscribe => File['sshdconfig'],
}

Aliases generally work only for creating relationships; anything else that refers to an existing resource (such as
amending or overriding resource attributes in an inherited class) must use the resource's exact title. For example, the
following code will not work, because there's no way for Puppet to know that the two stanzas should affect the same
file.

file { '/etc/ssh/sshd_config':
 owner => root,
 group => root,

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1097

 alias => 'sshdconfig',
 }

File['sshdconfig'] {
 mode => '0644',
}

audit

Marks a subset of this resource's unmanaged attributes for auditing. Accepts an attribute name, an array of attribute
names, or the value all.

When audit is set for an attribute, when Puppet applies the catalog, it checks whether that attribute of the resource
has been modified, comparing its current value to the previous run. Any change is then logged alongside any actions
Puppet performed while applying the catalog.

before

Specifies one or more resources that depend on this resource, expressed as resource references. Specify multiple
resources as an array of references. When specified, before causes the resource to be applied before the dependent
resources. This is one of the four relationship metaparameters, along with require, notify, and subscribe.
For more information about creating relationships between resources, see Relationships and ordering on page 728.
For details about resource references, see Resource and class references on page 916.

consume

Consumes a capability resource. The value of this parameter must be a reference to a capability resource, or an array
of such references.

Each capability resource referenced here must have been exported by another resource in the same environment.
Puppet looks up the referenced capability resources, adds them to the current node catalog, and processes them
following the underlying consumes clause. Puppet returns an error if this metaparameter references a resource
that is not a capability type, or if there is no consume clause for the type of the current resource and the capability
resource mentioned in this parameter.

For example:

define web(..) { .. }
Web consumes Sql { .. }
web { server:
 consume => Sql[my_db]
}

export

Exports a capability resource. The value of this parameter must be a reference to a capability resource, or an array of
such references.

Each capability resource referenced here is instantiated in the node catalog and exported to consumers of this
resource. The title of the capability resource is the title given in the reference, and all other attributes of the resource
are filled according to the corresponding produces statement. Puppet returns an error if this metaparameter
references a resource that is not a capability type, or of there is no produces clause for the type of the current
resource and the capability resource mentioned in this parameter.

For example:

define web(..) { .. }
Web produces Http { .. }
web { server:
 export => Http[main_server]

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1098

}

loglevel

Sets the level at which information is logged. The log levels have the biggest impact when logs are sent to syslog,
which is the default log. Any of the log levels are valid values for this metaparameter. The order of the log levels, in
decreasing priority, is:

• emerg

• alert

• crit

• err

• warning

• notice

• info

• verbose

• debug

noop

Whether to apply this resource in non-operational, or "no-op" mode. When applying a resource in noop mode,
Puppet checks whether the resource is in the desired state as declared in the catalog. If the resource is not in the
desired state, Puppet takes no action, but reports the changes it would have made. These simulated changes appear in
the report sent to the primary server or are displayed be shown on the console if running puppet agent or puppet apply
in the foreground. The simulated changes do not send refresh events to any subscribing or notified resources, although
Puppet logs that a refresh event would have been sent. Valid values are true or false.

Note: The noop setting allows you to globally enable or disable noop mode, but it does not override the noop
metaparameter on individual resources. That is, the value of a global noop setting affects only resources that do not
have an explicit value set for their noop attribute.

notify

Specifies one or more resources that depend on this resource, expressed as resource references. Specify multiple
resources as an array of references.

When this attribute is set, this resource is applied before the notified resources. If Puppet makes changes to this
resource, it causes all of the notified resources to refresh. Refresh behavior varies by resource type: for example,
services restart and mounts unmount and re-mount. Not all types can refresh.

This is one of the four relationship metaparameters, along with before, require, and subscribe. For more
information about creating relationships between resources, see Relationships and ordering on page 728. For
details about resource references, see Resource and class references on page 916.

require

Specifies one or more resources that depend on this resource, expressed as resource references. Specify multiple
resources as an array of references.

When this attribute is set, the required resources are applied before this resource.

This is one of the four relationship metaparameters, along with before, notify, and subscribe. For more
information about creating relationships between resources, see Relationships and ordering on page 728. For
details about resource references, see Resource and class references on page 916.

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1099

schedule

A schedule to govern when Puppet is allowed to manage this resource. The value of this metaparameter must be the
name of a schedule resource. This means you must first declare a schedule resource, then refer to it by name.

For example:

schedule { 'everyday':
 period => daily,
 range => "2-4"
 }

exec { "/usr/bin/apt-get update":
 schedule => 'everyday'
}

You can declare the schedule resource anywhere in your manifests, as long as it ends up in the final compiled catalog.

See the schedule type for more information.

stage

Which run stage this class should reside in. To assign a class to a different stage, you must:

• Declare the new stage as a stage resource See the stage type for details.
• Declare an order relationship between the new stage and the main stage.
• Use the resource-like syntax to declare the class, and set the stage metaparameter to the name of the desired

stage.

Important: This metaparameter can only be used on classes, and only when declaring them with the resource-
like syntax. It cannot be used on normal resources or on classes declared with include. By default, all classes are
declared in the main stage.

For example:

stage { 'pre':
 before => Stage['main'],
}

class { 'apt-updates':
 stage => 'pre',
}

subscribe

Specifies one or more resources that depend on this resource, expressed as resource references. Specify multiple
resources as an array of references.

When this attribute is present, the subscribed resources are applied before this resource. If Puppet makes changes
to any of the subscribed resources, it causes this resource to refresh. Refresh behavior varies by resource type: for
example, services restart and mounts unmount and re-mount. Not all types can refresh.

This is one of the four relationship metaparameters, along with before, require, and notify. For more
information about creating relationships between resources, see Relationships and ordering on page 728. For
details about resource references, see Resource and class references on page 916.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/type.html#schedule
https://puppet.com/docs/puppet/latest/type.html#stage

Puppet | References | 1100

tag

Add the specified tags to the associated resource. Although all resources are automatically tagged with as much
information as possible, such as with each class and definition containing the resource, it can be useful to add your
own tags to a given resource. Multiple tags can be specified as an array:

file {'/etc/hosts':
 ensure => file,
 source => 'puppet:///modules/site/hosts',
 mode => '0644',
 tag => ['bootstrap', 'minimumrun', 'mediumrun'],
}

Tags are useful for things like applying a subset of a host's configuration with the tags configuration setting, such
as with puppet agent --test --tags bootstrap. See the configuration reference for more information
about the tags setting

Built-in function reference
NOTE: This page was generated from the Puppet source code on 2022-02-07 10:11:41 -0800

This page is a list of Puppet's built-in functions, with descriptions of what they do and how to use them.

Functions are plugins you can call during catalog compilation. A call to any function is an expression that resolves to
a value. For more information on how to call functions, see Function calls on page 760

Many of these function descriptions include auto-detected signatures, which are short reminders of the function's
allowed arguments. These signatures aren't identical to the syntax you use to call the function; instead, they resemble
a parameter list from a Puppet Classes on page 733, Defined resource types on page 740, Writing custom
functions in the Puppet language on page 499, or Lambdas on page 953. The syntax of a signature is:

<FUNCTION NAME>(<DATA TYPE> <ARGUMENT NAME>, ...)

The <DATA TYPE> is a Data type syntax on page 921, like String or Optional[Array[String]]. The
<ARGUMENT NAME> is a descriptive name chosen by the function's author to indicate what the argument is used for.

• Any arguments with an Optional data type can be omitted from the function call.
• Arguments that start with an asterisk (like *$values) can be repeated any number of times.
• Arguments that start with an ampersand (like &$block) aren't normal arguments; they represent a code block,

provided with Lambdas on page 953

undef values in Puppet 6

In Puppet 6, many Puppet types were moved out of the Puppet codebase, and into modules on the Puppet Forge.
The new functions handle undef values more strictly than their stdlib counterparts. In Puppet 6, code that relies on
undef values being implicitly treated as other types will return an evaluation error. For more information on which
types were moved into modules, see the Puppet 6 release notes.

abs

Returns the absolute value of a Numeric value, for example -34.56 becomes 34.56. Takes a single Integer or
Float value as an argument.

Deprecated behavior

For backwards compatibility reasons this function also works when given a number in String format such that it
first attempts to covert it to either a Float or an Integer and then taking the absolute value of the result. Only
strings representing a number in decimal format is supported - an error is raised if value is not decimal (using base
10). Leading 0 chars in the string are ignored. A floating point value in string form can use some forms of scientific
notation but not all.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/configuration.html#tags
https://puppet.com/docs/puppet/6.0/release_notes_puppet.html#select-types-moved-to-modules

Puppet | References | 1101

Callers should convert strings to Numeric before calling this function to have full control over the conversion.

abs(Numeric($str_val))

It is worth noting that Numeric can convert to absolute value directly as in the following examples:

Numeric($strval, true) # Converts to absolute Integer or Float
Integer($strval, 10, true) # Converts to absolute Integer using base 10
 (decimal)
Integer($strval, 16, true) # Converts to absolute Integer using base 16
 (hex)
Float($strval, true) # Converts to absolute Float

Signature 1

abs(Numeric $val)

Signature 2

abs(String $val)

alert

Logs a message on the server at level alert.

alert(Any *$values)

Parameters

• *values --- The values to log.

Return type(s): Undef.

all

Runs a lambda repeatedly using each value in a data structure until the lambda returns a non "truthy" value which
makes the function return false, or if the end of the iteration is reached, true is returned.

This function takes two mandatory arguments, in this order:

1. An array, hash, or other iterable object that the function will iterate over.
2. A lambda, which the function calls for each element in the first argument. It can request one or two parameters.

$data.all |$parameter| { <PUPPET CODE BLOCK> }

or

all($data) |$parameter| { <PUPPET CODE BLOCK> }

For the array $data, run a lambda that checks that all values are
 multiples of 10
$data = [10, 20, 30]
notice $data.all |$item| { $item % 10 == 0 }

Would notice true.

When the first argument is a Hash, Puppet passes each key and value pair to the lambda as an array in the form
[key, value].

For the hash $data, run a lambda using each item as a key-value array
$data = { 'a_0'=> 10, 'b_1' => 20 }
notice $data.all |$item| { $item[1] % 10 == 0 }

Would notice true if all values in the hash are multiples of 10.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | References | 1102

When the lambda accepts two arguments, the first argument gets the index in an array or the key from a hash, and the
second argument the value.

Check that all values are a multiple of 10 and keys start with 'abc'
$data = {abc_123 => 10, abc_42 => 20, abc_blue => 30}
notice $data.all |$key, $value| { $value % 10 == 0 and $key =~ /^abc/ }

Would notice true.

For an general examples that demonstrates iteration, see the Puppet iteration documentation.

Signature 1

all(Hash[Any, Any] $hash, Callable[2,2] &$block)

Signature 2

all(Hash[Any, Any] $hash, Callable[1,1] &$block)

Signature 3

all(Iterable $enumerable, Callable[2,2] &$block)

Signature 4

all(Iterable $enumerable, Callable[1,1] &$block)

annotate

Handles annotations on objects. The function can be used in four different ways.

With two arguments, an Annotation type and an object, the function returns the annotation for the object of the
given type, or undef if no such annotation exists.

$annotation = Mod::NickNameAdapter.annotate(o)

$annotation = annotate(Mod::NickNameAdapter.annotate, o)

With three arguments, an Annotation type, an object, and a block, the function returns the annotation for the
object of the given type, or annotates it with a new annotation initialized from the hash returned by the given block
when no such annotation exists. The block will not be called when an annotation of the given type is already present.

$annotation = Mod::NickNameAdapter.annotate(o) || { { 'nick_name' =>
 'Buddy' } }

$annotation = annotate(Mod::NickNameAdapter.annotate, o) || { { 'nick_name'
 => 'Buddy' } }

With three arguments, an Annotation type, an object, and an Hash, the function will annotate the given object
with a new annotation of the given type that is initialized from the given hash. An existing annotation of the given
type is discarded.

$annotation = Mod::NickNameAdapter.annotate(o, { 'nick_name' => 'Buddy' })

$annotation = annotate(Mod::NickNameAdapter.annotate, o, { 'nick_name' =>
 'Buddy' })

With three arguments, an Annotation type, an object, and an the string clear, the function will clear the
annotation of the given type in the given object. The old annotation is returned if it existed.

$annotation = Mod::NickNameAdapter.annotate(o, clear)

$annotation = annotate(Mod::NickNameAdapter.annotate, o, clear)

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_iteration.html

Puppet | References | 1103

With three arguments, the type Pcore, an object, and a Hash of hashes keyed by Annotation types, the function
will annotate the given object with all types used as keys in the given hash. Each annotation is initialized with the
nested hash for the respective type. The annotated object is returned.

 $person = Pcore.annotate(Mod::Person({'name' => 'William'}), {
 Mod::NickNameAdapter >= { 'nick_name' => 'Bill' },
 Mod::HobbiesAdapter => { 'hobbies' => ['Ham Radio', 'Philatelist'] }
 })

Signature 1

annotate(Type[Annotation] $type, Any $value, Optional[Callable[0, 0]] &$block)

Signature 2

annotate(Type[Annotation] $type, Any $value,
Variant[Enum[clear],Hash[Pcore::MemberName,Any]] $annotation_hash)

Signature 3

annotate(Type[Pcore] $type, Any $value, Hash[Type[Annotation],
Hash[Pcore::MemberName,Any]] $annotations)

any

Runs a lambda repeatedly using each value in a data structure until the lambda returns a "truthy" value which makes
the function return true, or if the end of the iteration is reached, false is returned.

This function takes two mandatory arguments, in this order:

1. An array, hash, or other iterable object that the function will iterate over.
2. A lambda, which the function calls for each element in the first argument. It can request one or two parameters.

$data.any |$parameter| { <PUPPET CODE BLOCK> }

or

any($data) |$parameter| { <PUPPET CODE BLOCK> }

For the array $data, run a lambda that checks if an unknown hash contains
 those keys
$data = ["routers", "servers", "workstations"]
$looked_up = lookup('somekey', Hash)
notice $data.any |$item| { $looked_up[$item] }

Would notice true if the looked up hash had a value that is neither false nor undef for at least one of the
keys. That is, it is equivalent to the expression $looked_up[routers] || $looked_up[servers] ||
$looked_up[workstations].

When the first argument is a Hash, Puppet passes each key and value pair to the lambda as an array in the form
[key, value].

For the hash $data, run a lambda using each item as a key-value array.
$data = {"rtr" => "Router", "svr" => "Server", "wks" => "Workstation"}
$looked_up = lookup('somekey', Hash)
notice $data.any |$item| { $looked_up[$item[0]] }

Would notice true if the looked up hash had a value for one of the wanted key that is neither false nor undef.

When the lambda accepts two arguments, the first argument gets the index in an array or the key from a hash, and the
second argument the value.

Check if there is an even numbered index that has a non String value
$data = [key1, 1, 2, 2]

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | References | 1104

notice $data.any |$index, $value| { $index % 2 == 0 and $value !~ String }

Would notice true as the index 2 is even and not a String

For an general examples that demonstrates iteration, see the Puppet iteration documentation.

Signature 1

any(Hash[Any, Any] $hash, Callable[2,2] &$block)

Signature 2

any(Hash[Any, Any] $hash, Callable[1,1] &$block)

Signature 3

any(Iterable $enumerable, Callable[2,2] &$block)

Signature 4

any(Iterable $enumerable, Callable[1,1] &$block)

assert_type

Returns the given value if it is of the given data type, or otherwise either raises an error or executes an optional two-
parameter lambda.

The function takes two mandatory arguments, in this order:

1. The expected data type.
2. A value to compare against the expected data type.

$raw_username = 'Amy Berry'

Assert that $raw_username is a non-empty string and assign it to
 $valid_username.
$valid_username = assert_type(String[1], $raw_username)

$valid_username contains "Amy Berry".
If $raw_username was an empty string or a different data type, the Puppet
 run would
fail with an "Expected type does not match actual" error.

You can use an optional lambda to provide enhanced feedback. The lambda takes two mandatory parameters, in this
order:

1. The expected data type as described in the function's first argument.
2. The actual data type of the value.

$raw_username = 'Amy Berry'

Assert that $raw_username is a non-empty string and assign it to
 $valid_username.
If it isn't, output a warning describing the problem and use a default
 value.
$valid_username = assert_type(String[1], $raw_username) |$expected, $actual|
 {
 warning("The username should be \'${expected}\', not \'${actual}\'. Using
 'anonymous'.")
 'anonymous'
}

$valid_username contains "Amy Berry".
If $raw_username was an empty string, the Puppet run would set
 $valid_username to

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_iteration.html
https://puppet.com/docs/puppet/latest/lang_data.html
https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | References | 1105

"anonymous" and output a warning: "The username should be 'String[1,
 default]', not
'String[0, 0]'. Using 'anonymous'."

For more information about data types, see the documentation.

Signature 1

assert_type(Type $type, Any $value, Optional[Callable[Type, Type]] &$block)

Signature 2

assert_type(String $type_string, Any $value, Optional[Callable[Type, Type]] &
$block)

binary_file

Loads a binary file from a module or file system and returns its contents as a Binary. The argument to this function
should be a <MODULE NAME>/<FILE> reference, which will load <FILE> from a module's files directory.
(For example, the reference mysql/mysqltuner.pl will load the file <MODULES DIRECTORY>/mysql/
files/mysqltuner.pl.)

This function also accepts an absolute file path that allows reading binary file content from anywhere on disk.

An error is raised if the given file does not exists.

To search for the existence of files, use the find_file() function.

• since 4.8.0

binary_file(String $path)

break

Breaks an innermost iteration as if it encountered an end of input. This function does not return to the caller.

The signal produced to stop the iteration bubbles up through the call stack until either terminating the innermost
iteration or raising an error if the end of the call stack is reached.

The break() function does not accept an argument.

$data = [1,2,3]
notice $data.map |$x| { if $x == 3 { break() } $x*10 }

Would notice the value [10, 20]

function break_if_even($x) {
 if $x % 2 == 0 { break() }
}
$data = [1,2,3]
notice $data.map |$x| { break_if_even($x); $x*10 }

Would notice the value [10]

• Also see functions next and return

break()

call

Calls an arbitrary Puppet function by name.

This function takes one mandatory argument and one or more optional arguments:

1. A string corresponding to a function name.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_data.html

Puppet | References | 1106

2. Any number of arguments to be passed to the called function.
3. An optional lambda, if the function being called supports it.

This function can also be used to resolve a Deferred given as the only argument to the function (does not accept
arguments nor a block).

$a = 'notice'
call($a, 'message')

$a = 'each'
$b = [1,2,3]
call($a, $b) |$item| {
 notify { $item: }
}

The call function can be used to call either Ruby functions or Puppet language functions.

When used with Deferred values, the deferred value can either describe a function call, or a dig into a variable.

$d = Deferred('join', [[1,2,3], ':']) # A future call to join that joins the
 arguments 1,2,3 with ':'
notice($d.call())

Would notice the string "1:2:3".

$d = Deferred('$facts', ['processors', 'count'])
notice($d.call())

Would notice the value of $facts['processors']['count'] at the time when the call is made.

• Deferred values supported since Puppet 6.0

Signature 1

call(String $function_name, Any *$arguments, Optional[Callable] &$block)

Signature 2

call(Deferred $deferred)

camelcase

Creates a Camel Case version of a String

This function is compatible with the stdlib function with the same name.

The function does the following:

• For a String the conversion replaces all combinations of *_<char>* with an upcased version of the character
following the _. This is done using Ruby system locale which handles some, but not all special international up-
casing rules (for example German double-s ß is upcased to "Ss").

• For an Iterable[Variant[String, Numeric]] (for example an Array) each value is capitalized and
the conversion is not recursive.

• If the value is Numeric it is simply returned (this is for backwards compatibility).
• An error is raised for all other data types.
• The result will not contain any underscore characters.

Please note: This function relies directly on Ruby's String implementation and as such may not be entirely UTF8
compatible. To ensure best compatibility please use this function with Ruby 2.4.0 or greater - https://bugs.ruby-
lang.org/issues/10085.

'hello_friend'.camelcase()

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1107

camelcase('hello_friend')

Would both result in "HelloFriend"

['abc_def', 'bcd_xyz'].camelcase()
camelcase(['abc_def', 'bcd_xyz'])

Would both result in ['AbcDef', 'BcdXyz']

Signature 1

camelcase(Numeric $arg)

Signature 2

camelcase(String $arg)

Signature 3

camelcase(Iterable[Variant[String, Numeric]] $arg)

capitalize

Capitalizes the first character of a String, or the first character of every String in an Iterable value (such as an Array).

This function is compatible with the stdlib function with the same name.

The function does the following:

• For a String, a string with its first character in upper case version is returned. This is done using Ruby system
locale which handles some, but not all special international up-casing rules (for example German double-s ß is
capitalized to "Ss").

• For an Iterable[Variant[String, Numeric]] (for example an Array) each value is capitalized and
the conversion is not recursive.

• If the value is Numeric it is simply returned (this is for backwards compatibility).
• An error is raised for all other data types.

Please note: This function relies directly on Ruby's String implementation and as such may not be entirely UTF8
compatible. To ensure best compatibility please use this function with Ruby 2.4.0 or greater - https://bugs.ruby-
lang.org/issues/10085.

'hello'.capitalize()
capitalize('hello')

Would both result in "Hello"

['abc', 'bcd'].capitalize()
capitalize(['abc', 'bcd'])

Would both result in ['Abc', 'Bcd']

Signature 1

capitalize(Numeric $arg)

Signature 2

capitalize(String $arg)

Signature 3

capitalize(Iterable[Variant[String, Numeric]] $arg)

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1108

ceiling

Returns the smallest Integer greater or equal to the argument. Takes a single numeric value as an argument.

This function is backwards compatible with the same function in stdlib and accepts a Numeric value. A String
that can be converted to a floating point number can also be used in this version - but this is deprecated.

In general convert string input to Numeric before calling this function to have full control over how the conversion
is done.

Signature 1

ceiling(Numeric $val)

Signature 2

ceiling(String $val)

chomp

Returns a new string with the record separator character(s) removed. The record separator is the line ending
characters \r and \n.

This function is compatible with the stdlib function with the same name.

The function does the following:

• For a String the conversion removes \r\n, \n or \r from the end of a string.
• For an Iterable[Variant[String, Numeric]] (for example an Array) each value is processed and

the conversion is not recursive.
• If the value is Numeric it is simply returned (this is for backwards compatibility).
• An error is raised for all other data types.

"hello\r\n".chomp()
chomp("hello\r\n")

Would both result in "hello"

["hello\r\n", "hi\r\n"].chomp()
chomp(["hello\r\n", "hi\r\n"])

Would both result in ['hello', 'hi']

Signature 1

chomp(Numeric $arg)

Signature 2

chomp(String $arg)

Signature 3

chomp(Iterable[Variant[String, Numeric]] $arg)

chop

Returns a new string with the last character removed. If the string ends with \r\n, both characters are removed.
Applying chop to an empty string returns an empty string. If you wish to merely remove record separators then you
should use the chomp function.

This function is compatible with the stdlib function with the same name.

The function does the following:

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1109

• For a String the conversion removes the last character, or if it ends with \r\n` it removes both. If String is empty
an empty string is returned.

• For an Iterable[Variant[String, Numeric]] (for example an Array) each value is processed and
the conversion is not recursive.

• If the value is Numeric it is simply returned (this is for backwards compatibility).
• An error is raised for all other data types.

"hello\r\n".chop()
chop("hello\r\n")

Would both result in "hello"

"hello".chop()
chop("hello")

Would both result in "hell"

["hello\r\n", "hi\r\n"].chop()
chop(["hello\r\n", "hi\r\n"])

Would both result in ['hello', 'hi']

Signature 1

chop(Numeric $arg)

Signature 2

chop(String $arg)

Signature 3

chop(Iterable[Variant[String, Numeric]] $arg)

compare

Compares two values and returns -1, 0 or 1 if first value is smaller, equal or larger than the second value. The
compare function accepts arguments of the data types String, Numeric, Timespan, Timestamp, and Semver,
such that:

• two of the same data type can be compared
• Timespan and Timestamp can be compared with each other and with Numeric

When comparing two String values the comparison can be made to consider case by passing a third (optional)
boolean false value - the default is true which ignores case as the comparison operators in the Puppet Language.

Signature 1

compare(Numeric $a, Numeric $b)

Signature 2

compare(String $a, String $b, Optional[Boolean] $ignore_case)

Signature 3

compare(Semver $a, Semver $b)

Signature 4

compare(Numeric $a, Variant[Timespan, Timestamp] $b)

Signature 5

compare(Timestamp $a, Variant[Timestamp, Numeric] $b)

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1110

Signature 6

compare(Timespan $a, Variant[Timespan, Numeric] $b)

contain

Makes one or more classes be contained inside the current class. If any of these classes are undeclared, they will be
declared as if there were declared with the include function. Accepts a class name, an array of class names, or a
comma-separated list of class names.

A contained class will not be applied before the containing class is begun, and will be finished before the containing
class is finished.

You must use the class's full name; relative names are not allowed. In addition to names in string form, you may
also directly use Class and Resource Type-values that are produced by evaluating resource and relationship
expressions.

The function returns an array of references to the classes that were contained thus allowing the function call to
contain to directly continue.

• Since 4.0.0 support for Class and Resource Type-values, absolute names
• Since 4.7.0 a value of type Array[Type[Class[n]]] is returned with all the contained classes

contain(Any *$names)

convert_to

The convert_to(value, type) is a convenience function that does the same as new(type, value). The
difference in the argument ordering allows it to be used in chained style for improved readability "left to right".

When the function is given a lambda, it is called with the converted value, and the function returns what the lambda
returns, otherwise the converted value.

 # The harder to read variant:
 # Using new operator - that is "calling the type" with operator ()
 Hash(Array("abc").map |$i,$v| { [$i, $v] })

 # The easier to read variant:
 # using 'convert_to'
 "abc".convert_to(Array).map |$i,$v| { [$i, $v] }.convert_to(Hash)

convert_to(Any $value, Type $type, Optional[Any] *$args,
Optional[Callable[1,1]] &$block)

create_resources

Converts a hash into a set of resources and adds them to the catalog.

Note: Use this function selectively. It's generally better to write resources in Puppet, as resources created with
create_resource are difficult to read and troubleshoot.

This function takes two mandatory arguments: a resource type, and a hash describing a set of resources. The hash
should be in the form {title => {parameters} }:

A hash of user resources:
$myusers = {
 'nick' => { uid => '1330',
 gid => allstaff,
 groups => ['developers', 'operations', 'release'], },
 'dan' => { uid => '1308',
 gid => allstaff,
 groups => ['developers', 'prosvc', 'release'], },
}

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_resources.html

Puppet | References | 1111

create_resources(user, $myusers)

A third, optional parameter may be given, also as a hash:

$defaults = {
 'ensure' => present,
 'provider' => 'ldap',
}

create_resources(user, $myusers, $defaults)

The values given on the third argument are added to the parameters of each resource present in the set given on the
second argument. If a parameter is present on both the second and third arguments, the one on the second argument
takes precedence.

This function can be used to create defined resources and classes, as well as native resources.

Virtual and Exported resources may be created by prefixing the type name with @ or @@ respectively. For example,
the $myusers hash may be exported in the following manner:

create_resources("@@user", $myusers)

The $myusers may be declared as virtual resources using:

create_resources("@user", $myusers)

Note that create_resources filters out parameter values that are undef so that normal data binding and Puppet
default value expressions are considered (in that order) for the final value of a parameter (just as when setting a
parameter to undef in a Puppet language resource declaration).

create_resources()

crit

Logs a message on the server at level crit.

crit(Any *$values)

Parameters

• *values --- The values to log.

Return type(s): Undef.

debug

Logs a message on the server at level debug.

debug(Any *$values)

Parameters

• *values --- The values to log.

Return type(s): Undef.

defined

Determines whether a given class or resource type is defined and returns a Boolean value. You can also use
defined to determine whether a specific resource is defined, or whether a variable has a value (including undef,
as opposed to the variable never being declared or assigned).

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1112

This function takes at least one string argument, which can be a class name, type name, resource reference, or variable
reference of the form '$name'. (Note that the $ sign is included in the string which must be in single quotes to
prevent the $ character to be interpreted as interpolation.

The defined function checks both native and defined types, including types provided by modules. Types and
classes are matched by their names. The function matches resource declarations by using resource references.

Matching resource types
defined("file")
defined("customtype")

Matching defines and classes
defined("foo")
defined("foo::bar")

Matching variables (note the single quotes)
defined('$name')

Matching declared resources
defined(File['/tmp/file'])

Puppet depends on the configuration's evaluation order when checking whether a resource is declared.

Assign values to $is_defined_before and $is_defined_after using identical
 `defined`
functions.

$is_defined_before = defined(File['/tmp/file'])

file { "/tmp/file":
 ensure => present,
}

$is_defined_after = defined(File['/tmp/file'])

$is_defined_before returns false, but $is_defined_after returns true.

This order requirement only refers to evaluation order. The order of resources in the configuration graph (e.g. with
before or require) does not affect the defined function's behavior.

Warning: Avoid relying on the result of the defined function in modules, as you might not be able to
guarantee the evaluation order well enough to produce consistent results. This can cause other code that
relies on the function's result to behave inconsistently or fail.

If you pass more than one argument to defined, the function returns true if any of the arguments are defined. You
can also match resources by type, allowing you to match conditions of different levels of specificity, such as whether
a specific resource is of a specific data type.

file { "/tmp/file1":
 ensure => file,
}

$tmp_file = file { "/tmp/file2":
 ensure => file,
}

Each of these statements return `true` ...
defined(File['/tmp/file1'])
defined(File['/tmp/file1'],File['/tmp/file2'])
defined(File['/tmp/file1'],File['/tmp/file2'],File['/tmp/file3'])
... but this returns `false`.
defined(File['/tmp/file3'])

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1113

Each of these statements returns `true` ...
defined(Type[Resource['file','/tmp/file2']])
defined(Resource['file','/tmp/file2'])
defined(File['/tmp/file2'])
defined('$tmp_file')
... but each of these returns `false`.
defined(Type[Resource['exec','/tmp/file2']])
defined(Resource['exec','/tmp/file2'])
defined(File['/tmp/file3'])
defined('$tmp_file2')

defined(Variant[String, Type[CatalogEntry], Type[Type[CatalogEntry]]] *$vals)

dig

Returns a value for a sequence of given keys/indexes into a structure, such as an array or hash.

This function is used to "dig into" a complex data structure by using a sequence of keys / indexes to access a value
from which the next key/index is accessed recursively.

The first encountered undef value or key stops the "dig" and undef is returned.

An error is raised if an attempt is made to "dig" into something other than an undef (which immediately returns
undef), an Array or a Hash.

$data = {a => { b => [{x => 10, y => 20}, {x => 100, y => 200}]}}
notice $data.dig('a', 'b', 1, 'x')

Would notice the value 100.

This is roughly equivalent to $data['a']['b'][1]['x']. However, a standard index will return an error
and cause catalog compilation failure if any parent of the final key ('x') is undef. The dig function will return
undef, rather than failing catalog compilation. This allows you to check if data exists in a structure without
mandating that it always exists.

dig(Optional[Collection] $data, Any *$arg)

digest

Returns a hash value from a provided string using the digest_algorithm setting from the Puppet config file.

digest()

downcase

Converts a String, Array or Hash (recursively) into lower case.

This function is compatible with the stdlib function with the same name.

The function does the following:

• For a String, its lower case version is returned. This is done using Ruby system locale which handles some, but
not all special international up-casing rules (for example German double-s ß is upcased to "SS", whereas upper
case double-s is downcased to ß).

• For Array and Hash the conversion to lower case is recursive and each key and value must be convertible by
this function.

• When a Hash is converted, some keys could result in the same key - in those cases, the latest key-value wins. For
example if keys "aBC", and "abC" where both present, after downcase there would only be one key "abc".

• If the value is Numeric it is simply returned (this is for backwards compatibility).
• An error is raised for all other data types.

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1114

Please note: This function relies directly on Ruby's String implementation and as such may not be entirely UTF8
compatible. To ensure best compatibility please use this function with Ruby 2.4.0 or greater - https://bugs.ruby-
lang.org/issues/10085.

'HELLO'.downcase()
downcase('HEllO')

Would both result in "hello"

['A', 'B'].downcase()
downcase(['A', 'B'])

Would both result in ['a', 'b']

{'A' => 'HEllO', 'B' => 'GOODBYE'}.downcase()

Would result in {'a' => 'hello', 'b' => 'goodbye'}

['A', 'B', ['C', ['D']], {'X' => 'Y'}].downcase

Would result in ['a', 'b', ['c', ['d']], {'x' => 'y'}]

Signature 1

downcase(Numeric $arg)

Signature 2

downcase(String $arg)

Signature 3

downcase(Array[StringData] $arg)

Signature 4

downcase(Hash[StringData, StringData] $arg)

each

Runs a lambda repeatedly using each value in a data structure, then returns the values unchanged.

This function takes two mandatory arguments, in this order:

1. An array, hash, or other iterable object that the function will iterate over.
2. A lambda, which the function calls for each element in the first argument. It can request one or two parameters.

$data.each |$parameter| { <PUPPET CODE BLOCK> }

or

each($data) |$parameter| { <PUPPET CODE BLOCK> }

When the first argument ($data in the above example) is an array, Puppet passes each value in turn to the lambda,
then returns the original values.

For the array $data, run a lambda that creates a resource for each item.
$data = ["routers", "servers", "workstations"]
$data.each |$item| {
 notify { $item:
 message => $item
 }
}
Puppet creates one resource for each of the three items in $data. Each
 resource is

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | References | 1115

named after the item's value and uses the item's value in a parameter.

When the first argument is a hash, Puppet passes each key and value pair to the lambda as an array in the form
[key, value] and returns the original hash.

For the hash $data, run a lambda using each item as a key-value array that
 creates a
resource for each item.
$data = {"rtr" => "Router", "svr" => "Server", "wks" => "Workstation"}
$data.each |$items| {
 notify { $items[0]:
 message => $items[1]
 }
}
Puppet creates one resource for each of the three items in $data, each
 named after the
item's key and containing a parameter using the item's value.

When the first argument is an array and the lambda has two parameters, Puppet passes the array's indexes
(enumerated from 0) in the first parameter and its values in the second parameter.

For the array $data, run a lambda using each item's index and value that
 creates a
resource for each item.
$data = ["routers", "servers", "workstations"]
$data.each |$index, $value| {
 notify { $value:
 message => $index
 }
}
Puppet creates one resource for each of the three items in $data, each
 named after the
item's value and containing a parameter using the item's index.

When the first argument is a hash, Puppet passes its keys to the first parameter and its values to the second parameter.

For the hash $data, run a lambda using each item's key and value to create
 a resource
for each item.
$data = {"rtr" => "Router", "svr" => "Server", "wks" => "Workstation"}
$data.each |$key, $value| {
 notify { $key:
 message => $value
 }
}
Puppet creates one resource for each of the three items in $data, each
 named after the
item's key and containing a parameter using the item's value.

For an example that demonstrates how to create multiple file resources using each, see the Puppet iteration
documentation.

Signature 1

each(Hash[Any, Any] $hash, Callable[2,2] &$block)

Signature 2

each(Hash[Any, Any] $hash, Callable[1,1] &$block)

Signature 3

each(Iterable $enumerable, Callable[2,2] &$block)

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_iteration.html

Puppet | References | 1116

Signature 4

each(Iterable $enumerable, Callable[1,1] &$block)

emerg

Logs a message on the server at level emerg.

emerg(Any *$values)

Parameters

• *values --- The values to log.

Return type(s): Undef.

empty

Returns true if the given argument is an empty collection of values.

This function can answer if one of the following is empty:

• Array, Hash - having zero entries
• String, Binary - having zero length

For backwards compatibility with the stdlib function with the same name the following data types are also accepted
by the function instead of raising an error. Using these is deprecated and will raise a warning:

• Numeric - false is returned for all Numeric values.
• Undef - true is returned for all Undef values.

notice([].empty)
notice(empty([]))
would both notice 'true'

Signature 1

empty(Collection $coll)

Signature 2

empty(Sensitive[String] $str)

Signature 3

empty(String $str)

Signature 4

empty(Numeric $num)

Signature 5

empty(Binary $bin)

Signature 6

empty(Undef $x)

epp

Evaluates an Embedded Puppet (EPP) template file and returns the rendered text result as a String.

epp('<MODULE NAME>/<TEMPLATE FILE>', <PARAMETER HASH>)

The first argument to this function should be a <MODULE NAME>/<TEMPLATE FILE> reference, which loads
<TEMPLATE FILE> from <MODULE NAME>'s templates directory. In most cases, the last argument is optional;
if used, it should be a hash that contains parameters to pass to the template.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_data_hash.html

Puppet | References | 1117

• See the template documentation for general template usage information.
• See the EPP syntax documentation for examples of EPP.

For example, to call the apache module's templates/vhost/_docroot.epp template and pass the docroot
and virtual_docroot parameters, call the epp function like this:

epp('apache/vhost/_docroot.epp', { 'docroot' => '/var/www/html',
'virtual_docroot' => '/var/www/example' })

This function can also accept an absolute path, which can load a template file from anywhere on disk.

Puppet produces a syntax error if you pass more parameters than are declared in the template's parameter tag. When
passing parameters to a template that contains a parameter tag, use the same names as the tag's declared parameters.

Parameters are required only if they are declared in the called template's parameter tag without default values. Puppet
produces an error if the epp function fails to pass any required parameter.

epp(String $path, Optional[Hash[Pattern[/^\w+$/], Any]] $parameters)

err

Logs a message on the server at level err.

err(Any *$values)

Parameters

• *values --- The values to log.

Return type(s): Undef.

eyaml_lookup_key

The eyaml_lookup_key is a hiera 5 lookup_key data provider function. See the configuration guide
documentation for how to use this function.

eyaml_lookup_key(String[1] $key, Hash[String[1],Any] $options,
Puppet::LookupContext $context)

fail

Fail with a parse error. Any parameters will be stringified, concatenated, and passed to the exception-handler.

fail()

file

Loads a file from a module and returns its contents as a string.

The argument to this function should be a <MODULE NAME>/<FILE> reference, which will load <FILE> from a
module's files directory. (For example, the reference mysql/mysqltuner.pl will load the file <MODULES
DIRECTORY>/mysql/files/mysqltuner.pl.)

This function can also accept:

• An absolute path, which can load a file from anywhere on disk.
• Multiple arguments, which will return the contents of the first file found, skipping any files that don't exist.

file()

filter

Applies a lambda to every value in a data structure and returns an array or hash containing any elements for which the
lambda evaluates to a truthy value (not false or undef).

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_template.html
https://puppet.com/docs/puppet/latest/lang_template_epp.html
https://puppet.com/docs/puppet/latest/hiera_config_yaml_5.html#configuring-a-hierarchy-level-hiera-eyaml
https://puppet.com/docs/puppet/latest/hiera_config_yaml_5.html#configuring-a-hierarchy-level-hiera-eyaml
https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | References | 1118

This function takes two mandatory arguments, in this order:

1. An array, hash, or other iterable object that the function will iterate over.
2. A lambda, which the function calls for each element in the first argument. It can request one or two parameters.

$filtered_data = $data.filter |$parameter| { <PUPPET CODE BLOCK> }

or

$filtered_data = filter($data) |$parameter| { <PUPPET CODE BLOCK> }

When the first argument ($data in the above example) is an array, Puppet passes each value in turn to the lambda
and returns an array containing the results.

For the array $data, return an array containing the values that end with
 "berry"
$data = ["orange", "blueberry", "raspberry"]
$filtered_data = $data.filter |$items| { $items =~ /berry$/ }
$filtered_data = [blueberry, raspberry]

When the first argument is a hash, Puppet passes each key and value pair to the lambda as an array in the form
[key, value] and returns a hash containing the results.

For the hash $data, return a hash containing all values of keys that end
 with "berry"
$data = { "orange" => 0, "blueberry" => 1, "raspberry" => 2 }
$filtered_data = $data.filter |$items| { $items[0] =~ /berry$/ }
$filtered_data = {blueberry => 1, raspberry => 2}

When the first argument is an array and the lambda has two parameters, Puppet passes the array's indexes
(enumerated from 0) in the first parameter and its values in the second parameter.

For the array $data, return an array of all keys that both end with
 "berry" and have
an even-numbered index
$data = ["orange", "blueberry", "raspberry"]
$filtered_data = $data.filter |$indexes, $values| { $indexes % 2 == 0 and
 $values =~ /berry$/ }
$filtered_data = [raspberry]

When the first argument is a hash, Puppet passes its keys to the first parameter and its values to the second parameter.

For the hash $data, return a hash of all keys that both end with "berry"
 and have
values less than or equal to 1
$data = { "orange" => 0, "blueberry" => 1, "raspberry" => 2 }
$filtered_data = $data.filter |$keys, $values| { $keys =~ /berry$/ and
 $values <= 1 }
$filtered_data = {blueberry => 1}

Signature 1

filter(Hash[Any, Any] $hash, Callable[2,2] &$block)

Signature 2

filter(Hash[Any, Any] $hash, Callable[1,1] &$block)

Signature 3

filter(Iterable $enumerable, Callable[2,2] &$block)

Signature 4

filter(Iterable $enumerable, Callable[1,1] &$block)

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1119

find_file

Finds an existing file from a module and returns its path.

This function accepts an argument that is a String as a <MODULE NAME>/<FILE> reference, which searches for
<FILE> relative to a module's files directory. (For example, the reference mysql/mysqltuner.pl will search
for the file <MODULES DIRECTORY>/mysql/files/mysqltuner.pl.)

This function can also accept:

• An absolute String path, which checks for the existence of a file from anywhere on disk.
• Multiple String arguments, which returns the path of the first file found, skipping nonexistent files.
• An array of string paths, which returns the path of the first file found from the given paths in the array, skipping

nonexistent files.

The function returns undef if none of the given paths were found.

Signature 1

find_file(String *$paths)

Signature 2

find_file(Array[String] *$paths_array)

find_template

Finds an existing template from a module and returns its path.

This function accepts an argument that is a String as a <MODULE NAME>/<TEMPLATE> reference, which searches
for <TEMPLATE> relative to a module's templates directory on the primary server. (For example, the reference
mymod/secret.conf.epp will search for the file <MODULES DIRECTORY>/mymod/templates/
secret.conf.epp.)

The primary use case is for agent-side template rendering with late-bound variables resolved, such as from secret
stores inaccessible to the primary server, such as

$variables = {
 'password' => Deferred('vault_lookup::lookup',
 ['secret/mymod', 'https://vault.example.com:8200']),
}

compile the template source into the catalog
file { '/etc/secrets.conf':
 ensure => file,
 content => Deferred('inline_epp',
 [find_template('mymod/secret.conf.epp').file, $variables]),
}

This function can also accept:

• An absolute String path, which checks for the existence of a template from anywhere on disk.
• Multiple String arguments, which returns the path of the first template found, skipping nonexistent files.
• An array of string paths, which returns the path of the first template found from the given paths in the array,

skipping nonexistent files.

The function returns undef if none of the given paths were found.

Signature 1

find_template(String *$paths)

Signature 2

find_template(Array[String] *$paths_array)

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1120

flatten

Returns a flat Array produced from its possibly deeply nested given arguments.

One or more arguments of any data type can be given to this function. The result is always a flat array representation
where any nested arrays are recursively flattened.

flatten(['a', ['b', ['c']]])
Would return: ['a','b','c']

To flatten other kinds of iterables (for example hashes, or intermediate results like from a reverse_each) first
convert the result to an array using Array($x), or $x.convert_to(Array). See the new function for details
and options when performing a conversion.

$hsh = { a => 1, b => 2}

-- without conversion
$hsh.flatten()
Would return [{a => 1, b => 2}]

-- with conversion
$hsh.convert_to(Array).flatten()
Would return [a,1,b,2]

flatten(Array($hsh))
Would also return [a,1,b,2]

$a1 = [1, [2, 3]]
$a2 = [[4,[5,6]]
$x = 7
flatten($a1, $a2, $x)
would return [1,2,3,4,5,6,7]

flatten(42)
Would return [42]

flatten([42])
Would also return [42]

flatten(Any *$args)

floor

Returns the largest Integer less or equal to the argument. Takes a single numeric value as an argument.

This function is backwards compatible with the same function in stdlib and accepts a Numeric value. A String
that can be converted to a floating point number can also be used in this version - but this is deprecated.

In general convert string input to Numeric before calling this function to have full control over how the conversion
is done.

Signature 1

floor(Numeric $val)

Signature 2

floor(String $val)

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1121

fqdn_rand

Usage: fqdn_rand(MAX, [SEED], [DOWNCASE]). MAX is required and must be a positive integer; SEED is
optional and may be any number or string; DOWNCASE is optional and should be a boolean true or false.

Generates a random Integer number greater than or equal to 0 and less than MAX, combining the $fqdn fact and the
value of SEED for repeatable randomness. (That is, each node will get a different random number from this function,
but a given node's result will be the same every time unless its hostname changes.) If DOWNCASE is true, then the
fqdn fact will be downcased when computing the value so that the result is not sensitive to the case of the fqdn
fact.

This function is usually used for spacing out runs of resource-intensive cron tasks that run on many nodes, which
could cause a thundering herd or degrade other services if they all fire at once. Adding a SEED can be useful
when you have more than one such task and need several unrelated random numbers per node. (For example,
fqdn_rand(30), fqdn_rand(30, 'expensive job 1'), and fqdn_rand(30, 'expensive job
2') will produce totally different numbers.)

fqdn_rand()

generate

Calls an external command on the Puppet master and returns the results of the command. Any arguments are passed
to the external command as arguments. If the generator does not exit with return code of 0, the generator is considered
to have failed and a parse error is thrown. Generators can only have file separators, alphanumerics, dashes, and
periods in them. This function will attempt to protect you from malicious generator calls (e.g., those with '..' in them),
but it can never be entirely safe. No subshell is used to execute generators, so all shell metacharacters are passed
directly to the generator, and all metacharacters are returned by the function. Consider cleaning white space from any
string generated.

generate()

get

Digs into a value with dot notation to get a value from within a structure.

To dig into a given value, call the function with (at least) two arguments:

• The first argument must be an Array, or Hash. Value can also be undef (which also makes the result undef
unless a default value is given).

• The second argument must be a dot notation navigation string.
• The optional third argument can be any type of value and it is used as the default value if the function would

otherwise return undef.
• An optional lambda for error handling taking one Error argument.

Dot notation navigation string - The dot string consists of period . separated segments where each segment is either
the index into an array or the value of a hash key. If a wanted key contains a period it must be quoted to avoid it being
taken as a segment separator. Quoting can be done with either single quotes ' or double quotes ". If a segment is a
decimal number it is converted to an Integer index. This conversion can be prevented by quoting the value.

#get($facts, 'os.family')
$facts.get('os.family')

Would both result in the value of $facts['os']['family']

get([1,2,[{'name' =>'waldo'}]], '2.0.name')

Would result in 'waldo'

get([1,2,[{'name' =>'waldo'}]], '2.1.name', 'not waldo')

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1122

Would result in 'not waldo'

$x = [1, 2, { 'readme.md' => "This is a readme."}]
$x.get('2."readme.md"')

$x = [1, 2, { '10' => "ten"}]
$x.get('2."0"')

Error Handling - There are two types of common errors that can be handled by giving the function a code block
to execute. (A third kind or error; when the navigation string has syntax errors (for example an empty segment or
unbalanced quotes) will always raise an error).

The given block will be given an instance of the Error data type, and it has methods to extract msg, issue_code,
kind, and details.

The msg will be a preformatted message describing the error. This is the error message that would have surfaced if
there was no block to handle the error.

The kind is the string 'SLICE_ERROR' for both kinds of errors, and the issue_code is either
the string 'EXPECTED_INTEGER_INDEX' for an attempt to index into an array with a String, or
'EXPECTED_COLLECTION' for an attempt to index into something that is not a Collection.

The details is a Hash that for both issue codes contain the entry 'walked_path' which is an Array with each
key in the progression of the dig up to the place where the error occurred.

For an EXPECTED_INTEGER_INDEX-issue the detail 'index_type' is set to the data type of the index value
and for an 'EXPECTED_COLLECTION'-issue the detail 'value_type' is set to the type of the value.

The logic in the error handling block can inspect the details, and either call fail() with a custom error message or
produce the wanted value.

If the block produces undef it will not be replaced with a given default value.

$x = 'blue'
$x.get('0.color', 'green') |$error| { undef } # result is undef

$y = ['blue']
$y.get('color', 'green') |$error| { undef } # result is undef

$x = [1, 2, ['blue']]
$x.get('2.color') |$error| {
 notice("Walked path is ${error.details['walked_path']}")
}

Would notice Walked path is [2, color]

Also see:

• getvar() that takes the first segment to be the name of a variable and then delegates to this function.
• dig() function which is similar but uses an array of navigation values instead of a dot notation string.

get(Any $value, String $dotted_string, Optional[Any] $default_value,
Optional[Callable[1,1]] &$block)

getvar

Digs into a variable with dot notation to get a value from a structure.

To get the value from a variable (that may or may not exist), call the function with one or two arguments:

• The first argument must be a string, and must start with a variable name without leading $, for example
get('facts'). The variable name can be followed by a dot notation navigation string to dig out a value in the
array or hash value of the variable.

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1123

• The optional second argument can be any type of value and it is used as the default value if the function would
otherwise return undef.

• An optional lambda for error handling taking one Error argument.

Dot notation navigation string - The dot string consists of period . separated segments where each segment is either
the index into an array or the value of a hash key. If a wanted key contains a period it must be quoted to avoid it being
taken as a segment separator. Quoting can be done with either single quotes ' or double quotes ". If a segment is a
decimal number it is converted to an Integer index. This conversion can be prevented by quoting the value.

getvar('facts') # results in the value of $facts

getvar('facts.os.family') # results in the value of $facts['os']['family']

$x = [1,2,[{'name' =>'waldo'}]]
getvar('x.2.1.name', 'not waldo')
results in 'not waldo'

For further examples and how to perform error handling, see the get() function which this function delegates to
after having resolved the variable value.

getvar(Pattern[/\A(?:::)?(?:[a-z]\w*::)*[a-z_]\w*(?:.|\Z)/] $get_string,
Optional[Any] $default_value, Optional[Callable[1,1]] &$block)

group_by

Groups the collection by result of the block. Returns a hash where the keys are the evaluated result from the block and
the values are arrays of elements in the collection that correspond to the key.

Signature 1

group_by(Collection $collection, Callable[1,1] &$block)

Parameters

• collection --- A collection of things to group.

Return type(s): Hash.

Examples

Group array of strings by length, results in e.g. { 1 => [a, b], 2 => [ab] }

[a, b, ab].group_by |$s| { $s.length }

Group array of strings by length and index, results in e.g. {1 => ['a'], 2 => ['b', 'ab']}

[a, b, ab].group_by |$i, $s| { $i%2 + $s.length }

Group hash iterating by key-value pair, results in e.g. { 2 => [['a', [1, 2]]], 1 => [['b', [1]]] }

{ a => [1, 2], b => [1] }.group_by |$kv| { $kv[1].length }

Group hash iterating by key and value, results in e.g. { 2 => [['a', [1, 2]]], 1 => [['b', [1]]] }

 { a => [1, 2], b => [1] }.group_by |$k, $v| { $v.length }

Signature 2

group_by(Array $array, Callable[2,2] &$block)

Signature 3

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1124

group_by(Collection $collection, Callable[2,2] &$block)

hiera

Performs a standard priority lookup of the hierarchy and returns the most specific value for a given key. The returned
value can be any type of data.

This function is deprecated in favor of the lookup function. While this function continues to work, it does not
support:

• lookup_options stored in the data
• lookup across global, environment, and module layers

The function takes up to three arguments, in this order:

1. A string key that Hiera searches for in the hierarchy. Required.
2. An optional default value to return if Hiera doesn't find anything matching the key.

• If this argument isn't provided and this function results in a lookup failure, Puppet fails with a compilation
error.

3. The optional name of an arbitrary hierarchy level to insert at the top of the hierarchy. This lets you temporarily
modify the hierarchy for a single lookup.

• If Hiera doesn't find a matching key in the overriding hierarchy level, it continues searching the rest of the
hierarchy.

The hiera function does not find all matches throughout a hierarchy, instead returning the first specific value
starting at the top of the hierarchy. To search throughout a hierarchy, use the hiera_array or hiera_hash
functions.

Assuming hiera.yaml
:hierarchy:
- web01.example.com
- common

Assuming web01.example.com.yaml:
users:
- "Amy Barry"
- "Carrie Douglas"

Assuming common.yaml:
users:
 admins:
 - "Edith Franklin"
 - "Ginny Hamilton"
 regular:
 - "Iris Jackson"
 - "Kelly Lambert"

Assuming we are not web01.example.com:

$users = hiera('users', undef)

$users contains {admins => ["Edith Franklin", "Ginny Hamilton"],
regular => ["Iris Jackson", "Kelly Lambert"]}

You can optionally generate the default value with a lambda that takes one parameter.

Assuming the same Hiera data as the previous example:

$users = hiera('users') | $key | { "Key \'${key}\' not found" }

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/hiera/latest/hierarchy.html
https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | References | 1125

$users contains {admins => ["Edith Franklin", "Ginny Hamilton"],
regular => ["Iris Jackson", "Kelly Lambert"]}
If hiera couldn't match its key, it would return the lambda result,
"Key 'users' not found".

The returned value's data type depends on the types of the results. In the example above, Hiera matches the 'users' key
and returns it as a hash.

See the 'Using the lookup function' documentation for how to perform lookup of data. Also see the 'Using the
deprecated hiera functions' documentation for more information about the Hiera 3 functions.

hiera()

hiera_array

Finds all matches of a key throughout the hierarchy and returns them as a single flattened array of unique values.
If any of the matched values are arrays, they're flattened and included in the results. This is called an array merge
lookup.

This function is deprecated in favor of the lookup function. While this function continues to work, it does not
support:

• lookup_options stored in the data
• lookup across global, environment, and module layers

The hiera_array function takes up to three arguments, in this order:

1. A string key that Hiera searches for in the hierarchy. Required.
2. An optional default value to return if Hiera doesn't find anything matching the key.

• If this argument isn't provided and this function results in a lookup failure, Puppet fails with a compilation
error.

3. The optional name of an arbitrary hierarchy level to insert at the top of the hierarchy. This lets you temporarily
modify the hierarchy for a single lookup.

• If Hiera doesn't find a matching key in the overriding hierarchy level, it continues searching the rest of the
hierarchy.

Assuming hiera.yaml
:hierarchy:
- web01.example.com
- common

Assuming common.yaml:
users:
- 'cdouglas = regular'
- 'efranklin = regular'

Assuming web01.example.com.yaml:
users: 'abarry = admin'

$allusers = hiera_array('users', undef)

$allusers contains ["cdouglas = regular", "efranklin = regular", "abarry =
 admin"].

You can optionally generate the default value with a lambda that takes one parameter.

Assuming the same Hiera data as the previous example:

$allusers = hiera_array('users') | $key | { "Key \'${key}\' not found" }

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/hiera/latest/lookup_types.html#array-merge
https://puppet.com/docs/hiera/latest/lookup_types.html#array-merge
https://puppet.com/docs/hiera/latest/hierarchy.html
https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | References | 1126

$allusers contains ["cdouglas = regular", "efranklin = regular", "abarry =
 admin"].
If hiera_array couldn't match its key, it would return the lambda result,
"Key 'users' not found".

hiera_array expects that all values returned will be strings or arrays. If any matched value is a hash, Puppet raises
a type mismatch error.

See the 'Using the lookup function' documentation for how to perform lookup of data. Also see the 'Using the
deprecated hiera functions' documentation for more information about the Hiera 3 functions.

hiera_array()

hiera_hash

Finds all matches of a key throughout the hierarchy and returns them in a merged hash.

This function is deprecated in favor of the lookup function. While this function continues to work, it does not
support:

• lookup_options stored in the data
• lookup across global, environment, and module layers

If any of the matched hashes share keys, the final hash uses the value from the highest priority match. This is called a
hash merge lookup.

The merge strategy is determined by Hiera's :merge_behavior setting.

The hiera_hash function takes up to three arguments, in this order:

1. A string key that Hiera searches for in the hierarchy. Required.
2. An optional default value to return if Hiera doesn't find anything matching the key.

• If this argument isn't provided and this function results in a lookup failure, Puppet fails with a compilation
error.

3. The optional name of an arbitrary hierarchy level to insert at the top of the hierarchy. This lets you temporarily
modify the hierarchy for a single lookup.

• If Hiera doesn't find a matching key in the overriding hierarchy level, it continues searching the rest of the
hierarchy.

Assuming hiera.yaml
:hierarchy:
- web01.example.com
- common

Assuming common.yaml:
users:
regular:
'cdouglas': 'Carrie Douglas'

Assuming web01.example.com.yaml:
users:
administrators:
'aberry': 'Amy Berry'

Assuming we are not web01.example.com:

$allusers = hiera_hash('users', undef)

$allusers contains {regular => {"cdouglas" => "Carrie Douglas"},
administrators => {"aberry" => "Amy Berry"}}

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/hiera/latest/lookup_types.html#hash-merge
https://puppet.com/docs/hiera/latest/configuring.html#mergebehavior
https://puppet.com/docs/hiera/latest/hierarchy.html

Puppet | References | 1127

You can optionally generate the default value with a lambda that takes one parameter.

Assuming the same Hiera data as the previous example:

$allusers = hiera_hash('users') | $key | { "Key \'${key}\' not found" }

$allusers contains {regular => {"cdouglas" => "Carrie Douglas"},
administrators => {"aberry" => "Amy Berry"}}
If hiera_hash couldn't match its key, it would return the lambda result,
"Key 'users' not found".

hiera_hash expects that all values returned will be hashes. If any of the values found in the data sources are
strings or arrays, Puppet raises a type mismatch error.

See the 'Using the lookup function' documentation for how to perform lookup of data. Also see the 'Using the
deprecated hiera functions' documentation for more information about the Hiera 3 functions.

hiera_hash()

hiera_include

Assigns classes to a node using an array merge lookup that retrieves the value for a user-specified key from Hiera's
data.

This function is deprecated in favor of the lookup function in combination with include. While this function
continues to work, it does not support:

• lookup_options stored in the data
• lookup across global, environment, and module layers

In site.pp, outside of any node definitions and below any top-scope
 variables:
lookup('classes', Array[String], 'unique').include

The hiera_include function requires:

• A string key name to use for classes.
• A call to this function (i.e. hiera_include('classes')) in your environment's sites.pp manifest,

outside of any node definitions and below any top-scope variables that Hiera uses in lookups.
• classes keys in the appropriate Hiera data sources, with an array for each classes key and each value of the

array containing the name of a class.

The function takes up to three arguments, in this order:

1. A string key that Hiera searches for in the hierarchy. Required.
2. An optional default value to return if Hiera doesn't find anything matching the key.

• If this argument isn't provided and this function results in a lookup failure, Puppet fails with a compilation
error.

3. The optional name of an arbitrary hierarchy level to insert at the top of the hierarchy. This lets you temporarily
modify the hierarchy for a single lookup.

• If Hiera doesn't find a matching key in the overriding hierarchy level, it continues searching the rest of the
hierarchy.

The function uses an array merge lookup to retrieve the classes array, so every node gets every class from the
hierarchy.

Assuming hiera.yaml
:hierarchy:
- web01.example.com
- common

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/hiera/latest/lookup_types.html#array-merge
https://puppet.com/docs/hiera/latest/hierarchy.html
https://puppet.com/docs/hiera/latest/lookup_types.html#array-merge

Puppet | References | 1128

Assuming web01.example.com.yaml:
classes:
- apache::mod::php

Assuming common.yaml:
classes:
- apache

In site.pp, outside of any node definitions and below any top-scope
 variables:
hiera_include('classes', undef)

Puppet assigns the apache and apache::mod::php classes to the
 web01.example.com node.

You can optionally generate the default value with a lambda that takes one parameter.

Assuming the same Hiera data as the previous example:

In site.pp, outside of any node definitions and below any top-scope
 variables:
hiera_include('classes') | $key | {"Key \'${key}\' not found" }

Puppet assigns the apache and apache::mod::php classes to the
 web01.example.com node.
If hiera_include couldn't match its key, it would return the lambda
 result,
"Key 'classes' not found".

See the 'Using the lookup function' documentation for how to perform lookup of data. Also see the 'Using the
deprecated hiera functions' documentation for more information about the Hiera 3 functions.

hiera_include()

hocon_data

The hocon_data is a hiera 5 data_hash data provider function. See the configuration guide documentation for
how to use this function.

Note that this function is not supported without a hocon library being present.

hocon_data(Struct[{path=>String[1]}] $options, Puppet::LookupContext $context)

import

The import function raises an error when called to inform the user that import is no longer supported.

import(Any *$args)

include

Declares one or more classes, causing the resources in them to be evaluated and added to the catalog. Accepts a class
name, an array of class names, or a comma-separated list of class names.

The include function can be used multiple times on the same class and will only declare a given class once. If a
class declared with include has any parameters, Puppet will automatically look up values for them in Hiera, using
<class name>::<parameter name> as the lookup key.

Contrast this behavior with resource-like class declarations (class {'name': parameter => 'value',}),
which must be used in only one place per class and can directly set parameters. You should avoid using both
include and resource-like declarations with the same class.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/puppet/latest/hiera_automatic.html
https://puppet.com/docs/puppet/latest/hiera_config_yaml_5.html#configuring-a-hierarchy-level-built-in-backends

Puppet | References | 1129

The include function does not cause classes to be contained in the class where they are declared. For that, see the
contain function. It also does not create a dependency relationship between the declared class and the surrounding
class; for that, see the require function.

You must use the class's full name; relative names are not allowed. In addition to names in string form, you may also
directly use Class and Resource Type-values that are produced by the resource and relationship expressions.

• Since < 3.0.0
• Since 4.0.0 support for class and resource type values, absolute names
• Since 4.7.0 returns an Array[Type[Class]] of all included classes

include(Any *$names)

index

Returns the index (or key in a hash) to a first-found value in an Iterable value.

When called with a lambda the lambda is called repeatedly using each value in a data structure until the lambda
returns a "truthy" value which makes the function return the index or key, or if the end of the iteration is reached,
undef is returned.

This function can be called in two different ways; with a value to be searched for, or with a lambda that determines if
an entry in the iterable matches.

When called with a lambda the function takes two mandatory arguments, in this order:

1. An array, hash, string, or other iterable object that the function will iterate over.
2. A lambda, which the function calls for each element in the first argument. It can request one (value) or two (index/

key, value) parameters.

$data.index |$parameter| { <PUPPET CODE BLOCK> }

or

index($data) |$parameter| { <PUPPET CODE BLOCK> }

$data = ["routers", "servers", "workstations"]
notice $data.index |$value| { $value == 'servers' } # notices 1
notice $data.index |$value| { $value == 'hosts' } # notices undef

$data = {types => ["routers", "servers", "workstations"], colors => ['red',
 'blue', 'green']}
notice $data.index |$value| { 'servers' in $value } # notices 'types'
notice $data.index |$value| { 'red' in $value } # notices 'colors'

Note that the lambda gets the value and not an array with [key, value] as in other iterative functions.

Using a lambda that accepts two values works the same way, it simply gets the index/key as the first parameter, and
the value as the second.

Find the first even numbered index that has a non String value
$data = [key1, 1, 3, 5]
notice $data.index |$idx, $value| { $idx % 2 == 0 and $value !~ String } #
 notices 2

When called on a String, the lambda is given each character as a value. What is typically wanted is to find a
sequence of characters which is achieved by calling the function with a value to search for instead of giving a lambda.

Find first occurrence of 'ah'
$data = "blablahbleh"

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | References | 1130

notice $data.index('ah') # notices 5

Find first occurrence of 'la' or 'le'
$data = "blablahbleh"
notice $data.index(/l(a|e)/ # notices 1

When searching in a String with a given value that is neither String nor Regexp the answer is always undef.
When searching in any other iterable, the value is matched against each value in the iteration using strict Ruby ==
semantics. If Puppet Language semantics are wanted (where string compare is case insensitive) use a lambda and the
== operator in Puppet.

$data = ['routers', 'servers', 'WORKstations']
notice $data.index('servers') # notices 1
notice $data.index('workstations') # notices undef (not matching case)

For an general examples that demonstrates iteration, see the Puppet iteration documentation.

Signature 1

index(Hash[Any, Any] $hash, Callable[2,2] &$block)

Signature 2

index(Hash[Any, Any] $hash, Callable[1,1] &$block)

Signature 3

index(Iterable $enumerable, Callable[2,2] &$block)

Signature 4

index(Iterable $enumerable, Callable[1,1] &$block)

Signature 5

index(String $str, Variant[String,Regexp] $match)

Signature 6

index(Iterable $enumerable, Any $match)

info

Logs a message on the server at level info.

info(Any *$values)

Parameters

• *values --- The values to log.

Return type(s): Undef.

inline_epp

Evaluates an Embedded Puppet (EPP) template string and returns the rendered text result as a String.

inline_epp('<EPP TEMPLATE STRING>', <PARAMETER HASH>)

The first argument to this function should be a string containing an EPP template. In most cases, the last argument is
optional; if used, it should be a hash that contains parameters to pass to the template.

• See the template documentation for general template usage information.
• See the EPP syntax documentation for examples of EPP.

For example, to evaluate an inline EPP template and pass it the docroot and virtual_docroot parameters, call
the inline_epp function like this:

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_iteration.html
https://puppet.com/docs/puppet/latest/lang_data_hash.html
https://puppet.com/docs/puppet/latest/lang_template.html
https://puppet.com/docs/puppet/latest/lang_template_epp.html

Puppet | References | 1131

inline_epp('docroot: <%= $docroot %> Virtual docroot: <%= $virtual_docroot
%>', { 'docroot' => '/var/www/html', 'virtual_docroot' => '/var/www/
example' })

Puppet produces a syntax error if you pass more parameters than are declared in the template's parameter tag. When
passing parameters to a template that contains a parameter tag, use the same names as the tag's declared parameters.

Parameters are required only if they are declared in the called template's parameter tag without default values. Puppet
produces an error if the inline_epp function fails to pass any required parameter.

An inline EPP template should be written as a single-quoted string or heredoc. A double-quoted string is subject to
expression interpolation before the string is parsed as an EPP template.

For example, to evaluate an inline EPP template using a heredoc, call the inline_epp function like this:

Outputs 'Hello given argument planet!'
inline_epp(@(END), { x => 'given argument' })
<%- | $x, $y = planet | -%>
Hello <%= $x %> <%= $y %>!
END

inline_epp(String $template, Optional[Hash[Pattern[/^\w+$/], Any]]
$parameters)

inline_template

Evaluate a template string and return its value. See the templating docs for more information. Note that if multiple
template strings are specified, their output is all concatenated and returned as the output of the function.

inline_template()

join

Joins the values of an Array into a string with elements separated by a delimiter.

Supports up to two arguments

• values - first argument is required and must be an an Array
• delimiter - second arguments is the delimiter between elements, must be a String if given, and defaults to an

empty string.

join(['a','b','c'], ",")
Would result in: "a,b,c"

Note that array is flattened before elements are joined, but flattening does not extend to arrays nested in hashes or
other objects.

$a = [1,2, undef, 'hello', [x,y,z], {a => 2, b => [3, 4]}]
notice join($a, ', ')

would result in noticing:
1, 2, , hello, x, y, z, {"a"=>2, "b"=>[3, 4]}

For joining iterators and other containers of elements a conversion must first be made to an Array. The reason for
this is that there are many options how such a conversion should be made.

[1,2,3].reverse_each.convert_to(Array).join(', ')
would result in: "3, 2, 1"

{a => 1, b => 2}.convert_to(Array).join(', ')
would result in "a, 1, b, 2"

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_data_string.html#heredocs
https://puppet.com/docs/puppet/latest/lang_template.html

Puppet | References | 1132

For more detailed control over the formatting (including indentations and line breaks, delimiters around arrays
and hash entries, between key/values in hash entries, and individual formatting of values in the array) see the new
function for String and its formatting options for Array and Hash.

join(Array $arg, Optional[String] $delimiter)

json_data

The json_data is a hiera 5 data_hash data provider function. See the configuration guide documentation for
how to use this function.

json_data(Struct[{path=>String[1]}] $options, Puppet::LookupContext $context)

keys

Returns the keys of a hash as an Array

$hsh = {"apples" => 3, "oranges" => 4 }
$hsh.keys()
keys($hsh)
both results in the array ["apples", "oranges"]

• Note that a hash in the puppet language accepts any data value (including undef) unless it is constrained with a
Hash data type that narrows the allowed data types.

• For an empty hash, an empty array is returned.
• The order of the keys is the same as the order in the hash (typically the order in which they were added).

keys(Hash $hsh)

length

Returns the length of an Array, Hash, String, or Binary value.

The returned value is a positive integer indicating the number of elements in the container; counting (possibly
multibyte) characters for a String, bytes in a Binary, number of elements in an Array, and number of key-value
associations in a Hash.

"roses".length() # 5
length("violets") # 7
[10, 20].length # 2
{a => 1, b => 3}.length # 2

Signature 1

length(Collection $arg)

Signature 2

length(String $arg)

Signature 3

length(Binary $arg)

lest

Calls a lambda without arguments if the value given to lest is undef. Returns the result of calling the lambda if the
argument is undef, otherwise the given argument.

The lest function is useful in a chain of then calls, or in general as a guard against undef values. The function
can be used to call fail, or to return a default value.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/hiera_config_yaml_5.html#configuring-a-hierarchy-level-built-in-backends
https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | References | 1133

These two expressions are equivalent:

if $x == undef { do_things() }
lest($x) || { do_things() }

$data = {a => [b, c] }
notice $data.dig(a, b, c)
 .then |$x| { $x * 2 }
 .lest || { fail("no value for $data[a][b][c]" }

Would fail the operation because $data[a][b][c] results in undef (there is no b key in a).

In contrast - this example:

$data = {a => { b => { c => 10 } } }
notice $data.dig(a, b, c)
 .then |$x| { $x * 2 }
 .lest || { fail("no value for $data[a][b][c]" }

Would notice the value 20

lest(Any $arg, Callable[0,0] &$block)

lookup

Uses the Puppet lookup system to retrieve a value for a given key. By default, this returns the first value found
(and fails compilation if no values are available), but you can configure it to merge multiple values into one, fail
gracefully, and more.

When looking up a key, Puppet will search up to three tiers of data, in the following order:

1. Hiera.
2. The current environment's data provider.
3. The indicated module's data provider, if the key is of the form <MODULE NAME>::<SOMETHING>.

Arguments

You must provide the name of a key to look up, and can optionally provide other arguments. You can combine these
arguments in the following ways:

• lookup(<NAME>, [<VALUE TYPE>], [<MERGE BEHAVIOR>], [<DEFAULT VALUE>])

• lookup([<NAME>], <OPTIONS HASH>)

• lookup(as above) |$key| { # lambda returns a default value }

Arguments in [square brackets] are optional.

The arguments accepted by lookup are as follows:

1. <NAME> (string or array) --- The name of the key to look up.

• This can also be an array of keys. If Puppet doesn't find anything for the first key, it will try again with the
subsequent ones, only resorting to a default value if none of them succeed.

2. <VALUE TYPE> (data type) --- A data type that must match the retrieved value; if not, the lookup (and catalog
compilation) will fail. Defaults to Data (accepts any normal value).

3. <MERGE BEHAVIOR> (string or hash; see "Merge Behaviors" below) --- Whether (and how) to combine
multiple values. If present, this overrides any merge behavior specified in the data sources. Defaults to no value;
Puppet will use merge behavior from the data sources if present, and will otherwise do a first-found lookup.

4. <DEFAULT VALUE> (any normal value) --- If present, lookup returns this when it can't find a normal value.
Default values are never merged with found values. Like a normal value, the default must match the value type.
Defaults to no value; if Puppet can't find a normal value, the lookup (and compilation) will fail.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_data_type.html

Puppet | References | 1134

5. <OPTIONS HASH> (hash) --- Alternate way to set the arguments above, plus some less-common extra options. If
you pass an options hash, you can't combine it with any regular arguments (except <NAME>). An options hash can
have the following keys:

• 'name' --- Same as <NAME> (argument 1). You can pass this as an argument or in the hash, but not both.
• 'value_type' --- Same as <VALUE TYPE> (argument 2).
• 'merge' --- Same as <MERGE BEHAVIOR> (argument 3).
• 'default_value' --- Same as <DEFAULT VALUE> (argument 4).
• 'default_values_hash' (hash) --- A hash of lookup keys and default values. If Puppet can't find

a normal value, it will check this hash for the requested key before giving up. You can combine this with
default_value or a lambda, which will be used if the key isn't present in this hash. Defaults to an empty
hash.

• 'override' (hash) --- A hash of lookup keys and override values. Puppet will check for the requested key
in the overrides hash first; if found, it returns that value as the final value, ignoring merge behavior. Defaults
to an empty hash.

Finally, lookup can take a lambda, which must accept a single parameter. This is yet another way to set a default
value for the lookup; if no results are found, Puppet will pass the requested key to the lambda and use its result as the
default value.

Merge Behaviors

Puppet lookup uses a hierarchy of data sources, and a given key might have values in multiple sources. By default,
Puppet returns the first value it finds, but it can also continue searching and merge all the values together.

Note: Data sources can use the special lookup_options metadata key to request a specific merge
behavior for a key. The lookup function will use that requested behavior unless you explicitly specify
one.

The valid merge behaviors are:

• 'first' --- Returns the first value found, with no merging. Puppet lookup's default behavior.
• 'unique' (called "array merge" in classic Hiera) --- Combines any number of arrays and scalar values to return

a merged, flattened array with all duplicate values removed. The lookup will fail if any hash values are found.
• 'hash' --- Combines the keys and values of any number of hashes to return a merged hash. If the same

key exists in multiple source hashes, Puppet will use the value from the highest-priority data source; it won't
recursively merge the values.

• 'deep' --- Combines the keys and values of any number of hashes to return a merged hash. If the same key
exists in multiple source hashes, Puppet will recursively merge hash or array values (with duplicate values
removed from arrays). For conflicting scalar values, the highest-priority value will win.

• {'strategy' => 'first'}, {'strategy' => 'unique'}, or {'strategy' => 'hash'} ---
Same as the string versions of these merge behaviors.

• {'strategy' => 'deep', <DEEP OPTION> => <VALUE>, ...} --- Same as 'deep', but can
adjust the merge with additional options. The available options are:

• 'knockout_prefix' (string or undef) --- A string prefix to indicate a value should be removed from the
final result. If a value is exactly equal to the prefix, it will knockout the entire element. Defaults to undef,
which disables this feature.

• 'sort_merged_arrays' (boolean) --- Whether to sort all arrays that are merged together. Defaults to
false.

• 'merge_hash_arrays' (boolean) --- Whether to merge hashes within arrays. Defaults to false.

Signature 1

lookup(NameType $name, Optional[ValueType] $value_type, Optional[MergeType]
$merge)

Signature 2

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1135

lookup(NameType $name, Optional[ValueType] $value_type, Optional[MergeType]
$merge, DefaultValueType $default_value)

Signature 3

lookup(NameType $name, Optional[ValueType] $value_type, Optional[MergeType]
$merge, BlockType &$block)

Signature 4

lookup(OptionsWithName $options_hash, Optional[BlockType] &$block)

Signature 5

lookup(Variant[String,Array[String]] $name, OptionsWithoutName $options_hash,
Optional[BlockType] &$block)

lstrip

Strips leading spaces from a String

This function is compatible with the stdlib function with the same name.

The function does the following:

• For a String the conversion removes all leading ASCII white space characters such as space, tab, newline,
and return. It does not remove other space-like characters like hard space (Unicode U+00A0). (Tip, /
^[[:space:]]/ regular expression matches all space-like characters).

• For an Iterable[Variant[String, Numeric]] (for example an Array) each value is processed and
the conversion is not recursive.

• If the value is Numeric it is simply returned (this is for backwards compatibility).
• An error is raised for all other data types.

"\n\thello ".lstrip()
lstrip("\n\thello ")

Would both result in "hello"

["\n\thello ", "\n\thi "].lstrip()
lstrip(["\n\thello ", "\n\thi "])

Would both result in ['hello', 'hi']

Signature 1

lstrip(Numeric $arg)

Signature 2

lstrip(String $arg)

Signature 3

lstrip(Iterable[Variant[String, Numeric]] $arg)

map

Applies a lambda to every value in a data structure and returns an array containing the results.

This function takes two mandatory arguments, in this order:

1. An array, hash, or other iterable object that the function will iterate over.
2. A lambda, which the function calls for each element in the first argument. It can request one or two parameters.

$transformed_data = $data.map |$parameter| { <PUPPET CODE BLOCK> }

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | References | 1136

or

$transformed_data = map($data) |$parameter| { <PUPPET CODE BLOCK> }

When the first argument ($data in the above example) is an array, Puppet passes each value in turn to the lambda.

For the array $data, return an array containing each value multiplied by
 10
$data = [1,2,3]
$transformed_data = $data.map |$items| { $items * 10 }
$transformed_data contains [10,20,30]

When the first argument is a hash, Puppet passes each key and value pair to the lambda as an array in the form
[key, value].

For the hash $data, return an array containing the keys
$data = {'a'=>1,'b'=>2,'c'=>3}
$transformed_data = $data.map |$items| { $items[0] }
$transformed_data contains ['a','b','c']

When the first argument is an array and the lambda has two parameters, Puppet passes the array's indexes
(enumerated from 0) in the first parameter and its values in the second parameter.

For the array $data, return an array containing the indexes
$data = [1,2,3]
$transformed_data = $data.map |$index,$value| { $index }
$transformed_data contains [0,1,2]

When the first argument is a hash, Puppet passes its keys to the first parameter and its values to the second parameter.

For the hash $data, return an array containing each value
$data = {'a'=>1,'b'=>2,'c'=>3}
$transformed_data = $data.map |$key,$value| { $value }
$transformed_data contains [1,2,3]

Signature 1

map(Hash[Any, Any] $hash, Callable[2,2] &$block)

Signature 2

map(Hash[Any, Any] $hash, Callable[1,1] &$block)

Signature 3

map(Iterable $enumerable, Callable[2,2] &$block)

Signature 4

map(Iterable $enumerable, Callable[1,1] &$block)

match

Matches a regular expression against a string and returns an array containing the match and any matched capturing
groups.

The first argument is a string or array of strings. The second argument is either a regular expression, regular
expression represented as a string, or Regex or Pattern data type that the function matches against the first argument.

The returned array contains the entire match at index 0, and each captured group at subsequent index values. If the
value or expression being matched is an array, the function returns an array with mapped match results.

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1137

If the function doesn't find a match, it returns 'undef'.

$matches = "abc123".match(/[a-z]+[1-9]+/)
$matches contains [abc123]

$matches = "abc123".match(/([a-z]+)([1-9]+)/)
$matches contains [abc123, abc, 123]

$matches = ["abc123","def456"].match(/([a-z]+)([1-9]+)/)
$matches contains [[abc123, abc, 123], [def456, def, 456]]

Signature 1

match(String $string, Variant[Any, Type] $pattern)

Signature 2

match(Array[String] $string, Variant[Any, Type] $pattern)

max

Returns the highest value among a variable number of arguments. Takes at least one argument.

This function is (with one exception) compatible with the stdlib function with the same name and performs
deprecated type conversion before comparison as follows:

• If a value converted to String is an optionally '-' prefixed, string of digits, one optional decimal point, followed by
optional decimal digits - then the comparison is performed on the values converted to floating point.

• If a value is not considered convertible to float, it is converted to a String and the comparison is a lexical
compare where min is the lexicographical later value.

• A lexicographical compare is performed in a system locale - international characters may therefore not appear in
what a user thinks is the correct order.

• The conversion rules apply to values in pairs - the rule must hold for both values - a value may therefore be
compared using different rules depending on the "other value".

• The returned result found to be the "highest" is the original unconverted value.

The above rules have been deprecated in Puppet 6.0.0 as they produce strange results when given values of mixed
data types. In general, either convert values to be all String or all Numeric values before calling the function,
or call the function with a lambda that performs type conversion and comparison. This because one simply cannot
compare Boolean with Regexp and with any arbitrary Array, Hash or Object and getting a meaningful result.

The one change in the function's behavior is when the function is given a single array argument. The stdlib
implementation would return that array as the result where it now instead returns the max value from that array.

notice(max(1)) # would notice 1
notice(max(1,2)) # would notice 2
notice(max("1", 2)) # would notice 2
notice(max("0777", 512)) # would notice "0777", since "0777" is not
 converted from octal form
notice(max(0777, 512)) # would notice 512, since 0777 is decimal 511
notice(max('aa', 'ab')) # would notice 'ab'
notice(max(['a'], ['b'])) # would notice ['b'], since "['b']" is after
 "['a']"

$x = [1,2,3,4]
notice(max(*$x)) # would notice 4

$x = [1,2,3,4]
notice(max($x)) # would notice 4

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1138

notice($x.max) # would notice 4

This example shows that a single array argument is used as the set of values as opposed to being a single returned
value.

When calling with a lambda, it must accept two variables and it must return one of -1, 0, or 1 depending on if first
argument is before/lower than, equal to, or higher/after the second argument.

notice(max("2", "10", "100") |$a, $b| { compare($a, $b) })

Would notice "2" as higher since it is lexicographically higher/after the other values. Without the lambda the stdlib
compatible (deprecated) behavior would have been to return "100" since number conversion kicks in.

Signature 1

max(Numeric *$values)

Signature 2

max(String *$values)

Signature 3

max(Array[Numeric] $values, Optional[Callable[2,2]] &$block)

Signature 4

max(Array[String] $values, Optional[Callable[2,2]] &$block)

Signature 5

max(Array $values, Optional[Callable[2,2]] &$block)

Signature 6

max(Any *$values, Callable[2,2] &$block)

Signature 7

max(Any *$values)

md5

Returns a MD5 hash value from a provided string.

md5()

min

Returns the lowest value among a variable number of arguments. Takes at least one argument.

This function is (with one exception) compatible with the stdlib function with the same name and performs
deprecated type conversion before comparison as follows:

• If a value converted to String is an optionally '-' prefixed, string of digits, one optional decimal point, followed by
optional decimal digits - then the comparison is performed on the values converted to floating point.

• If a value is not considered convertible to float, it is converted to a String and the comparison is a lexical
compare where min is the lexicographical earlier value.

• A lexicographical compare is performed in a system locale - international characters may therefore not appear in
what a user thinks is the correct order.

• The conversion rules apply to values in pairs - the rule must hold for both values - a value may therefore be
compared using different rules depending on the "other value".

• The returned result found to be the "lowest" is the original unconverted value.

The above rules have been deprecated in Puppet 6.0.0 as they produce strange results when given values of mixed
data types. In general, either convert values to be all String or all Numeric values before calling the function,

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1139

or call the function with a lambda that performs type conversion and comparison. This because one simply cannot
compare Boolean with Regexp and with any arbitrary Array, Hash or Object and getting a meaningful result.

The one change in the function's behavior is when the function is given a single array argument. The stdlib
implementation would return that array as the result where it now instead returns the max value from that array.

notice(min(1)) # would notice 1
notice(min(1,2)) # would notice 1
notice(min("1", 2)) # would notice 1
notice(min("0777", 512)) # would notice 512, since "0777" is not converted
 from octal form
notice(min(0777, 512)) # would notice 511, since 0777 is decimal 511
notice(min('aa', 'ab')) # would notice 'aa'
notice(min(['a'], ['b'])) # would notice ['a'], since "['a']" is before
 "['b']"

$x = [1,2,3,4]
notice(min(*$x)) # would notice 1

$x = [1,2,3,4]
notice(min($x)) # would notice 1
notice($x.min) # would notice 1

This example shows that a single array argument is used as the set of values as opposed to being a single returned
value.

When calling with a lambda, it must accept two variables and it must return one of -1, 0, or 1 depending on if first
argument is before/lower than, equal to, or higher/after the second argument.

notice(min("2", "10", "100") |$a, $b| { compare($a, $b) })

Would notice "10" as lower since it is lexicographically lower/before the other values. Without the lambda the stdlib
compatible (deprecated) behavior would have been to return "2" since number conversion kicks in.

Signature 1

min(Numeric *$values)

Signature 2

min(String *$values)

Signature 3

min(Array[Numeric] $values, Optional[Callable[2,2]] &$block)

Signature 4

min(Array[String] $values, Optional[Callable[2,2]] &$block)

Signature 5

min(Array $values, Optional[Callable[2,2]] &$block)

Signature 6

min(Any *$values, Callable[2,2] &$block)

Signature 7

min(Any *$values)

module_directory

Finds an existing module and returns the path to its root directory.

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1140

The argument to this function should be a module name String For example, the reference mysql will search for the
directory <MODULES DIRECTORY>/mysql and return the first found on the modulepath.

This function can also accept:

• Multiple String arguments, which will return the path of the first module found, skipping non existing modules.
• An array of module names, which will return the path of the first module found from the given names in the array,

skipping non existing modules.

The function returns undef if none of the given modules were found

Signature 1

module_directory(String *$names)

Signature 2

module_directory(Array[String] *$names)

new

Creates a new instance/object of a given data type.

This function makes it possible to create new instances of concrete data types. If a block is given it is called with the
just created instance as an argument.

Calling this function is equivalent to directly calling the data type:

$a = Integer.new("42")
$b = Integer("42")

These would both convert the string "42" to the decimal value 42.

$a = Integer.new("42", 8)
$b = Integer({from => "42", radix => 8})

This would convert the octal (radix 8) number "42" in string form to the decimal value 34.

The new function supports two ways of giving the arguments:

• by name (using a hash with property to value mapping)
• by position (as regular arguments)

Note that it is not possible to create new instances of some abstract data types (for example Variant). The data type
Optional[T] is an exception as it will create an instance of T or undef if the value to convert is undef.

The arguments that can be given is determined by the data type.

An assertion is always made that the produced value complies with the given type constraints.

Integer[0].new("-100")

Would fail with an assertion error (since value is less than 0).

The following sections show the arguments and conversion rules per data type built into the Puppet Type System.

Conversion to Optional[T] and NotUndef[T]

Conversion to these data types is the same as a conversion to the type argument T. In the case of Optional[T] it
is accepted that the argument to convert may be undef. It is however not acceptable to give other arguments (than
undef) that cannot be converted to T.

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1141

Conversion to Integer

A new Integer can be created from Integer, Float, Boolean, and String values. For conversion from
String it is possible to specify the radix (base).

type Radix = Variant[Default, Integer[2,2], Integer[8,8], Integer[10,10],
 Integer[16,16]]

function Integer.new(
 String $value,
 Radix $radix = 10,
 Boolean $abs = false
)

function Integer.new(
 Variant[Numeric, Boolean] $value,
 Boolean $abs = false
)

• When converting from String the default radix is 10.
• If radix is not specified an attempt is made to detect the radix from the start of the string:

• 0b or 0B is taken as radix 2.
• 0x or 0X is taken as radix 16.
• 0 as radix 8.
• All others are decimal.

• Conversion from String accepts an optional sign in the string.
• For hexadecimal (radix 16) conversion an optional leading "0x", or "0X" is accepted.
• For octal (radix 8) an optional leading "0" is accepted.
• For binary (radix 2) an optional leading "0b" or "0B" is accepted.
• When radix is set to default, the conversion is based on the leading. characters in the string. A leading "0"

for radix 8, a leading "0x", or "0X" for radix 16, and leading "0b" or "0B" for binary.
• Conversion from Boolean results in 0 for false and 1 for true.
• Conversion from Integer, Float, and Boolean ignores the radix.
• Float value fractions are truncated (no rounding).
• When abs is set to true, the result will be an absolute integer.

$a_number = Integer("0xFF", 16) # results in 255
$a_number = Integer("010") # results in 8
$a_number = Integer("010", 10) # results in 10
$a_number = Integer(true) # results in 1
$a_number = Integer(-38, 10, true) # results in 38

Conversion to Float

A new Float can be created from Integer, Float, Boolean, and String values. For conversion from
String both float and integer formats are supported.

function Float.new(
 Variant[Numeric, Boolean, String] $value,
 Boolean $abs = true
)

• For an integer, the floating point fraction of .0 is added to the value.
• A Boolean true is converted to 1.0, and a false to 0.0.
• In String format, integer prefixes for hex and binary are understood (but not octal since floating point in string

format may start with a '0').
• When abs is set to true, the result will be an absolute floating point value.

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1142

Conversion to Numeric

A new Integer or Float can be created from Integer, Float, Boolean and String values.

function Numeric.new(
 Variant[Numeric, Boolean, String] $value,
 Boolean $abs = true
)

• If the value has a decimal period, or if given in scientific notation (e/E), the result is a Float, otherwise the value
is an Integer. The conversion from String always uses a radix based on the prefix of the string.

• Conversion from Boolean results in 0 for false and 1 for true.
• When abs is set to true, the result will be an absolute Floator Integer value.

$a_number = Numeric(true) # results in 1
$a_number = Numeric("0xFF") # results in 255
$a_number = Numeric("010") # results in 8
$a_number = Numeric("3.14") # results in 3.14 (a float)
$a_number = Numeric(-42.3, true) # results in 42.3
$a_number = Numeric(-42, true) # results in 42

Conversion to Timespan

A new Timespan can be created from Integer, Float, String, and Hash values. Several variants of the
constructor are provided.

Timespan from seconds

When a Float is used, the decimal part represents fractions of a second.

function Timespan.new(
 Variant[Float, Integer] $value
)

Timespan from days, hours, minutes, seconds, and fractions of a second

The arguments can be passed separately in which case the first four, days, hours, minutes, and seconds are mandatory
and the rest are optional. All values may overflow and/or be negative. The internal 128-bit nano-second integer is
calculated as:

(((((days * 24 + hours) * 60 + minutes) * 60 + seconds) * 1000 +
 milliseconds) * 1000 + microseconds) * 1000 + nanoseconds

function Timespan.new(
 Integer $days, Integer $hours, Integer $minutes, Integer $seconds,
 Integer $milliseconds = 0, Integer $microseconds = 0, Integer $nanoseconds
 = 0
)

or, all arguments can be passed as a Hash, in which case all entries are optional:

function Timespan.new(
 Struct[{
 Optional[negative] => Boolean,
 Optional[days] => Integer,
 Optional[hours] => Integer,
 Optional[minutes] => Integer,
 Optional[seconds] => Integer,
 Optional[milliseconds] => Integer,
 Optional[microseconds] => Integer,
 Optional[nanoseconds] => Integer

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1143

 }] $hash
)

Timespan from String and format directive patterns

The first argument is parsed using the format optionally passed as a string or array of strings. When an array is used,
an attempt will be made to parse the string using the first entry and then with each entry in succession until parsing
succeeds. If the second argument is omitted, an array of default formats will be used.

An exception is raised when no format was able to parse the given string.

function Timespan.new(
 String $string, Variant[String[2],Array[String[2], 1]] $format = <default
 format>)
)

the arguments may also be passed as a Hash:

function Timespan.new(
 Struct[{
 string => String[1],
 Optional[format] => Variant[String[2],Array[String[2], 1]]
 }] $hash
)

The directive consists of a percent (%) character, zero or more flags, optional minimum field width and a conversion
specifier as follows:

%[Flags][Width]Conversion

Flags:

Flag Meaning

- Don't pad numerical output

_ Use spaces for padding

0 Use zeros for padding

Format directives:

Format Meaning

D Number of Days

H Hour of the day, 24-hour clock

M Minute of the hour (00..59)

S Second of the minute (00..59)

L Millisecond of the second (000..999)

N Fractional seconds digits

The format directive that represents the highest magnitude in the format will be allowed to overflow. I.e. if no "%D"
is used but a "%H" is present, then the hours may be more than 23.

The default array contains the following patterns:

['%D-%H:%M:%S', '%D-%H:%M', '%H:%M:%S', '%H:%M']

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1144

Examples - Converting to Timespan

$duration = Timespan(13.5) # 13 seconds and 500 milliseconds
$duration = Timespan({days=>4}) # 4 days
$duration = Timespan(4, 0, 0, 2) # 4 days and 2 seconds
$duration = Timespan('13:20') # 13 hours and 20 minutes (using default
 pattern)
$duration = Timespan('10:03.5', '%M:%S.%L') # 10 minutes, 3 seconds, and 5
 milli-seconds
$duration = Timespan('10:03.5', '%M:%S.%N') # 10 minutes, 3 seconds, and 5
 nano-seconds

Conversion to Timestamp

A new Timestamp can be created from Integer, Float, String, and Hash values. Several variants of the
constructor are provided.

Timestamp from seconds since epoch (1970-01-01 00:00:00 UTC)

When a Float is used, the decimal part represents fractions of a second.

function Timestamp.new(
 Variant[Float, Integer] $value
)

Timestamp from String and patterns consisting of format directives

The first argument is parsed using the format optionally passed as a string or array of strings. When an array is used,
an attempt will be made to parse the string using the first entry and then with each entry in succession until parsing
succeeds. If the second argument is omitted, an array of default formats will be used.

A third optional timezone argument can be provided. The first argument will then be parsed as if it represents a local
time in that timezone. The timezone can be any timezone that is recognized when using the '%z' or '%Z' formats,
or the word 'current', in which case the current timezone of the evaluating process will be used. The timezone
argument is case insensitive.

The default timezone, when no argument is provided, or when using the keyword default, is 'UTC'.

It is illegal to provide a timezone argument other than default in combination with a format that contains '%z' or
'%Z' since that would introduce an ambiguity as to which timezone to use. The one extracted from the string, or the
one provided as an argument.

An exception is raised when no format was able to parse the given string.

function Timestamp.new(
 String $string,
 Variant[String[2],Array[String[2], 1]] $format = <default format>,
 String $timezone = default)
)

the arguments may also be passed as a Hash:

function Timestamp.new(
 Struct[{
 string => String[1],
 Optional[format] => Variant[String[2],Array[String[2], 1]],
 Optional[timezone] => String[1]
 }] $hash
)

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1145

The directive consists of a percent (%) character, zero or more flags, optional minimum field width and a conversion
specifier as follows:

%[Flags][Width]Conversion

Flags:

Flag Meaning

- Don't pad numerical output

_ Use spaces for padding

0 Use zeros for padding

Change names to upper-case or change case of am/pm

^ Use uppercase

: Use colons for %z

Format directives (names and padding can be altered using flags):

Date (Year, Month, Day):

Format Meaning

Y Year with century, zero-padded to at least 4 digits

C year / 100 (rounded down such as 20 in 2009)

y year % 100 (00..99)

m Month of the year, zero-padded (01..12)

B The full month name ("January")

b The abbreviated month name ("Jan")

h Equivalent to %b

d Day of the month, zero-padded (01..31)

e Day of the month, blank-padded (1..31)

j Day of the year (001..366)

Time (Hour, Minute, Second, Subsecond):

Format Meaning

H Hour of the day, 24-hour clock, zero-padded (00..23)

k Hour of the day, 24-hour clock, blank-padded (0..23)

I Hour of the day, 12-hour clock, zero-padded (01..12)

l Hour of the day, 12-hour clock, blank-padded (1..12)

P Meridian indicator, lowercase ("am" or "pm")

p Meridian indicator, uppercase ("AM" or "PM")

M Minute of the hour (00..59)

S Second of the minute (00..60)

L Millisecond of the second (000..999). Digits under
millisecond are truncated to not produce 1000

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1146

Format Meaning

N Fractional seconds digits, default is 9 digits
(nanosecond). Digits under a specified width are
truncated to avoid carry up

Time (Hour, Minute, Second, Subsecond):

Format Meaning

z Time zone as hour and minute offset from UTC (e.g.
+0900)

:z hour and minute offset from UTC with a colon (e.g.
+09:00)

::z hour, minute and second offset from UTC (e.g.
+09:00:00)

Z Abbreviated time zone name or similar information. (OS
dependent)

Weekday:

Format Meaning

A The full weekday name ("Sunday")

a The abbreviated name ("Sun")

u Day of the week (Monday is 1, 1..7)

w Day of the week (Sunday is 0, 0..6)

ISO 8601 week-based year and week number:

The first week of YYYY starts with a Monday and includes YYYY-01-04. The days in the year before the first week
are in the last week of the previous year.

Format Meaning

G The week-based year

g The last 2 digits of the week-based year (00..99)

V Week number of the week-based year (01..53)

Week number:

The first week of YYYY that starts with a Sunday or Monday (according to %U or %W). The days in the year before
the first week are in week 0.

Format Meaning

U Week number of the year. The week starts with Sunday.
(00..53)

W Week number of the year. The week starts with Monday.
(00..53)

Seconds since the Epoch:

| Format | Meaning | | s | Number of seconds since 1970-01-01 00:00:00 UTC. |

Literal string:

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1147

Format Meaning

n Newline character (\n)

t Tab character (\t)

% Literal % character

Combination:

Format Meaning

c date and time (%a %b %e %T %Y)

D Date (%m/%d/%y)

F The ISO 8601 date format (%Y-%m-%d)

v VMS date (%e-%^b-%4Y)

x Same as %D

X Same as %T

r 12-hour time (%I:%M:%S %p)

R 24-hour time (%H:%M)

T 24-hour time (%H:%M:%S)

The default array contains the following patterns:

When a timezone argument (other than default) is explicitly provided:

['%FT%T.L', '%FT%T', '%F']

otherwise:

['%FT%T.%L %Z', '%FT%T %Z', '%F %Z', '%FT%T.L', '%FT%T', '%F']

Examples - Converting to Timestamp

$ts = Timestamp(1473150899) # 2016-09-06
 08:34:59 UTC
$ts = Timestamp({string=>'2015', format=>'%Y'}) # 2015-01-01
 00:00:00.000 UTC
$ts = Timestamp('Wed Aug 24 12:13:14 2016', '%c') # 2016-08-24
 12:13:14 UTC
$ts = Timestamp('Wed Aug 24 12:13:14 2016 PDT', '%c %Z') # 2016-08-24
 19:13:14.000 UTC
$ts = Timestamp('2016-08-24 12:13:14', '%F %T', 'PST') # 2016-08-24
 20:13:14.000 UTC
$ts = Timestamp('2016-08-24T12:13:14', default, 'PST') # 2016-08-24
 20:13:14.000 UTC

Conversion to Type

A new Type can be created from its String representation.

$t = Type.new('Integer[10]')

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1148

Conversion to String

Conversion to String is the most comprehensive conversion as there are many use cases where a string
representation is wanted. The defaults for the many options have been chosen with care to be the most basic "value in
textual form" representation. The more advanced forms of formatting are intended to enable writing special purposes
formatting functions in the Puppet language.

A new string can be created from all other data types. The process is performed in several steps - first the data type
of the given value is inferred, then the resulting data type is used to find the most significant format specified for that
data type. And finally, the found format is used to convert the given value.

The mapping from data type to format is referred to as the format map. This map allows different formatting
depending on type.

$format_map = {
 Integer[default, 0] => "%d",
 Integer[1, default] => "%#x"
}
String("-1", $format_map) # produces '-1'
String("10", $format_map) # produces '0xa'

A format is specified on the form:

%[Flags][Width][.Precision]Format

Width is the number of characters into which the value should be fitted. This allocated space is padded if value is
shorter. By default it is space padded, and the flag 0 will cause padding with 0 for numerical formats.

Precision is the number of fractional digits to show for floating point, and the maximum characters included in a
string format.

Note that all data type supports the formats s and p with the meaning "default string representation" and "default
programmatic string representation" (which for example means that a String is quoted in 'p' format).

Signatures of String conversion

type Format = Pattern[/^%([\s\+\-#0\[\{<\(\|]*)([1-9][0-9]*)?(?:\.([0-9]+))?
([a-zA-Z])/]
type ContainerFormat = Struct[{
 format => Optional[String],
 separator => Optional[String],
 separator2 => Optional[String],
 string_formats => Hash[Type, Format]
 }]
type TypeMap = Hash[Type, Variant[Format, ContainerFormat]]
type Formats = Variant[Default, String[1], TypeMap]

function String.new(
 Any $value,
 Formats $string_formats
)

Where:

• separator is the string used to separate entries in an array, or hash (extra space should not be included at the
end), defaults to ","

• separator2 is the separator between key and value in a hash entry (space padding should be included as
wanted), defaults to " => ".

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1149

• string_formats is a data type to format map for values contained in arrays and hashes - defaults to {Any
=> "%p"}. Note that these nested formats are not applicable to data types that are containers; they are always
formatted as per the top level format specification.

$str = String(10) # produces '10'
$str = String([10]) # produces '["10"]'

$str = String(10, "%#x") # produces '0x10'
$str = String([10], "%(a") # produces '("10")'

$formats = {
 Array => {
 format => '%(a',
 string_formats => { Integer => '%#x' }
 }
}
$str = String([1,2,3], $formats) # produces '(0x1, 0x2, 0x3)'

The given formats are merged with the default formats, and matching of values to convert against format is based on
the specificity of the mapped type; for example, different formats can be used for short and long arrays.

Integer to String

Format Integer Formats

d Decimal, negative values produces leading -.

x X Hexadecimal in lower or upper case. Uses ..f/..F for
negative values unless + is also used. A # adds prefix
0x/0X.

o Octal. Uses ..0 for negative values unless + is also
used. A # adds prefix 0.

b B Binary with prefix b or B. Uses ..1/..1 for negative
values unless + is also used.

c Numeric value representing a Unicode value, result is a
one unicode character string, quoted if alternative flag #
is used

s Same as d, or d in quotes if alternative flag # is used.

p Same as d.

eEfgGaA Converts integer to float and formats using the floating
point rules.

Defaults to d.

Float to String

Format Float formats

f Floating point in non exponential notation.

e E Exponential notation with e or E.

g G Conditional exponential with e or E if exponent < -4 or
>= the precision.

a A Hexadecimal exponential form, using x/X as prefix and
p/P before exponent.

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1150

Format Float formats

s Converted to string using format p, then applying string
formatting rule, alternate form `#`` quotes result.

p Same as f format with minimum significant number of
fractional digits, prec has no effect.

dxXobBc Converts float to integer and formats using the integer
rules.

Defaults to p.

String to String

Format String

s Unquoted string, verbatim output of control chars.

p Programmatic representation - strings are quoted, interior
quotes and control chars are escaped. Selects single or
double quotes based on content, or uses double quotes if
alternative flag # is used.

C Each :: name segment capitalized, quoted if alternative
flag # is used.

c Capitalized string, quoted if alternative flag # is used.

d Downcased string, quoted if alternative flag # is used.

u Upcased string, quoted if alternative flag # is used.

t Trims leading and trailing whitespace from the string,
quoted if alternative flag # is used.

Defaults to s at top level and p inside array or hash.

Boolean to String

Format Boolean Formats

t T String 'true'/'false' or 'True'/'False',
first char if alternate form is used (i.e. 't'/'f' or
'T'/'F').

y Y String 'yes'/'no', 'Yes'/'No', 'y'/'n' or
'Y'/'N' if alternative flag # is used.

dxXobB Numeric value 0/1 in accordance with the given format
which must be valid integer format.

eEfgGaA Numeric value 0.0/1.0 in accordance with the given
float format and flags.

s String 'true' / 'false'.

p String 'true' / 'false'.

Regexp to String

Format Regexp Formats

s No delimiters, quoted if alternative flag # is used.

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1151

Format Regexp Formats

p Delimiters / /.

Undef to String

Format Undef formats

s Empty string, or quoted empty string if alternative flag #
is used.

p String 'undef', or quoted '"undef"' if alternative
flag # is used.

n String 'nil', or 'null' if alternative flag # is used.

dxXobB String 'NaN'.

eEfgGaA String 'NaN'.

v String 'n/a'.

V String 'N/A'.

u String 'undef', or 'undefined' if alternative #
flag is used.

Default value to String

Format Default formats

d D String 'default' or 'Default', alternative form #
causes value to be quoted.

s Same as d.

p Same as d.

Binary value to String

Format Default formats

s binary as unquoted UTF-8 characters (errors if byte
sequence is invalid UTF-8). Alternate form escapes non
ascii bytes.

p 'Binary("<base64strict>")'

b '<base64>' - base64 string with newlines inserted

B '<base64strict>' - base64 strict string (without
newlines inserted)

u '<base64urlsafe>' - base64 urlsafe string

t 'Binary' - outputs the name of the type only

T 'BINARY' - output the name of the type in all caps only

• The alternate form flag # will quote the binary or base64 text output.
• The format %#s allows invalid UTF-8 characters and outputs all non ascii bytes as hex escaped characters on the

form \xHH where H is a hex digit.
• The width and precision values are applied to the text part only in %p format.

Array & Tuple to String

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1152

Format Array/Tuple Formats

a Formats with [] delimiters and ,, alternate form #
indents nested arrays/hashes.

s Same as a.

p Same as a.

See "Flags" <[({| for formatting of delimiters, and "Additional parameters for containers; Array and Hash" for
more information about options.

The alternate form flag # will cause indentation of nested array or hash containers. If width is also set it is taken as
the maximum allowed length of a sequence of elements (not including delimiters). If this max length is exceeded,
each element will be indented.

Hash & Struct to String

Format Hash/Struct Formats

h Formats with { } delimiters, , element separator and
=> inner element separator unless overridden by flags.

s Same as h.

p Same as h.

a Converts the hash to an array of [k,v] tuples and
formats it using array rule(s).

See "Flags" <[({| for formatting of delimiters, and "Additional parameters for containers; Array and Hash" for
more information about options.

The alternate form flag # will format each hash key/value entry indented on a separate line.

Type to String

Format Array/Tuple Formats

s The same as p, quoted if alternative flag # is used.

p Outputs the type in string form as specified by the
Puppet Language.

Flags

Flag Effect

(space) A space instead of + for numeric output (- is shown), for
containers skips delimiters.

Alternate format; prefix 0x/0x, 0 (octal) and 0b/0B
for binary, Floats force decimal '.'. For g/G keep trailing
0.

+ Show sign +/- depending on value's sign, changes x, X,
o, b, B format to not use 2's complement form.

- Left justify the value in the given width.

0 Pad with 0 instead of space for widths larger than value.

<[({| Defines an enclosing pair <> [] () {} or | |
when used with a container type.

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1153

Conversion to Boolean

Accepts a single value as argument:

• Float 0.0 is false, all other float values are true
• Integer 0 is false, all other integer values are true
• Strings

• true if 'true', 'yes', 'y' (case independent compare)
• false if 'false', 'no', 'n' (case independent compare)

• Boolean is already boolean and is simply returned

Conversion to Array and Tuple

When given a single value as argument:

• A non empty Hash is converted to an array matching Array[Tuple[Any,Any], 1].
• An empty Hash becomes an empty array.
• An Array is simply returned.
• An Iterable[T] is turned into an array of T instances.
• A Binary is converted to an Array[Integer[0,255]] of byte values

When given a second Boolean argument:

• if true, a value that is not already an array is returned as a one element array.
• if false, (the default), converts the first argument as shown above.

$arr = Array($value, true)

Conversion to a Tuple works exactly as conversion to an Array, only that the constructed array is asserted against
the given tuple type.

Conversion to Hash and Struct

Accepts a single value as argument:

• An empty Array becomes an empty Hash
• An Array matching Array[Tuple[Any,Any], 1] is converted to a hash where each tuple describes a key/

value entry
• An Array with an even number of entries is interpreted as [key1, val1, key2, val2, ...]
• An Iterable is turned into an Array and then converted to hash as per the array rules
• A Hash is simply returned

Alternatively, a tree can be constructed by giving two values; an array of tuples on the form [path, value]
(where the path is the path from the root of a tree, and value the value at that position in the tree), and either
the option 'tree' (do not convert arrays to hashes except the top level), or 'hash_tree' (convert all arrays to
hashes).

The tree/hash_tree forms of Hash creation are suited for transforming the result of an iteration using tree_each
and subsequent filtering or mapping.

Mapping an arbitrary structure in a way that keeps the structure, but where some values are replaced can be done by
using the tree_each function, mapping, and then constructing a new Hash from the result:

A hash tree with 'water' at different locations
$h = { a => { b => { x => 'water'}}, b => { y => 'water'} }
a helper function that turns water into wine
function make_wine($x) { if $x == 'water' { 'wine' } else { $x } }
create a flattened tree with water turned into wine
$flat_tree = $h.tree_each.map |$entry| { [$entry[0], make_wine($entry[1])] }
create a new Hash and log it

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1154

notice Hash($flat_tree, 'hash_tree')

Would notice the hash {a => {b => {x => wine}}, b => {y => wine}}

Conversion to a Struct works exactly as conversion to a Hash, only that the constructed hash is asserted against
the given struct type.

Conversion to a Regexp

A String can be converted into a Regexp

Example: Converting a String into a Regexp

$s = '[a-z]+\.com'
$r = Regexp($s)
if('foo.com' =~ $r) {
 ...
}

Creating a SemVer

A SemVer object represents a single Semantic Version. It can be created from a String, individual values for its parts,
or a hash specifying the value per part. See the specification at semver.org for the meaning of the SemVer's parts.

The signatures are:

type PositiveInteger = Integer[0,default]
type SemVerQualifier = Pattern[/\A(?<part>[0-9A-Za-z-]+)(?:\.\g<part>)*\Z/]
type SemVerString = String[1]
type SemVerHash =Struct[{
 major => PositiveInteger,
 minor => PositiveInteger,
 patch => PositiveInteger,
 Optional[prerelease] => SemVerQualifier,
 Optional[build] => SemVerQualifier
}]

function SemVer.new(SemVerString $str)

function SemVer.new(
 PositiveInteger $major
 PositiveInteger $minor
 PositiveInteger $patch
 Optional[SemVerQualifier] $prerelease = undef
 Optional[SemVerQualifier] $build = undef
)

function SemVer.new(SemVerHash $hash_args)

As a type, SemVer can describe disjunct ranges which versions can be
matched against - here the type is constructed with two
SemVerRange objects.
#
$t = SemVer[
 SemVerRange('>=1.0.0 <2.0.0'),
 SemVerRange('>=3.0.0 <4.0.0')
]
notice(SemVer('1.2.3') =~ $t) # true
notice(SemVer('2.3.4') =~ $t) # false
notice(SemVer('3.4.5') =~ $t) # true

© 2024 Puppet, Inc., a Perforce company

http://semver.org/
http://semver.org/

Puppet | References | 1155

Creating a SemVerRange

A SemVerRange object represents a range of SemVer. It can be created from a String, or from two SemVer
instances, where either end can be given as a literal default to indicate infinity. The string format of a
SemVerRange is specified by the Semantic Version Range Grammar.

Use of the comparator sets described in the grammar (joining with ||) is not supported.

The signatures are:

type SemVerRangeString = String[1]
type SemVerRangeHash = Struct[{
 min => Variant[Default, SemVer],
 Optional[max] => Variant[Default, SemVer],
 Optional[exclude_max] => Boolean
}]

function SemVerRange.new(
 SemVerRangeString $semver_range_string
)

function SemVerRange.new(
 Variant[Default,SemVer] $min
 Variant[Default,SemVer] $max
 Optional[Boolean] $exclude_max = undef
)

function SemVerRange.new(
 SemVerRangeHash $semver_range_hash
)

For examples of SemVerRange use see "Creating a SemVer"

Creating a Binary

A Binary object represents a sequence of bytes and it can be created from a String in Base64 format, an Array
containing byte values. A Binary can also be created from a Hash containing the value to convert to a Binary.

The signatures are:

type ByteInteger = Integer[0,255]
type Base64Format = Enum["%b", "%u", "%B", "%s"]
type StringHash = Struct[{value => String, "format" =>
 Optional[Base64Format]}]
type ArrayHash = Struct[{value => Array[ByteInteger]}]
type BinaryArgsHash = Variant[StringHash, ArrayHash]

function Binary.new(
 String $base64_str,
 Optional[Base64Format] $format
)

function Binary.new(
 Array[ByteInteger] $byte_array
}

Same as for String, or for Array, but where arguments are given in a Hash.
function Binary.new(BinaryArgsHash $hash_args)

The formats have the following meaning:

© 2024 Puppet, Inc., a Perforce company

https://github.com/npm/node-semver#ranges

Puppet | References | 1156

format explanation

B The data is in base64 strict encoding

u The data is in URL safe base64 encoding

b The data is in base64 encoding, padding as required by
base64 strict, is added by default

s The data is a puppet string. The string must be valid
UTF-8, or convertible to UTF-8 or an error is raised.

r (Ruby Raw) the byte sequence in the given string is used
verbatim irrespective of possible encoding errors

• The default format is %B.
• Note that the format %r should be used sparingly, or not at all. It exists for backwards compatibility reasons when

someone receiving a string from some function and that string should be treated as Binary. Such code should be
changed to return a Binary instead of a String.

create the binary content "abc"
$a = Binary('YWJj')

create the binary content from content in a module's file
$b = binary_file('mymodule/mypicture.jpg')

• Since 4.5.0
• Binary type since 4.8.0

Creating an instance of a Type using the Init type

The type Init[T] describes a value that can be used when instantiating a type. When used as the first argument in
a call to new, it will dispatch the call to its contained type and optionally augment the parameter list with additional
arguments.

The following declaration
$x = Init[Integer].new('128')
is exactly the same as
$x = Integer.new('128')

or, with base 16 and using implicit new

The following declaration
$x = Init[Integer,16]('80')
is exactly the same as
$x = Integer('80', 16)

$fmt = Init[String,'%#x']
notice($fmt(256)) # will notice '0x100'

new(Type $type, Any *$args, Optional[Callable] &$block)

next

Makes iteration continue with the next value, optionally with a given value for this iteration. If a value is not given it
defaults to undef

next(Optional[Any] $value)

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1157

notice

Logs a message on the server at level notice.

notice(Any *$values)

Parameters

• *values --- The values to log.

Return type(s): Undef.

partition

Returns two arrays, the first containing the elements of enum for which the block evaluates to true, the second
containing the rest.

Signature 1

partition(Collection $collection, Callable[1,1] &$block)

Parameters

• collection --- A collection of things to partition.

Return type(s): Tuple[Array, Array].

Examples

Partition array of empty strings, results in e.g. [[''], [b, c]]

['', b, c].partition |$s| { $s.empty }

Partition array of strings using index, results in e.g. [['', 'ab'], ['b']]

['', b, ab].partition |$i, $s| { $i == 2 or $s.empty }

Partition hash of strings by key-value pair, results in e.g. [[['b', []]], [['a', [1, 2]]]]

{ a => [1, 2], b => [] }.partition |$kv| { $kv[1].empty }

Partition hash of strings by key and value, results in e.g. [[['b', []]], [['a', [1, 2]]]]

{ a => [1, 2], b => [] }.partition |$k, $v| { $v.empty }

Signature 2

partition(Array $array, Callable[2,2] &$block)

Signature 3

partition(Collection $collection, Callable[2,2] &$block)

realize

Make a virtual object real. This is useful when you want to know the name of the virtual object and don't want to
bother with a full collection. It is slightly faster than a collection, and, of course, is a bit shorter. You must pass the
object using a reference; e.g.: realize User[luke].

realize()

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1158

reduce

Applies a lambda to every value in a data structure from the first argument, carrying over the returned value of each
iteration, and returns the result of the lambda's final iteration. This lets you create a new value or data structure by
combining values from the first argument's data structure.

This function takes two mandatory arguments, in this order:

1. An array, hash, or other iterable object that the function will iterate over.
2. A lambda, which the function calls for each element in the first argument. It takes two mandatory parameters:

a. A memo value that is overwritten after each iteration with the iteration's result.
b. A second value that is overwritten after each iteration with the next value in the function's first argument.

$data.reduce |$memo, $value| { ... }

or

reduce($data) |$memo, $value| { ... }

You can also pass an optional "start memo" value as an argument, such as start below:

$data.reduce(start) |$memo, $value| { ... }

or

reduce($data, start) |$memo, $value| { ... }

When the first argument ($data in the above example) is an array, Puppet passes each of the data structure's values
in turn to the lambda's parameters. When the first argument is a hash, Puppet converts each of the hash's values to an
array in the form [key, value].

If you pass a start memo value, Puppet executes the lambda with the provided memo value and the data structure's
first value. Otherwise, Puppet passes the structure's first two values to the lambda.

Puppet calls the lambda for each of the data structure's remaining values. For each call, it passes the result of the
previous call as the first parameter ($memo in the above examples) and the next value from the data structure as the
second parameter ($value).

Reduce the array $data, returning the sum of all values in the array.
$data = [1, 2, 3]
$sum = $data.reduce |$memo, $value| { $memo + $value }
$sum contains 6

Reduce the array $data, returning the sum of a start memo value and all
 values in the
array.
$data = [1, 2, 3]
$sum = $data.reduce(4) |$memo, $value| { $memo + $value }
$sum contains 10

Reduce the hash $data, returning the sum of all values and concatenated
 string of all
keys.
$data = {a => 1, b => 2, c => 3}
$combine = $data.reduce |$memo, $value| {
 $string = "${memo[0]}${value[0]}"
 $number = $memo[1] + $value[1]
 [$string, $number]
}
$combine contains [abc, 6]

Reduce the array $data, returning the sum of all values in the array and
 starting
with $memo set to an arbitrary value instead of $data's first value.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | References | 1159

$data = [1, 2, 3]
$sum = $data.reduce(4) |$memo, $value| { $memo + $value }
At the start of the lambda's first iteration, $memo contains 4 and $value
 contains 1.
After all iterations, $sum contains 10.

Reduce the hash $data, returning the sum of all values and concatenated
 string of
all keys, and starting with $memo set to an arbitrary array instead of
 $data's first
key-value pair.
$data = {a => 1, b => 2, c => 3}
$combine = $data.reduce([d, 4]) |$memo, $value| {
 $string = "${memo[0]}${value[0]}"
 $number = $memo[1] + $value[1]
 [$string, $number]
}
At the start of the lambda's first iteration, $memo contains [d, 4] and
 $value
contains [a, 1].
$combine contains [dabc, 10]

Reduce a hash of hashes $data, merging defaults into the inner hashes.
$data = {
 'connection1' => {
 'username' => 'user1',
 'password' => 'pass1',
 },
 'connection_name2' => {
 'username' => 'user2',
 'password' => 'pass2',
 },
}

$defaults = {
 'maxActive' => '20',
 'maxWait' => '10000',
 'username' => 'defaultuser',
 'password' => 'defaultpass',
}

$merged = $data.reduce({}) |$memo, $x| {
 $memo + { $x[0] => $defaults + $data[$x[0]] }
}
At the start of the lambda's first iteration, $memo is set to {}, and $x
 is set to
the first [key, value] tuple. The key in $data is, therefore, given by
 $x[0]. In
subsequent rounds, $memo retains the value returned by the expression,
 i.e.
$memo + { $x[0] => $defaults + $data[$x[0]] }.

Signature 1

reduce(Iterable $enumerable, Callable[2,2] &$block)

Signature 2

reduce(Iterable $enumerable, Any $memo, Callable[2,2] &$block)

regsubst

Performs regexp replacement on a string or array of strings.

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1160

Signature 1

regsubst(Variant[Array[String],String] $target, String $pattern,
Variant[String,Hash[String,String]] $replacement, Optional[Optional[Pattern[/
^[GEIM]*$/]]] $flags, Optional[Enum['N','E','S','U']] $encoding)

Parameters

• target --- The string or array of strings to operate on. If an array, the replacement will be performed on each of
the elements in the array, and the return value will be an array.

• pattern --- The regular expression matching the target string. If you want it anchored at the start and or end of
the string, you must do that with ^ and $ yourself.

• replacement --- Replacement string. Can contain backreferences to what was matched using \0 (whole match),
\1 (first set of parentheses), and so on. If the second argument is a Hash, and the matched text is one of its keys,
the corresponding value is the replacement string.

• flags --- Optional. String of single letter flags for how the regexp is interpreted (E, I, and M cannot be used if
pattern is a precompiled regexp):

• E Extended regexps
• I Ignore case in regexps
• M Multiline regexps
• G Global replacement; all occurrences of the regexp in each target string will be replaced. Without this, only

the first occurrence will be replaced.
• encoding --- Optional. How to handle multibyte characters when compiling the regexp (must not be used when

pattern is a precompiled regexp). A single-character string with the following values:

• N None
• E EUC
• S SJIS
• U UTF-8

Return type(s): Array[String], String. The result of the substitution. Result type is the same as for the target
parameter.

Examples

Get the third octet from the node's IP address:

$i3 = regsubst($ipaddress,'^(\\d+)\\.(\\d+)\\.(\\d+)\\.(\\d+)$','\\3')

Signature 2

regsubst(Variant[Array[String],String] $target, Variant[Regexp,Type[Regexp]]
$pattern, Variant[String,Hash[String,String]] $replacement, Optional[Pattern[/
^G?$/]] $flags)

Parameters

• target --- The string or array of strings to operate on. If an array, the replacement will be performed on each of
the elements in the array, and the return value will be an array.

• pattern --- The regular expression matching the target string. If you want it anchored at the start and or end of
the string, you must do that with ^ and $ yourself.

• replacement --- Replacement string. Can contain backreferences to what was matched using \0 (whole match),
\1 (first set of parentheses), and so on. If the second argument is a Hash, and the matched text is one of its keys,
the corresponding value is the replacement string.

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1161

• flags --- Optional. String of single letter flags for how the regexp is interpreted (E, I, and M cannot be used if
pattern is a precompiled regexp):

• E Extended regexps
• I Ignore case in regexps
• M Multiline regexps
• G Global replacement; all occurrences of the regexp in each target string will be replaced. Without this, only

the first occurrence will be replaced.
• encoding --- Optional. How to handle multibyte characters when compiling the regexp (must not be used when

pattern is a precompiled regexp). A single-character string with the following values:

• N None
• E EUC
• S SJIS
• U UTF-8

Return type(s): Array[String], String. The result of the substitution. Result type is the same as for the target
parameter.

Examples

Put angle brackets around each octet in the node's IP address:

$x = regsubst($ipaddress, /([0-9]+)/, '<\\1>', 'G')

require

Requires the specified classes. Evaluate one or more classes, adding the required class as a dependency.

The relationship metaparameters work well for specifying relationships between individual resources, but they can be
clumsy for specifying relationships between classes. This function is a superset of the include function, adding a
class relationship so that the requiring class depends on the required class.

Warning: using require in place of include can lead to unwanted dependency cycles.

For instance, the following manifest, with require instead of include, would produce a nasty dependence cycle,
because notify imposes a before between File[/foo] and Service[foo]:

class myservice {
 service { foo: ensure => running }
}

class otherstuff {
 include myservice
 file { '/foo': notify => Service[foo] }
}

Note that this function only works with clients 0.25 and later, and it will fail if used with earlier clients.

You must use the class's full name; relative names are not allowed. In addition to names in string form, you may also
directly use Class and Resource Type values that are produced when evaluating resource and relationship expressions.

• Since 4.0.0 Class and Resource types, absolute names
• Since 4.7.0 Returns an Array[Type[Class]] with references to the required classes

require(Any *$names)

return

Makes iteration continue with the next value, optionally with a given value for this iteration. If a value is not given it
defaults to undef

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1162

return(Optional[Any] $value)

reverse_each

Reverses the order of the elements of something that is iterable and optionally runs a lambda for each element.

This function takes one to two arguments:

1. An Iterable that the function will iterate over.
2. An optional lambda, which the function calls for each element in the first argument. It must request one

parameter.

$data.reverse_each |$parameter| { <PUPPET CODE BLOCK> }

or

$reverse_data = $data.reverse_each

or

reverse_each($data) |$parameter| { <PUPPET CODE BLOCK> }

or

$reverse_data = reverse_each($data)

When no second argument is present, Puppet returns an Iterable that represents the reverse order of its first
argument. This allows methods on Iterable to be chained.

When a lambda is given as the second argument, Puppet iterates the first argument in reverse order and passes each
value in turn to the lambda, then returns undef.

Puppet will log a notice for each of the three items
in $data in reverse order.
$data = [1,2,3]
$data.reverse_each |$item| { notice($item) }

When no second argument is present, Puppet returns a new Iterable which allows it to be directly chained into
another function that takes an Iterable as an argument.

For the array $data, return an array containing each
value multiplied by 10 in reverse order
$data = [1,2,3]
$transformed_data = $data.reverse_each.map |$item| { $item * 10 }
$transformed_data is set to [30,20,10]

For the array $data, return an array containing each
value multiplied by 10 in reverse order
$data = [1,2,3]
$transformed_data = map(reverse_each($data)) |$item| { $item * 10 }
$transformed_data is set to [30,20,10]

Signature 1

reverse_each(Iterable $iterable)

Signature 2

reverse_each(Iterable $iterable, Callable[1,1] &$block)

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | References | 1163

round

Returns an Integer value rounded to the nearest value. Takes a single Numeric value as an argument.

notice(round(2.9)) # would notice 3
notice(round(2.1)) # would notice 2
notice(round(-2.9)) # would notice -3

round(Numeric $val)

rstrip

Strips trailing spaces from a String

This function is compatible with the stdlib function with the same name.

The function does the following:

• For a String the conversion removes all trailing ASCII white space characters such as space, tab, newline,
and return. It does not remove other space-like characters like hard space (Unicode U+00A0). (Tip, /
^[[:space:]]/ regular expression matches all space-like characters).

• For an Iterable[Variant[String, Numeric]] (for example an Array) each value is processed and
the conversion is not recursive.

• If the value is Numeric it is simply returned (this is for backwards compatibility).
• An error is raised for all other data types.

" hello\n\t".rstrip()
rstrip(" hello\n\t")

Would both result in "hello"

[" hello\n\t", " hi\n\t"].rstrip()
rstrip([" hello\n\t", " hi\n\t"])

Would both result in ['hello', 'hi']

Signature 1

rstrip(Numeric $arg)

Signature 2

rstrip(String $arg)

Signature 3

rstrip(Iterable[Variant[String, Numeric]] $arg)

scanf

Scans a string and returns an array of one or more converted values based on the given format string. See the
documentation of Ruby's String#scanf method for details about the supported formats (which are similar but not
identical to the formats used in Puppet's sprintf function.)

This function takes two mandatory arguments: the first is the string to convert, and the second is the format string.
The result of the scan is an array, with each successfully scanned and transformed value. The scanning stops if a scan
is unsuccessful, and the scanned result up to that point is returned. If there was no successful scan, the result is an
empty array.

"42".scanf("%i")

You can also optionally pass a lambda to scanf, to do additional validation or processing.

"42".scanf("%i") |$x| {

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1164

 unless $x[0] =~ Integer {
 fail "Expected a well formed integer value, got '$x[0]'"
 }
 $x[0]
}

scanf(String $data, String $format, Optional[Callable] &$block)

sha1

Returns a SHA1 hash value from a provided string.

sha1()

sha256

Returns a SHA256 hash value from a provided string.

sha256()

shellquote

Quote and concatenate arguments for use in Bourne shell.

Each argument is quoted separately, and then all are concatenated with spaces. If an argument is an array, the
elements of that array is interpolated within the rest of the arguments; this makes it possible to have an array of
arguments and pass that array to shellquote instead of having to specify each argument individually in the call.

shellquote()

size

The same as length() - returns the size of an Array, Hash, String, or Binary value.

size(Variant[Collection, String, Binary] $arg)

slice

Slices an array or hash into pieces of a given size.

This function takes two mandatory arguments: the first should be an array or hash, and the second specifies the
number of elements to include in each slice.

When the first argument is a hash, each key value pair is counted as one. For example, a slice size of 2 will produce
an array of two arrays with key, and value.

$a.slice(2) |$entry| { notice "first ${$entry[0]}, second
 ${$entry[1]}" }
$a.slice(2) |$first, $second| { notice "first ${first}, second ${second}" }

The function produces a concatenated result of the slices.

slice([1,2,3,4,5,6], 2) # produces [[1,2], [3,4], [5,6]]
slice(Integer[1,6], 2) # produces [[1,2], [3,4], [5,6]]
slice(4,2) # produces [[0,1], [2,3]]
slice('hello',2) # produces [[h, e], [l, l], [o]]

 $a.slice($n) |$x| { ... }
 slice($a) |$x| { ... }

The lambda should have either one parameter (receiving an array with the slice), or the same number of parameters as
specified by the slice size (each parameter receiving its part of the slice). If there are fewer remaining elements than

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1165

the slice size for the last slice, it will contain the remaining elements. If the lambda has multiple parameters, excess
parameters are set to undef for an array, or to empty arrays for a hash.

 $a.slice(2) |$first, $second| { ... }

Signature 1

slice(Hash[Any, Any] $hash, Integer[1, default] $slice_size,
Optional[Callable] &$block)

Signature 2

slice(Iterable $enumerable, Integer[1, default] $slice_size,
Optional[Callable] &$block)

sort

Sorts an Array numerically or lexicographically or the characters of a String lexicographically. Please note:
This function is based on Ruby String comparison and as such may not be entirely UTF8 compatible. To ensure
compatibility please use this function with Ruby 2.4.0 or greater - https://bugs.ruby-lang.org/issues/10085.

This function is compatible with the function sort() in stdlib.

• Comparison of characters in a string always uses a system locale and may not be what is expected for a particular
locale

• Sorting is based on Ruby's <=> operator unless a lambda is given that performs the comparison.

• comparison of strings is case dependent (use lambda with compare($a,$b) to ignore case)
• comparison of mixed data types raises an error (if there is the need to sort mixed data types use a lambda)

Also see the compare() function for information about comparable data types in general.

notice(sort("xadb")) # notices 'abdx'

notice(sort([3,6,2])) # notices [2, 3, 6]

notice(sort([3,6,2]) |$a,$b| { compare($a, $b) }) # notices [2, 3, 6]
notice(sort([3,6,2]) |$a,$b| { compare($b, $a) }) # notices [6, 3, 2]

notice(sort(['A','b','C'])) # notices
 ['A', 'C', 'b']
notice(sort(['A','b','C']) |$a,$b| { compare($a, $b) }) # notices
 ['A', 'b', 'C']
notice(sort(['A','b','C']) |$a,$b| { compare($a, $b, true) }) # notices
 ['A', 'b', 'C']
notice(sort(['A','b','C']) |$a,$b| { compare($a, $b, false) }) # notices
 ['A','C', 'b']

notice(sort(['b', 3, 'a', 2]) |$a, $b| {
 case [$a, $b] {
 [String, Numeric] : { 1 }
 [Numeric, String] : { -1 }
 default: { compare($a, $b) }
 }
})

Would notice [2,3,'a','b']

Signature 1

sort(String $string_value, Optional[Callable[2,2]] &$block)

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1166

Signature 2

sort(Array $array_value, Optional[Callable[2,2]] &$block)

split

Splits a string into an array using a given pattern. The pattern can be a string, regexp or regexp type.

$string = 'v1.v2:v3.v4'
$array_var1 = split($string, /:/)
$array_var2 = split($string, '[.]')
$array_var3 = split($string, Regexp['[.:]'])

#`$array_var1` now holds the result `['v1.v2', 'v3.v4']`,
while `$array_var2` holds `['v1', 'v2:v3', 'v4']`, and
`$array_var3` holds `['v1', 'v2', 'v3', 'v4']`.

Note that in the second example, we split on a literal string that contains a regexp meta-character (.), which must be
escaped. A simple way to do that for a single character is to enclose it in square brackets; a backslash will also escape
a single character.

Signature 1

split(String $str, String $pattern)

Signature 2

split(String $str, Regexp $pattern)

Signature 3

split(String $str, Type[Regexp] $pattern)

sprintf

Perform printf-style formatting of text.

The first parameter is format string describing how the rest of the parameters should be formatted. See the
documentation for the Kernel::sprintf function in Ruby for details.

To use named format arguments, provide a hash containing the target string values as the argument to be formatted.
For example:

notice sprintf(\"%<x>s : %<y>d\", { 'x' => 'value is', 'y' => 42 })

This statement produces a notice of value is : 42.

sprintf()

step

When no block is given, Puppet returns a new Iterable which allows it to be directly chained into another function
that takes an Iterable as an argument.

For the array $data, return an array, set to the first element and each
 5th successor element, in reverse
order multiplied by 10
$data = Integer[0,20]
$transformed_data = $data.step(5).map |$item| { $item * 10 }
$transformed_data contains [0,50,100,150,200]

For the array $data, return an array, set to the first and each 5th
successor, in reverse order, multiplied by 10
$data = Integer[0,20]

© 2024 Puppet, Inc., a Perforce company

https://ruby-doc.org/core/Kernel.html
https://idiosyncratic-ruby.com/49-what-the-format.html

Puppet | References | 1167

$transformed_data = map(step($data, 5)) |$item| { $item * 10 }
$transformed_data contains [0,50,100,150,200]

Signature 1

step(Iterable $iterable, Integer[1] $step)

Signature 2

step(Iterable $iterable, Integer[1] $step, Callable[1,1] &$block)

strftime

Formats timestamp or timespan according to the directives in the given format string. The directives begins with a
percent (%) character. Any text not listed as a directive will be passed through to the output string.

A third optional timezone argument can be provided. The first argument will then be formatted to represent a local
time in that timezone. The timezone can be any timezone that is recognized when using the '%z' or '%Z' formats, or
the word 'current', in which case the current timezone of the evaluating process will be used. The timezone argument
is case insensitive.

The default timezone, when no argument is provided, or when using the keyword default, is 'UTC'.

The directive consists of a percent (%) character, zero or more flags, optional minimum field width and a conversion
specifier as follows:

%[Flags][Width]Conversion

Flags that controls padding

Flag Meaning

- Don't pad numerical output

_ Use spaces for padding

0 Use zeros for padding

Timestamp specific flags

Flag Meaning

Change case

^ Use uppercase

: Use colons for %z

Format directives applicable to Timestamp (names and padding can be altered using flags):

Date (Year, Month, Day):

Format Meaning

Y Year with century, zero-padded to at least 4 digits

C year / 100 (rounded down such as 20 in 2009)

y year % 100 (00..99)

m Month of the year, zero-padded (01..12)

B The full month name ("January")

b The abbreviated month name ("Jan")

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1168

Format Meaning

h Equivalent to %b

d Day of the month, zero-padded (01..31)

e Day of the month, blank-padded (1..31)

j Day of the year (001..366)

Time (Hour, Minute, Second, Subsecond):

Format Meaning

H Hour of the day, 24-hour clock, zero-padded (00..23)

k Hour of the day, 24-hour clock, blank-padded (0..23)

I Hour of the day, 12-hour clock, zero-padded (01..12)

l Hour of the day, 12-hour clock, blank-padded (1..12)

P Meridian indicator, lowercase ("am" or "pm")

p Meridian indicator, uppercase ("AM" or "PM")

M Minute of the hour (00..59)

S Second of the minute (00..60)

L Millisecond of the second (000..999). Digits under
millisecond are truncated to not produce 1000

N Fractional seconds digits, default is 9 digits
(nanosecond). Digits under a specified width are
truncated to avoid carry up

Time (Hour, Minute, Second, Subsecond):

Format Meaning

z Time zone as hour and minute offset from UTC (e.g.
+0900)

:z hour and minute offset from UTC with a colon (e.g.
+09:00)

::z hour, minute and second offset from UTC (e.g.
+09:00:00)

Z Abbreviated time zone name or similar information. (OS
dependent)

Weekday:

Format Meaning

A The full weekday name ("Sunday")

a The abbreviated name ("Sun")

u Day of the week (Monday is 1, 1..7)

w Day of the week (Sunday is 0, 0..6)

ISO 8601 week-based year and week number:

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1169

The first week of YYYY starts with a Monday and includes YYYY-01-04. The days in the year before the first week
are in the last week of the previous year.

Format Meaning

G The week-based year

g The last 2 digits of the week-based year (00..99)

V Week number of the week-based year (01..53)

Week number:

The first week of YYYY that starts with a Sunday or Monday (according to %U or %W). The days in the year before
the first week are in week 0.

Format Meaning

U Week number of the year. The week starts with Sunday.
(00..53)

W Week number of the year. The week starts with Monday.
(00..53)

Seconds since the Epoch:

Format Meaning

s Number of seconds since 1970-01-01 00:00:00 UTC.

Literal string:

Format Meaning

n Newline character (\n)

t Tab character (\t)

% Literal "%" character

Combination:

Format Meaning

c date and time (%a %b %e %T %Y)

D Date (%m/%d/%y)

F The ISO 8601 date format (%Y-%m-%d)

v VMS date (%e-%^b-%4Y)

x Same as %D

X Same as %T

r 12-hour time (%I:%M:%S %p)

R 24-hour time (%H:%M)

T 24-hour time (%H:%M:%S)

$timestamp = Timestamp('2016-08-24T12:13:14')

Notice the timestamp using a format that notices the ISO 8601 date format
notice($timestamp.strftime('%F')) # outputs '2016-08-24'

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1170

Notice the timestamp using a format that notices weekday, month, day, time
 (as UTC), and year
notice($timestamp.strftime('%c')) # outputs 'Wed Aug 24 12:13:14 2016'

Notice the timestamp using a specific timezone
notice($timestamp.strftime('%F %T %z', 'PST')) # outputs '2016-08-24
 04:13:14 -0800'

Notice the timestamp using timezone that is current for the evaluating
 process
notice($timestamp.strftime('%F %T', 'current')) # outputs the timestamp
 using the timezone for the current process

Format directives applicable to Timespan:

Format Meaning

D Number of Days

H Hour of the day, 24-hour clock

M Minute of the hour (00..59)

S Second of the minute (00..59)

L Millisecond of the second (000..999). Digits under
millisecond are truncated to not produce 1000.

N Fractional seconds digits, default is 9 digits
(nanosecond). Digits under a specified length are
truncated to avoid carry up

The format directive that represents the highest magnitude in the format will be allowed to overflow. I.e. if no "%D"
is used but a "%H" is present, then the hours will be more than 23 in case the timespan reflects more than a day.

$duration = Timespan({ hours => 3, minutes => 20, seconds => 30 })

Notice the duration using a format that outputs
 <hours>:<minutes>:<seconds>
notice($duration.strftime('%H:%M:%S')) # outputs '03:20:30'

Notice the duration using a format that outputs <minutes>:<seconds>
notice($duration.strftime('%M:%S')) # outputs '200:30'

• Since 4.8.0

Signature 1

strftime(Timespan $time_object, String $format)

Signature 2

strftime(Timestamp $time_object, String $format, Optional[String] $timezone)

Signature 3

strftime(String $format, Optional[String] $timezone)

strip

Strips leading and trailing spaces from a String

This function is compatible with the stdlib function with the same name.

The function does the following:

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1171

• For a String the conversion removes all leading and trailing ASCII white space characters such as space, tab,
newline, and return. It does not remove other space-like characters like hard space (Unicode U+00A0). (Tip, /
^[[:space:]]/ regular expression matches all space-like characters).

• For an Iterable[Variant[String, Numeric]] (for example an Array) each value is processed and
the conversion is not recursive.

• If the value is Numeric it is simply returned (this is for backwards compatibility).
• An error is raised for all other data types.

" hello\n\t".strip()
strip(" hello\n\t")

Would both result in "hello"

[" hello\n\t", " hi\n\t"].strip()
strip([" hello\n\t", " hi\n\t"])

Would both result in ['hello', 'hi']

Signature 1

strip(Numeric $arg)

Signature 2

strip(String $arg)

Signature 3

strip(Iterable[Variant[String, Numeric]] $arg)

tag

Add the specified tags to the containing class or definition. All contained objects will then acquire that tag, also.

tag()

tagged

A boolean function that tells you whether the current container is tagged with the specified tags. The tags are ANDed,
so that all of the specified tags must be included for the function to return true.

tagged()

template

Loads an ERB template from a module, evaluates it, and returns the resulting value as a string.

The argument to this function should be a <MODULE NAME>/<TEMPLATE FILE> reference, which will
load <TEMPLATE FILE> from a module's templates directory. (For example, the reference apache/
vhost.conf.erb will load the file <MODULES DIRECTORY>/apache/templates/vhost.conf.erb.)

This function can also accept:

• An absolute path, which can load a template file from anywhere on disk.
• Multiple arguments, which will evaluate all of the specified templates and return their outputs concatenated into a

single string.

template()

then

Calls a lambda with the given argument unless the argument is undef. Returns undef if the argument is undef,
and otherwise the result of giving the argument to the lambda.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | References | 1172

This is useful to process a sequence of operations where an intermediate result may be undef (which makes the
entire sequence undef). The then function is especially useful with the function dig which performs in a similar
way "digging out" a value in a complex structure.

$data = {a => { b => [{x => 10, y => 20}, {x => 100, y => 200}]}}
notice $data.dig(a, b, 1, x).then |$x| { $x * 2 }

Would notice the value 200

Contrast this with:

$data = {a => { b => [{x => 10, y => 20}, {not_x => 100, why => 200}]}}
notice $data.dig(a, b, 1, x).then |$x| { $x * 2 }

Which would notice undef since the last lookup of 'x' results in undef which is returned (without calling the
lambda given to the then function).

As a result there is no need for conditional logic or a temporary (non local) variable as the result is now either the
wanted value (x) multiplied by 2 or undef.

Calls to then can be chained. In the next example, a structure is using an offset based on using 1 as the index to the
first element (instead of 0 which is used in the language). We are not sure if user input actually contains an index at
all, or if it is outside the range of available names.args.

Names to choose from
$names = ['Ringo', 'Paul', 'George', 'John']

Structure where 'beatle 2' is wanted (but where the number refers
to 'Paul' because input comes from a source using 1 for the first
element).

$data = ['singer', { beatle => 2 }]
$picked = assert_type(String,
 # the data we are interested in is the second in the array,
 # a hash, where we want the value of the key 'beatle'
 $data.dig(1, 'beatle')
 # and we want the index in $names before the given index
 .then |$x| { $names[$x-1] }
 # so we can construct a string with that beatle's name
 .then |$x| { "Picked Beatle '${x}'" }
)
notice $picked

Would notice "Picked Beatle 'Paul'", and would raise an error if the result was not a String.

• Since 4.5.0

then(Any $arg, Callable[1,1] &$block)

tree_each

Runs a lambda recursively and repeatedly using values from a data structure, then returns the unchanged data
structure, or if a lambda is not given, returns an Iterator for the tree.

This function takes one mandatory argument, one optional, and an optional block in this order:

1. An Array, Hash, Iterator, or Object that the function will iterate over.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html

Puppet | References | 1173

2. An optional hash with the options:

• include_containers => Optional[Boolean] # default true - if containers should be given to the
lambda

• include_values => Optional[Boolean] # default true - if non containers should be given to the
lambda

• include_root => Optional[Boolean] # default true - if the root container should be given to the
lambda

• container_type => Optional[Type[Variant[Array, Hash, Object]]] # a type that
determines what a container is - can only be set to a type that matches the default Variant[Array,
Hash, Object].

• order => Enum[depth_first, breadth_first] # default ´depth_first`, the order in which elements
are visited

• include_refs => Optional[Boolean] # default false, if attributes in objects marked as bing of
reference kind should be included.

3. An optional lambda, which the function calls for each element in the first argument. It must accept one or two
arguments; either $path, and $value, or just $value.

$data.tree_each |$path, $value| { <PUPPET CODE BLOCK> } $data.tree_each |
$value| { <PUPPET CODE BLOCK> }

or

tree_each($data) |$path, $value| { <PUPPET CODE BLOCK> } tree_each($data) |
$value| { <PUPPET CODE BLOCK> }

The parameter $path is always given as an Array containing the path that when applied to the tree as
$data.dig(*$path) yields the $value. The $value` is the value at that path.

For Array values, the path will contain Integer entries with the array index, and for Hash values, the path will
contain the hash key, which may be Any value. For Object containers, the entry is the name of the attribute (a
String).

The tree is walked in either depth-first order, or in breadth-first order under the control of the order option, yielding
each Array, Hash, Object, and each entry/attribute. The default is depth_first which means that children are
processed before siblings. An order of breadth_first means that siblings are processed before children.

[1, [2, 3], 4]

If containers are skipped, results in:

• depth_first order 1, 2, 3, 4
• breadth_first order 1, 4,2, 3

If containers and root are included, results in:

• depth_first order [1, [2, 3], 4], 1, [2, 3], 2, 3, 4
• breadth_first order [1, [2, 3], 4], 1, [2, 3], 4, 2, 3

Typical use of the tree_each function include:

• a more efficient way to iterate over a tree than first using flatten on an array as that requires a new (potentially
very large) array to be created

• when a tree needs to be transformed and 'pretty printed' in a template
• avoiding having to write a special recursive function when tree contains hashes (flatten does not work on hashes)

$data = [1, 2, [3, [4, 5]]]
$data.tree_each({include_containers => false}) |$v| { notice "$v" }

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1174

This would call the lambda 5 times with with the following values in sequence: 1, 2, 3, 4, 5

$data = [1, 2, [3, [4, 5]]]
$data.tree_each |$v| { notice "$v" }

This would call the lambda 7 times with the following values in sequence: 1, 2, [3, [4, 5]], 3, [4, 5], 4, 5

$data = [1, 2, [3, [4, 5]]]
$data.tree_each({include_values => false, include_root => false}) |$v|
 { notice "$v" }

This would call the lambda 2 times with the following values in sequence: [3, [4, 5]], [4, 5]

Any Puppet Type system data type can be used to filter what is considered to be a container, but it must be a narrower
type than one of the default Array, Hash, Object types - for example it is not possible to make a String be a
container type.

$data = [1, {a => 'hello', b => [100, 200]}, [3, [4, 5]]]
$data.tree_each({container_type => Array, include_containers => false} |$v|
 { notice "$v" }

Would call the lambda 5 times with 1, {a => 'hello', b => [100, 200]}, 3, 4, 5

Chaining When calling tree_each without a lambda the function produces an Iterator that can be chained into
another iteration. Thus it is easy to use one of:

• reverse_each - get "leaves before root"
• filter - prune the tree
• map - transform each element
• reduce - produce something else

Note than when chaining, the value passed on is a Tuple with [path, value].

A tree of some complexity (here very simple for readability)
$tree = [
 { name => 'user1', status => 'inactive', id => '10'},
 { name => 'user2', status => 'active', id => '20'}
]
notice $tree.tree_each.filter |$v| {
 $value = $v[1]
 $value =~ Hash and $value[status] == active
}

Would notice [[[1], {name => user2, status => active, id => 20}]], which can then be
processed further as each filtered result appears as a Tuple with [path, value].

For general examples that demonstrates iteration see the Puppet iteration documentation.

Signature 1

tree_each(Variant[Iterator, Array, Hash, Object] $tree, Optional[OptionsType]
$options, Callable[2,2] &$block)

Signature 2

tree_each(Variant[Iterator, Array, Hash, Object] $tree, Optional[OptionsType]
$options, Callable[1,1] &$block)

Signature 3

tree_each(Variant[Iterator, Array, Hash, Object] $tree, Optional[OptionsType]
$options)

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_iteration.html

Puppet | References | 1175

type

Returns the data type of a given value with a given degree of generality.

type InferenceFidelity = Enum[generalized, reduced, detailed]

function type(Any $value, InferenceFidelity $fidelity = 'detailed') #
 returns Type

notice type(42) =~ Type[Integer]

Would notice true.

By default, the best possible inference is made where all details are retained. This is good when the type is used for
further type calculations but is overwhelmingly rich in information if it is used in a error message.

The optional argument $fidelity may be given as (from lowest to highest fidelity):

• generalized - reduces to common type and drops size constraints
• reduced - reduces to common type in collections
• detailed - (default) all details about inferred types is retained

notice type([3.14, 42], 'generalized')
notice type([3.14, 42], 'reduced'')
notice type([3.14, 42], 'detailed')
notice type([3.14, 42])

Would notice the four values:

1. Array[Numeric]

2. Array[Numeric, 2, 2]

3. Tuple[Float[3.14], Integer[42,42]]]

4. Tuple[Float[3.14], Integer[42,42]]]

Signature 1

type(Any $value, Optional[Enum[detailed]] $inference_method)

Signature 2

type(Any $value, Enum[reduced] $inference_method)

Signature 3

type(Any $value, Enum[generalized] $inference_method)

unique

Produces a unique set of values from an Iterable argument.

• If the argument is a String, the unique set of characters are returned as a new String.
• If the argument is a Hash, the resulting hash associates a set of keys with a set of unique values.
• For all other types of Iterable (Array, Iterator) the result is an Array with a unique set of entries.
• Comparison of all String values are case sensitive.
• An optional code block can be given - if present it is given each candidate value and its return is used instead of

the given value. This enables transformation of the value before comparison. The result of the lambda is only used
for comparison.

• The optional code block when used with a hash is given each value (not the keys).

will produce 'abc'

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1176

"abcaabb".unique

will produce ['a', 'b', 'c']
['a', 'b', 'c', 'a', 'a', 'b'].unique

will produce { ['a', 'b'] => [10], ['c'] => [20]}
{'a' => 10, 'b' => 10, 'c' => 20}.unique

will produce { 'a' => 10, 'c' => 20 } (use first key with first value)
Hash.new({'a' => 10, 'b' => 10, 'c' => 20}.unique.map |$k, $v| { [$k[0] ,
 $v[0]] })

will produce { 'b' => 10, 'c' => 20 } (use last key with first value)
Hash.new({'a' => 10, 'b' => 10, 'c' => 20}.unique.map |$k, $v| { [$k[-1] ,
 $v[0]] })

will produce [3, 2, 1]
[1,2,2,3,3].reverse_each.unique

will produce [['sam', 'smith'], ['sue', 'smith']]
[['sam', 'smith'], ['sam', 'brown'], ['sue', 'smith']].unique |$x| { $x[0] }

will produce [['sam', 'smith'], ['sam', 'brown']]
[['sam', 'smith'], ['sam', 'brown'], ['sue', 'smith']].unique |$x| { $x[1] }

will produce ['aBc', 'bbb'] (using a lambda to make comparison using
 downcased (%d) strings)
['aBc', 'AbC', 'bbb'].unique |$x| { String($x,'%d') }

will produce {[a] => [10], [b, c, d, e] => [11, 12, 100]}
{a => 10, b => 11, c => 12, d => 100, e => 11}.unique |$v| { if $v > 10
 { big } else { $v } }

Note that for Hash the result is slightly different than for the other data types. For those the result contains the
first-found unique value, but for Hash it contains associations from a set of keys to the set of values clustered
by the equality lambda (or the default value equality if no lambda was given). This makes the unique function
more versatile for hashes in general, while requiring that the simple computation of "hash's unique set of values" is
performed as $hsh.map |$k, $v| { $v }.unique. (A unique set of hash keys is in general meaningless
(since they are unique by definition) - although if processed with a different lambda for equality that would be
different. First map the hash to an array of its keys if such a unique computation is wanted). If the more advanced
clustering is wanted for one of the other data types, simply transform it into a Hash as shown in the following
example.

Array ['a', 'b', 'c'] to Hash with index results in
{0 => 'a', 1 => 'b', 2 => 'c'}
Hash(['a', 'b', 'c'].map |$i, $v| { [$i, $v]})

String "abc" to Hash with index results in
{0 => 'a', 1 => 'b', 2 => 'c'}
Hash(Array("abc").map |$i,$v| { [$i, $v]})
"abc".to(Array).map |$i,$v| { [$i, $v]}.to(Hash)

Signature 1

unique(String $string, Optional[Callable[String]] &$block)

Signature 2

unique(Hash $hash, Optional[Callable[Any]] &$block)

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1177

Signature 3

unique(Array $array, Optional[Callable[Any]] &$block)

Signature 4

unique(Iterable $iterable, Optional[Callable[Any]] &$block)

unwrap

Unwraps a Sensitive value and returns the wrapped object. Returns the Value itself, if it is not Sensitive.

$plaintext = 'hunter2'
$pw = Sensitive.new($plaintext)
notice("Wrapped object is $pw") #=> Prints "Wrapped object is Sensitive
 [value redacted]"
$unwrapped = $pw.unwrap
notice("Unwrapped object is $unwrapped") #=> Prints "Unwrapped object is
 hunter2"

You can optionally pass a block to unwrap in order to limit the scope where the unwrapped value is visible.

$pw = Sensitive.new('hunter2')
notice("Wrapped object is $pw") #=> Prints "Wrapped object is Sensitive
 [value redacted]"
$pw.unwrap |$unwrapped| {
 $conf = inline_template("password: ${unwrapped}\n")
 Sensitive.new($conf)
} #=> Returns a new Sensitive object containing an interpolated config file
$unwrapped is now out of scope

Signature 1

unwrap(Sensitive $arg, Optional[Callable] &$block)

Signature 2

unwrap(Any $arg, Optional[Callable] &$block)

upcase

Converts a String, Array or Hash (recursively) into upper case.

This function is compatible with the stdlib function with the same name.

The function does the following:

• For a String, its upper case version is returned. This is done using Ruby system locale which handles some, but
not all special international up-casing rules (for example German double-s ß is upcased to "SS", whereas upper
case double-s is downcased to ß).

• For Array and Hash the conversion to upper case is recursive and each key and value must be convertible by
this function.

• When a Hash is converted, some keys could result in the same key - in those cases, the latest key-value wins. For
example if keys "aBC", and "abC" where both present, after upcase there would only be one key "ABC".

• If the value is Numeric it is simply returned (this is for backwards compatibility).
• An error is raised for all other data types.

Please note: This function relies directly on Ruby's String implementation and as such may not be entirely UTF8
compatible. To ensure best compatibility please use this function with Ruby 2.4.0 or greater - https://bugs.ruby-
lang.org/issues/10085.

'hello'.upcase()
upcase('hello')

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1178

Would both result in "HELLO"

['a', 'b'].upcase()
upcase(['a', 'b'])

Would both result in ['A', 'B']

{'a' => 'hello', 'b' => 'goodbye'}.upcase()

Would result in {'A' => 'HELLO', 'B' => 'GOODBYE'}

['a', 'b', ['c', ['d']], {'x' => 'y'}].upcase

Would result in ['A', 'B', ['C', ['D']], {'X' => 'Y'}]

Signature 1

upcase(Numeric $arg)

Signature 2

upcase(String $arg)

Signature 3

upcase(Array[StringData] $arg)

Signature 4

upcase(Hash[StringData, StringData] $arg)

values

Returns the values of a hash as an Array

$hsh = {"apples" => 3, "oranges" => 4 }
$hsh.values()
values($hsh)
both results in the array [3, 4]

• Note that a hash in the puppet language accepts any data value (including undef) unless it is constrained with a
Hash data type that narrows the allowed data types.

• For an empty hash, an empty array is returned.
• The order of the values is the same as the order in the hash (typically the order in which they were added).

values(Hash $hsh)

versioncmp

Compares two version numbers.

Prototype:

\$result = versioncmp(a, b)

Where a and b are arbitrary version strings.

Optional parameter ignore_trailing_zeroes is used to ignore unnecessary trailing version numbers like .0 or .0.00

This function returns:

• 1 if version a is greater than version b
• 0 if the versions are equal
• -1 if version a is less than version b

© 2024 Puppet, Inc., a Perforce company

Puppet | References | 1179

This function uses the same version comparison algorithm used by Puppet's package type.

versioncmp(String $a, String $b, Optional[Boolean] $ignore_trailing_zeroes)

warning

Logs a message on the server at level warning.

warning(Any *$values)

Parameters

• *values --- The values to log.

Return type(s): Undef.

with

Calls a lambda with the given arguments and returns the result.

Since a lambda's scope is local to the lambda, you can use the with function to create private blocks of code within a
class using variables whose values cannot be accessed outside of the lambda.

Concatenate three strings into a single string formatted as a list.
$fruit = with("apples", "oranges", "bananas") |$x, $y, $z| {
 "${x}, ${y}, and ${z}"
}
$check_var = $x
$fruit contains "apples, oranges, and bananas"
$check_var is undefined, as the value of $x is local to the lambda.

with(Any *$arg, Callable &$block)

yaml_data

The yaml_data is a hiera 5 data_hash data provider function. See the configuration guide documentation for
how to use this function.

yaml_data(Struct[{path=>String[1]}] $options, Puppet::LookupContext $context)

Puppet Man Pages
NOTE: This page was generated from the Puppet source code on 2022-02-07 10:11:15 -0800

Puppet's command line tools consist of a single puppet binary with many subcommands. The following
subcommands are available in this version of Puppet:

Core Tools

These subcommands form the core of Puppet's tool set, and every user should understand what they do.

• puppet agent
• puppet apply
• puppet lookup
• puppet module
• puppet resource

Note: The puppet cert command is available only in Puppet versions prior to 6.0. For 6.0 and later,
use the puppetserver certcommand.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_lambdas.html
https://puppet.com/docs/puppet/latest/lang_lambdas.html#lambda-scope
https://puppet.com/docs/puppet/latest/hiera_config_yaml_5.html#configuring-a-hierarchy-level-built-in-backends
https://puppet.com/docs/puppet/6/puppet_server_ca_cli.html

Puppet | References | 1180

Secondary subcommands

Many or most users need to use these subcommands at some point, but they aren't needed for daily use the way the
core tools are.

• puppet config
• puppet describe
• puppet device
• puppet doc
• puppet epp
• puppet generate
• puppet help
• puppet node
• puppet parser
• puppet plugin
• puppet script
• puppet ssl

Niche subcommands

Most users can ignore these subcommands. They're only useful for certain niche workflows, and most of them are
interfaces to Puppet's internal subsystems.

• puppet catalog
• puppet facts
• puppet filebucket
• puppet key
• puppet man
• puppet report
• puppet status

© 2024 Puppet, Inc., a Perforce company

	Contents
	Puppet 6.28.0
	Introduction to Puppet
	What is Puppet?
	Why use Puppet desired state management?
	Key concepts behind Puppet
	The Puppet platform
	Open source Puppet vs Puppet Enterprise (PE)
	The Puppet ecosystem
	Use cases

	Puppet platform lifecycle
	Navigating the documentation
	Archived Puppet documentation
	Glossary

	Release notes
	Puppet release notes
	Puppet known issues
	Puppet Server release notes
	Puppet Server 6.20.0
	Enhancements
	Resolved issues

	Puppet Server 6.19.0
	Enhancements
	Resolved issues

	Puppet Server 6.18.0
	New features
	Resolved issues

	Puppet Server 6.17.1
	Puppet Server 6.17.0
	Enhancements
	Resolved issues

	Puppet Server 6.16.1
	Enhancements
	Resolved issues

	Puppet Server 6.16.0
	New Features
	Enhancements
	Resolved issues

	Puppet Server 6.15.3
	Enhancements
	Resolved issues

	Puppet Server 6.15.1
	Resolved issues

	Puppet Server 6.15.0
	New features

	Puppet Server 6.14.1
	Resolved issues

	Puppet Server 6.14.0
	New feature
	Resolved issue

	Puppet Server 6.13.0
	New features
	Enhancement
	Resolved issue

	Puppet Server 6.12.1
	Enhancements

	Puppet Server 6.12.0
	Resolved issue
	Deprecation

	Puppet Server 6.11.1
	Known issue

	Puppet Server 6.11.0
	New features

	Puppet Server 6.10.0
	New features
	Resolved issues
	Known issues

	Puppet Server 6.9.2
	Resolved issue

	Puppet Server 6.9.1
	Puppet Server 6.9.0
	New features

	Puppet Server 6.8.0
	New features
	Resolved issues

	Puppet Server 6.7.2
	Puppet Server 6.7.1
	Resolved issues

	Puppet Server 6.7.0
	New feature
	Resolved issues

	Puppet Server 6.6.0
	New features
	Resolved issues

	Puppet Server 6.5.0
	New features

	Puppet Server 6.4.0
	New features

	Puppet Server 6.3.0
	New features
	Enhancements

	Puppet Server 6.2.1
	Resolved issues

	Puppet Server 6.2.0
	New features
	Resolved issues

	Puppet Server 6.1.0
	New features
	Enhancements
	Resolved issues

	Puppet Server 6.0.0
	New features
	Resolved issues
	Known issues

	Puppet Server known issues
	Access CA endpoint to update CRLs
	Cipher updates in Puppet Server 6.5
	Server-side Ruby gems might need to be updated for upgrading from JRuby 1.7
	Potential JAVA ARGS settings
	tmp directory mounted noexec
	Puppet Server Primary Server Fails to Connect to Load-Balanced Servers with Different SSL Certificates

	Facter release notes
	Facter known issues

	Installing and configuring
	Installing and upgrading
	System requirements
	Installing Puppet
	Installing and configuring agents
	Manually verify packages
	Managing Platform versions
	Upgrading

	Configuring Puppet settings
	Puppet settings
	Key configuration settings
	Puppet's configuration files
	puppet.conf: The main config file
	environment.conf: Per-environment settings
	fileserver.conf: Custom fileserver mount points
	puppetdb.conf: PuppetDB server locations
	autosign.conf: Basic certificate autosigning
	csr_attributes.yaml: Certificate extensions
	custom_trusted_oid_mapping.yaml: Short names for cert extension OIDs
	device.conf: Network hardware access
	routes.yaml: Advanced plugin routing

	Configuring Puppet Server
	Configuring Puppet Server
	Puppet Server and puppet.conf settings
	Configuration Files
	Logging
	HTTP Traffic
	Authorization

	Service Bootstrapping
	Adding Java JARs

	puppetserver.conf
	Settings
	Examples

	auth.conf
	HOCON example
	HOCON parameters
	version
	allow-header-cert-info
	rules
	match-request
	allow, allow-unauthenticated, and deny
	sort-order
	name

	webserver.conf
	Examples

	web-routes.conf
	Example

	global.conf
	Example

	ca.conf
	Signing settings
	Infrastructure CRL settings
	Status settings (deprecated)
	Example (Deprecated)

	server.conf
	Supported Authorization Workflow
	HOCON auth.conf Example

	product.conf
	Settings
	Example

	logback.xml
	Puppet Server logging
	Settings
	level
	Logging location
	scan and scanPeriod

	HTTP request logging

	Advanced logging configuration
	Configuring Puppet Server for use with Logstash
	Configuring Puppet Server to log to JSON
	Adding a JSON version of the main Puppet Server logs
	Adding a JSON version of the Puppet Server HTTP Access logs

	Sending the JSON data to Logstash

	Bootstrap upgrade notes
	Potential upgrade issues
	Potential breaking issues when upgrading with a modified bootstrap.cfg
	Potential service failures when upgrading with a modified init configuration

	Upgrading to 2.5.0 or newer
	Before you upgrade: ca.cfg
	After you upgrade: New bootstrap configuration files

	Adding file server mount points
	Checking the values of settings
	Editing settings on the command line
	Configuration Reference
	Configuration settings
	agent_catalog_run_lockfile
	agent_disabled_lockfile
	allow_duplicate_certs
	always_retry_plugins
	autoflush
	autosign
	basemodulepath
	binder_config
	bucketdir
	ca_fingerprint
	ca_name
	ca_port
	ca_server
	ca_ttl
	cacert
	cacrl
	cadir
	cakey
	capub
	catalog_cache_terminus
	catalog_terminus
	cert_inventory
	certdir
	certificate_revocation
	certname
	ciphers
	classfile
	client_datadir
	clientbucketdir
	clientyamldir
	code
	codedir
	color
	confdir
	config
	config_file_name
	config_version
	configprint
	crl_refresh_interval
	csr_attributes
	csrdir
	daemonize
	data_binding_terminus
	default_file_terminus
	default_manifest
	default_schedules
	deviceconfdir
	deviceconfig
	devicedir
	diff
	diff_args
	digest_algorithm
	disable_i18n
	disable_per_environment_manifest
	disable_warnings
	dns_alt_names
	document_all
	environment
	environment_data_provider
	environment_timeout
	environment_timeout_mode
	environmentpath
	evaltrace
	external_nodes
	facterng
	factpath
	facts_terminus
	fileserverconfig
	filetimeout
	forge_authorization
	freeze_main
	func3x_check
	future_features
	genconfig
	genmanifest
	graph
	graphdir
	group
	hiera_config
	hostcert
	hostcrl
	hostcsr
	hostprivkey
	hostpubkey
	http_connect_timeout
	http_debug
	http_extra_headers
	http_keepalive_timeout
	http_proxy_host
	http_proxy_password
	http_proxy_port
	http_proxy_user
	http_read_timeout
	http_user_agent
	ignore_plugin_errors
	ignoremissingtypes
	ignoreschedules
	key_type
	keylength
	lastrunfile
	lastrunreport
	ldapattrs
	ldapbase
	ldapclassattrs
	ldapparentattr
	ldappassword
	ldapport
	ldapserver
	ldapssl
	ldapstackedattrs
	ldapstring
	ldaptls
	ldapuser
	libdir
	localcacert
	localedest
	localesource
	location_trusted
	log_level
	logdest
	logdir
	manage_internal_file_permissions
	manifest
	masterport
	max_deprecations
	max_errors
	max_warnings
	maximum_uid
	maxwaitforcert
	maxwaitforlock
	merge_dependency_warnings
	mkusers
	module_groups
	module_repository
	module_working_dir
	modulepath
	name
	named_curve
	no_proxy
	node_cache_terminus
	node_name
	node_name_fact
	node_name_value
	node_terminus
	noop
	onetime
	passfile
	path
	pidfile
	plugindest
	pluginfactdest
	pluginfactsource
	pluginsignore
	pluginsource
	pluginsync
	postrun_command
	preferred_serialization_format
	prerun_command
	preview_outputdir
	priority
	privatedir
	privatekeydir
	profile
	publickeydir
	puppet_trace
	puppetdlog
	report
	report_include_system_store
	report_port
	report_server
	reportdir
	reports
	reporturl
	requestdir
	resourcefile
	rest_authconfig
	resubmit_facts
	rich_data
	route_file
	rundir
	runinterval
	runtimeout
	serial
	server
	server_datadir
	server_list
	serverport
	show_diff
	signeddir
	skip_tags
	sourceaddress
	splay
	splaylimit
	srv_domain
	ssl_client_ca_auth
	ssl_client_header
	ssl_client_verify_header
	ssl_lockfile
	ssl_server_ca_auth
	ssl_trust_store
	ssldir
	statedir
	statefile
	statettl
	static_catalogs
	storeconfigs
	storeconfigs_backend
	strict
	strict_environment_mode
	strict_hostname_checking
	strict_variables
	summarize
	supported_checksum_types
	syslogfacility
	tags
	tasks
	trace
	transactionstorefile
	trusted_external_command
	trusted_oid_mapping_file
	use_cached_catalog
	use_last_environment
	use_srv_records
	usecacheonfailure
	user
	vardir
	vendormoduledir
	versioned_environment_dirs
	waitforcert
	waitforlock
	write_catalog_summary
	yamldir

	Differing behavior in puppet.conf
	Settings that differ
	autoflush
	bindaddress
	ca
	ca_ttl
	cacert
	cacrl
	capass
	caprivatedir
	daemonize
	hostcert
	hostcrl
	hostprivkey
	http_debug
	keylength
	localcacert
	logdir
	masterhttplog
	masterlog
	masterport
	puppetdlog
	rails_loglevel
	railslog
	ssl_client_header
	ssl_client_verify_header
	ssl_server_ca_auth
	syslogfacility
	user

	HttpPool-Related Server Settings
	configtimeout
	http_proxy_host
	http_proxy_port

	Overriding Puppet settings in Puppet Server

	The Puppet platform
	Puppet Server
	About Puppet Server
	Puppet Server releases
	Controlling the Service
	Puppet Server's Run Environment
	Embedded Web Server
	Puppet API Service
	Certificate Authority Service
	Admin API Service

	JRuby Interpreters
	Tuning Guide
	User
	Ports
	Logging
	SSL Termination
	Configuring Puppet Server

	Deprecated features
	Use of Core Puppet "auth.conf" for Authorizing Primary Server Service Routes
	Now
	In a Future Major Release
	Detecting and Updating
	Context

	certificate-status settings
	Now
	In a Future Major Release
	Detecting and Updating
	Context

	puppet-admin Settings
	Now
	In a Future Major Release
	Detecting and Updating
	Context

	Puppet's "resource_types" API endpoint
	Now
	Previously
	Detecting and Updating
	Context

	Puppet's node cache terminus
	Now
	Previously
	Detecting and Updating
	Context

	JRuby's "compat-version" setting
	Now
	Previously
	Detecting and Updating
	Context

	Primary server and agent compatibility
	Installing Puppet Server
	Before you begin
	Supported operating systems
	Java support

	Install Puppet Server
	Install a Puppet Agent

	Running Puppet Server on a VM

	Configuring Puppet Server
	Configuring Puppet Server
	Puppet Server and puppet.conf settings
	Configuration Files
	Logging
	HTTP Traffic
	Authorization

	Service Bootstrapping
	Adding Java JARs

	Puppet Server configuration files
	auth.conf
	HOCON example
	HOCON parameters
	version
	allow-header-cert-info
	rules
	match-request
	allow, allow-unauthenticated, and deny
	sort-order
	name

	ca.conf
	Signing settings
	Infrastructure CRL settings
	Status settings (deprecated)
	Example (Deprecated)

	global.conf
	Example

	logback.xml
	Puppet Server logging
	Settings
	level
	Logging location
	scan and scanPeriod

	HTTP request logging

	server.conf
	Supported Authorization Workflow
	HOCON auth.conf Example

	metrics.conf
	Settings
	Example

	product.conf
	Settings
	Example

	puppetserver.conf
	Settings
	Examples

	web-routes.conf
	Example

	webserver.conf
	Examples

	Migrating to the HOCON auth.conf format
	Managing rules with Puppet modules
	Converting rules directly
	Unavailable rules, settings, or values
	Basic HOCON structure
	Converting a simple rule
	Converting more complex rules
	Paths set by regular expressions
	Allowing unauthenticated requests
	Multiple method indirectors
	Environment URL parameters
	Search indirector for method

	Advanced logging configuration
	Configuring Puppet Server for use with Logstash
	Configuring Puppet Server to log to JSON
	Adding a JSON version of the main Puppet Server logs
	Adding a JSON version of the Puppet Server HTTP Access logs

	Sending the JSON data to Logstash

	Differing behavior in puppet.conf
	Settings that differ
	autoflush
	bindaddress
	ca
	ca_ttl
	cacert
	cacrl
	capass
	caprivatedir
	daemonize
	hostcert
	hostcrl
	hostprivkey
	http_debug
	keylength
	localcacert
	logdir
	masterhttplog
	masterlog
	masterport
	puppetdlog
	rails_loglevel
	railslog
	ssl_client_header
	ssl_client_verify_header
	ssl_server_ca_auth
	syslogfacility
	user

	HttpPool-Related Server Settings
	configtimeout
	http_proxy_host
	http_proxy_port

	Overriding Puppet settings in Puppet Server

	Using and extending Puppet Server
	Subcommands
	ca
	Available actions
	Syntax
	Signing certs with SANs or auth extensions

	gem
	ruby
	irb
	foreground

	Using Ruby gems
	GEM_HOME values
	Gems with packaged versions of Puppet Server
	Gems when running Puppet Server from source
	Gems when running Puppet Server spec tests

	Installing and removing gems
	Installing gems for use with development:
	Gems with Native (C) Extensions

	Intermediate CA
	Where to set CA configuration
	Set up Puppet as an intermediate CA with an external root

	Infrastructure certificate revocation list (CRL)
	External SSL termination
	Disable HTTPS for Puppet Server
	Allow Client Cert Data From HTTP Headers
	Reload Puppet Server
	Configure SSL Terminating Proxy to Set HTTP Headers
	X-Client-Verify
	X-Client-DN
	X-Client-Cert

	Server metrics
	Monitoring Puppet Server metrics
	Getting started with Graphite
	Using the grafanadash module to quickly set up a Graphite demo server
	Installing the grafanadash Puppet module
	Running Grafana

	Enabling Puppet Server's Graphite support
	Using the sample Grafana dashboard
	Example Grafana dashboard excerpt

	Available Graphite metrics
	Statistical metrics
	Compiler metrics
	Function metrics
	HTTP metrics
	JRuby metrics
	PuppetDB metrics

	Counters only
	HTTP metrics
	JRuby metrics

	Other metrics
	Modifying Puppet Server's exported metrics

	HTTP Client Metrics
	Determining metrics IDs
	Configuring
	Example metrics output

	Tuning guide
	Puppet Server and JRuby
	Number of JRubies
	JVM Heap Size
	Tying Together max-active-instances and Heap Size
	Potential JAVA ARGS settings

	Applying metrics to improve performance
	Measuring capacity with JRubies
	Request-handling capacity
	Adding more JRubies
	Adding compile servers

	HTTP request delays
	Memory leaks and usage

	Submitting usage telemetry
	Configuring dropsonde in puppetserver.conf
	Dropsonde terminal commands

	Scaling Puppet Server
	Planning your load-balancing strategy
	Using round-robin DNS
	Using a hardware load balancer
	Using DNS SRV Records

	Centralizing the Certificate Authority
	Directing individual agents to a central CA
	Pointing DNS SRV records at a central CA

	Creating and configuring compilers
	Centralizing reports, inventory service, and catalog searching (storeconfigs)
	Keeping manifests and modules synchronized across compilers
	Implementing load distribution

	Restarting Puppet Server"
	Restarting Puppet Server to pick up changes
	Changes applied after a JRuby pool flush, HUP signal, service reload, or full Server restart
	Changes applied after a HUP signal, service reload, or full Server restart
	Changes that require a full Server restart

	Developer information
	Developer debugging
	Debugging Clojure Code
	Debugging Ruby Code
	Ruby REPL incompatible with Lein REPL
	ruby-debug
	Installation
	Usage

	pry
	Installation
	Usage

	Limitations

	Tracing Code Events
	Running from source
	So you'd like to run Puppet Server from source?
	Step 0: Quick Start for Developers
	Step 1: Install Prerequisites
	Step 2: Clone Git Repo and Set Up Working Tree
	Step 3: Set up Config Files
	Step 4a: Run the server from the clojure REPL
	Step 4b: Run the server from the command line
	Step 4c: Development environment gotchas
	Missing git submodules
	Failing tests
	Running the Agent
	Running the Agent inside a Docker container
	Running tests
	Installing Ruby Gems for Development
	Debugging
	Running PuppetDB

	Tracing code events

	Puppet Server HTTP API
	Puppet Server HTTP API overview
	V1/V2 HTTP APIs (removed)
	Puppet and Puppet CA APIs
	Authorization

	Puppet V3 HTTP API
	Configuration management services
	Informational services
	Environment endpoints
	Puppet Server-specific endpoints
	Error responses

	CA V1 HTTP API
	SSL certificate-related services

	Serialization formats

	PSON
	Differences from JSON
	Decoding PSON Using JSON Parsers

	Puppet v3 API
	Catalog
	Find
	Supported HTTP Methods
	Supported Response Formats
	Notes
	Parameters
	Example Response
	Catalog found
	Static Catalog found

	Schema

	Node
	Find
	Supported HTTP Methods
	Supported Response Formats
	Parameters
	Examples

	Schema

	Facts
	Save
	Supported HTTP Methods
	Supported Format(s)
	Parameters
	Example

	Schema

	File Bucket File
	Find
	Head
	Save
	Supported HTTP Methods
	Supported Response Formats
	Parameters
	Examples
	Saving a file
	Retrieving a file
	Wrong file name

	Schema

	File Content
	Find
	Supported HTTP Methods
	Supported Response Formats
	Parameters
	Notes
	Responses
	File found
	File not found
	No file name given

	Schema

	File Metadata
	Find
	Supported HTTP Methods
	Supported Response Formats
	Parameters
	Example Response
	File metadata found for a file
	File metadata found for a directory
	File metadata found for a link ignoring source permissions
	File not found

	Search
	Supported HTTP Methods
	Supported Response Formats
	Parameters
	Example Response
	Basic search
	Search ignoring 'sub*' and links = manage
	Search ignoring "sub*" and links = follow

	Schema
	Sample Module

	Report
	Save
	Supported HTTP Methods
	Supported Format(s)
	Parameters
	Content

	Example
	Schema

	Environments
	Get
	Supported Response Formats
	Parameters
	Example Request & Response

	Schema

	Status
	Find
	Supported HTTP Methods
	Supported Response Formats
	Parameters
	Example Response

	Schema

	Puppet v4 API
	Catalog API
	POST /puppet/v4/catalog
	certname (required)
	persistence (required)
	environment (required)
	facts
	trusted_facts
	transaction_uuid
	job_id
	options

	Schema
	Authorization

	CA v1 API
	Certificate
	Find
	Supported HTTP Methods
	Supported Response Formats
	Parameters
	Responses
	Certificate found
	Certificate not found
	No Certificate name given
	Primary Server is not a CA

	Schema

	Certificate Request
	Find
	Save
	Search
	Destroy
	Supported HTTP Methods
	Supported Response Formats
	Parameters
	Examples
	CSR found
	CSR not found
	No node name given
	Delete a CSR that exists
	Delete a CSR that does not exists
	Retrieve all CSRs

	Schema

	Certificate Status
	Find
	Search
	Parameters

	Save
	Delete
	Supported HTTP Methods
	Supported Response Formats
	Examples
	Certificate information
	Search unsigned certs (CSRs)
	Revoking a certificate
	Deleting the certificate information

	Schema

	Certificate Revocation List
	Find
	Supported HTTP Methods
	Supported Response Formats
	Parameters
	Examples
	Empty revocation list
	One-item revocation list
	No node name given

	Schema
	Update upstream CRLs
	Supported HTTP Methods
	Supported Response Formats
	Parameters
	Example

	Schemas (JSON)

	Metrics API endpoints
	v1 metrics
	GET /metrics/v1/mbeans
	Response keys

	POST /metrics/v1/mbeans
	Query parameters
	Response keys

	GET /metrics/v1/mbeans/<name>
	Query parameters
	Response keys
	Example

	v2 (Jolokia) metrics
	Jolokia endpoints
	Configuring Jolokia
	Disabling the endpoints

	Usage
	GET /metrics/v2/
	Response
	Examples

	POST /metrics/v2/<OPERATION>

	Filtering
	Example

	Status API endpoints
	Services endpoint
	GET /status/v1/services
	Supported HTTP methods
	Supported formats
	Query parameters
	Response
	Example request and response for a debug-level GET request
	Authorization

	Simple endpoint
	GET /status/v1/simple
	Supported HTTP methods
	Supported formats
	Query parameters
	Response
	Example request and response for a GET request
	Authorization

	Server-specific Puppet API endpoints
	Environment classes
	Changes in the environment classes API
	Covers classes only
	Changes class information caching behavior
	Uses typed values
	Provides default literal values
	Lacks filters
	Includes filenames
	Lacks line numbers
	Lacks documentation strings (vs. Puppet 3)
	Returns file entries for manifests with no classes
	Uses application/json Content-Type
	Includes successfully parsed classes, even if some return errors, and returns error messages

	GET /puppet/v3/environment_classes?environment=:environment
	Supported HTTP Methods
	Supported Formats
	Query Parameters
	Responses
	GET request with results
	GET request with Etag roundtripped from a previous GET request
	Environment does not exist
	No environment given
	Environment parameter specified with no value
	Environment includes non-alphanumeric characters

	Schema
	Headers and Caching Behavior
	Behaviors when the environment class cache is enabled
	Clearing class information cache entries

	Authorization

	Environment modules
	GET /puppet/v3/environment_modules
	Supported HTTP Methods
	Supported Formats
	Responses
	GET request with results

	GET /puppet/v3/environment_modules?environment=:environment
	Supported HTTP Methods
	Supported Formats
	Query Parameters
	Responses
	GET request with results
	Environment does not exist
	No environment given
	Environment parameter specified with no value
	Environment includes non-alphanumeric characters

	No metadata.json file
	Schema
	Validating your json

	Authorization

	Static file content
	GET /puppet/v3/static_file_content/<FILE-PATH>
	Query parameters
	Response
	Example response

	Notes
	Authorization

	Administrative API endpoints
	Environment cache
	DELETE /puppet-admin-api/v1/environment-cache
	Query Parameters
	Response
	Example

	Relevant Configuration

	JRuby pool
	DELETE /puppet-admin-api/v1/jruby-pool
	Response
	Example

	GET /puppet-admin-api/v1/jruby-pool/thread-dump
	Response
	Example

	Relevant Configuration

	Bootstrap upgrade notes
	Potential upgrade issues
	Potential breaking issues when upgrading with a modified bootstrap.cfg
	Potential service failures when upgrading with a modified init configuration

	Upgrading to 2.5.0 or newer
	Before you upgrade: ca.cfg
	After you upgrade: New bootstrap configuration files

	Certificate authority and SSL
	Puppet Server CA commands
	Intermediate CA
	Where to set CA configuration
	Set up Puppet as an intermediate CA with an external root

	Autosigning certificate requests
	CSR attributes and certificate extensions
	Regenerating certificates in a Puppet deployment
	External CA
	External SSL termination
	Disable HTTPS for Puppet Server
	Allow Client Cert Data From HTTP Headers
	Reload Puppet Server
	Configure SSL Terminating Proxy to Set HTTP Headers
	X-Client-Verify
	X-Client-DN
	X-Client-Cert

	PuppetDB
	Facter
	Facter: Core Facts
	Modern Facts
	aio_agent_version
	augeas
	cloud
	disks
	dmi
	az_metadata
	ec2_metadata
	ec2_userdata
	env_windows_installdir
	facterversion
	filesystems
	fips_enabled
	gce
	hypervisors
	identity
	is_virtual
	kernel
	kernelmajversion
	kernelrelease
	kernelversion
	ldom
	load_averages
	memory
	mountpoints
	networking
	os
	partitions
	path
	processors
	ruby
	solaris_zones
	ssh
	system_profiler
	system_uptime
	timezone
	virtual
	xen
	zfs_featurenumbers
	zfs_version
	zpool_featureflags
	zpool_featurenumbers
	zpool_version

	Legacy Facts
	architecture
	augeasversion
	blockdevices
	blockdevice_<devicename>_model
	blockdevice_<devicename>_size
	blockdevice_<devicename>_vendor
	bios_release_date
	bios_vendor
	bios_version
	boardassettag
	boardmanufacturer
	boardproductname
	boardserialnumber
	chassisassettag
	chassistype
	dhcp_servers
	domain
	fqdn
	gid
	hardwareisa
	hardwaremodel
	hostname
	id
	interfaces
	ipaddress
	ipaddress6
	ipaddress6_<interface>
	ipaddress_<interface>
	ldom_<name>
	lsbdistcodename
	lsbdistdescription
	lsbdistid
	lsbdistrelease
	lsbmajdistrelease
	lsbminordistrelease
	lsbrelease
	macaddress
	macaddress_<interface>
	macosx_buildversion
	macosx_productname
	macosx_productversion
	macosx_productversion_major
	macosx_productversion_minor
	manufacturer
	memoryfree
	memoryfree_mb
	memorysize
	memorysize_mb
	mtu_<interface>
	netmask
	netmask6
	netmask6_<interface>
	netmask_<interface>
	network
	network6
	network6_<interface>
	network_<interface>
	operatingsystem
	operatingsystemmajrelease
	operatingsystemrelease
	osfamily
	physicalprocessorcount
	processor<N>
	processorcount
	productname
	rubyplatform
	rubysitedir
	rubyversion
	scope6
	scope6_<interface>
	selinux
	selinux_config_mode
	selinux_config_policy
	selinux_current_mode
	selinux_enforced
	selinux_policyversion
	serialnumber
	sp_<name>
	ssh<algorithm>key
	sshfp_<algorithm>
	swapencrypted
	swapfree
	swapfree_mb
	swapsize
	swapsize_mb
	windows_edition_id
	windows_installation_type
	windows_product_name
	windows_release_id
	windows_display_version
	system32
	uptime
	uptime_days
	uptime_hours
	uptime_seconds
	uuid
	xendomains
	zone_<name>_brand
	zone_<name>_iptype
	zone_<name>_name
	zone_<name>_uuid
	zone_<name>_id
	zone_<name>_path
	zone_<name>_status
	zonename
	zones

	Custom facts overview
	Writing custom facts
	External facts
	Configuring Facter with facter.conf

	Hiera
	About Hiera
	Getting started with Hiera
	Configuring Hiera
	Creating and editing data
	Looking up data with Hiera
	Writing new data backends
	Upgrading to Hiera 5

	Environments
	About environments
	Creating environments
	Environment isolation

	Important directories and files
	Code and data directory (codedir)
	Config directory (confdir)
	Main manifest directory
	The modulepath
	SSL directory (ssldir)
	Cache directory (vardir)

	Puppet services and tools
	Puppet commands
	Running Puppet commands on Windows
	primary Puppet server
	About Puppet Server
	Puppet Server releases
	Controlling the Service
	Puppet Server's Run Environment
	Embedded Web Server
	Puppet API Service
	Certificate Authority Service
	Admin API Service

	JRuby Interpreters
	Tuning Guide
	User
	Ports
	Logging
	SSL Termination
	Configuring Puppet Server

	Puppet agent on *nix systems
	Puppet agent on Windows
	Puppet apply
	Puppet device

	Custom functions
	Custom functions overview
	Writing custom functions in the Puppet language
	Writing custom functions in Ruby
	Custom functions in Ruby overview
	Ruby function signatures
	Using special features in implementation methods
	Iterative functions
	Refactoring legacy 3.x functions

	Deferring a function
	Deferred functions overview
	Using a template with Deferred values
	Write a deferred function to store secrets
	Integrations with secret stores

	Classifying nodes
	Puppet reports
	Reporting
	Report reference
	Writing custom report processors
	Report format

	Puppet's internals
	Agent-server HTTPS communications
	Catalog compilation

	Developing Puppet code
	The Puppet language
	Puppet language overview
	Puppet language syntax examples
	The Puppet language style guide
	Files and paths on Windows
	Code comments
	Variables
	Resources
	Resource types
	Resource Type Reference (Single-Page)
	About resource types
	Built-in types and custom types
	Declaring resources
	Namevars and titles
	Attributes, parameters, properties
	Providers
	Features

	Puppet 6.0 type changes
	Supported type modules in puppet-agent
	Type modules available on the Forge
	Deprecated types

	Puppet core types
	exec
	Description
	Attributes
	command
	creates
	cwd
	environment
	group
	logoutput
	onlyif
	path
	provider
	refresh
	refreshonly
	returns
	timeout
	tries
	try_sleep
	umask
	unless
	user

	Providers
	posix
	shell
	windows

	file
	Description
	Attributes
	path
	ensure
	backup
	checksum
	checksum_value
	content
	ctime
	force
	group
	ignore
	links
	max_files
	mode
	mtime
	owner
	provider
	purge
	recurse
	recurselimit
	replace
	selinux_ignore_defaults
	selrange
	selrole
	seltype
	seluser
	show_diff
	source
	source_permissions
	sourceselect
	staging_location
	target
	type
	validate_cmd
	validate_replacement

	Providers
	posix
	windows

	Provider Features

	filebucket
	Description
	Attributes
	name
	path
	port
	server

	group
	Description
	Attributes
	name
	ensure
	allowdupe
	attribute_membership
	attributes
	auth_membership
	forcelocal
	gid
	ia_load_module
	members
	provider
	system

	Providers
	aix
	directoryservice
	groupadd
	ldap
	pw
	windows_adsi

	Provider Features

	notify
	Description
	Attributes
	name
	message
	withpath

	package
	Description
	Attributes
	name
	command
	provider
	ensure
	adminfile
	allow_virtual
	allowcdrom
	category
	configfiles
	description
	enable_only
	flavor
	install_only
	install_options
	instance
	mark
	package_settings
	platform
	reinstall_on_refresh
	responsefile
	root
	source
	status
	uninstall_options
	vendor

	Providers
	aix
	appdmg
	apple
	apt
	aptitude
	aptrpm
	blastwave
	dnf
	dnfmodule
	dpkg
	fink
	freebsd
	gem
	hpux
	macports
	nim
	openbsd
	opkg
	pacman
	pip
	pip2
	pip3
	pkg
	pkgdmg
	pkgin
	pkgng
	pkgutil
	portage
	ports
	portupgrade
	puppet_gem
	puppetserver_gem
	rpm
	rug
	sun
	sunfreeware
	tdnf
	up2date
	urpmi
	windows
	yum
	zypper

	Provider Features

	resources
	Description
	Attributes
	name
	purge
	unless_system_user
	unless_uid

	schedule
	Description
	Attributes
	name
	period
	periodmatch
	range
	repeat
	weekday

	service
	Description
	Attributes
	name
	ensure
	binary
	control
	enable
	flags
	hasrestart
	hasstatus
	logonaccount
	logonpassword
	manifest
	path
	pattern
	provider
	restart
	start
	status
	stop
	timeout

	Providers
	base
	bsd
	daemontools
	debian
	freebsd
	gentoo
	init
	launchd
	openbsd
	openrc
	openwrt
	rcng
	redhat
	runit
	service
	smf
	src
	systemd
	upstart
	windows

	Provider Features

	stage
	Description
	Attributes
	name

	tidy
	Description
	Attributes
	path
	age
	backup
	matches
	max_files
	recurse
	rmdirs
	size
	type

	user
	Description
	Attributes
	name
	ensure
	allowdupe
	attribute_membership
	attributes
	auth_membership
	auths
	comment
	expiry
	forcelocal
	gid
	groups
	home
	ia_load_module
	iterations
	key_membership
	keys
	loginclass
	managehome
	membership
	password
	password_max_age
	password_min_age
	password_warn_days
	profile_membership
	profiles
	project
	provider
	purge_ssh_keys
	role_membership
	roles
	salt
	shell
	system
	uid

	Providers
	aix
	directoryservice
	hpuxuseradd
	ldap
	openbsd
	pw
	user_role_add
	useradd
	windows_adsi

	Provider Features

	Core types cheat sheet
	Optional resource types for Windows
	Resource Type: exec
	exec
	Description
	Attributes
	command
	creates
	cwd
	environment
	group
	logoutput
	onlyif
	path
	provider
	refresh
	refreshonly
	returns
	timeout
	tries
	try_sleep
	umask
	unless
	user

	Providers
	posix
	shell
	windows

	Using exec on Windows
	Resource Type: file
	file
	Description
	Attributes
	path
	ensure
	backup
	checksum
	checksum_value
	content
	ctime
	force
	group
	ignore
	links
	max_files
	mode
	mtime
	owner
	provider
	purge
	recurse
	recurselimit
	replace
	selinux_ignore_defaults
	selrange
	selrole
	seltype
	seluser
	show_diff
	source
	source_permissions
	sourceselect
	staging_location
	target
	type
	validate_cmd
	validate_replacement

	Providers
	posix
	windows

	Provider Features

	Using file on Windows
	Resource Type: filebucket
	filebucket
	Description
	Attributes
	name
	path
	port
	server

	Resource Type: group
	group
	Description
	Attributes
	name
	ensure
	allowdupe
	attribute_membership
	attributes
	auth_membership
	forcelocal
	gid
	ia_load_module
	members
	provider
	system

	Providers
	aix
	directoryservice
	groupadd
	ldap
	pw
	windows_adsi

	Provider Features

	Using user and group on Windows
	Resource types overview
	List of resource types
	About resource types
	Built-in types and custom types
	Declaring resources
	Namevars and titles
	Attributes, parameters, properties
	Providers
	Features

	Puppet 6.0 type changes
	Supported type modules in puppet-agent
	Type modules available on the Forge
	Deprecated types

	Puppet core types

	Resource Type: notify
	notify
	Description
	Attributes
	name
	message
	withpath

	Resource Type: package
	package
	Description
	Attributes
	name
	command
	ensure
	adminfile
	allow_virtual
	allowcdrom
	category
	configfiles
	description
	enable_only
	flavor
	install_only
	install_options
	instance
	mark
	package_settings
	platform
	provider
	reinstall_on_refresh
	responsefile
	root
	source
	status
	uninstall_options
	vendor

	Providers
	aix
	appdmg
	apple
	apt
	aptitude
	aptrpm
	blastwave
	dnf
	dnfmodule
	dpkg
	fink
	freebsd
	gem
	hpux
	macports
	nim
	openbsd
	opkg
	pacman
	pip
	pip2
	pip3
	pkg
	pkgdmg
	pkgin
	pkgng
	pkgutil
	portage
	ports
	portupgrade
	puppet_gem
	puppetserver_gem
	rpm
	rug
	sun
	sunfreeware
	tdnf
	up2date
	urpmi
	windows
	yum
	zypper

	Provider Features

	Using package on Windows
	Resource Type: resources
	resources
	Description
	Attributes
	name
	purge
	unless_system_user
	unless_uid

	Resource Type: schedule
	schedule
	Description
	Attributes
	name
	period
	periodmatch
	range
	repeat
	weekday

	Resource Type: service
	service
	Description
	Attributes
	name
	ensure
	binary
	control
	enable
	flags
	hasrestart
	hasstatus
	logonaccount
	logonpassword
	manifest
	path
	pattern
	provider
	restart
	start
	status
	stop
	timeout

	Providers
	base
	bsd
	daemontools
	debian
	freebsd
	gentoo
	init
	launchd
	openbsd
	openrc
	openwrt
	rcng
	redhat
	runit
	service
	smf
	src
	systemd
	upstart
	windows

	Provider Features

	Using service
	Resource Type: stage
	stage
	Description
	Attributes
	name

	Resource Type: tidy
	tidy
	Description
	Attributes
	path
	age
	backup
	matches
	max_files
	recurse
	rmdirs
	size
	type

	Resource Type: user
	user
	Description
	Attributes
	name
	ensure
	allowdupe
	attribute_membership
	attributes
	auth_membership
	auths
	comment
	expiry
	forcelocal
	gid
	groups
	home
	ia_load_module
	iterations
	key_membership
	keys
	loginclass
	managehome
	membership
	password
	password_max_age
	password_min_age
	password_warn_days
	profile_membership
	profiles
	project
	provider
	purge_ssh_keys
	role_membership
	roles
	salt
	shell
	system
	uid

	Providers
	aix
	directoryservice
	hpuxuseradd
	ldap
	openbsd
	pw
	user_role_add
	useradd
	windows_adsi

	Provider Features

	Relationships and ordering
	Classes
	Defined resource types
	Bolt tasks
	Expressions and operators
	Conditional statements and expressions
	Function calls
	Built-in function reference
	undef values in Puppet 6
	abs
	alert
	Parameters

	all
	annotate
	any
	assert_type
	binary_file
	break
	call
	camelcase
	capitalize
	ceiling
	chomp
	chop
	compare
	contain
	convert_to
	create_resources
	crit
	Parameters

	debug
	Parameters

	defined
	dig
	digest
	downcase
	each
	emerg
	Parameters

	empty
	epp
	err
	Parameters

	eyaml_lookup_key
	fail
	file
	filter
	find_file
	find_template
	flatten
	floor
	fqdn_rand
	generate
	get
	getvar
	group_by
	Parameters
	Examples

	hiera
	hiera_array
	hiera_hash
	hiera_include
	hocon_data
	import
	include
	index
	info
	Parameters

	inline_epp
	inline_template
	join
	json_data
	keys
	length
	lest
	lookup
	Arguments
	Merge Behaviors

	lstrip
	map
	match
	max
	md5
	min
	module_directory
	new
	Conversion to Optional[T] and NotUndef[T]
	Conversion to Integer
	Conversion to Float
	Conversion to Numeric
	Conversion to Timespan
	Conversion to Timestamp
	Conversion to Type
	Conversion to String
	Conversion to Boolean
	Conversion to Array and Tuple
	Conversion to Hash and Struct
	Conversion to a Regexp
	Creating a SemVer
	Creating a SemVerRange
	Creating a Binary
	Creating an instance of a Type using the Init type

	next
	notice
	Parameters

	partition
	Parameters
	Examples

	realize
	reduce
	regsubst
	Parameters
	Examples
	Parameters
	Examples

	require
	return
	reverse_each
	round
	rstrip
	scanf
	sha1
	sha256
	shellquote
	size
	slice
	sort
	split
	sprintf
	step
	strftime
	Flags that controls padding
	Timestamp specific flags
	Format directives applicable to Timestamp (names and padding can be altered using flags):
	Format directives applicable to Timespan:

	strip
	tag
	tagged
	template
	then
	tree_each
	type
	unique
	unwrap
	upcase
	values
	versioncmp
	warning
	Parameters

	with
	yaml_data

	Node definitions
	Facts and built-in variables
	Accessing facts from Puppet code
	Built-in variables

	Reserved words and acceptable names
	Custom resources
	Develop types and providers with the Resource API
	Resource API reference
	Low-level method for developing types and providers
	Type development
	Provider development

	Values, data types, and aliases
	Type aliases
	Typecasting
	Strings
	Numbers
	Binary
	Booleans
	Arrays
	Hashes
	Regular expressions
	Sensitive
	Time-related data types
	Undef
	Default
	Resource and class references
	Resource types
	Data type syntax
	Abstract data types

	Templates
	Creating templates using Embedded Puppet
	Creating templates using Embedded Ruby

	Advanced constructs
	Iteration and loops
	Lambdas
	Resource default statements
	Resource collectors
	Virtual resources
	Exported resources
	Tags
	Run stages

	Details of complex behaviors
	Containment
	Scope
	Namespaces and autoloading

	Securing sensitive data

	Modules
	Modules overview
	Plug-ins in modules
	Module cheat sheet
	Installing and managing modules from the command line
	Beginner's guide to writing modules
	Module metadata
	Documenting modules
	Documenting modules with Puppet Strings
	Puppet Strings style guide
	Publishing modules
	Contributing to Puppet modules

	Designing system configs: roles and profiles
	The roles and profiles method
	Roles and profiles example
	Designing advanced profiles
	Designing convenient roles

	Puppet Forge
	Puppet Development Kit (PDK)
	Puppet VSCode extension

	Orchestration in Puppet
	Example configurations
	Manage NTP
	Manage sudo
	Manage DNS
	Manage firewall rules
	Forge examples

	References
	Experimental features
	Msgpack support

	Configuration Reference
	Configuration settings
	agent_catalog_run_lockfile
	agent_disabled_lockfile
	allow_duplicate_certs
	always_retry_plugins
	autoflush
	autosign
	basemodulepath
	binder_config
	bucketdir
	ca_fingerprint
	ca_name
	ca_port
	ca_server
	ca_ttl
	cacert
	cacrl
	cadir
	cakey
	capub
	catalog_cache_terminus
	catalog_terminus
	cert_inventory
	certdir
	certificate_revocation
	certname
	ciphers
	classfile
	client_datadir
	clientbucketdir
	clientyamldir
	code
	codedir
	color
	confdir
	config
	config_file_name
	config_version
	configprint
	crl_refresh_interval
	csr_attributes
	csrdir
	daemonize
	data_binding_terminus
	default_file_terminus
	default_manifest
	default_schedules
	deviceconfdir
	deviceconfig
	devicedir
	diff
	diff_args
	digest_algorithm
	disable_i18n
	disable_per_environment_manifest
	disable_warnings
	dns_alt_names
	document_all
	environment
	environment_data_provider
	environment_timeout
	environment_timeout_mode
	environmentpath
	evaltrace
	external_nodes
	facterng
	factpath
	facts_terminus
	fileserverconfig
	filetimeout
	forge_authorization
	freeze_main
	func3x_check
	future_features
	genconfig
	genmanifest
	graph
	graphdir
	group
	hiera_config
	hostcert
	hostcrl
	hostcsr
	hostprivkey
	hostpubkey
	http_connect_timeout
	http_debug
	http_extra_headers
	http_keepalive_timeout
	http_proxy_host
	http_proxy_password
	http_proxy_port
	http_proxy_user
	http_read_timeout
	http_user_agent
	ignore_plugin_errors
	ignoremissingtypes
	ignoreschedules
	key_type
	keylength
	lastrunfile
	lastrunreport
	ldapattrs
	ldapbase
	ldapclassattrs
	ldapparentattr
	ldappassword
	ldapport
	ldapserver
	ldapssl
	ldapstackedattrs
	ldapstring
	ldaptls
	ldapuser
	libdir
	localcacert
	localedest
	localesource
	location_trusted
	log_level
	logdest
	logdir
	manage_internal_file_permissions
	manifest
	masterport
	max_deprecations
	max_errors
	max_warnings
	maximum_uid
	maxwaitforcert
	maxwaitforlock
	merge_dependency_warnings
	mkusers
	module_groups
	module_repository
	module_working_dir
	modulepath
	name
	named_curve
	no_proxy
	node_cache_terminus
	node_name
	node_name_fact
	node_name_value
	node_terminus
	noop
	onetime
	passfile
	path
	pidfile
	plugindest
	pluginfactdest
	pluginfactsource
	pluginsignore
	pluginsource
	pluginsync
	postrun_command
	preferred_serialization_format
	prerun_command
	preview_outputdir
	priority
	privatedir
	privatekeydir
	profile
	publickeydir
	puppet_trace
	puppetdlog
	report
	report_include_system_store
	report_port
	report_server
	reportdir
	reports
	reporturl
	requestdir
	resourcefile
	rest_authconfig
	resubmit_facts
	rich_data
	route_file
	rundir
	runinterval
	runtimeout
	serial
	server
	server_datadir
	server_list
	serverport
	show_diff
	signeddir
	skip_tags
	sourceaddress
	splay
	splaylimit
	srv_domain
	ssl_client_ca_auth
	ssl_client_header
	ssl_client_verify_header
	ssl_lockfile
	ssl_server_ca_auth
	ssl_trust_store
	ssldir
	statedir
	statefile
	statettl
	static_catalogs
	storeconfigs
	storeconfigs_backend
	strict
	strict_environment_mode
	strict_hostname_checking
	strict_variables
	summarize
	supported_checksum_types
	syslogfacility
	tags
	tasks
	trace
	transactionstorefile
	trusted_external_command
	trusted_oid_mapping_file
	use_cached_catalog
	use_last_environment
	use_srv_records
	usecacheonfailure
	user
	vardir
	vendormoduledir
	versioned_environment_dirs
	waitforcert
	waitforlock
	write_catalog_summary
	yamldir

	Metaparameter reference
	Built-in function reference
	undef values in Puppet 6
	abs
	alert
	Parameters

	all
	annotate
	any
	assert_type
	binary_file
	break
	call
	camelcase
	capitalize
	ceiling
	chomp
	chop
	compare
	contain
	convert_to
	create_resources
	crit
	Parameters

	debug
	Parameters

	defined
	dig
	digest
	downcase
	each
	emerg
	Parameters

	empty
	epp
	err
	Parameters

	eyaml_lookup_key
	fail
	file
	filter
	find_file
	find_template
	flatten
	floor
	fqdn_rand
	generate
	get
	getvar
	group_by
	Parameters
	Examples

	hiera
	hiera_array
	hiera_hash
	hiera_include
	hocon_data
	import
	include
	index
	info
	Parameters

	inline_epp
	inline_template
	join
	json_data
	keys
	length
	lest
	lookup
	Arguments
	Merge Behaviors

	lstrip
	map
	match
	max
	md5
	min
	module_directory
	new
	Conversion to Optional[T] and NotUndef[T]
	Conversion to Integer
	Conversion to Float
	Conversion to Numeric
	Conversion to Timespan
	Conversion to Timestamp
	Conversion to Type
	Conversion to String
	Conversion to Boolean
	Conversion to Array and Tuple
	Conversion to Hash and Struct
	Conversion to a Regexp
	Creating a SemVer
	Creating a SemVerRange
	Creating a Binary
	Creating an instance of a Type using the Init type

	next
	notice
	Parameters

	partition
	Parameters
	Examples

	realize
	reduce
	regsubst
	Parameters
	Examples
	Parameters
	Examples

	require
	return
	reverse_each
	round
	rstrip
	scanf
	sha1
	sha256
	shellquote
	size
	slice
	sort
	split
	sprintf
	step
	strftime
	Flags that controls padding
	Timestamp specific flags
	Format directives applicable to Timestamp (names and padding can be altered using flags):
	Format directives applicable to Timespan:

	strip
	tag
	tagged
	template
	then
	tree_each
	type
	unique
	unwrap
	upcase
	values
	versioncmp
	warning
	Parameters

	with
	yaml_data

	Puppet Man Pages
	Core Tools
	Secondary subcommands
	Niche subcommands

